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1 Introduction

Seeds serve as the major means of reproduction for most plant species and form the

foundation of both agriculture and natural ecosystems (Waterworth et al., 2024). Seeds are

also the key genetic resources to deal with the increasing human population and climate

fluctuations (Leprince et al., 2017). Seed development can be categorized into three major

stages: maturation, dormancy, and germination (Figure 1A; Zinsmeister et al., 2020; Powell,

2022; Nadarajan et al., 2023; Waterworth et al., 2024). In the maturation phase, seeds

acquire desiccation tolerance, followed by developmental processes that expands longevity

to dormancy stage. Maturation drying reduces seed moisture content to 5% – 15% of fresh

weight (Figure 1A; Zinsmeister et al., 2020). Dormancy of seeds under optimal conditions,

such as low temperature and humidity, prolongs viability, while suboptimal conditions lead

to seed aging (Figure 1A; Powell, 2022; Nadarajan et al., 2023). Seed dormancy is

modulated by a complex interplay of genetic, biochemical, and molecular determinants

intricately connected to environmental signals such as light, temperature, nitrate

availability, and phytohormones including abscisic acid (ABA) and gibberellin (GA)

(Chahtane et al., 2017; Matilla, 2024; Rachappanavar, 2025). The difference between

dormant seeds and non-dormant seeds could be attributed to a number of gene

expression changes (Meimoun et al., 2014), physiological, developmental, and

morphological features of the grains on the spike, including pericarp color, transparency,

hairiness, waxiness, permeability of water, a-amylase activity, and concentrations of

growth regulators such as ABA and GA within the embryo (Sohn et al., 2021). Seed

germination is initiated by water uptake (imbibition), resulting in activation of multiple

cellular actions, and is completed with the emergence of the young roots and shoots

(Figure 1A; Carrera-Castaño et al., 2020; Waterworth et al., 2024).

The acquisition of desiccation tolerance at the late seed maturation stage provides a

critical survival mechanism for crops, enabling them to adaptive to adverse environmental

conditions such as extreme temperatures and drought (Leprince et al., 2017; Zinsmeister

et al., 2020; Waterworth et al., 2024). The majority of crop plants can generate seeds

classified as orthodox seeds, which possess the ability to withstand drying to low moisture

content (below 7%) and harsh extreme environmental conditions such as freezing (-10°C)

for a long time (Nadarajan et al., 2023; Waterworth et al., 2024). In maize, the moisture

content of kernel suitable for mechanized harvesting is from 15% - 25%, however, in some

regions such as China, maize varieties have high grain water content at harvest, ranging

from 30% - 40% (Xiang et al., 2012; Kebebe et al., 2015; Dai et al., 2017; Li et al., 2018a,
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2018b; Zhou et al., 2018). Kernel dehydration rate (KDR), defined

as the rate of moisture loss between two adjacent periods after

pollination (Zhang et al., 2024), is a critical determinant of maize

seed quality and exerts a significant impact on the efficiency of

mechanical harvesting (Li et al., 2018b). Besides, the removal of free

water leads to a phase transition as the cytoplasm reduces mobility

from a fluid to glassy state (Buitink and Leprince, 2008), resulting in

metabolic quiescence and increased seed longevity (Zinsmeister

et al., 2020). To date, genetic elements implicated in the modulation

of reactive oxygen species (ROS) signaling, lipid peroxidation at the

cell membrane, the preservation of DNA and RNA integrity, DNA

methylation status, biosynthesis of seed storage proteins (SSPs), and

phytohormones such as ABA, auxin, GA, and brassinosteroids

(BRs) have been documented as crucial regulators of seed

longevity (Nadarajan et al., 2023; Pirredda et al., 2023;
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Waterworth et al., 2024). Abiotic factors including light, thermal

conditions, drought and salinity stress also significantly impact seed

longevity, with temperature and water availability emerging as

predominant factors (Zinsmeister et al., 2020). In maize, several

quantitative trait loci (QTLs) have been characterized as pivotal

players in the regulation of KDR (Li et al., 2020, 2021a; Zhang et al.,

2023; Jin et al., 2024). Collectively, a higher level of desiccation

tolerance is crucial for maize mechanized harvesting, preventing

grain breakage, mildew, and reducing the costs associated with

harvest and storage (de Jager et al., 2004; Xiang et al., 2012; Kebebe

et al., 2015; Wang et al., 2022; Xia et al., 2024). Thus, a

comprehensive understanding of the mechanisms governing

desiccation tolerance of seeds is necessary and crucial.

Seed dehydration is linked to a multitude of physiological

modifications, including the accumulation of macromolecules
FIGURE 1

The microRPG1 peptide modulates seed desiccation through ethylene signaling pathways. (A) Key developmental phases in seed life. The
establishment of desiccation tolerance (DT) occurs during the late maturation phase, subsequently followed by developmental processes that
promote longevity during the dormancy period. Maturation drying leads to a reduction in seed moisture levels. DT is maintained by intricate
networks during dormancy. Optimal conditions of low temperature and humidity prolong seed viability, whereas less favorable environmental
conditions contribute to seed senescence. Water imbibition triggers metabolic activities and cellular processes, culminating in germination. Cutting-
edge technologies rehydrate seeds, followed by desiccation, to enhance cellular repair and boost seed vigor. DT is lost when seeds progress to
germination. (B) Mechanistic model of microRPG1 peptide in seed desiccation. RPG encodes a peptide, namely microRPG1, comprising 31 amino
acids. Two MYB transcription factors, ZmMYBSt1 and ZmMYBR43, interact with the qKDR1 locus, thereby repressing the transcriptional activity of
RPG and the levels of microRPG1 peptide. The microRPG1 peptide subsequently regulates the expression of ZmEIL1 and ZmEIL3, pivotal
transcription factors in the ethylene signaling cascade, thereby modulating ethylene signaling and KDR. Elevated ethylene concentrations facilitate
KDR, while reduced ethylene levels deaccelerate KDR. The figure is adapted from Yu et al., 2024. Dashed line means weak effect. The figure is
created via biorender.com.
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(proteins, lipids, and carbohydrates), enhanced membrane

integrity, and activation of cellular dehydration defense

mechanisms, which are governed by hormone signaling pathways

such as abscisic acid (ABA) and ethylene (Angelovici et al., 2010;

Bewley et al., 2013; Kijak and Ratajczak, 2020; Oliver et al., 2020;

Smolikova et al., 2020). The onset of desiccation tolerance occurs

when seeds enter into dormancy stage at the late maturation stage

(Leprince et al., 2017; Smolikova et al., 2020). Numerous signaling

components including Late Embryogenesis Abundant (LEA)

proteins, small heat shock proteins (sHSPs), non-reducing

oligosaccharides, antioxidants, reactive oxygen species (ROS), as

well as gibberellin (GA), and ABA, have been identified as crucial

regulators of seed desiccation tolerance (Angelovici et al., 2010;

Kijak and Ratajczak, 2020; Smolikova et al., 2020; Waterworth et al.,

2024). In addition, many transcription factors such as ABA-

INSENSITIVE 3 (ABI3), FUSCA 3 (FUS3) and LEAFY

COTYLEDONS 2 (LEC2) have been discovered to defines the

balance between GA and ABA to finally initiate the onset of seed

desiccation tolerance (Smolikova et al., 2020). However, the

regulatory mechanisms of seed desiccation tolerance mediated by

the small signaling peptides remain largely elusive.

Micropeptides, also referred to as microproteins or short open

reading frame (sORF)-encoded peptides, are essential products

derived from a larger polypeptide or from MicroRNAs

(miRNAs), long non-coding RNA (lncRNA), and circular RNA

(circRNA), typically characterized by an arbitrary length of less

than 100 - 150 amino acids (Hashimoto et al., 2008; Makarewich

and Olson, 2017; Sousa and Farkas, 2018; Vitorino et al., 2021; Pan

et al., 2022; Sruthi et al., 2022; Bhar and Roy, 2023; Gautam et al.,

2023). A growing number of evidence show the key roles of

micropeptides in various plant developmental and adaptive

processes including but not limited to plant growth (Sharma

et al., 2020; Erokhina et al., 2021; Badola et al., 2022),

adventitious root formation (Chen et al., 2020), nodule formation

(Couzigou et al., 2016), cold response (Chen et al., 2022),

anthocyanin biosynthesis (Vale et al., 2024), and responses to

cadmium and arsenic stressors (Kumar et al., 2023; Lu et al.,

2024), and immunity (Zhou et al., 2022). Recently, the

microRPG1 (micropeptide of RPG ORF1) peptide that governs

kernel dehydration rate (KDR) in maize has been identified, offering

novel perspectives on the molecular mechanisms that regulate seed

desiccation mediated by micropeptide and providing valuable

insights for future genetic breeding of cereal crops (Figure 1B;

Lyu, 2024; Yu et al., 2024).

2 microRPG1 peptide regulates
ethylene signaling to control maize
seeds desiccation

Maize (Zea mays) is one of the most important crops world-

wide, with an annual global production of over 1147 million tons

(Yang and Yan, 2021). Mechanized harvesting of maize kernels is a

viable solution to reduce labor costs and to enhance production
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efficiency. However, mechanized harvesting has not yet been

achieved in China due to the absence of appropriate corn

cultivars (Li et al., 2018a; Wang et al., 2018; Liu et al., 2020).

Mechanized harvesting of maize requires a sufficiently low moisture

content of kernels (15% - 25%) (Liu et al., 2020). This poses a

significant challenge as the majority of corn cultivars in China

exhibit a high grain moisture content during harvest, usually

between 30% and 40% (Dai et al., 2017; Li et al., 2018a; Zhou

et al., 2018). Consequently, enhancing KDR and minimizing kernel

moisture content at the harvest stage are critical and has become a

major aim of modern maize breeding (Sala et al., 2006; Qu et al.,

2022). To this end, a prominent quantitative trait locus (QTL) for

KDR, designated as Kernel Dehydration Rate 1 (qKDR1), has been

identified within the corn recombinant inbred line population,

which originated from the crossbreeding of corn inbred lines K22

and DAN340, known for their variant KDRs (Pan et al., 2016; Xiao

et al., 2016; Yu et al., 2024).

qKDR1 is located on chromosome 1, specifically within a 1417

base pair (bp) intergenic non-coding region of the maize genome

(Yu et al., 2024). Targeted deletion of this sequence via CRISPR-

Cas9 at this locus yields varying KDRs, demonstrating that the

1417-bp segment of qKDR1 is crucial for KDR variability, as its

knockout leads to impaired KDR. To investigate the regulatory

mechanism of qKDR1 on KDR, transient transcriptional activity

assays were conducted in maize protoplasts. The findings reveal that

qKDR1 functions as a silencer, with the 369-bp segment of qKDR1

identified as the major repressive element. Subsequent RNA-

sequencing analysis is performed to ascertain potential targets of

qKDR1, leading to the identification of the target gene, qKDR1

Regulated Peptide Gene (RPG). RPG is situated 10 kilobases

upstream of qKDR1 and exhibits high expression levels in maize

kernels, and its transcriptional activity declines during the later

stages of kernel maturation. In maize lines where qKDR1 has been

knocked out, RPG expression is markedly elevated. Collectively,

these results indicate that qKDR1 acts as a repressor of RPG

expression. Furthermore, analysis of public chromatin

immunoprecipitation sequencing (ChIP-seq) datasets has

uncovered two MYB-related transcription factors, ZmMYBST1

and ZmMYBR43 , that bind to the qKDR1 locus. Both

ZmMYBST1 and ZmMYBR43 exhibit expression patterns that

similar to RPG, and they also inhibit RPG transcriptional activity.

Additionally, CRISPR-Cas9-generated double mutants of

ZmMYBST1 and ZmMYBR43 demonstrate a reduced rate of

KDR. These findings suggest that ZmMYBST1 and ZmMYBR43

interact with the qKDR1 region to downregulate RPG expression,

thereby modulating KDR.

Ribosome profiling sequencing (Ribo-seq) reveals that mRNA

of RPG is ribosome bound in three open reading frames, ORF1,

ORF2, and ORF3. Mutations in ORF1 accelerated KDR, whereas

mutations in the two other ORFs has no obvious effect on KDR.

Overexpressing ORF1 resulted in a decelerated KDR. Furthermore,

the kernel moisture content of ORF1 knockout lines is decreased

under different environments. The endogenous ORF1 micropeptide

is also verified by immunoprecipitation (IP) and mass spectrometry
frontiersin.org
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(MS). These findings indicate that ORF1 encodes the functional

RPG micropeptide (microRPG1). Furthermore, ZmEIL1 and

ZmEIL3, key players in ethylene signaling, are identified as the

downstream targets of microRPG1 peptide via RNA-seq assay.

ZmEIL1 and ZmEIL3 are upregulated in the microRPG1 knockout

and downregulated in the overexpression lines, respectively.

Consistently, ZmEIL1 and ZmEIL3 knockout lines also exhibit

decelerated KDR. In contrast, application of ethylene facilitates

KDR rate. Hence, microRPG1peptide represses ethylene signaling,

which further decelerates kernel dehydration (Figure 1B).
3 Future perspectives

Although the essential function of the microRPG1 peptide in

the modulation of desiccation tolerance of seed has been established

in both maize and Arabidopsis (Yu et al., 2024), the precise

molecular mechanisms warrant further exploration. First, the

binding affinities and sites of ZmMYBST1 and ZmMYBR43 to

qKDR1 remain to be elucidated. Secondly, the mechanism by which

qKDR1 inhibits RPG expression, potentially through the native

promoter of RPG, requires further investigation. It has been

proposed that microRPG1 is localized at the plasma membrane,

nucleus, and cytoplasm, indicating that unidentified receptors may

exist and could potentially recognize the microRPG1 peptide,

thereby initiating cellular signaling cascades, including ethylene

signaling in the nucleus and cytoplasm to finely regulate desiccation

tolerance. The advanced CRISPR screening platform provides a

powerful methodology for generating single or multiple mutations

of receptor-like kinases (RLKs) simultaneously (Gaillochet et al.,

2021), which will facilitate the identification of uncharacterized

receptors that can recognize microRPG1 signal to modulate maize

KDR. Furthermore, it is plausible that the microRPG1 peptide

exerts its effects independently of any specific receptors.

Additionally, the interactions between the microRPG1 peptide

and other phytohormones such as ABA and GA, which are

implicated in the regulation of seed desiccation tolerance (Kijak

and Ratajczak, 2020; Smolikova et al., 2020), necessitate further

scrutiny. Importantly, single-cell transcriptomic assays have

facilitated the identification of novel regulators involved in seed

development (Liew et al., 2024; Yao et al., 2024), a technique that

could potentially unveil the regulators of seed desiccation tolerance

at a single-cell resolution and establish the unprecedented

transcriptional networks mediated by microRPG1 peptide that

govern seed desiccation tolerance. Notably, seeds develop

desiccation tolerance during the maturation phase and sustain

this tolerance during the dormancy phase (Figure 1A). A critical

question that remains unresolved is how maize initiates the

transcription and biosynthesis of the microRPG1 peptide.

Furthermore, the mechanisms by which the microRPG1 peptide

interacts with both known and yet-to-be-identified factors involved

in seed desiccation tolerance require elucidation (Smolikova et al.,

2020; Farrant et al., 2022; Waterworth et al., 2024).
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Despite the fact that the microRPG1 peptide is exclusively

found in the genera Zea (Yu et al., 2024), it is plausible that other

yet-to-be-identified small signaling peptides may also influence

desiccation tolerance. Desiccation tolerance is established during

seed maturation on the maternal plant through an array of

programmed cellular mechanisms (Waterworth et al., 2024),

suggesting that small signaling peptides involved in the

dehydra t ion process , such as CLAVATA3/EMBRYO

SURROUNDING REGION 9 (CLE9) (Zhang et al., 2019) and

CLE25/26 (Takahashi et al., 2018; Endo and Fukuda, 2024), C-

TERMINALLY ENCODED PEPTIDE 5 (CEP5) (Smith et al.,

2020), and RAPID ALKALINIZATION FACTOR (RALF) (Jing

et al., 2024), along with other drought-responsive small signaling

peptides (Xie et al., 2022; Ji et al., in press; Zhang et al., 2025), could

also potentially modulate seed desiccation tolerance, but this

requires further examinations. Additionally, the mass

spectrometry imaging (MSI) technique has been employed in in

plants to elucidate the spatial distribution of structurally diverse

plant hormones (Chen et al., 2024) and various other plant

compounds (Garcıá-Rojas et al., 2024; Yin et al., 2024; Zou et al.,

2025) even at the single-cell resolution (Croslow et al., 2024; Zhang

et al., 2024). This technique has been successfully performed to

identify small peptides mammalian cells (David et al., 2018;

Bottomley et al., 2024). Thus, MSI could be instrumental in

discovering novel small signaling peptides associated with

desiccation tolerance during the late maturation phase of seeds,

thereby enhancing the existing knowledge of the mechanisms

underlying seed dehydration (Figure 1A). In addition to the

microRPG1 peptide, multiple miPEPs have been discovered in

various crop and horticultural species (Ji et al., in press); however,

their biological roles remain largely uncharacterized. The CRISPR-

Cas system can facilitate the generation ofmiPEP knockout mutants

(Li et al., 2021b), and to identify potential receptors (Gaillochet

et al., 2021). Moreover, CRISPR-mediated gene regulation tools,

such as CRISPR interference (CRISPRi), CRISPR activation

(CRISPRa), CRISPRoff, CROP-seq, CRISP-seq, CRISPR-based

epigenetic modifications, and Perturb-seq (Liu et al., 2022),

coupled with single-cell transcriptomics (Liew et al., 2024; Yao

et al., 2024), can be utilized to elucidate the influence of miPEPs on

growth, agronomic and horticultural traits, and stress response

mechanisms at single cell resolution. These tools also enable the

construction of novel transcriptional networks modulated by

miPEP peptides.

In summary, the discovery of microRPG1 peptide contributes

to understanding seed desiccation and to the improvement of corn

seeds to adapt to mechanized harvesting. According to Worldostats

(https:://worldostats.com/corn-maize-production-by-country-

2025/) and FAO (Food and Agriculture Organization of the United

Nations) (Liu et al., 2025), the global production of corn is a

staggering 1.16 billion tones per year. The top 3 leading maize

producing countries are the USA (348.8 million tons), China (277.2

million tons) and Brazil (109.4 million tons), accounting for over

half of global maize production. The application of microRPG1
frontiersin.org
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peptide would lower the moisture content of maize, and prevent

grain breakage, mildew, reduce labor costs and increase maize

production worldwide for food supplement in future. In addition,

it is possible to introduce the RPG gene in to other cereal crops such

as rice, wheat and millet artificially or application of exogenous

microRPG1 peptide to manipulate the moisture content of seeds,

which is beneficial for storage and mechanized harvesting in future.

Identifying the uncharacterized signaling components and novel

small signaling peptides involved in seed desiccation would provide

a new genetic toolbox for the genetic enhancement of cereal crops

and broaden the applications of small signaling peptides in

modern agriculture.
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