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CGA-ASNet: an RGB-D
amodal segmentation
network for restoring
occluded tomato regions
Zhaoyang Li , Yong Yin, Zhihong Xing and Hanbing Deng*

College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang, China
Obtaining the complete morphology of tomato fruits under non-destructive

conditions is essential for phenotype research, yet fruit occlusions often hinder

deep learning-based image segmentation methods from capturing the true

shape of occluded regions. This limitation reduces prediction accuracy and

adversely impacts phenotype data acquisition. To overcome this challenge, we

propose CGA-ASNet, an RGB-D amodal segmentation network incorporating a

Contextual and Global Attention (CGA) module. A synthetic tomato dataset

(Tomato-sim) was constructed using NVIDIA Isaac Sim’s Replicator Composer

(ISRC) to realistically simulate tomato morphology and greenhouse

environments, and the network was trained on this dataset. To evaluate

generalization, CGA-ASNet was tested on both the synthetic and a separate

real-world dataset. While no explicit domain adaptation techniques were

adopted, diverse lighting conditions (strong, normal, and weak illumination)

were simulated to implicitly reduce the domain gap, and a mean coordinate

fusion algorithm was introduced to improve annotation completeness in real-

world occlusion scenarios. By leveraging contextual information among feature

input keys for self-attention learning, capturing global information, and

expanding the receptive field, CGA-ASNet enhanced representation capacity,

semantic understanding, and localization accuracy. Experimental results

demonstrated that CGA-ASNet achieved an F@0.75 score of 94.2 and a mean

Intersection over Union (mIoU) of 82.4% in greenhouse amodal segmentation

tasks. These findings indicate that training with well-designed synthetic datasets

can effectively support accurate occlusion-aware segmentation in real

environments, providing a practical solution for tomato phenotyping in

greenhouse conditions.
KEYWORDS

amodal segmentation, occlusion-aware segmentation, RGB-D image segmentation,
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1 Introduction

Tomatoes are among the most widely cultivated vegetables

globally, with countries such as the United States, China, and Japan

extensively utilizing greenhouse cultivation methods. In recent years,

the area dedicated to greenhouse tomato farming has steadily

expanded. However, despite these advancements in controlled-

environment agriculture, tomato harvesting remains largely

dependent on manual labor, which is not only labor-intensive but

also inefficient (Cámara-Zapata et al., 2019). To address these

challenges, automated growth monitoring systems and intelligent

harvesting machines are gradually emerging as key solutions in

modern agriculture. These technologies are increasingly being

adopted to mitigate labor shortages in regions that heavily rely on

manual harvesting. However, fruit morphology remains indispensable

in processes such as biological control and biomass detection.

Accurate information on fruit morphology is crucial for multiple

aspects of agricultural management. It not only aids in determining the

growth status of plants but also supports precision fertilization and

irrigation decisions. Furthermore, changes in fruit morphology can

serve as early indicators of pests and diseases, enabling farmers to detect

issues early and take appropriate action. Automated detection systems,

through continuous monitoring of plant morphology, offer higher

precision and real-time feedback, thereby reducing dependency on

manual labor and improving both crop yield and quality. With the

rapid advancements in machine vision and deep learning, many

computer vision tasks—such as image recognition (He et al., 2016;

Szegedy et al., 2016), object detection (Girshick, 2015; Redmon and

Farhadi, 2018; Ren et al., 2015);, and semantic segmentation (Long

et al., 2015)—have enabled precise localization and shape

determination of fruits based on their appearance. These techniques

have been widely applied in disease detection (Dhaka et al., 2021),

maturity assessment, and growth monitoring. However, these tasks

typically rely on each pixel in the image corresponding to a single label.

In occlusion scenarios, models can only process visible portions,

leaving occluded areas unaddressed or inadequately evaluated.
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Traditional computer vision algorithms, including edge-based

segmentation methods (Sheng et al., 2023), struggle to handle

occlusions, particularly in agriculture, where fruits grow in

random positions and complex lighting conditions further

complicate scene interpretation. While edge-based approaches

have shown effectiveness in fruit segmentation under certain

conditions, current technologies face challenges in effectively

dealing with occluded fruits, resulting in lower recognition

accuracy. Current technologies face challenges in effectively

dealing with occluded fruits, resulting in lower recognition

accuracy. This issue presents a significant barrier to the

implementation of automation in agriculture, particularly in

automated harvesting and growth monitoring systems, where the

presence of occlusions severely impacts recognition accuracy and

operational efficiency. To effectively address this problem, the

occluded portions of the fruit must be accurately reconstructed.

Amodal segmentation aims to infer and complete the occluded

portions of objects by providing their full masks, as illustrated in

Figure 1. Several recent studies have explored occlusion-aware

perception and shape reconstruction techniques to improve fruit

detection in complex agricultural environments. An occluder–

occludee relational network (O2RNet) was proposed to explicitly

model spatial interactions between overlapping objects and

achieved state-of-the-art performance in clustered apple detection

(Chu et al., 2023). A zero-shot Sim2Real reinforcement learning

strategy was introduced to manipulate deformable plants and reveal

hidden fruits, achieving 86.7% success without real-world fine-

tuning (Subedi et al., 2025). Furthermore, a safe leaf manipulation

method was proposed to improve pose and shape estimation

accuracy by uncovering occluded fruits (Yao et al., 2025).

While these techniques have shown promising performance in

orchard and open-field conditions, greenhouse environments

present a distinct set of challenges that remain underexplored.

Greenhouse-grown crops, such as tomatoes, are typically

cultivated in densely packed rows with limited spacing, resulting

in more frequent intra-class occlusions. The constrained physical
FIGURE 1

(A) Two ripe tomatoes on a plant with green leaves. (B) An amodal mask of the same tomatoes, highlighting their form against the background.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1664718
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1664718
layout, along with complex lighting and structural occluders (e.g.,

stems, trellises, or support wires), imposes high demands on vision-

based perception systems. These conditions significantly degrade

the accuracy and reliability of fruit detection and localization, which

are critical for robotic harvesting and automated yield estimation.

Therefore, it is essential to develop occlusion-resilient

perception methods tailored to greenhouse-specific scenarios.

Amodal segmentation, which infers complete object masks

including invisible parts, offers a promising solution to this

challenge. In this study, a deep learning-based amodal

segmentation method is proposed for greenhouse tomatoes,

targeting the reconstruction of occluded regions to support robust

v isua l percept ion and task execut ion in control led-

environment agriculture.

This task offers significant benefits to various downstream

applications. For instance, in 3D reconstruction (Seitz et al., 2006),

having complete shape information is crucial for generating more

accurate 3D models, especially when objects can only be observed

from limited viewpoints. In cases where the view is restricted or

objects are partially occluded, understanding the full structure of the

object helps enhance the model’s realism and reconstruction

accuracy. For video segmentation tasks, objects in videos are often

partially obscured by other elements, and having complete shape

information aids in maintaining object consistency across frames,

thereby improving segmentation quality and precision. In dynamic

scenes, the continuity of object shapes significantly reduces errors

caused by occlusion or movement. Additionally, in agricultural

machine vision systems, particularly in controlled-environment

agriculture, perceiving the full structure of occluded objects is

essential for navigation and task execution. The complexity of

greenhouse environments, where objects such as plants or

machinery frequently cause occlusions, makes global shape

perception vital for optimal path planning, obstacle avoidance, and

harvesting strategy refinement. Accurate object perception allows

the system to reliably assess fruit ripeness and determine the optimal

harvesting time, thus improving harvesting efficiency, reducing

manual intervention, and ultimately lowering labor costs.

Traditional segmentation algorithms, such as thresholding, region

growing, and edge-based methods, are primarily designed for

semantic segmentation, which involves dividing images into

predefined categories. While these methods can achieve reasonable

results in simple scenarios, they often struggle in complex

agricultural environments where multiple instances of the same

class are present and occlusions are common. Some recent works

have demonstrated instance-level segmentation capabilities using

point cloud data (Jiang et al., 2025). Nevertheless, these methods still

face challenges when dealing with heavily occluded scenes or when

full object masks, including invisible regions, are required. As a

result, more researchers are applying deep learning techniques to

amodal segmentation tasks. Leveraging convolutional neural

network (CNN) and other advanced architectures such as U-Net

(Ronneberger et al., 2015) and Mask R-CNN (He et al., 2017),

amodal segmentation not only performs semantic segmentation but

also enables precise instance-level segmentation and even part-level

segmentation within images.
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The earliest work on amodal segmentation can be traced back to

the research by (Li and Malik, 2016), where they synthesized images

to create the first amodal instance segmentation dataset and trained

and tested their proposed model, the Amodal Segmentation

Network (ASN). To further validate the effectiveness of the

amodal segmentation task, (Zhu et al., 2017) conducted

additional studies. They invited multiple annotators to label the

same image with amodal annotations, and the results showed a high

level of agreement among annotators regarding regions and edges,

demonstrating the task’s clear operability. They also provided

amodal annotations for 5000 images from the COCO dataset,

known as the COCOA dataset. Building on this, they proposed

the ExpandMask network, where the input consisted of image

patches and visible mask predictions, and the output was the

occluded part of the target object. (Follmann et al., 2019) further

improved upon Mask R-CNN, introducing a dedicated module for

amodal mask segmentation called ORCNN (Occlusion Region

Convolutional Neural Network). They also compiled and

organized two amodal segmentation datasets, D2SA and COCOA.

Subsequently, (Blok et al., 2021) and (Gené-Mola et al., 2024)

applied ORCNN to broccoli and apple datasets, achieving

promising results. Their experiments demonstrated that their

models outperformed other methods on these datasets, further

validating their effectiveness and superiority.

This deep learning-based approach to amodal segmentation has

significantly improved the perception of occluded objects, offering

more precise solutions for scene understanding and complex visual

tasks. However, most of these studies have been tested on public

datasets or applied to agricultural datasets in a very limited capacity.

In the agricultural domain, amodal segmentation faces several critical

limitations. For instance, the lack of large-scale, high-quality training

datasets and issues of domain mismatch often result in poor Sim-to-

real (Zhao et al., 2020) transfer. In real-world greenhouse

environments, images typically contain numerous instances of the

same class that are occluded by one another, making amodal

segmentation tasks for such occluded objects far more challenging.

Although existing computational models can perform well when

trained on large-scale datasets under supervised learning conditions,

their performance is often significantly restricted when applied to

complex greenhouse scenarios, where large datasets are scarce.

Particularly in unstructured agricultural environments, frequent

changes in lighting conditions, the visual similarity between crops

and weeds, and the unpredictability of weather add significant

complexity to the model’s ability to process such scenes. Moreover,

due to the diversity of crop species, the complexity of background

environments, and the difficulties associated with data collection,

large-scale deep learning datasets in agriculture are relatively rare. As

a result, the training and evaluation of algorithms often rely on small

datasets collected by researchers, which may not adequately represent

the complexities of real-world situations. In dense tomato crops, for

example, occlusions between similar objects are frequent, and

manually annotating such complex scenes in real datasets is both

costly and prone to human bias and inaccuracies. Therefore,

constructing a high-quality synthetic dataset is a more suitable

solution to address this problem. Synthetic data can provide precise
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ground-truth annotations and allow for variable control to simulate

different occlusion and lighting conditions, thereby offering models

more diverse and comprehensive training data.

The use of synthetic datasets effectively compensates for the

challenges in real data collection in agricultural greenhouse

environments and provides more consistent training and testing

conditions in Sim-to-real transfer scenarios. This approach enables

models to better generalize in complex greenhouse settings,

improving the accuracy and robustness of amodal perception tasks.

As a result, it offers more reliable technical support for automated

detection, disease recognition, and fruit harvesting in agriculture. In

some weakly supervised learning studies (Cinbis et al., 2016), ground-

truth labels are derived from self-generated annotations. For example,

in (Yang et al., 2024), self-supervised learning is used to train deep

learning models for target segmentation, with self-generated labels

acting as ground truth. These models are then evaluated and tested in

experimental environments. However, self-generated labels are based

on model predictions of object shapes, which may differ from the

actual shape of the target. To bridge this gap, researchers have made

various attempts. A notable effort is the tomato dataset created by

(Zhou et al., 2021). They proposed a synthetic dataset method by

simulating tomato growth environments using software, followed by

rendering tomato images and generating segmentation labels.

However, their dataset only annotated the visible parts of the

instances, without addressing the occluded parts. In amodal

instance segmentation, occluded regions must be annotated in

alignment with the ground truth, though the ground truth itself

may sometimes be inaccurate. Our new dataset offers valuable

solutions for addressing the challenge of obtaining ground-truth

labels for occluded tomatoes in greenhouse environments. With

this dataset, models can more effectively handle occluded instances,

leading to enhanced precision and robustness in machine learning

models for agricultural applications.

To tackle the problem of occluded tomato segmentation in

greenhouse scenarios, this study proposes a deep learning-based

amodal segmentation method focused on reconstructing the

occluded parts of tomatoes. Starting from the requirements of

greenhouse vision systems, this research assists in detecting and

locating grasp points. A synthetic dataset, Tomato-sim, was

constructed in a virtual environment to meet the data needs of

current vision systems. The model was then trained and tested using

an RGB-D amodal instance segmentation network embedded with

the CGA module. Finally, the model was validated on a tomato

occlusion test dataset from real greenhouse scenes. This method

aims to improve amodal segmentation performance for occluded

tomatoes in complex greenhouse environments by leveraging

synthetic datasets and the CGA module.
2 Materials and methods

2.1 Data acquisition

In this study, 2,000 images containing both RGB and depth

information were generated across 40 different scenario conditions,
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using Blender Proc (Denninger et al., 2019) for photorealistic

rendering. In the Blender software, various tomato models of

different shapes and colors, along with their branches and leaves,

were constructed. Between 1 to 10 tomatoes were randomly placed

in the scene, and images were captured by randomly setting the

camera pose. This approach enabled the acquisition of ground-

truth RGB images for each instance or frame directly from the

computer-rendered 3D scenes.

2.1.1 Camera sampling and lighting condition
settings

To capture images of tomatoes under various occlusion conditions,

we constructed synthetic greenhouse scenes using pre-designed 3D

models of tomato fruits and branches. These objects were randomly

placed in 3D space with varying x, y, z coordinates and orientations.

Camera viewpoints were uniformly sampled from two concentric

hemispheres centered on the tomato plant, ensuring sufficient

angular diversity for simulating occlusions (as shown in Figure 2).

The sampling range was controlled by two parameters, l and w,

where l∈[1,2] and w∈[2,4] meters. The inner and outer radius

bounds for the viewpoint sampling were defined as shown in

Equations 1 and 2.

rview _ lower = max(w=2, l=2) (1)

rview _ upper = 1:7� rview _ lower (2)

In greenhouse environments, variations in lighting can

significantly affect the visual appearance, color distribution, and

surface texture of objects, which in turn influence the performance

of image-based object detection and segmentation algorithms. For

instance, under strong lighting conditions, the increased illumination

intensity enhances contrast within the image, making object edges

appear sharper and more distinct, thereby facilitating foreground-

background separation and improving segmentation accuracy. In

contrast, under weak lighting, the reduction in contrast leads to less

pronounced object boundaries, resulting in blurred edges and a

higher risk of segmentation failure or misclassification.

Compared to single-modality RGB data, the use of RGB-D inputs

provides richer multi-source information. In particular, depth data

remains relatively invariant to changes in lighting conditions and

shadows, offering more stable structural cues for object localization

and shape estimation. This property enables the model to maintain

reliable performance even in complex lighting environments, where

RGB images alone may suffer from intensity distortion or loss of

detail due to overexposure, underexposure, or shadowing effects.

To simulate diverse lighting conditions that realistically reflect

the variability found in greenhouse settings, we introduced

randomized lighting during synthetic data generation. Specifically,

three distinct illumination scenarios were designed: strong, normal,

and weak lighting, corresponding to different levels of intensity and

contrast observed in real greenhouses. For each sampled camera

viewpoint, between 0 and 2 spherical light sources were randomly

added to the scene to emulate these lighting conditions (as shown in

Figure 3, in pink). These light sources were placed using a strategy

consistent with the camera viewpoint sampling, namely within the
frontiersin.org
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same concentric hemispherical region centered on the target object.

The spatial bounds for light source placement were defined relative

to the camera’s upper view radius.

The sampling constraints for the lower and upper radii of the

lighting hemisphere, rlight_lower and rlight_upper are defined by

Equations 3, 4:

rlight _ lower = rlight _ upper + 0:1m (3)

rlight _ upper = rlight _ lower + 1m (4)

This setup enabled us to simulate soft shadows, directional

lighting, and realistic greenhouse illumination by rendering

synthetic images under three distinct lighting conditions-strong,

normal, and weak-reflecting the typical variability observed in
Frontiers in Plant Science 05
natural greenhouse environments. Each illumination condition

was rendered using physically-based materials with enabled

shadow casting and reflection, producing realistic phenomena

such as soft shadows, directional highlights, and illumination

gradients. Example outputs, including RGB and corresponding

depth images under different lighting levels, are shown in Figure 4.

Although synthetic data cannot fully replicate real-world

conditions, our dataset design incorporates variability in both

lighting and viewpoints to minimize the domain gap. The model

was trained solely on synthetic RGB-D images, and its generalization

capability was evaluated through inference on both synthetic and real-

world test sets.

In this study, we partitioned the dataset into training and testing

sets at a ratio of 8:2. Table 1 presents the distribution of RGB images in

the training set, while Table 2 shows the distribution in the testing set.

Since the position of each tomato on the plant affects both light

intensity and the degree of occlusion, we categorized the images into

three levels based on occlusion rate: 0–10% (low occlusion), 10–30%

(moderate occlusion), and 30–100% (high occlusion). Here, 0%

indicates complete visibility, while 100% represents total occlusion.

These thresholds were determined based on both the natural

clustering of occlusion levels observed in our manually annotated

real-world greenhouse images and commonly adopted practices in

agricultural vision research (e.g., Yang et al., 2024; Li et al., 2022). For

consistency, the same occlusion thresholds were also applied to the

synthetic dataset. The same grouping standard is used consistently in

Table 2 for data organization and performance evaluation.
2.1.2 The acquisition of occlusion masks
The synthetic 3D scene-generated dataset offers a high degree of

annotation flexibility, providing amodal instance masks, complete

appearances, occlusion order, and layer order for all objects in the

scene. For each view, the system captures RGB and depth images of
FIGURE 3

Sampling of lighting conditions.
FIGURE 2

Diagram illustrating two setups. (A) Data collection platform with cameras positioned around tomatoes on a rectangular surface, showing
dimensions width (w) and length (l) in a 3D space with axes x, y, and z. (B) Shooting distance with cameras viewing tomatoes at different ranges,
labeled r_view_lower and r_view_upper.
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the desktop scene, utilizing the built-in instance segmentation

feature of NVIDIA’s Isaac Sim Replicator Composer to obtain

instance segmentation masks for the entire scene. Subsequently,

amodal and modal masks for each object are extracted from the

instance segmentation masks. The occlusion mask and occlusion

rate of each object are then calculated. The occlusion mask is

obtained by subtracting the modal mask from the amodal mask,

as illustrated in Figure 5 and formulated in Equation 5.

Mo = MA −MV (5)

The occlusion rate is calculated by dividing the number of pixels

in the occlusion mask by the number of pixels in the amodal mask.

If an object’s occlusion rate equals 1, it means the object is
Frontiers in Plant Science 06
completely occluded from the viewpoint, and the annotation for

that object is not saved for that view. In such cases, the object’s

visibility is disabled to capture the mask for the next object.
2.2 Greenhouse tomato dataset under real
scenarios

2.2.1 Collection equipment
The greenhouse tomato dataset used in this study was entirely

collected using the Azure Kinect DK depth camera. During image

acquisition, the Azure Kinect depth camera was utilized to capture

RGB-D images, with the color camera set to a resolution of
TABLE 1 The distribution of RGB image data in the training set of tomato-sim.

Occlusion rate(%) Low illuminance Normal illuminance Strong illuminance Total

[0,10] 25/84 50/158 25/78 100/320

[10,30] 50/220 125/582 50/228 225/1030

[30,100] 125/694 425/2155 125704 625/3553

Total 200/998 600/2895 200/1010 1000/4903
TABLE 2 The distribution of RGB image data in the test set of tomato-sim.

Occlusion rate(%) Low illuminance Normal illuminance Strong illuminance Total

[0,10] 5/18 12/38 5/16 22/72

[10,30] 10/48 24/95 10/45 44/188

[30,100] 25/102 84/342 25/110 134/554

Total 40/168 120/475 40/171 200/814
Columns and rows contain image categories (number of images/number of instances). Each row corresponds to a different level of occlusion in the tomatoes.
FIGURE 4

(A) RGB image of tomato plants under strong illuminance. (B) RGB image of tomato plants under normal illuminance. (C) RGB image of tomato
plants under low illuminance. Below each panel, the corresponding depth image shows varying shading levels, with (C) being the darkest and (A) the
lightest. The depth values correspond to true distances ranging from 0.25 to 5.46 m.
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1920×1080 pixels at 30 frames per second (fps) and the depth

camera set to a resolution of 640×576 pixels at 30 fps.

Azure Kinect, developed byMicrosoft, is a depth camera capable of

simultaneously capturing both RGB and depth data. It features a high-

resolution and high-sensitivity lens, capable of capturing high-quality

depth information within a range of 0 to 10 meters. The depth camera

of Azure Kinect uses time-of-flight (ToF) technology, which projects

modulated light in the near-infrared spectrum onto the scene and

records the time it takes for the light to travel from the camera to the

scene and back. This travel time, along with the speed of light, is used to

calculate depth values for different positions in the scene, generating a

depth map. To ensure the generalizability of the data, the tomato plants

were randomly photographed from multiple angles and positions

under different lighting conditions within the greenhouse. Each

image set includes RGB and corresponding depth images. The

captured RGB and depth images were registered, ensuring that the

pixels in the RGB image corresponded to the distance-representing

pixels in the depth image. Finally, the images were cropped to 640×480

pixels for both RGB and depth.

2.2.2 Greenhouse data acquisition
Table 3 presents the data distribution of the real-world test set,

where the intensity of light and the level of occlusion vary across different

positions on the tomato plants. Based on the degree of occlusion, the

images are categorized into three levels: 0-10%, 10-30%, and 30-100%,

with 0% indicating no occlusion and 100% indicating full occlusion.

Tomato images captured under different lighting conditions in

real greenhouse scenarios, and their corresponding depth images

are also collected, as shown in Figure 6.
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2.2.3 Data annotation
Unlike other image segmentation tasks, instance segmentation

requires pixel-level masks for visible objects, while amodal

segmentation not only needs visible object masks but also

integrates semantic labels for both visible and occluded parts of

the scene. After mean cloning and fusion (Farbman et al., 2009), the

dataset easily captures more semantic information about the target

images. To segment the occluded areas, the combined mask of

visible and invisible regions after image fusion is subtracted from

the visible mask before fusion, as illustrated in Figure 7.

In this study, the LabelMe tool (Russell et al., 2008) was used to

annotate each region hierarchically, and 200 images with ground-

truth amodal masks were selected as the test set. Annotating an

entire image takes approximately 5 minutes, with each instance

requiring around 0.5 minutes on average. Compared to the efficient

construction of synthetic datasets, manual annotation in real-world

scenes is time-consuming, highlighting the advantage of synthetic

datasets in improving data annotation efficiency.
2.3 RGB-D-based amodal instance
segmentation method for tomatoes

2.3.1 RGB-D-based greenhouse tomato amodal
segmentation model

The CGA-ASNet architecture, as illustrated in Figure 8, consists

of two main components: the feature extraction network and the

segmentation prediction network. The feature extraction and fusion

network first extracts RGB features and depth features separately
FIGURE 5

(A) Amodal mask shown as a full white circle on a black background. (B) Visible mask shown as a partial white crescent. (C) Occlusion mask shown
as a smaller white shape.
TABLE 3 Construction of tomato datasets under real greenhouse scenarios.

Occlusion rate(%) Low illuminance Normal illuminance Strong illuminance Total

[0,10] 5/10 12/25 5/11 22/46

[10,30] 8/18 24/65 8/16 40/99

[30,100] 27/72 84/272 27/91 138/435

Total 40/100 120/362 40/118 200/580
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from the input RGB and Depth images. The depth features from the

C3, C4, and C5 layers of the CGA-50 Backbone are concatenated

with the corresponding RGB features from the same layers. A 1×1

convolution is applied to fuse the RGB-D features, reducing the

channel dimensions. This fusion forms an RGB-D feature pyramid,

which is then passed through the Region Proposal Network (RPN)

and RoIAlign (Region of Interest Align) layers to generate the RGB-

D features. These multi-dimensional feature maps are then fed into

the segmentation prediction network for segmentation tasks. The

model incorporates the CGA module, based on the Unseen Object

Amodal Instance Segmentation (UOAIS) architecture. The CGA

module is composed of the CFT module (proposed in this study)

and the GAM module (Liu Y. et al., 2021). The improved model is

highly adaptable to the constructed synthetic dataset, ensuring both
Frontiers in Plant Science 08
high accuracy and enhanced training and inference speed, even with

smaller datasets. The model effectively handles variations in lighting

conditions and tomato color changes in greenhouse environments.

Additionally, the introduction of a shape convolution module

strengthens the model’s perception of tomato shape and

position, reducing the impact of occlusions caused by branches

and leaves. The model’s loss function is defined as shown in

Equation 6.

Lloss = Lcls + Lbox + LV + LA + LOcls
+ Lrpncls + L _ (rpn _ loc) (6)

Among them, the abbreviation Lcls refers to the loss of classes,

Lbox refers to the loss of bounding boxes, LV refers to the loss of

non-modal mask losses, and LOcls refers to the loss of

occlusion classification.
FIGURE 6

(A) Brightly lit tomato in RGB image. (B) Normally lit tomatoes in RGB image. (C) Dimly lit tomatoes in RGB image. The bottom row shows the
corresponding depth images under strong, normal, and low illuminance. Labels indicate lighting conditions. The depth values correspond to true
distances ranging from 0.25 to 5.46 m.
FIGURE 7

(A) Ripe red tomato outlined in blue for cropping, with a smaller green tomato nearby. (B) Target image with two ripe red tomatoes on a vine. (C)
Final result, where the tomato from (A) has been cropped and pasted onto (B) to create an occlusion effect.
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2.3.2 CFT attention
To enhance the global modeling capability of ResNet50, we

propose a Contextual Features Transformer (CFT) module, the

structure of which is illustrated in Figure 9. This module replaces

the standard 3×3 convolution in the residual block. Unlike

conventional self-attention mechanisms that compute attention

weights based on dot-product similarity, the proposed CFT module

leverages learnable convolutions to generate attention scores. This
Frontiers in Plant Science 09
design integrates the inductive bias of convolution with the long-

range dependency modeling strength of attention, effectively avoiding

the scale sensitivity issues of dot-product attention while providing

more stable and spatially aware representations. Moreover, it

introduces only minimal computational overhead, making it

particularly suitable for dense prediction tasks.

The proposed Convolutional Feature Transformer (CFT)

module is designed to simultaneously model local details and
FIGURE 8

Overall architecture diagram of the CGA-ASNet model.
FIGURE 9

Structure of CFT self-attention module. Here, the * is not alone. When combined with conv, it forms conv(*), representing a 1x1 convolution.
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global dependencies by leveraging a convolution-based attention

mechanism in place of traditional dot-product attention.

Specifically, the input feature map X is first passed through a 3×3

convolution to extract the key feature K, preserving spatial context.

A second 3×3 convolution is applied to further enhance local

information within the key representation. In parallel, the query

Q and valueV features are obtained from X using two separate 1×1

convolutions for dimensionality reduction while preserving

feature structure.

After computing these features, spatial dependencies are

modeled by concatenating the key and query features along the

channel dimension. This combined representation is passed

through two 1×1 convolutions to produce the spatial interaction

logits q, which are normalized by a Softmax function to yield the

attention weight matrix W. The matrix W is then applied to the

value feature V via weighted summation. To further incorporate

global context, the value feature is enhanced using a

dilated convolution layer M, which increases the receptive field

without reducing resolution. The result is fused with the

original key K using a final 1×1 convolution, producing the final

output Y, denoted as the tomato feature F for subsequent

segmentation tasks.

The core idea of CFT is to replace the conventional dot-product

attention with convolution-based attention, allowing the network to

better integrate spatial inductive bias and global dependencies. The

complete formulation is given as shown in Equations 7–9.

q = Conv(Conv(K⊕ Q)) (7)
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W = Softmax(q) (8)

Y = Conv(K + M⊗V) (9)

where Conv(*) denotes a 1×1 convolution; ⊕ represents

concatenation; ⊗ denotes matrix multiplication.

2.3.3 GAM attention
The Global Attention Mechanism (GAM) enhances feature

representations by applying attention along both channel and

spatial dimensions. It consists of two independent submodules:

the Channel Attention Module (CAM) and the Spatial Attention

Module (SAM). The overall architecture is illustrated in Figure 10.

As illustrated in Figure 11, CAM first applies global average

pooling and global max pooling across spatial dimensions of the

input feature map F ∈ RCñHñW, resulting in two descriptors of size

RC. These descriptors are then passed through a shared two-layer

MLP, where the first layer reduces the dimension by a ratio r, and

the second layer restores it to C. After element-wise summation and

a sigmoid activation, the resulting attention map Mc is used to

reweight the input feature map channel-wise.

SAM further refines the output from CAM by emphasizing

important spatial locations. As shown in Figure 12, it applies

average pooling and max pooling across channels, producing two

RH�W feature maps, which are concatenated and passed through a

7×7 convolution followed by a sigmoid activation to generate the

spatial attention map Ms. This map is multiplied element-wise with

the input to produce the final attention-weighted output.
FIGURE 10

Global attention mechanism.
FIGURE 11

Channel attention module.
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2.3.4 Segmentation prediction network
The segmentation prediction network is composed of four main

branches: the Bounding Box Prediction Branch, the Visible Mask

Prediction Branch, the Amodal Mask Prediction Branch, and the

Occlusion Classification Prediction Branch. The Bounding Box

Prediction Branch takes the 7×7 feature map output from the

RPN (Region Proposal Network) and passes it through two fully

connected layers to predict the bounding box B and class C. The

feature map is then upsampled to a 14×14 feature map to provide

bounding box features for the subsequent branches, ensuring that

instance masks are segmented within the predicted bounding box.

The Visible Mask Prediction Branch, the Amodal Mask Prediction

Branch, and the Occlusion Classification Prediction Branch utilize

the 14×14 feature map from the RPN, along with features fused

from the previous branches, to predict the visible mask V, the

amodal mask A, and the occlusion classification O, respectively. The

mathematical formulations for each branch are expressed in

Equations 10–13.

FV = (hV(FB, FRoI)) (10)

FA = (hA(FB, FRoI, FV)) (11)

FO = (hO(FB, FRoI, FV, FA)) (12)

V, A, O = PV(FV), PA(FA), PO(FO) (13)

In the segmentation prediction network, FB, FRoI, FV, FA, and FO
represent the bounding box feature, the RoI feature, the visible mask

feature, the amodal mask feature, and the occlusion mask feature,

respectively. The hierarchical fusion modules hv, hA and ho

correspond to the visible mask, amodal mask, and occlusion

classification branches. Specifically, the hierarchical fusion module

integrates each input feature and reduces the channel dimensions

through three 3×3 convolution layers to decrease the parameter

count. These are then fed into another set of three 3×3 convolution

layers to generate the task-specific features for each branch. The

prediction layers PV, PA and Po are responsible for predicting the

visible mask, amodal mask, and occlusion classification,

respectively. PV and PA use 2×2 deconvolutions and a fully

connected layer, while Po consists of a fully connected layer to

output the final results.
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3 Results and analysis

3.1 Training and parameter setting

This study aims to address the lack of real RGB-D datasets by

applying deep learning models, specifically focusing on tomatoes.

Through software, synthetic RGB-D images simulating occluded

tomatoes in a greenhouse environment are generated to build a

diverse and high-quality dataset. The convolutional neural network

(CNN) extracts and integrates features from both RGB and depth

images using feature extraction algorithms. Multiple detection

branches are employed to predict the visible part masks and the

contours of the occluded parts of the objects. A hierarchical

occlusion modeling mechanism is applied to improve the

accuracy of amodal segmentation for tomatoes.

During model training, comparisons between different datasets

(synthetic and real-world datasets) are conducted for both training

and testing. To ensure fairness in the training and testing process,

all tasks are performed on the same hardware platform. The

experimental platform consists of a Dell Precision 7920 with

64GB RAM, a 2.1GHz CPU with 16 cores, and an NVIDIA

A6000 GPU with 48GB GDDR6 VRAM and 10,752 CUDA cores.

Initial training parameters are listed in Table 4.
3.2 Evaluation metrics for tomato amodal
segmentation quality

We adopt several evaluation metrics to quantitatively assess the

instance-level segmentation performance, including Precision,

Recall, F1-Score, F@75 (Ochs et al., 2013), and mean Intersection

over Union (mIoU), as defined in Equations 14–18. Precision

measures the proportion of correctly predicted positive instances

among all predicted positives, while Recall measures the proportion

of correctly predicted positive instances among all actual positives.

The F1-Score is the harmonic mean of Precision and Recall,

providing a balanced evaluation of model performance.

F@.75 is an instance-level metric based on the F1-score,

representing the proportion of ground-truth instances that are

successfully matched with predicted instances having an F1-score

no less than 0.75. The pairwise F1-scores between predicted and
FIGURE 12

Spatial attention module.
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ground-truth instances are computed, and the optimal one-to-one

assignment is determined using the Hungarian algorithm. Finally,

mean Intersection over Union (mIoU) is used to evaluate

segmentation quality across all classes.

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

F1 − Score =
2Precision� Recall
Precision + Recall

(16)

F@ :75 = o(i,j)∈M1 Fi,j ≥ 0:75
� �
N

(17)

mIoU ¼ 1
k þ 1

 o
k

i=0

TP
FNþ FPþ TP

(18)

where TP is the model correctly predicts positive instances; FP

is model incorrectly predicts positive instances; FN is the model

incorrectly predicts negative instances; FP is the model correctly

predicts negative instances. Fi,j is the F1-score between predicted

instance i and ground-truth instance j, M is the optimal one-to-one

matching obtained via the Hungarian algorithm, and N is the total

number of ground-truth instances.

In order to compare our method with other existing

methods, we adopted the AP (Average Precision) and mAP

(mean Average Precision) as evaluation metrics, which are

commonly used for amodal segmentation tasks (Ke et al., 2021),

as defined in Equations 19, 20.

AP =
Z 1

0
P(r)dr (19)

mAP =
1
ko

k

i=1
APi (20)
3.3 Analysis of test results with different
backbone networks

To investigate the impact of different feature extraction

backbone networks on the performance of the CGA-ASNet

model, we conducted a series of controlled experiments using six
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different backbone architectures: ResNet50, ResNet101 (He et al.,

2016), ResNeXt50, ResNeXt101 (Xie et al., 2017), ConvNeXt-Tiny

(Liu et al., 2022), and Swin-Tiny (Liu Z. et al., 2021). All

experiments were performed under identical training and testing

conditions, with RGB-D as the input modality and only the

backbone network varied.

As shown in Table 5, ResNet50 consistently outperformed the

other backbone networks in both amodal mask prediction and

occlusion segmentation. Specifically, it achieved the highest amodal

F@.75 score of 92.0 and a mean Intersection-over-Union (mIoU) of

81.4%. Although newer backbone architectures such as ConvNeXt-

Tiny and Swin-Tiny showed competitive results, they did not

surpass the performance of ResNet50 in our task setting. This

suggests that ResNet50 remains a strong and stable backbone choice

for occlusion-aware segmentation tasks, particularly in our CGA-

ASNet framework.
3.4 Ablation study

Ablation experiments, commonly used to assess the influence of

different components in a model, are an effective method for exploring

the contributions of each module and gaining a deeper understanding

of the model’s behavior. As such, ablation experiments play a crucial

role in the design of neural network structures. To verify the

effectiveness of the CGA module, this study designed a series of

ablation experiments. We used ResNet50 as the backbone network

with R-50.pkl serving as the initial weight baseline. The experiments

were divided into three parts: first, the CFT self-attention module and

GAM attention module were individually embedded for testing; finally,

both CFT and GAM were combined and embedded into the network

for comparison to evaluate their specific contributions to improving

network performance.

As shown in Table 6, the first row presents results from the

baseline model without any modifications, achieving an F@.75 score

of 92.0 and a mIoU of 81.4% for amodal masks. In the second

experiment, where the CFT module was added, the F@.75 score

increased to 93.5 and the mIoU to 82.6%, representing

improvements of 1.5 and 1.2%, respectively. The third experiment

introduced the GAM module, which raised the F@.75 score to 94.2,
TABLE 5 Comparison results of different backbone networks.

Backbone
Amodal

F@.75 mIoU(%)

ResNet101 81.9 76.7

ResNext50 87.0 75.7

ResNext101 87.7 79.1

ConvNext_Tiny 88.4 78.9

Swin_Tiny 89.3 79.4

ResNet50 92.0 81.4
The bolded part is the most effective part in the backbone network and thus is supported.
TABLE 4 Training process related parameters.

Parameter name Parameter values

Image Size 640×480

Batch Size of Images 2

Initial Learning Rate 0.00125

Maximum Number of Iterations 90000
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an increase of 2.2, and the mIoU to 82.4%, a 1% improvement.

Finally, the model with the combined CFT and GAM modules,

forming the CGA module, achieved an F@.75 score of 94.2 and a

mIoU of 82.4%. These results demonstrate that the CGA module

effectively captures more semantic information from tomatoes,

significantly enhancing the segmentation performance.
3.5 Amodal segmentation results on test
images with different degrees of occlusion

To evaluate the robustness of the improved amodal

segmentation network, this study compared the baseline model

with the CGA-embedded segmentation model across three subsets

with occlusion levels greater than 0-10%, 10-30%, and 30-100%,

using identical parameters. The results are shown in Table 7 and

Table 8. When the occlusion rate was below 10%, CGA-ASNet

achieved an F@.75 score of 98.4 and a mIoU of 86.8%, both higher

than the baseline model. For occlusion levels between 10% and 30%,

and those above 30%, CGA-ASNet also outperformed the baseline

model by 1.4 and 2.6, respectively.

The results indicate that, while segmentation performance

declines as occlusion increases, CGA-ASNet consistently handles

severe occlusions better than the baseline. As shown in Figure 13,

when multiple tomatoes are stacked, the baseline model without the

CGA module exhibited jagged contours in its predictions of

occluded tomatoes, whereas our model generated smoother and

more natural predictions. This demonstrates that the CGA module

significantly enhances the model’s ability to perceive and predict the

edge shapes of segmented objects , improving overal l

prediction accuracy.
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3.6 Comparison of test results from
different models

During the experimental design phase, we reviewed several

recent representative amodal segmentation models, including

pix2gestalt (Ozguroglu et al., 2024), AISDiff (Tran et al., 2024),

and BLADE (Liu et al., 2024), etc. However, most models only

support feature extraction of the RGB channels. These models

cannot provide the feature support for image segmentation based

on depth information. If the RGBD four-channel data is

compressed into three channels for feature extraction, the

obtained features cannot accurately represent the pixel semantics

of the original image. To ensure reproducibility and fair

comparison, we selected a group of well-established and publicly

available models as baselines for evaluation.

In this study, the Tomato-sim dataset was trained on state-of-

the-art (SOTA) models, including BC-net, AISFormer (Tran et al.,

2022), ORCNN (Gené-Mola et al., 2023), and Uoais-net (Back et al.,

2022), using identical parameters to compare different training data

(Tomato-sim and real datasets). The models were tested on datasets

constructed through mean clone fusion in both synthetic and real

greenhouse scenarios. Table 9 presents the prediction results of

different models.

Figure 14 shows the performance of these segmentation models

in the amodal segmentation task. From image (2), it can be observed

that in the complex stacking scenario of tomatoes, our model

exhibited strong robustness. Images (1) to (3) show prediction

results from real greenhouse environments, while Images (4) to (6)

display performance in virtual scenes. Although all models

performed well in the virtual scenario, our model demonstrated

the best segmentation ability, especially in handling complex

occlusion and multi-layer stacking, achieving significantly higher

segmentation accuracy compared to other models.

Furthermore, CGA-ASNet was evaluated in a real greenhouse

environment to validate its practical applicability. As shown in

Figure 15, we selected the best- and worst-performing baseline models

—ORCNN and AISFormer—for direct comparison with our method.

Most results demonstrate that our model produces high-quality amodal

mask predictions, with natural and consistent mask distributions across

the entire ROI. In contrast, both ORCNN and AISFormer exhibit

varying degrees of segmentation incompleteness or inaccuracies. Our

model achieves better overall shape recovery and boundary alignment,

highlighting its superior performance under real-world conditions.
TABLE 7 Baseline prediction results.

Occlusion Rate(%)
Amodal

F@.75 mIoU(%)

[0,10] 98.2 85.3

[10,30] 93.1 82.8

[30,100] 86.7 78.1
TABLE 8 CGA-ASNet prediction results.

Occlusion rate(%)
Amodal

F@.75 mIoU(%)

[0,10] 98.4 86.8

[10,30] 94.5 83.4

[30,100] 89.3 79.8
TABLE 6 Ablation study.

Method
Amodal

F@.75 mIoU(%)

Baseline 92.0 81.4

Baseline+cft 93.5 82.6

Baseline+gam 94.2 82.4

Baseline+CGA 94.2 83.3
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3.7 Generalization evaluation on
PApple_RGB-D-size dataset

To further assess the generalization capability of CGA-ASNet,

we conducted cross-domain experiments on the PApple_RGB-D-

Size dataset (Gené-Mola et al., 2023), which contains RGB-D

images of apples under different illumination and occlusion

conditions. This dataset significantly differs from the training

domain in both fruit category, color distribution, and geometric

structure, making it a suitable benchmark for evaluating robustness.

Without any additional fine-tuning, CGA-ASNet achieved an

AP50 of 89.2%, AP75 of 76.1%, and a mean Average Precision

(mAP) of 73.4%, demonstrating strong generalization ability and

transferability across domains. These results suggest that the model

can effectively learn domain-invariant features and accurately infer

the complete shape of occluded objects even under unfamiliar visual

and structural conditions. In addition, Figure 16 illustrates

representative qualitative results. Despite the domain shift, CGA-

ASNet is able to predict coherent amodal masks and successfully

complete severely occluded fruit regions.
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4 Conclusion

In the greenhouse environment, in order to ensure the accuracy

of the non-destructive phenotype detection of tomato fruits, we

constructed a virtual dataset of tomato fruits (Tomato-sim). This

dataset simulated the shading conditions that occur during the

actual growth of tomatoes. Additionally, for this dataset, we built an

RGB-D image non-modal segmentation model based on the CGA

module. We used the virtual data to train the model and then tested

the model on the real data set. The following are some conclusions

drawn based on the experimental results of this research work:
1. The synthetic dataset used for amodal tomato

segmentation, Tomato-sim, achieved an average precision

of 78.3%, closely matching the 75.0% precision obtained

from real data testing. This demonstrates that synthetic

data can effectively compensate for the limitations of real

data collection, especially in complex agricultural scenarios,

by providing flexible and diverse training conditions that

handle scene complexity and object occlusion.

2. The CGAmodule designed in this study effectively captures

the semantic information of tomatoes, particularly

excelling in handling occluded regions. Compared to the

baseline model, the CGA module improved the Mean

Intersection over Union (mIoU) by 1.9% when dealing

with occluded areas, significantly enhancing segmentation

accuracy and robustness. This result further validates the

CGA module’s segmentation capabilities in complex

scenes, enabling better extraction of complete semantic

information for partially occluded objects.
Experiments demonstrated that the CGA-ASNet model

performed exceptionally well on the synthetic dataset and could

effectively generalize to real greenhouse scenarios. Additionally,

we tested the model on the PApple_RGB-D-Size dataset and

observed similar generalization capabilities, indicating that the

method is well-suited for amodal segmentation tasks involving

approximately round crops like apples. The model showcased
FIGURE 13

(A) Tomatoes with GT overlays in blue and orange. (B) Baseline result with mainly orange and green overlays. (C) CGA-ASNet result with accurate
red and green overlays, showing segmentation improvements.
TABLE 9 Comparison of predictions from different models.

Method Eval AP50(%) AP75(%) mAP(%)

BC-net
Tomato-sim 87.4 78.7 70.2

real 85.7 75.5 66.7

AISFormer
Tomato-sim 92.3 86.1 74.4

real 89.9 85.7 72.5

ORCNN
Tomato-sim 73.3 63.4 55.7

real 72.3 58.3 52.4

Uoais-net
Tomato-sim 92.9 82.3 74.5

real 89.6 78.3 73.1

CGA-ASNet
Tomato-sim 94.3 83.6 78.3

real 93.1 78.4 75.0
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FIGURE 14

Amodal segmentation results of different models.
FIGURE 15

(A–D) Tomatoes on vines with varying color changes under different algorithms. The bottom row shows ground truth (GT), ORCNN, AISFormer, and
our method, with tomatoes highlighted using bounding boxes to indicate varying ripeness and detection accuracy. Each method depicts different
levels of detail and color fidelity.
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high accuracy and stability, suggesting that this approach is not

limited to tomatoes but can be extended to other crops with

similar shapes.

This study demonstrates that the combination of synthetic

datasets and deep learning techniques provides an efficient and

cost-effective solution for target segmentation in agricultural

scenarios. In the future, with the expansion of dataset size and

further model optimizations, the integration of synthetic and real-

world data will further enhance the model’s generalization

capabilities, providing robust technical support for tasks such as

automated crop harvesting and crop monitoring. This also

highlights the significant potential of synthetic data in agricultural

vision tasks.

Despite these promising results, this study still has some

limitations. First, the current method primarily focuses on crops

with relatively round shapes, and its effectiveness on more complex

or irregularly shaped crops remains to be validated. Second,

although synthetic data improves robustness, the domain gap

between synthetic and real-world data may stil l l imit

generalization in more diverse or unconstrained environments. In

future work, we plan to extend our dataset to include various crop

types and environmental settings, explore domain adaptation

techniques, and further enhance the model’s architecture to

support broader applications in agricultural perception.
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FIGURE 16

(A) Apples with shadows under varied lighting. (B) Apples with color changes under uneven illumination. (C) Apples in brighter light showing
increased brightness. (D) Apples in high illumination with strong contrast.
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Gené-Mola,, Ferrer-Ferrer, M., Gregorio, E., Blok, P. M., Hemming, J., Morros, J. R.,
et al. (2023). Looking behind occlusions: a study on amodal segmentation for robust
on-tree apple fruit size estimation. Comput. Electron. Agric. 209, 107854. doi: 10.1016/
J.COMPAG.2023.107854
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