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CGA-ASNet: an RGB-D
amodal segmentation
network for restoring
occluded tomato regions

Zhaoyang Li, Yong Yin, Zhihong Xing and Hanbing Deng*

College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang, China

Obtaining the complete morphology of tomato fruits under non-destructive
conditions is essential for phenotype research, yet fruit occlusions often hinder
deep learning-based image segmentation methods from capturing the true
shape of occluded regions. This limitation reduces prediction accuracy and
adversely impacts phenotype data acquisition. To overcome this challenge, we
propose CGA-ASNet, an RGB-D amodal segmentation network incorporating a
Contextual and Global Attention (CGA) module. A synthetic tomato dataset
(Tomato-sim) was constructed using NVIDIA Isaac Sim's Replicator Composer
(ISRC) to realistically simulate tomato morphology and greenhouse
environments, and the network was trained on this dataset. To evaluate
generalization, CGA-ASNet was tested on both the synthetic and a separate
real-world dataset. While no explicit domain adaptation techniques were
adopted, diverse lighting conditions (strong, normal, and weak illumination)
were simulated to implicitly reduce the domain gap, and a mean coordinate
fusion algorithm was introduced to improve annotation completeness in real-
world occlusion scenarios. By leveraging contextual information among feature
input keys for self-attention learning, capturing global information, and
expanding the receptive field, CGA-ASNet enhanced representation capacity,
semantic understanding, and localization accuracy. Experimental results
demonstrated that CGA-ASNet achieved an F@0.75 score of 94.2 and a mean
Intersection over Union (mloU) of 82.4% in greenhouse amodal segmentation
tasks. These findings indicate that training with well-designed synthetic datasets
can effectively support accurate occlusion-aware segmentation in real
environments, providing a practical solution for tomato phenotyping in
greenhouse conditions.
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amodal segmentation, occlusion-aware segmentation, RGB-D image segmentation,
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1 Introduction

Tomatoes are among the most widely cultivated vegetables
globally, with countries such as the United States, China, and Japan
extensively utilizing greenhouse cultivation methods. In recent years,
the area dedicated to greenhouse tomato farming has steadily
expanded. However, despite these advancements in controlled-
environment agriculture, tomato harvesting remains largely
dependent on manual labor, which is not only labor-intensive but
also inefficient (Camara-Zapata et al, 2019). To address these
challenges, automated growth monitoring systems and intelligent
harvesting machines are gradually emerging as key solutions in
modern agriculture. These technologies are increasingly being
adopted to mitigate labor shortages in regions that heavily rely on
manual harvesting. However, fruit morphology remains indispensable
in processes such as biological control and biomass detection.

Accurate information on fruit morphology is crucial for multiple
aspects of agricultural management. It not only aids in determining the
growth status of plants but also supports precision fertilization and
irrigation decisions. Furthermore, changes in fruit morphology can
serve as early indicators of pests and diseases, enabling farmers to detect
issues early and take appropriate action. Automated detection systems,
through continuous monitoring of plant morphology, offer higher
precision and real-time feedback, thereby reducing dependency on
manual labor and improving both crop yield and quality. With the
rapid advancements in machine vision and deep learning, many
computer vision tasks—such as image recognition (He et al, 2016;
Szegedy et al,, 2016), object detection (Girshick, 2015; Redmon and
Farhadi, 2018; Ren et al, 2015);, and semantic segmentation (Long
et al., 2015)—have enabled precise localization and shape
determination of fruits based on their appearance. These techniques
have been widely applied in disease detection (Dhaka et al, 2021),
maturity assessment, and growth monitoring. However, these tasks
typically rely on each pixel in the image corresponding to a single label.
In occlusion scenarios, models can only process visible portions,
leaving occluded areas unaddressed or inadequately evaluated.

10.3389/fpls.2025.1664718

Traditional computer vision algorithms, including edge-based
segmentation methods (Sheng et al, 2023), struggle to handle
occlusions, particularly in agriculture, where fruits grow in
random positions and complex lighting conditions further
complicate scene interpretation. While edge-based approaches
have shown effectiveness in fruit segmentation under certain
conditions, current technologies face challenges in effectively
dealing with occluded fruits, resulting in lower recognition
accuracy. Current technologies face challenges in effectively
dealing with occluded fruits, resulting in lower recognition
accuracy. This issue presents a significant barrier to the
implementation of automation in agriculture, particularly in
automated harvesting and growth monitoring systems, where the
presence of occlusions severely impacts recognition accuracy and
operational efficiency. To effectively address this problem, the
occluded portions of the fruit must be accurately reconstructed.

Amodal segmentation aims to infer and complete the occluded
portions of objects by providing their full masks, as illustrated in
Figure 1. Several recent studies have explored occlusion-aware
perception and shape reconstruction techniques to improve fruit
detection in complex agricultural environments. An occluder-
occludee relational network (O2RNet) was proposed to explicitly
model spatial interactions between overlapping objects and
achieved state-of-the-art performance in clustered apple detection
(Chu et al, 2023). A zero-shot Sim2Real reinforcement learning
strategy was introduced to manipulate deformable plants and reveal
hidden fruits, achieving 86.7% success without real-world fine-
tuning (Subedi et al., 2025). Furthermore, a safe leaf manipulation
method was proposed to improve pose and shape estimation
accuracy by uncovering occluded fruits (Yao et al., 2025).

While these techniques have shown promising performance in
orchard and open-field conditions, greenhouse environments
present a distinct set of challenges that remain underexplored.
Greenhouse-grown crops, such as tomatoes, are typically
cultivated in densely packed rows with limited spacing, resulting
in more frequent intra-class occlusions. The constrained physical

Tomato image

FIGURE 1

Amodal mask
of Tomato Image

(A) Two ripe tomatoes on a plant with green leaves. (B) An amodal mask of the same tomatoes, highlighting their form against the background.
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layout, along with complex lighting and structural occluders (e.g.,
stems, trellises, or support wires), imposes high demands on vision-
based perception systems. These conditions significantly degrade
the accuracy and reliability of fruit detection and localization, which
are critical for robotic harvesting and automated yield estimation.

Therefore, it is essential to develop occlusion-resilient
perception methods tailored to greenhouse-specific scenarios.
Amodal segmentation, which infers complete object masks
including invisible parts, offers a promising solution to this
challenge. In this study, a deep learning-based amodal
segmentation method is proposed for greenhouse tomatoes,
targeting the reconstruction of occluded regions to support robust
visual perception and task execution in controlled-
environment agriculture.

This task offers significant benefits to various downstream
applications. For instance, in 3D reconstruction (Seitz et al., 2006),
having complete shape information is crucial for generating more
accurate 3D models, especially when objects can only be observed
from limited viewpoints. In cases where the view is restricted or
objects are partially occluded, understanding the full structure of the
object helps enhance the model’s realism and reconstruction
accuracy. For video segmentation tasks, objects in videos are often
partially obscured by other elements, and having complete shape
information aids in maintaining object consistency across frames,
thereby improving segmentation quality and precision. In dynamic
scenes, the continuity of object shapes significantly reduces errors
caused by occlusion or movement. Additionally, in agricultural
machine vision systems, particularly in controlled-environment
agriculture, perceiving the full structure of occluded objects is
essential for navigation and task execution. The complexity of
greenhouse environments, where objects such as plants or
machinery frequently cause occlusions, makes global shape
perception vital for optimal path planning, obstacle avoidance, and
harvesting strategy refinement. Accurate object perception allows
the system to reliably assess fruit ripeness and determine the optimal
harvesting time, thus improving harvesting efficiency, reducing
manual intervention, and ultimately lowering labor costs.
Traditional segmentation algorithms, such as thresholding, region
growing, and edge-based methods, are primarily designed for
semantic segmentation, which involves dividing images into
predefined categories. While these methods can achieve reasonable
results in simple scenarios, they often struggle in complex
agricultural environments where multiple instances of the same
class are present and occlusions are common. Some recent works
have demonstrated instance-level segmentation capabilities using
point cloud data (Jiang et al., 2025). Nevertheless, these methods still
face challenges when dealing with heavily occluded scenes or when
full object masks, including invisible regions, are required. As a
result, more researchers are applying deep learning techniques to
amodal segmentation tasks. Leveraging convolutional neural
network (CNN) and other advanced architectures such as U-Net
(Ronneberger et al, 2015) and Mask R-CNN (He et al, 2017),
amodal segmentation not only performs semantic segmentation but
also enables precise instance-level segmentation and even part-level
segmentation within images.
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The earliest work on amodal segmentation can be traced back to
the research by (Li and Malik, 2016), where they synthesized images
to create the first amodal instance segmentation dataset and trained
and tested their proposed model, the Amodal Segmentation
Network (ASN). To further validate the effectiveness of the
amodal segmentation task, (Zhu et al., 2017) conducted
additional studies. They invited multiple annotators to label the
same image with amodal annotations, and the results showed a high
level of agreement among annotators regarding regions and edges,
demonstrating the task’s clear operability. They also provided
amodal annotations for 5000 images from the COCO dataset,
known as the COCOA dataset. Building on this, they proposed
the ExpandMask network, where the input consisted of image
patches and visible mask predictions, and the output was the
occluded part of the target object. (Follmann et al.,, 2019) further
improved upon Mask R-CNN, introducing a dedicated module for
amodal mask segmentation called ORCNN (Occlusion Region
Convolutional Neural Network). They also compiled and
organized two amodal segmentation datasets, D2SA and COCOA.
Subsequently, (Blok et al., 2021) and (Gene-Mola et al., 2024)
applied ORCNN to broccoli and apple datasets, achieving
promising results. Their experiments demonstrated that their
models outperformed other methods on these datasets, further
validating their effectiveness and superiority.

This deep learning-based approach to amodal segmentation has
significantly improved the perception of occluded objects, offering
more precise solutions for scene understanding and complex visual
tasks. However, most of these studies have been tested on public
datasets or applied to agricultural datasets in a very limited capacity.
In the agricultural domain, amodal segmentation faces several critical
limitations. For instance, the lack of large-scale, high-quality training
datasets and issues of domain mismatch often result in poor Sim-to-
real (Zhao et al, 2020) transfer. In real-world greenhouse
environments, images typically contain numerous instances of the
same class that are occluded by one another, making amodal
segmentation tasks for such occluded objects far more challenging.
Although existing computational models can perform well when
trained on large-scale datasets under supervised learning conditions,
their performance is often significantly restricted when applied to
complex greenhouse scenarios, where large datasets are scarce.
Particularly in unstructured agricultural environments, frequent
changes in lighting conditions, the visual similarity between crops
and weeds, and the unpredictability of weather add significant
complexity to the model’s ability to process such scenes. Moreover,
due to the diversity of crop species, the complexity of background
environments, and the difficulties associated with data collection,
large-scale deep learning datasets in agriculture are relatively rare. As
a result, the training and evaluation of algorithms often rely on small
datasets collected by researchers, which may not adequately represent
the complexities of real-world situations. In dense tomato crops, for
example, occlusions between similar objects are frequent, and
manually annotating such complex scenes in real datasets is both
costly and prone to human bias and inaccuracies. Therefore,
constructing a high-quality synthetic dataset is a more suitable
solution to address this problem. Synthetic data can provide precise
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ground-truth annotations and allow for variable control to simulate
different occlusion and lighting conditions, thereby offering models
more diverse and comprehensive training data.

The use of synthetic datasets effectively compensates for the
challenges in real data collection in agricultural greenhouse
environments and provides more consistent training and testing
conditions in Sim-to-real transfer scenarios. This approach enables
models to better generalize in complex greenhouse settings,
improving the accuracy and robustness of amodal perception tasks.
As a result, it offers more reliable technical support for automated
detection, disease recognition, and fruit harvesting in agriculture. In
some weakly supervised learning studies (Cinbis et al., 2016), ground-
truth labels are derived from self-generated annotations. For example,
in (Yang et al., 2024), self-supervised learning is used to train deep
learning models for target segmentation, with self-generated labels
acting as ground truth. These models are then evaluated and tested in
experimental environments. However, self-generated labels are based
on model predictions of object shapes, which may differ from the
actual shape of the target. To bridge this gap, researchers have made
various attempts. A notable effort is the tomato dataset created by
(Zhou et al.,, 2021). They proposed a synthetic dataset method by
simulating tomato growth environments using software, followed by
rendering tomato images and generating segmentation labels.
However, their dataset only annotated the visible parts of the
instances, without addressing the occluded parts. In amodal
instance segmentation, occluded regions must be annotated in
alignment with the ground truth, though the ground truth itself
may sometimes be inaccurate. Our new dataset offers valuable
solutions for addressing the challenge of obtaining ground-truth
labels for occluded tomatoes in greenhouse environments. With
this dataset, models can more effectively handle occluded instances,
leading to enhanced precision and robustness in machine learning
models for agricultural applications.

To tackle the problem of occluded tomato segmentation in
greenhouse scenarios, this study proposes a deep learning-based
amodal segmentation method focused on reconstructing the
occluded parts of tomatoes. Starting from the requirements of
greenhouse vision systems, this research assists in detecting and
locating grasp points. A synthetic dataset, Tomato-sim, was
constructed in a virtual environment to meet the data needs of
current vision systems. The model was then trained and tested using
an RGB-D amodal instance segmentation network embedded with
the CGA module. Finally, the model was validated on a tomato
occlusion test dataset from real greenhouse scenes. This method
aims to improve amodal segmentation performance for occluded
tomatoes in complex greenhouse environments by leveraging
synthetic datasets and the CGA module.

2 Materials and methods
2.1 Data acquisition

In this study, 2,000 images containing both RGB and depth
information were generated across 40 different scenario conditions,
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using Blender Proc (Denninger et al., 2019) for photorealistic
rendering. In the Blender software, various tomato models of
different shapes and colors, along with their branches and leaves,
were constructed. Between 1 to 10 tomatoes were randomly placed
in the scene, and images were captured by randomly setting the
camera pose. This approach enabled the acquisition of ground-
truth RGB images for each instance or frame directly from the
computer-rendered 3D scenes.

2.1.1 Camera sampling and lighting condition
settings

To capture images of tomatoes under various occlusion conditions,
we constructed synthetic greenhouse scenes using pre-designed 3D
models of tomato fruits and branches. These objects were randomly
placed in 3D space with varying x, y, z coordinates and orientations.
Camera viewpoints were uniformly sampled from two concentric
hemispheres centered on the tomato plant, ensuring sufficient
angular diversity for simulating occlusions (as shown in Figure 2).

The sampling range was controlled by two parameters, 1 and w,
where 1€[1,2] and we&([2,4] meters. The inner and outer radius
bounds for the viewpoint sampling were defined as shown in
Equations 1 and 2.

rview_lawer = max(w/Z, 1/2) (1)

=17xr

T view _ lower (2)

view _upper

In greenhouse environments, variations in lighting can
significantly affect the visual appearance, color distribution, and
surface texture of objects, which in turn influence the performance
of image-based object detection and segmentation algorithms. For
instance, under strong lighting conditions, the increased illumination
intensity enhances contrast within the image, making object edges
appear sharper and more distinct, thereby facilitating foreground-
background separation and improving segmentation accuracy. In
contrast, under weak lighting, the reduction in contrast leads to less
pronounced object boundaries, resulting in blurred edges and a
higher risk of segmentation failure or misclassification.

Compared to single-modality RGB data, the use of RGB-D inputs
provides richer multi-source information. In particular, depth data
remains relatively invariant to changes in lighting conditions and
shadows, offering more stable structural cues for object localization
and shape estimation. This property enables the model to maintain
reliable performance even in complex lighting environments, where
RGB images alone may suffer from intensity distortion or loss of
detail due to overexposure, underexposure, or shadowing effects.

To simulate diverse lighting conditions that realistically reflect
the variability found in greenhouse settings, we introduced
randomized lighting during synthetic data generation. Specifically,
three distinct illumination scenarios were designed: strong, normal,
and weak lighting, corresponding to different levels of intensity and
contrast observed in real greenhouses. For each sampled camera
viewpoint, between 0 and 2 spherical light sources were randomly
added to the scene to emulate these lighting conditions (as shown in
Figure 3, in pink). These light sources were placed using a strategy
consistent with the camera viewpoint sampling, namely within the
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FIGURE 2

Diagram illustrating two setups. (A) Data collection platform with cameras positioned around tomatoes on a rectangular surface, showing
dimensions width (w) and length (1) in a 3D space with axes x, y, and z. (B) Shooting distance with cameras viewing tomatoes at different ranges,

labeled r_view_lower and r_view_upper.

same concentric hemispherical region centered on the target object.
The spatial bounds for light source placement were defined relative
to the camera’s upper view radius.

The sampling constraints for the lower and upper radii of the
lighting hemisphere, rijght lower aNd Tiigh¢ upper are defined by
Equations 3, 4:

Tlight _lower = Tlight _upper 0.1m (3)

Tlight _upper = Tlight _lower + Im 4)

This setup enabled us to simulate soft shadows, directional
lighting, and realistic greenhouse illumination by rendering

synthetic images under three distinct lighting conditions-strong,
normal, and weak-reflecting the typical variability observed in

Light

s\

S

Flight lower

<

h 4

Flight .upper

FIGURE 3
Sampling of lighting conditions.
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natural greenhouse environments. Each illumination condition
was rendered using physically-based materials with enabled
shadow casting and reflection, producing realistic phenomena
such as soft shadows, directional highlights, and illumination
gradients. Example outputs, including RGB and corresponding
depth images under different lighting levels, are shown in Figure 4.

Although synthetic data cannot fully replicate real-world
conditions, our dataset design incorporates variability in both
lighting and viewpoints to minimize the domain gap. The model
was trained solely on synthetic RGB-D images, and its generalization
capability was evaluated through inference on both synthetic and real-
world test sets.

In this study, we partitioned the dataset into training and testing
sets at a ratio of 8:2. Table 1 presents the distribution of RGB images in
the training set, while Table 2 shows the distribution in the testing set.
Since the position of each tomato on the plant affects both light
intensity and the degree of occlusion, we categorized the images into
three levels based on occlusion rate: 0-10% (low occlusion), 10-30%
(moderate occlusion), and 30-100% (high occlusion). Here, 0%
indicates complete visibility, while 100% represents total occlusion.

These thresholds were determined based on both the natural
clustering of occlusion levels observed in our manually annotated
real-world greenhouse images and commonly adopted practices in
agricultural vision research (e.g., Yang et al., 2024; Li et al., 2022). For
consistency, the same occlusion thresholds were also applied to the
synthetic dataset. The same grouping standard is used consistently in
Table 2 for data organization and performance evaluation.

2.1.2 The acquisition of occlusion masks

The synthetic 3D scene-generated dataset offers a high degree of
annotation flexibility, providing amodal instance masks, complete
appearances, occlusion order, and layer order for all objects in the
scene. For each view, the system captures RGB and depth images of
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(A) RGB image of tomato plants under strong illuminance. (B) RGB image of tomato plants under normal illuminance. (C) RGB image of tomato
plants under low illuminance. Below each panel, the corresponding depth image shows varying shading levels, with (C) being the darkest and (A) the
lightest. The depth values correspond to true distances ranging from 0.25 to 5.46 m.

the desktop scene, utilizing the built-in instance segmentation
feature of NVIDIA’s Isaac Sim Replicator Composer to obtain
instance segmentation masks for the entire scene. Subsequently,
amodal and modal masks for each object are extracted from the
instance segmentation masks. The occlusion mask and occlusion
rate of each object are then calculated. The occlusion mask is
obtained by subtracting the modal mask from the amodal mask,
as illustrated in Figure 5 and formulated in Equation 5.

M, =M, - My (5)

The occlusion rate is calculated by dividing the number of pixels
in the occlusion mask by the number of pixels in the amodal mask.
If an object’s occlusion rate equals 1, it means the object is

completely occluded from the viewpoint, and the annotation for
that object is not saved for that view. In such cases, the object’s
visibility is disabled to capture the mask for the next object.

2.2 Greenhouse tomato dataset under real
scenarios

2.2.1 Collection equipment

The greenhouse tomato dataset used in this study was entirely
collected using the Azure Kinect DK depth camera. During image
acquisition, the Azure Kinect depth camera was utilized to capture
RGB-D images, with the color camera set to a resolution of

TABLE 1 The distribution of RGB image data in the training set of tomato-sim.

Occlusion rate(%) Low illuminance

Normal illuminance

Strong illuminance

[0,10] 25/84 50/158 25/78 100/320
[10,30] 50/220 125/582 50/228 225/1030
[30,100] 125/694 425/2155 125704 625/3553

Total 200/998 600/2895 200/1010 1000/4903

TABLE 2 The distribution of RGB image data in the test set of tomato-sim.

Occlusion rate(%) Low illuminance

Normal illuminance

Strong illuminance

[0,10] 5/18 12/38 5/16 22/72
[10,30] 10/48 24/95 10/45 44/188
[30,100] 25/102 84/342 25/110 134/554

Total 40/168 120/475 40/171 200/814

Columns and rows contain image categories (number of images/number of instances). Each row corresponds to a different level of occlusion in the tomatoes.

Frontiers in Plant Science

frontiersin.org


https://doi.org/10.3389/fpls.2025.1664718
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Li et al. 10.3389/fpls.2025.1664718
Amodal Visible Occlusion
mask mask mask

(A) Amodal mask shown as a full white circle on a black background. (B) Visible mask shown as a partial white crescent. (C) Occlusion mask shown

as a smaller white shape

1920x1080 pixels at 30 frames per second (fps) and the depth
camera set to a resolution of 640x576 pixels at 30 fps.

Azure Kinect, developed by Microsoft, is a depth camera capable of
simultaneously capturing both RGB and depth data. It features a high-
resolution and high-sensitivity lens, capable of capturing high-quality
depth information within a range of 0 to 10 meters. The depth camera
of Azure Kinect uses time-of-flight (ToF) technology, which projects
modulated light in the near-infrared spectrum onto the scene and
records the time it takes for the light to travel from the camera to the
scene and back. This travel time, along with the speed of light, is used to
calculate depth values for different positions in the scene, generating a
depth map. To ensure the generalizability of the data, the tomato plants
were randomly photographed from multiple angles and positions
under different lighting conditions within the greenhouse. Each
image set includes RGB and corresponding depth images. The
captured RGB and depth images were registered, ensuring that the
pixels in the RGB image corresponded to the distance-representing
pixels in the depth image. Finally, the images were cropped to 640x480
pixels for both RGB and depth.

2.2.2 Greenhouse data acquisition

Table 3 presents the data distribution of the real-world test set,
where the intensity of light and the level of occlusion vary across different
positions on the tomato plants. Based on the degree of occlusion, the
images are categorized into three levels: 0-10%, 10-30%, and 30-100%,
with 0% indicating no occlusion and 100% indicating full occlusion.

Tomato images captured under different lighting conditions in
real greenhouse scenarios, and their corresponding depth images
are also collected, as shown in Figure 6.

TABLE 3 Construction of tomato datasets under real greenhouse scenarios.

Occlusion rate(%) Normal illuminance Strong illuminance

2.2.3 Data annotation

Unlike other image segmentation tasks, instance segmentation
requires pixel-level masks for visible objects, while amodal
segmentation not only needs visible object masks but also
integrates semantic labels for both visible and occluded parts of
the scene. After mean cloning and fusion (Farbman et al., 2009), the
dataset easily captures more semantic information about the target
images. To segment the occluded areas, the combined mask of
visible and invisible regions after image fusion is subtracted from
the visible mask before fusion, as illustrated in Figure 7.

In this study, the LabelMe tool (Russell et al., 2008) was used to
annotate each region hierarchically, and 200 images with ground-
truth amodal masks were selected as the test set. Annotating an
entire image takes approximately 5 minutes, with each instance
requiring around 0.5 minutes on average. Compared to the efficient
construction of synthetic datasets, manual annotation in real-world
scenes is time-consuming, highlighting the advantage of synthetic
datasets in improving data annotation efficiency.

2.3 RGB-D-based amodal instance
segmentation method for tomatoes

2.3.1 RGB-D-based greenhouse tomato amodal
segmentation model

The CGA-ASNet architecture, as illustrated in Figure 8, consists
of two main components: the feature extraction network and the
segmentation prediction network. The feature extraction and fusion
network first extracts RGB features and depth features separately

[0,10] 5/10 12/25 5/11 22/46
[10,30] 8/18 24/65 8/16 40/99
[30,100] 27172 84/272 27/91 138/435
Total 40/100 120/362 40/118 200/580
Frontiers in Plant Science 07 frontiersin.org
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(A) Brightly lit tomato in RGB image. (B) Normally lit tomatoes in RGB image. (C) Dimly lit tomatoes in RGB image. The bottom row shows the
corresponding depth images under strong, normal, and low illuminance. Labels indicate lighting conditions. The depth values correspond to true

distances ranging from 0.25 to 5.46 m.

from the input RGB and Depth images. The depth features from the
C3, C4, and C5 layers of the CGA-50 Backbone are concatenated
with the corresponding RGB features from the same layers. A 1x1
convolution is applied to fuse the RGB-D features, reducing the
channel dimensions. This fusion forms an RGB-D feature pyramid,
which is then passed through the Region Proposal Network (RPN)
and RolAlign (Region of Interest Align) layers to generate the RGB-
D features. These multi-dimensional feature maps are then fed into
the segmentation prediction network for segmentation tasks. The
model incorporates the CGA module, based on the Unseen Object
Amodal Instance Segmentation (UOAIS) architecture. The CGA
module is composed of the CFT module (proposed in this study)
and the GAM module (Liu Y. et al., 2021). The improved model is
highly adaptable to the constructed synthetic dataset, ensuring both

high accuracy and enhanced training and inference speed, even with
smaller datasets. The model effectively handles variations in lighting
conditions and tomato color changes in greenhouse environments.
Additionally, the introduction of a shape convolution module
strengthens the model’s perception of tomato shape and
position, reducing the impact of occlusions caused by branches
and leaves. The model’s loss function is defined as shown in
Equation 6.

Ligss = Lats + Lpox + Ly + Ly + Lo, + L +L_(rpn_loc) (6)

TpDs

Among them, the abbreviation L refers to the loss of classes,
Lyox refers to the loss of bounding boxes, Ly refers to the loss of
non-modal mask losses, and Lo refers to the loss of
occlusion classification.

The area to
be cloned

FIGURE 7

Target
image

Cloning of
the finished
image

(A) Ripe red tomato outlined in blue for cropping, with a smaller green tomato nearby. (B) Target image with two ripe red tomatoes on a vine. (C)
Final result, where the tomato from (A) has been cropped and pasted onto (B) to create an occlusion effect.
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/

FIGURE 8
Overall architecture diagram of the CGA-ASNet model.

2.3.2 CFT attention

To enhance the global modeling capability of ResNet50, we
propose a Contextual Features Transformer (CFT) module, the
structure of which is illustrated in Figure 9. This module replaces
the standard 3x3 convolution in the residual block. Unlike
conventional self-attention mechanisms that compute attention
weights based on dot-product similarity, the proposed CFT module
leverages learnable convolutions to generate attention scores. This

design integrates the inductive bias of convolution with the long-
range dependency modeling strength of attention, effectively avoiding
the scale sensitivity issues of dot-product attention while providing
more stable and spatially aware representations. Moreover, it
introduces only minimal computational overhead, making it
particularly suitable for dense prediction tasks.

The proposed Convolutional Feature Transformer (CFT)
module is designed to simultaneously model local details and

3<3Conv(*)

Q(query)

1<1Conv(*)

1<1Conv(*)

FIGURE 9

W(weights)

dynamic
V(values) Tomato
Feathers
(F)

Structure of CFT self-attention module. Here, the * is not alone. When combined with conv, it forms conv(*), representing a 1x1 convolution.
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global dependencies by leveraging a convolution-based attention
mechanism in place of traditional dot-product attention.
Specifically, the input feature map X is first passed through a 3x3
convolution to extract the key feature K, preserving spatial context.
A second 3x3 convolution is applied to further enhance local
information within the key representation. In parallel, the query
Q and valueV features are obtained from X using two separate 1x1
convolutions for dimensionality reduction while preserving
feature structure.

After computing these features, spatial dependencies are
modeled by concatenating the key and query features along the
channel dimension. This combined representation is passed
through two 1x1 convolutions to produce the spatial interaction
logits 8, which are normalized by a Softmax function to yield the
attention weight matrix W. The matrix W is then applied to the
value feature V via weighted summation. To further incorporate
global context, the value feature is enhanced using a
dilated convolution layer M, which increases the receptive field
without reducing resolution. The result is fused with the
original key K using a final 1x1 convolution, producing the final
output Y, denoted as the tomato feature F for subsequent
segmentation tasks.

The core idea of CFT is to replace the conventional dot-product
attention with convolution-based attention, allowing the network to
better integrate spatial inductive bias and global dependencies. The
complete formulation is given as shown in Equations 7-9.

0 = Conv(Conv(K & Q)) (7)

Channel Attention
Module

N Mc

Input teatures F1

FIGURE 10
Global attention mechanism.

SN N
® ®

10.3389/fpls.2025.1664718

W = Softmax(0) (8)

Y = Conv(K+ M ® V) %)

where Conv(*) denotes a 1x1 convolution; @ represents
concatenation; @ denotes matrix multiplication.

2.3.3 GAM attention

The Global Attention Mechanism (GAM) enhances feature
representations by applying attention along both channel and
spatial dimensions. It consists of two independent submodules:
the Channel Attention Module (CAM) and the Spatial Attention
Module (SAM). The overall architecture is illustrated in Figure 10.

As illustrated in Figure 11, CAM first applies global average
pooling and global max pooling across spatial dimensions of the
input feature map F € RE™M™W | resulting in two descriptors of size
RE. These descriptors are then passed through a shared two-layer
MLP, where the first layer reduces the dimension by a ratio r, and
the second layer restores it to C. After element-wise summation and
a sigmoid activation, the resulting attention map M, is used to
reweight the input feature map channel-wise.

SAM further refines the output from CAM by emphasizing
important spatial locations. As shown in Figure 12, it applies
average pooling and max pooling across channels, producing two
RT*W feature maps, which are concatenated and passed through a
7x7 convolution followed by a sigmoid activation to generate the
spatial attention map M. This map is multiplied element-wise with
the input to produce the final attention-weighted output.

Spatital Attention
Module

I ms

Output features F3

MLP

Permutation
CxWxH—WxHxC

Input features F1

FIGURE 11
Channel attention module.
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2.3.4 Segmentation prediction network

The segmentation prediction network is composed of four main
branches: the Bounding Box Prediction Branch, the Visible Mask
Prediction Branch, the Amodal Mask Prediction Branch, and the
Occlusion Classification Prediction Branch. The Bounding Box
Prediction Branch takes the 7x7 feature map output from the
RPN (Region Proposal Network) and passes it through two fully
connected layers to predict the bounding box B and class C. The
feature map is then upsampled to a 14x14 feature map to provide
bounding box features for the subsequent branches, ensuring that
instance masks are segmented within the predicted bounding box.
The Visible Mask Prediction Branch, the Amodal Mask Prediction
Branch, and the Occlusion Classification Prediction Branch utilize
the 14x14 feature map from the RPN, along with features fused
from the previous branches, to predict the visible mask V, the
amodal mask A, and the occlusion classification O, respectively. The
mathematical formulations for each branch are expressed in
Equations 10-13.

Fy = (hy(Fp, Fror)) (10)

Fy = (ha(Fp, Fror, Fy)) (11)

Fo = (ho(Fg, Fror, Fy, Fy)) (12)

V. A, O = Py(Fy), PA(Fy), Po(Fo) (13)

In the segmentation prediction network, Fg, Fror, Fy, Fa, and Fo
represent the bounding box feature, the Rol feature, the visible mask
feature, the amodal mask feature, and the occlusion mask feature,
respectively. The hierarchical fusion modules hv, hy and ho
correspond to the visible mask, amodal mask, and occlusion
classification branches. Specifically, the hierarchical fusion module
integrates each input feature and reduces the channel dimensions
through three 3x3 convolution layers to decrease the parameter
count. These are then fed into another set of three 3x3 convolution
layers to generate the task-specific features for each branch. The
prediction layers Py, P, and P, are responsible for predicting the
visible mask, amodal mask, and occlusion classification,
respectively. Py and P, use 2x2 deconvolutions and a fully
connected layer, while P, consists of a fully connected layer to
output the final results.

CxHxW C/rxHxW

<7
Conv
Input features F2

FIGURE 12
Spatial attention module.
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3 Results and analysis
3.1 Training and parameter setting

This study aims to address the lack of real RGB-D datasets by
applying deep learning models, specifically focusing on tomatoes.
Through software, synthetic RGB-D images simulating occluded
tomatoes in a greenhouse environment are generated to build a
diverse and high-quality dataset. The convolutional neural network
(CNN) extracts and integrates features from both RGB and depth
images using feature extraction algorithms. Multiple detection
branches are employed to predict the visible part masks and the
contours of the occluded parts of the objects. A hierarchical
occlusion modeling mechanism is applied to improve the
accuracy of amodal segmentation for tomatoes.

During model training, comparisons between different datasets
(synthetic and real-world datasets) are conducted for both training
and testing. To ensure fairness in the training and testing process,
all tasks are performed on the same hardware platform. The
experimental platform consists of a Dell Precision 7920 with
64GB RAM, a 2.1GHz CPU with 16 cores, and an NVIDIA
A6000 GPU with 48GB GDDR6 VRAM and 10,752 CUDA cores.
Initial training parameters are listed in Table 4.

3.2 Evaluation metrics for tomato amodal
segmentation quality

We adopt several evaluation metrics to quantitatively assess the
instance-level segmentation performance, including Precision,
Recall, F1-Score, F@75 (Ochs et al., 2013), and mean Intersection
over Union (mloU), as defined in Equations 14-18. Precision
measures the proportion of correctly predicted positive instances
among all predicted positives, while Recall measures the proportion
of correctly predicted positive instances among all actual positives.
The F1-Score is the harmonic mean of Precision and Recall,
providing a balanced evaluation of model performance.

F@.75 is an instance-level metric based on the Fl-score,
representing the proportion of ground-truth instances that are
successfully matched with predicted instances having an F1-score
no less than 0.75. The pairwise F1-scores between predicted and

CxHxW

Sigmoid

_,®_,

Ms(F2)
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TABLE 4 Training process related parameters.

Parameter name Parameter values

Image Size 640x480
Batch Size of Images 2
Initial Learning Rate 0.00125
Maximum Number of Iterations 90000

ground-truth instances are computed, and the optimal one-to-one
assignment is determined using the Hungarian algorithm. Finally,
mean Intersection over Union (mlIoU) is used to evaluate
segmentation quality across all classes.

Precisi P (14)
recision = —m——
TP + FP
TP
Recall = —— 1
ecall = 75 TN (15)

2Precision x Recall
Fl1-Score= —————— (16)
Precision + Recall

F@.75 =

Sapeml{F; =075}
N 17)

IoU = LS 1P (18)
mloU =17 2 FN T PP TP

where TP is the model correctly predicts positive instances; FP
is model incorrectly predicts positive instances; FN is the model
incorrectly predicts negative instances; FP is the model correctly
predicts negative instances. Fy; is the Fl-score between predicted
instance i and ground-truth instance j, M is the optimal one-to-one
matching obtained via the Hungarian algorithm, and N is the total
number of ground-truth instances.

In order to compare our method with other existing
methods, we adopted the AP (Average Precision) and mAP
(mean Average Precision) as evaluation metrics, which are
commonly used for amodal segmentation tasks (Ke et al., 2021),
as defined in Equations 19, 20.

1
AP = / P(r)dr (19)
0
1 k
mAP = — S AP; (20)
k i=1

3.3 Analysis of test results with different
backbone networks

To investigate the impact of different feature extraction

backbone networks on the performance of the CGA-ASNet
model, we conducted a series of controlled experiments using six
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different backbone architectures: ResNet50, ResNet101 (He et al,,
2016), ResNeXt50, ResNeXt101 (Xie et al., 2017), ConvNeXt-Tiny
(Liu et al, 2022), and Swin-Tiny (Liu Z. et al, 2021). All
experiments were performed under identical training and testing
conditions, with RGB-D as the input modality and only the
backbone network varied.

As shown in Table 5, ResNet50 consistently outperformed the
other backbone networks in both amodal mask prediction and
occlusion segmentation. Specifically, it achieved the highest amodal
F@.75 score of 92.0 and a mean Intersection-over-Union (mIoU) of
81.4%. Although newer backbone architectures such as ConvNeXt-
Tiny and Swin-Tiny showed competitive results, they did not
surpass the performance of ResNet50 in our task setting. This
suggests that ResNet50 remains a strong and stable backbone choice
for occlusion-aware segmentation tasks, particularly in our CGA-
ASNet framework.

3.4 Ablation study

Ablation experiments, commonly used to assess the influence of
different components in a model, are an effective method for exploring
the contributions of each module and gaining a deeper understanding
of the model’s behavior. As such, ablation experiments play a crucial
role in the design of neural network structures. To verify the
effectiveness of the CGA module, this study designed a series of
ablation experiments. We used ResNet50 as the backbone network
with R-50.pkl serving as the initial weight baseline. The experiments
were divided into three parts: first, the CFT self-attention module and
GAM attention module were individually embedded for testing; finally,
both CFT and GAM were combined and embedded into the network
for comparison to evaluate their specific contributions to improving
network performance.

As shown in Table 6, the first row presents results from the
baseline model without any modifications, achieving an F@.75 score
of 92.0 and a mIoU of 81.4% for amodal masks. In the second
experiment, where the CFT module was added, the F@.75 score
increased to 93.5 and the mIoU to 82.6%, representing
improvements of 1.5 and 1.2%, respectively. The third experiment
introduced the GAM module, which raised the F@.75 score to 94.2,

TABLE 5 Comparison results of different backbone networks.

Amodal
Backbone
mloU(%)

ResNet101 81.9 76.7
ResNext50 87.0 75.7
ResNext101 87.7 79.1
ConvNext_Tiny 88.4 78.9
Swin_Tiny 89.3 79.4
ResNet50 92.0 81.4

The bolded part is the most effective part in the backbone network and thus is supported.
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TABLE 6 Ablation study.

Amodal
Method
mloU(%)
Baseline 92.0 81.4
Baseline+cft 93.5 82.6
Baseline+gam 94.2 82.4
Baseline+CGA 94.2 833

an increase of 2.2, and the mlIoU to 82.4%, a 1% improvement.
Finally, the model with the combined CFT and GAM modules,
forming the CGA module, achieved an F@.75 score of 94.2 and a
mloU of 82.4%. These results demonstrate that the CGA module
effectively captures more semantic information from tomatoes,
significantly enhancing the segmentation performance.

3.5 Amodal segmentation results on test
images with different degrees of occlusion

To evaluate the robustness of the improved amodal
segmentation network, this study compared the baseline model
with the CGA-embedded segmentation model across three subsets
with occlusion levels greater than 0-10%, 10-30%, and 30-100%,
using identical parameters. The results are shown in Table 7 and
Table 8. When the occlusion rate was below 10%, CGA-ASNet
achieved an F@.75 score of 98.4 and a mIoU of 86.8%, both higher
than the baseline model. For occlusion levels between 10% and 30%,
and those above 30%, CGA-ASNet also outperformed the baseline
model by 1.4 and 2.6, respectively.

The results indicate that, while segmentation performance
declines as occlusion increases, CGA-ASNet consistently handles
severe occlusions better than the baseline. As shown in Figure 13,
when multiple tomatoes are stacked, the baseline model without the
CGA module exhibited jagged contours in its predictions of
occluded tomatoes, whereas our model generated smoother and
more natural predictions. This demonstrates that the CGA module
significantly enhances the model’s ability to perceive and predict the
edge shapes of segmented objects, improving overall
prediction accuracy.

TABLE 7 Baseline prediction results.

10.3389/fpls.2025.1664718

3.6 Comparison of test results from
different models

During the experimental design phase, we reviewed several
recent representative amodal segmentation models, including
pix2gestalt (Ozguroglu et al., 2024), AISDiff (Tran et al, 2024),
and BLADE (Liu et al, 2024), etc. However, most models only
support feature extraction of the RGB channels. These models
cannot provide the feature support for image segmentation based
on depth information. If the RGBD four-channel data is
compressed into three channels for feature extraction, the
obtained features cannot accurately represent the pixel semantics
of the original image. To ensure reproducibility and fair
comparison, we selected a group of well-established and publicly
available models as baselines for evaluation.

In this study, the Tomato-sim dataset was trained on state-of-
the-art (SOTA) models, including BC-net, AISFormer (Tran et al,
2022), ORCNN (Gene-Mola et al.,, 2023), and Uoais-net (Back et al.,
2022), using identical parameters to compare different training data
(Tomato-sim and real datasets). The models were tested on datasets
constructed through mean clone fusion in both synthetic and real
greenhouse scenarios. Table 9 presents the prediction results of
different models.

Figure 14 shows the performance of these segmentation models
in the amodal segmentation task. From image (2), it can be observed
that in the complex stacking scenario of tomatoes, our model
exhibited strong robustness. Images (1) to (3) show prediction
results from real greenhouse environments, while Images (4) to (6)
display performance in virtual scenes. Although all models
performed well in the virtual scenario, our model demonstrated
the best segmentation ability, especially in handling complex
occlusion and multi-layer stacking, achieving significantly higher
segmentation accuracy compared to other models.

Furthermore, CGA-ASNet was evaluated in a real greenhouse
environment to validate its practical applicability. As shown in
Figure 15, we selected the best- and worst-performing baseline models
—ORCNN and AISFormer—for direct comparison with our method.
Most results demonstrate that our model produces high-quality amodal
mask predictions, with natural and consistent mask distributions across
the entire ROL In contrast, both ORCNN and AISFormer exhibit
varying degrees of segmentation incompleteness or inaccuracies. Our
model achieves better overall shape recovery and boundary alignment,
highlighting its superior performance under real-world conditions.

TABLE 8 CGA-ASNet prediction results.

Amodal Amodal
Occlusion Rate(%) Occlusion rate(%)
mloU(%) mloU(%)
[0,10] ‘ 982 853 [0,10] 98.4 86.8
[10,30] ‘ 93.1 82.8 [10,30] 945 834
[30,100] ‘ 86.7 78.1 [30,100] 89.3 79.8
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GT

FIGURE 13

CGA-ASNet
(ours)

Baseline

(A) Tomatoes with GT overlays in blue and orange. (B) Baseline result with mainly orange and green overlays. (C) CGA-ASNet result with accurate

red and green overlays, showing segmentation improvements.

3.7 Generalization evaluation on
PApple_RGB-D-size dataset

To further assess the generalization capability of CGA-ASNet,
we conducted cross-domain experiments on the PApple_RGB-D-
Size dataset (Gene-Mola et al., 2023), which contains RGB-D
images of apples under different illumination and occlusion
conditions. This dataset significantly differs from the training
domain in both fruit category, color distribution, and geometric
structure, making it a suitable benchmark for evaluating robustness.

Without any additional fine-tuning, CGA-ASNet achieved an
AP50 of 89.2%, AP75 of 76.1%, and a mean Average Precision
(mAP) of 73.4%, demonstrating strong generalization ability and
transferability across domains. These results suggest that the model
can effectively learn domain-invariant features and accurately infer
the complete shape of occluded objects even under unfamiliar visual
and structural conditions. In addition, Figure 16 illustrates
representative qualitative results. Despite the domain shift, CGA-
ASNet is able to predict coherent amodal masks and successfully
complete severely occluded fruit regions.

TABLE 9 Comparison of predictions from different models.

Method Eval AP50(%)  AP75(%) mAP(%)
Tomato-sim 87.4 78.7 70.2
BC-net
real 85.7 75.5 66.7
Tomato-sim 92.3 86.1 744
AISFormer
real 89.9 85.7 72,5
Tomato-sim 73.3 63.4 55.7
ORCNN
real 72.3 58.3 524
Tomato-sim 92.9 82.3 74.5
Uoais-net
real 89.6 78.3 73.1
Tomato-sim 94.3 83.6 78.3
CGA-ASNet
real 93.1 78.4 75.0
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4 Conclusion

In the greenhouse environment, in order to ensure the accuracy
of the non-destructive phenotype detection of tomato fruits, we
constructed a virtual dataset of tomato fruits (Tomato-sim). This
dataset simulated the shading conditions that occur during the
actual growth of tomatoes. Additionally, for this dataset, we built an
RGB-D image non-modal segmentation model based on the CGA
module. We used the virtual data to train the model and then tested
the model on the real data set. The following are some conclusions
drawn based on the experimental results of this research work:

1. The synthetic dataset used for amodal tomato
segmentation, Tomato-sim, achieved an average precision
of 78.3%, closely matching the 75.0% precision obtained
from real data testing. This demonstrates that synthetic
data can effectively compensate for the limitations of real
data collection, especially in complex agricultural scenarios,
by providing flexible and diverse training conditions that
handle scene complexity and object occlusion.

. The CGA module designed in this study effectively captures
the semantic information of tomatoes, particularly
excelling in handling occluded regions. Compared to the
baseline model, the CGA module improved the Mean
Intersection over Union (mlIoU) by 1.9% when dealing
with occluded areas, significantly enhancing segmentation
accuracy and robustness. This result further validates the
CGA module’s segmentation capabilities in complex
scenes, enabling better extraction of complete semantic
information for partially occluded objects.

Experiments demonstrated that the CGA-ASNet model
performed exceptionally well on the synthetic dataset and could
effectively generalize to real greenhouse scenarios. Additionally,
we tested the model on the PApple RGB-D-Size dataset and
observed similar generalization capabilities, indicating that the
method is well-suited for amodal segmentation tasks involving
approximately round crops like apples. The model showcased
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Image#1

Image#2

Image#3

Image#4

Image#5

Image#6

AISFormer Uoais-net CGA-ASNet

FIGURE 14
Amodal segmentation results of different models.

GT ORCNN AISFormer Ours

FIGURE 15

(A—D) Tomatoes on vines with varying color changes under different algorithms. The bottom row shows ground truth (GT), ORCNN, AlSFormer, and
our method, with tomatoes highlighted using bounding boxes to indicate varying ripeness and detection accuracy. Each method depicts different
levels of detail and color fidelity.
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FIGURE 16

(A) Apples with shadows under varied lighting. (B) Apples with color changes under uneven illumination. (C) Apples in brighter light showing

increased brightness. (D) Apples in high illumination with strong contrast.

high accuracy and stability, suggesting that this approach is not
limited to tomatoes but can be extended to other crops with
similar shapes.

This study demonstrates that the combination of synthetic
datasets and deep learning techniques provides an efficient and
cost-effective solution for target segmentation in agricultural
scenarios. In the future, with the expansion of dataset size and
further model optimizations, the integration of synthetic and real-
world data will further enhance the model’s generalization
capabilities, providing robust technical support for tasks such as
automated crop harvesting and crop monitoring. This also
highlights the significant potential of synthetic data in agricultural
vision tasks.

Despite these promising results, this study still has some
limitations. First, the current method primarily focuses on crops
with relatively round shapes, and its effectiveness on more complex
or irregularly shaped crops remains to be validated. Second,
although synthetic data improves robustness, the domain gap
between synthetic and real-world data may still limit
generalization in more diverse or unconstrained environments. In
future work, we plan to extend our dataset to include various crop
types and environmental settings, explore domain adaptation
techniques, and further enhance the model’s architecture to
support broader applications in agricultural perception.
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