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Key visual features for rapid categorization of animals in 
natural scenes
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In speeded categorization tasks, decisions could be based on diagnostic target features or 
they may need the activation of complete representations of the object. Depending on task 
requirements, the priming of feature detectors through top–down expectation might lower the 
threshold of selective units or speed up the rate of information accumulation. In the present paper, 
40 subjects performed a rapid go/no-go animal/non-animal categorization task with 400 briefly 
flashed natural scenes to study how performance depends on physical scene characteristics, 
target configuration, and the presence or absence of diagnostic animal features. Performance 
was evaluated both in terms of accuracy and speed and d ′ curves were plotted as a function 
of reaction time (RT). Such d ′ curves give an estimation of the processing dynamics for studied 
features and characteristics over the entire subject population. Global image characteristics such 
as color and brightness do not critically influence categorization speed, although they slightly 
influence accuracy. Global critical factors include the presence of a canonical animal posture and 
animal/background size ratio suggesting the role of coarse global form. Performance was best for 
both accuracy and speed, when the animal was in a typical posture and when it occupied about 
20–30% of the image. The presence of diagnostic animal features was another critical factor. 
Performance was significantly impaired both in accuracy (drop 3.3–7.5%) and speed (median 
RT increase 7–16 ms) when diagnostic animal parts (eyes, mouth, and limbs) were missing. 
Such animal features were shown to influence performance very early when only 15–25% of 
the response had been produced. In agreement with other experimental and modeling studies, 
our results support fast diagnostic recognition of animals based on key intermediate features 
and priming based on the subject’s expertise.
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responses are so short that they are difficult to explain without 
arguing that visual processing must be done on the basis of a single 
feed-forward wave of processing along the ventral visual stream 
(Delorme and Thorpe, 2001; Thorpe and Fabre-Thorpe, 2001; 
VanRullen and Thorpe, 2002).

It has been shown recently that computational models relying 
only on feed-forward processing can perform categorization of 
natural images with an accuracy that can almost reach human 
accuracy in specific circumstances (Delorme and Thorpe, 2001; 
Serre et al., 2007). Such models rely on a basic dictionary of 
generic features (Masquelier and Thorpe, 2007) which are rela-
tively independent of target viewpoint. The exact description and 
interaction of these feature detectors in the visual system has so 
far remained unclear.

The detection of diagnostic features of intermediate complexity 
could be crucial. Alternatively, global coarse shape of target might 
also play a central role. The crucial and early use of shape and 
texture has recently been demonstrated (Elder and Velisavljevic, 
2009) although subjects were not under any constraints to pro-
duce fast responses. But even in rapid categorization tasks in which 
speeded responses are required, primate might rely on coarse global 
shape to detect animals in natural images. Indeed monkeys and 
human subjects still score around 80% correct in such tasks when 

IntroductIon
The mammalian neural system has evolved to cope with complex 
sensory stimuli and to decide and program appropriate motor 
responses in challenging situations. Quick and accurate responses 
to sudden world events can be crucial for survival (e.g. detecting 
a predator or a possible prey). The visual system is plastic and can 
learn frequently encountered visual features or feature contingen-
cies (Jiang and Chun, 2001). However, as proposed recently, neural 
systems in the brain might have been constrained by natural selec-
tion for some critical stimuli to produce rapid reliable decisions and 
responses based on their fast coarse analysis (New et al., 2007).

Not surprisingly, behavioral motor responses have been used 
as a primary tool for inferring elementary mental organization 
(Luce, 1986). In this article, a speeded reaction time (RT) go/no-go 
visual categorization task (Thorpe et al., 1996) was used to analyze 
the influence of stimulus image content on subjects’ performance. 
This task has been used extensively since 1996 to demonstrate how 
quickly our visual system can detect target-objects in natural pho-
tographs. Animals, means of transport, food objects, faces, and 
scene gists can all be categorized with high accuracy (around 95% 
correct) and with median RTs of about 400 ms (Delorme et al., 2000; 
Fabre-Thorpe et al., 2001; VanRullen and Thorpe, 2001; Rousselet 
et al., 2003; Joubert et al., 2007). The 250–270 ms  latencies of  earliest 
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normal or corrected to normal vision and reported normal color 
perception. Subjects were mainly university students or members 
of the laboratory staff and gave their informed consent.

task and set up
Subjects sat in a dimly lit room at about 30–35 cm from a tactile 
screen. They were presented with 400 natural photographs in four 
successive series of 100 images each. Sequences were randomized 
for each individual although some subjects had identical image 
sequences (subjects were primarily tested to compare performance 
in humans and monkeys using the same sequence of images). In 
each series of 100 images, half of the images contained an animal. 
Subjects placed one hand on a capacitive tactile key located below 
the screen at waist level to start stimulus presentation. Pictures 
were flashed for 32 ms at random intervals of 1.5–3 s at the center 
of a black screen. In between image presentations, a white fixation 
cross was shown.

Subjects were asked to release the capacitive tactile key as fast 
and as accurately as possible whenever a presented photograph 
contained an animal and touch the tactile computer screen on 
which the image was presented. They had 1 s to release the button 
and touch the screen when they detected an animal, after which 
delay the response was considered to be a no-go response. In the 
absence of an animal-target, they had to keep their hand on the 
button. In such task, subjects have to make a succession of rapid 
decisions on the basis of brief stimulus presentations that prevent 
any exploratory eye movements. Correct – go or no-go – decisions 
were indicated by a beep noise. Incorrect decisions were followed by 
a 3- to 4-s display of the incorrectly classified stimuli allowing time 
for ocular exploration. Subjects could rest as long as they wanted 
(usually a few minutes) in between each series of 100 images. For 
those who had never performed the task, 200 additional images 
were presented before the beginning of the experiment so that they 
could get familiar with the task in order to eliminate early training 
effects (Fabre-Thorpe et al., 2001).

stImulI
All the pictures were natural scenes taken from a large commercial 
CD database (Corel). Targets and distractors were equiprobable and 
included both close-ups and general views. Animal targets were all 
vertebrates and included fish, birds, mammals, and reptiles presented 
in their natural environments. Distractors included landscapes, 
trees, flowers, objects, monuments, cars… On target trials, sub-
jects had no a priori knowledge concerning the position, the size or 
the number of targets in the picture. Some target animals were only 
partly visible, or partially masked in the scene. Images (192 × 128 
pixels, corresponding to an angular size of about 25°/15°) were 
mostly horizontal photographs (73%). They were flashed for two 
frames at a refresh rate of 62 Hz (non-interlaced), corresponding to 
a presentation time of 32 ms, using a programmable graphics board 
(VSG 2, Cambridge Research Systems) mounted in a PC-compatible 
computer. All images were converted from 24-bit color photographs 
to 8-bit indexed pixels (GIF format) for display using the Corel 
algorithm based on a weighed average of the red, green, and blue 
channels. Among these 400 images, 200 images contained chromatic 
information – 100 animals and 100 distractors – and 200 images 
were shown in gray levels – 100 animals and 100 distractors.

 categorizing achromatic natural images with such reduced contrast 
(Macé et al., 2005) that they can hardly rely on more than 20–30 
levels of gray in the image.

One of our goals was to study which image or target character-
istics are the most important for determining human performance 
observed in such rapid visual categorization tasks. It has been 
shown that categorization of objects could rely on the detection 
of some particular elements that are diagnostic of their presence 
(Schyns, 1999; Sigala et al., 2002; Sowden and Schyns, 2006). For 
example, the detection of an eye could be enough to decide that 
an animal is present in the scene. The neurophysiological bases for 
detecting such diagnostic features are present in the visual system. 
All along the ventral stream of visual processing, the retinal image 
is processed in a succession of cortical areas coding visual features 
with increasing complexity up to the infero-temporal cortex (IT) 
where neurons have view specific responses to the presentation 
of body parts, eyes, faces, and so on (Gross et al., 1972; Perrett 
et al., 1982; Wachsmuth et al., 1994; Tanaka, 2003). Diagnostic 
categorization may involve several related mechanisms each of 
which performs local processing of features of intermediate com-
plexity in a hierarchical network (Ullman et al., 2002; Rousselet 
et al., 2004a; Serre et al., 2007). At the earliest level, basic image 
features are extracted whereas, at the highest level, categories may 
be represented.

Throughout our life, our expertise with surrounding objects 
moulds our visual system and when involved in a given categori-
zation task, subject’s performance might be biased by the implicit 
priming of pertinent feature detectors. Indeed, task pertinent 
features have been shown to shape the specificity of IT neuronal 
responses (Sigala and Logothetis, 2002). Selection of basic object 
features could even be done earlier in the ventral stream, at the 
level of V4 neurons (Mirabella et al., 2007). Such a bias towards 
fast detection of diagnostic features could be achieved by either 
lowering the threshold of selective units or, by speeding the rate 
of information accumulation. Thus, to further refine models 
of the visual system, we were also interested in understanding 
how visual processing and performance speed-accuracy trade 
off would be affected by the presence of particular features. The 
threshold lowering of selective units would result in a shift of 
the speed accuracy trade-off towards shorter latencies, whereas 
a shift of the speed accuracy trade-off curves that vary with 
response latency would be in favor of a speeded rate of informa-
tion accumulation.

To address these questions and try and assess which priming 
model is most biologically plausible, we analyzed the perform-
ance of 40 subjects in a fast visual go–no-go animal/non-animal 
categorization task. Using briefly flashed unmasked natural scenes 
we restricted the amount of time allowed for information uptake 
and investigated the integration time needed for global image 
features and specific target features to affect accuracy and speed 
of performance.

materIals and methods
subjects
Forty volunteers – 20 men and 20 women (mean age of 23 years, range 
18–45) categorized 400 photographs using a rapid go/no-go visual 
categorization task with animals as the target category. Subjects had 
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image, then one may expect longer RTs for subjects that correctly 
categorized this image (Fabre-Thorpe et al., 2001). It is indeed what 
was observed (Figure 1): the linear regression between RT and log 
accuracy (measured in terms of number of errors starting from 1) 
was highly significant (R2 = 0.96; p < 1E − 7). We noted that the 
results for the 20 men and 20 women were not significantly dif-
ferent. This result indicates that RT and response accuracy can be 
used as complementary measures of task difficulty.

The first analyses were performed to estimate the role of three 
global physical image characteristics on subject performance: 
color information, global luminance, target/background size ratio 
(see Table 1). The role of color was tested in order to confirm 
previous results obtained in two monkeys and 10 of the present 
40 subjects (Delorme et al., 2000). We observed no statistically 
significant differences on median RTs (color targets: 394 ms, BW 
targets: 398 ms), but subject’s accuracy was slightly higher for color 
images in both go target trials and no-go distractor trials (targets/
distractors: 96.8%/93.9% correct in color; 94.1%/90.8% correct 
in BW). The 3% difference on target accuracy became significant 
for RTs above 325 ms when 89% of the response still had to be 
produced (Figure 2). These results replicate on a larger population 
of subjects the data previously reported for humans and monkeys 
(Delorme et al., 2000). Nevertheless, for the 11% of the targets 
(more than 1000 trials) that have been categorized with the fastest 
RTs (<325 ms), no differences could be observed between BW and 
color images. Thus, the absence of color has no detectable effect 

data analysIs
Performance was evaluated both in terms of accuracy and speed. A 
go response was scored (whether correct on target trials or incorrect 
on distractor trials) when the subject released the key in less than 
1 s. Reaction times – delay between stimulus onset and tactile but-
ton release – were recorded for all go responses. A no-go response 
was scored when the subject kept pressing the key for over 1 s. All 
analyses described below were performed using Microsoft Excel, 
and custom Matlab scripts.

Based on signal-detection theory, d ′ curves were plotted as a 
function of time with 1-ms time bin increments. At a given latency, 
the cumulative numbers of hits and false alarm (FA) responses 
below that latency were used to calculate d ′ = z_hits − z_FA where 
z is the inverse of the normal distribution function (Macmillan and 
Creelman, 2005). Such d ′ curves correspond to the time course of 
performance and give an estimation of the processing dynamics 
for the entire subject population.

To compare performance scores reached on different sets of 
stimuli, comparisons were done on pairs of stimulus sets differing 
along one characteristic (low versus high luminance for example). 
To assess the earliest latency at which subjects became more accu-
rate on one of the two stimulus sets, we computed a two-tailed χ2

 
test on correct target images for each 1-ms bin from 250 to 1000 ms. 
At a given latency, we counted the number of correct responses for 
each category with RT faster than the latency limit, then computed 
the χ2

 value and the associated inferential statistics based on the null 
hypothesis of an homogeneous response distribution between the 
two stimulus sets. Incorrect responses which are taken into account 
in the d ′ calculation were too few to include in the χ2

 statistics. 
We then found the earliest latency from which the χ2

 test always 
reached significance at p = 0.05 while reaching at least p < 0.001 in 
the subsequent time bins.

We also computed the RT difference between two sets of 
specific images using parametric t-tests across the 40 subject’s 
median RTs.

To study interactions between features, for each pair of charac-
teristics A and B, we considered the following: all images containing 
A but not B versus all images that contain both A and B charac-
teristics. Computing the difference in median RTs between these 
two sets of images allows us to determine the influence of B on the 
categorization of images already containing A. To assess statistics, 
the standard method would be to use a repeated measure ANOVAs 
on median RT, but since we are dealing with non-normal RT distri-
butions we preferred to use bootstrap statistics which are insensitive 
to data probability distributions. Under the null hypothesis that 
the two sets of images originate from the same distribution, we 
pooled RTs from both sets A and A + B, and computed a bootstrap 
distribution of RT difference (1000 repetitions). We then tested if 
the original RT difference between A and A + B failed within the 
tail of the bootstrap distribution indicating a significant difference 
(Wilcox, 2005).

results
Because of the large number of subjects in our study, it was pos-
sible to determine the correlation between overall subject accuracy 
for a given image and mean RT for the same image. If a target is 
difficult to categorize, i.e. many subjects make an error on this 
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Figure 1 | global accuracy score plotted as a function of mean reaction 
time on target images. For each target image, we determined the mean 
reaction time (averaged over 40 subjects) and the accuracy in terms of the 
number of subjects that categorized the image correctly. More than half of the 
target-images (112 out of 200) were correctly categorized by all 40 subjects. 
Failure of a large number of subjects was only observed for a few target 
images. Vertical bars represent the standard deviation of reaction time on 
correctly categorized images. For lower accuracy levels (<35 subjects correct 
out of 40), reaction times were averaged for image clusters of approximately 
the same size. Four clusters were considered at accuracy levels 
corresponding to 19, 26, 29, and 33 (number of correct subjects out of 40 
subjects), the horizontal bars representing the standard deviation in terms of 
subjects correct for these clusters. The correlation between accuracy and RT 
fits to an exponentially decreasing curve as shown above (linear correlation in 
appropriate log-space R2 = 0.96; p < 2.10−7). For accuracy levels above or equal 
to 36/40, the relation between accuracy and RT is also close to linear 
(R2 = 0.98; p = 0.0014).
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overall results showed that global response latency, as evaluated by 
median RTs, was not affected by global image brightness; on the 
other hand a clear effect was seen on accuracy with the “high bright-
ness” set of images being significantly categorized more accurately 
than the “low-brightness” set (98% vs. 92.9% correct, p < 0.05 from 
251 ms then down to at least p < 0.001 at subsequent latencies – see 
Materials and Methods). This accuracy drop is strongly modulated 
by the presence or absence of chromatic information (Table 1). It 
is reduced with color images (2.2%) but very pronounced with BW 
images (8.9%) suggesting that chromatic information might com-
pensate for low brightness. Figure 2B illustrates separately for images 
in color and images in BW the temporal dynamics of the subject’s 
performance for both low and high brightness sets of images. In 
color, this accuracy difference becomes significant when the response 
latencies are longer than 281 ms (see Materials and Methods for how 
the significance was assessed). Significant effects are seen with BW 
images at about the same latency from 292 ms (Figure 2). Looking 
at the accuracy of the earliest behavioral responses (Figures 2B,C) 
a significant 15-ms shift is observed both in color and in BW with 
the d′ curve for low image luminance shifted towards longer laten-
cies. This might reflect a residual effect of a difference in ganglion 

on RT, has little effect on accuracy and does not affect accuracy of 
the fastest responses. Note that, for independent measures, we also 
studied separately the 30 subjects that did not participate to the 
original study by Delorme et al. (2000), RT were similar in both 
color and BW conditions. When using the d ′ over time windows of 
increasing size, the accuracy difference became significant at about 
359 ms (when 27.4% of the stimuli have been categorized).

The second image physical characteristic that was tested was the 
influence of stimulus brightness on categorization performance. 
Since ganglion cells in the retina respond more rapidly to stimuli 
with high luminance (Bolz et al., 1982), we might expect that bright 
images could be categorized faster. To estimate image brightness, the 
average brightness of each pixel was computed in the image (the VSG 
graphic board ensures that the brightness response of the associated 
computer monitor is approximately linear with respect to stimulus 
image brightness). For color pictures, we computed a weighted aver-
age of the pixel values for the red, green, and blue channels (0.2126 
Red + 0.7152 Green + 0.0722 Blue, Poynton, 2003). Color and BW 
images were all in the mesopic range (0.5–4.1 cd/m

2
) with an average 

luminance of 1.9 cd/m2. They were divided into two groups of equal 
size containing either low-brightness or high-brightness images. The 

Table 1 | Number of photographs considered for the different image characteristics, along with the corresponding accuracy and median response 

time.

 image characteristics Number of images Accuracy (%) Med rT (ms)

Color Color scenes 100 96.8 394

 BW scenes 100 94.1 398

Luminance Color scenes

  High luminance 50 97.9 391

  Low luminance 50 95.7 397

 BW scenes

  High luminance 50 98.5 398

  Low luminance 50 89.6 398

Animal/scene size ratio Very small 35 93.9 409

 Small 35 95.9 393

 Large 35 98.9 386

 Very large 35 97.2 395

Global animal characteristics Total view 156 97.5 396

 Partial view 44 94.8 396

 Sideview 135 95.6 396

 Non side views 65 95.1 395

 Canonical position 134 95.8 393

 Non canonical position 66 94.6 401

 One target 142 95.8 395

 >1 target 58 94.4 398

Animal features Eye(s) present 136 96.5 394

 Eye absent 64 93.2 401

 Mouth present 161 96.9 395

 Mouth absent 39 89.4 402

 4 limbs 15 98.3 381

 Not 4 limbs 185 95.2 397

Animal species Reptiles 22 99.2 388

 Mammals 112 96.7 397

 Birds 40 91.7 397

 Fish 26 92.7 396
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Figure 2 | influence of image luminance and color on performance. 
(A) Performance on color and BW images. On the right, the reaction-time 
distributions (plotted as percentage of responses) for target and distractor 
trials in color or in BW show a small effect around median reaction time. On 
the left, the dynamic d ′ curve indicates that differences in accuracy are 
observed from 325 ms (vertical dashed line) with color image being more 
accurately categorized than BW ones (χ2

 test at p < 0.05 reaching at least 
p < 0.001 in the subsequent time bins; see Materials and Methods). However 

there is no difference in accuracy between BW and color images for the 
fastest responses. (B) Effect of global image luminance on performance for 
color photographs reaching significance at 281 ms. C. Effect of global image 
luminance on performance for BW photographs reaching significance at 
292 ms. (B) and (C) The dynamic d ′ curves computed for low luminance 
images are shifted towards longer latencies (see enlargement of dashed 
rectangle). The vertical dashed line shows the latency at which the accuracy 
difference becomes significant.

cell response latency between images with high versus low stimulus 
luminance regardless of the presence of chromatic information. Such 
an increase of response latencies has already been reported with low 
contrast stimuli (Macé et al., 2005, 2010).

In all the analyses that follow, images in color and BW were 
pooled together in order to obtain a sufficient number of images 
for each type of characteristic. We checked in all possible cases that 
the presence or absence of color had no observable effect on the 
conclusion of a given analysis.

The last global image characteristic that was checked concerned 
the relative surface occupied by the animal-target in the images. 
We hypothesized that subjects would find it easier to categorize 
images in which animals occupy a large portion of the image rather 
than to categorize those in which they occupy only a small por-
tion of the image. To estimate the role of the relative surface of the 
animal in target images, animals were manually cut out from the 
image (Figure 3A) then the surface of the animal was calculated by 
a custom computer program which counted the number of missing 
pixel in the image. Note that this operation was carried out only 
on the images containing a single animal (142 out of 200 targets) 
to obtain four groups of 35 images (the smallest and the largest 
targets were discarded in the analysis). The four groups of equal 
size were: “very small” (0.5–10.5% of the image surface), “small” 

(10.5–18.5%), “large” (18.5–34.5%) and “very large” (34.5–70%). 
Performance (in accuracy and speed) was best for the group of 
large animals (98.9% correct, median RT: 386 ms) and worst for the 
group of very small animals (93.9% correct, median RT: 409 ms) as 
illustrated in Figure 3B (see also Table 1). The poorer precision seen 
with the “very small” animals is obviously due to the difficult detec-
tion of the animals. Performance was intermediate and very similar 
for the “small” animal set (95.9% correct, median RT 393 ms) and 
the “very large” animal set (97.2% correct, median RT 395 ms) both 
in terms of accuracy and reaction-time distribution (Figure 3C). 
Score in response accuracy and speed between these two groups of 
images were not statistically different. The d′ analysis shows that the 
target/background size ratio influences performance early on. The 
effect becomes significant between the “very small” and “large” set 
of images from 318 ms when only 9.3% of the responses have been 
triggered. A linear regression computed between RT and target size 
showed a weak but significant correlation (R2 = 0.04; p = 0.024) with 
large targets being categorized faster. The correlation was stronger 
when we considered a linear regression between the log of target 
size (in pixels) and RT (R2 = 0.1; p = 0.00015). A clear early shift of 
about 20 ms of the d′ curves is observed when comparing the large 
animal and very small animal conditions. This shift is present even 
at the earliest response latencies, suggesting an implicit processing 
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canonical posture as a posture in which you would expect to see the 
animal in his environment, the animal (close-up or far away view) 
was in an upright position and totally visible. Non-typical postures 
could involve animals scraping their back in the dust, or a horse rear-
ing up… Although the criteria used for the last two classifications 
are debatable, in practice, for the large majority of images the clas-
sification was non-ambiguous. The number of images considered 
in each set is indicated in Figure 4 (see also Table 1) that illustrates 
recorded performance in terms of d′. Whether the animal is seen 
from the side-view or not had no influence on either categorization 
accuracy (95.6% vs. 95.1% correct) or categorization speed (mean 
RT 396 vs. 395 ms). On the other hand, as shown in Figure 4, the glo-
bal performance of the subjects does appear to be influenced by the 
posture of the animal. Subjects are significantly slower (p = 0.001; 
median RT 401 vs. 393 ms) and less accurate (94.6% vs. 95.8% cor-
rect) when the animals are presented in a non-canonical view. The 
d′ sensitivity curves already differ significantly from 316 ms when 
less than 10% of the responses have been initiated. Thus the typical 
position of an animal-target in an image is an important feature 
to obtain rapid and accurate responses. The presence of “one ani-
mal only” also affects performance (see Table 1), but the difference 
only appears when about 25% of the responses have already been 
produced. This effect is most likely linked with the effect seen with 
target size because as the number of animals in the photograph 
increases, they become smaller and harder to detect.

bias due to the subject’s experience with the structure of natural 
photographs and affecting even the fastest responses. However “very 
large” animals are very often truncated in the image so that our 
results might partly reflect the role of target global shape shown by 
Elder and Velisavljevic (2009) and to a certain extent by one of our 
previous studies (Macé et al., 2005).

To test this hypothesis, we divided the pool of target images in 
partially visible and completely visible animal photographs. Images 
containing animals with part of their body outside the limits of the 
picture or partly hidden behind another object were classified as par-
tially visible (this classification and all the following ones were per-
formed based on visual inspection of target images by experimenter 
AD). Surprisingly, we did not find any significant difference in terms 
of RT between these two sets of images (Figure 4A). The only effect 
was a decrease in accuracy for partially visible targets (a 2.7% drop 
in correct responses) that appeared very late at 479 ms when more 
than 80% of the responses have already been produced.

In addition to whether the animal was partially or totally visible, 
we also considered other aspects of animal’s appearance that could 
potentially influence categorization performance: (1) the number 
of animals present, (2) the position of the animal (side view or not), 
and (3) the canonical aspect of the animal’s posture. Images contain-
ing animals with the majority of the body visible were defined as 
side view (rotation of more than 45° from a front view). Front, rear, 
or partial head views were defined as non side-view. We defined a 
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Figure 3 | influence of the relative surface occupied by the animal in 
target pictures. Only target pictures containing one animal are considered 
here. (A) Four examples of animals semi-automatically cut out of target 
pictures to calculate their surface in the picture (one for each size class “very 
small”, “small”, “large” and “very large”). (B) Dynamic d ′ plots (see Materials 
and Methods) showing how subject accuracy varied over time for the four 
groups of images containing animals of increasing sizes). The vertical dashed 

line at 318 ms indicates the latency at which there is a significant difference in 
accuracy between the “very small” and the “large” animal groups (χ2 test; 
same as in Figure 2). The box shows a close-up view of the dashed rectangle 
only for the d ′ curves computed for “very small” and “large” targets in order to 
better illustrate the shift towards longer latencies observed with very small 
targets. (C) Histogram of reaction time (20-ms time bins) for the four sets 
of stimuli.
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RT  distributions when a given feature is either present or absent. 
Thus, the effects on performance accuracy ranged from 3.1% to 
7.5% of correct responses and the effect on median RT ranged 
between 7 and 16 ms. This seems to indicate a crucial importance 
of this type of information for fast categorization.

As also illustrated in Figure 5, the divergence of the sensitivity d′ 
curves was observed early on and shows that the presence of these 
features affected the accuracy of short latency responses. Looking 
at the dynamic processing of such features the d ′ curves compar-
ing absence and presence of a given “animal” feature diverged first 
with the presence of eyes (at 315-ms response latency) then with 
the presence of four limbs (328 ms) and finally with the presence 
of a mouth (351 ms). The effects were thus observed when less than 
15% of the responses had been produced in the case of eyes and 
limbs, and when 23% of the response had already been produced 
when the mouth was visible.

One obvious objection to the type of analysis we performed 
concerns the possibility of interactions between different animal 
features or configurations. For instance, whenever the eyes are vis-
ible it is likely that the mouth will also be visible. To address this 
problem, we choose to use non-parametric statistics, which are 
not sensitive to the data distributions. Using a multidimensional 
space with seven features (eyes, animal view…), two values per 
feature (presence or absence for eyes, side view or not) and principal 
component analysis, we showed (Figure 6) that several features 
tended to be grouped (manually circled for easier readability): the 
presence of eye(s) co-occurs with the presence of mouth(s) in one 
single visible animal for which four limbs are visible or not. Thus, 
different configurations tend to be grouped together with typical 
postures being grouped with side views images and totally visible 
images. As expected, each pair of opposite features has a mirror 
position with respect to the origin.

Obviously, global aspects of the target animal only slightly 
affected performance with the notable exception of the animal 
relative size in the picture and its canonical posture. We then tested 
how much the presence of animal features that can be considered as 
diagnostic of the presence of an animal in a photograph could influ-
ence performance. In particular, we were interested in the relative 
role played by various animal body and face parts. One potentially 
important diagnostic feature for the presence of an animal could 
be the presence of eyes in the pictures. Note that since no pictures 
of humans were included as distractors, presence of eyes really 
would be good evidence for the presence of a target. We divided the 
images into two groups, one in which the animal’s eyes were visible 
and one in which they were not (we did not find any significant 
differences between images containing one or more eyes so they 
were pooled together). Even when an eye was only one pixel in 
size, we considered that the eye was visible. We also studied how 
the presence or absence of the animal’s mouth (muzzle or beak) 
could influence performance. Finally we considered the influence 
of the number of limbs. Although we tried many combinations, 
performance scores were found most significantly different when 
considering separately stimuli displaying exactly four limbs and 
those with more or less than four limbs.

For all these diagnostic features of animal presence, an effect 
was found both on accuracy and speed of performance. Accuracy 
was higher when the animal target on the picture included at least 
one eye, mouth or four limbs (respectively 96.5%, 96.9%, 98.3%) 
than when these features were absent (respectively 93.2%, 89.4%, 
95.2%). The mean RT was also shorter when eyes, mouth, and 
four limbs were present (respectively 394, 395, 381 ms) than when 
they were absent (401, 402, 397 ms). The effect on performance 
speed was found significant for the presence of eye(s) (p < 0.02) 
and of four limbs (p < 0.001). Figure 5 shows and compares the 
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Figure 4 | influence of animal target configuration on subjects performances 
illustrated with d′ curves. (A) Analysis of performance depending on whether the 
animal was totally or only partially visible. (B) Influence of the viewpoint of the 
animal (side-view versus non side-view). (C) Influence of the number of animals in 
the target image (“one” versus “several”). (D) Influence of the animal posture 

typical versus atypical. For A–D, as in previous figures, vertical doted lines represent 
the earliest latency at which a statistically significant effect was seen on accuracy 
(479 ms for visibility; 353 ms for the number of animal; 316 ms for the animal 
posture). Numbers in brackets indicate the number of stimuli considered in each 
class. Boxes show close-up views of the d′ curves within the dashed rectangles.
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not be considered separately because the image set to consider was 
too small (especially for the “four limbs” feature) to allow satisfac-
tory statistics. All median RTs computed for the analysis shown 
Table 2 were computed on image sets that contained at least seven 
images (mean 58 ± 40), corresponding to around 280 RT values for 
the smallest set. Table 2 presents the gain in RT when feature B is 
added to feature A. Although results do not reach significant values 
in some cases because of the small set of images, a clear tendency to 
decreased RT is seen when diagnostic animal features (eyes, mouth, 
four limbs) are present in conjunction with other features. Another 
factor that tends to have a significant effect on RTs is the animal 
posture. Thus a RT speedup is seen with combinations of different 
diagnostic characteristic features.

All the characteristics tested until now related to the configura-
tion and physical characteristics of target images independently 
of their meanings. However, we may hypothesize that perform-
ance might be better for some classes of animals. For example, for 
humans it is possible that mammals might be considered the most 
archetypal animal. We thus attempted to estimate the influence 
of animal species on subjects’ performance by separating images 
into four groups (see Table 1): mammals (n = 112), fish (n = 26), 
reptiles (n = 22, five images of batrachians were placed in the same 
class as reptiles), and birds (n = 40). Figure 7 shows that subject’s 
accuracy is significantly higher for reptiles (99.2% correct) than 
for other types of images. Subject performance was intermediate 
for mammals (96.7% correct) and lowest for birds (91.7% correct) 
and fish (92.7% correct). Response latency was also shorter for 
reptiles (median RT 388 ms) than for the other three categories 
(396–397 ms). When only considering the five images of snakes, 
RT was not significantly shorter for snakes (386 ms) than for other 
reptiles (391 ms). Interestingly when comparing categorization 
performance for reptiles and mammals, the  influence of species 

Because of the influence of isolated features on performance, it 
was interesting to analyze how performance was affected by feature 
co-occurrence with a special attention to the effect induced by add-
ing a diagnostic animal feature. Fourteen paired groups of images 
were built based on whether they contained a given feature or not. 
Although the panel of images was varied enough that even eyes and 
mouths could be considered separately, some pairs of features could 
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Figure 5 | influences of diagnostic animal features on performance. 
(A) Presence of eyes. (B) Presence of a mouth (muzzle or beak according to the 
type of animal). (C) presence of four limbs in the photograph (only considers 
animals with legs). On the top row, reaction time distributions are represented 
(20-ms time bins). On the bottom row, the accuracy cumulated across time is 

represented for the presence or absence of a given characteristic. Vertical dotted 
lines indicate the earliest latency at which the χ2 test became significant (315 for 
eyes; 351 for mouths; 328 for four limbs). Boxes show close-up views of the d ′ 
curves within the dashed rectangles to better show the shift of the curves 
towards longer latencies in absence of the animal feature(s).

10-1

1

0

-1

Dimension 1

D
im

en
si

on
 2

Side view

Not side view

Several animals

Partially visible

Only one animal

Totally visible

No eye

Not 4 limbs

posture

posture

Eye(s)

4 limbsNo mouth

Mouth(s)

Atypical

Typical

Figure 6 | Classes of animal features were decomposed in a 
multidimensional space using principal component analysis. For each 
class, the distance with other classes correspond to the proportion of 
common images between the two classes. All classes have thus coordinates 
in a multidimensional space and PCA extracts the two first principal 
dimensions. This representation makes it possible to estimate distance 
between classes (i.e. the rate of co-occurrence of image characteristics). 
Complementary classes of characteristics (“partially visible”/“Totally visible” 
for example) are symmetrical compared to the origin in this space. Very clearly 
four groups, manually separated in dotted lines, are profiled. This 
representation only depends on image statistics.



www.frontiersin.org June 2010 | Volume 1 | Article 21 | 9

Delorme et al. Animal image characteristics and categorization performance

Table 2 | gain for conjunction of features A and B (in ms). Median reaction times were computed separately for the set of images containing feature A 

without feature B and the set of image containing both A + B. Then the median reaction time computed for the images containing A + B was subtracted from 

the median reaction time computed for the set of images containing A (without B). All negative values indicate that response was speedup when feature B 

was added to feature A. The values for A in conjunction with “non B” are opposite to the values of A in conjunction with B and have not been represented.

A B Side view Totally visible Typical position One animal Mouth(s) visible eye(s) visible exactly 4 limbs

Side view   2 −10* −3 −5 −5 −16**

Totally visible  5  −13** −4 −2 −5 −17**

Typical position  9* −2  −7 −3 −10** −15*

One animal  5 −2 −14**  −1 −5 −13*

Mouth(s) visible  3 1 −5 −2  −5 −12*

Eye(s) visible  3 1 −9* −1 −1  −11

Exactly 4 limbs  13  −6 5 15 5 

Not side view   −1 −11* −8 11 −16* −25*

Partialy vis  2  0 7 −51** −26* 

Not typical position  9 10  7 −10 −7 −15

Not one animal  0 10 0  −20** −7 −22*

No mouth visible  18*  −49** −11 −21**  −20** −35**

No eye visible  −8 −21* −6 −3 −16**  −23*

Not 4 limbs  5 2 −7* −3 −8* −7* 

P-values corrected for multiple comparison using the False Discovery Rate method (Benjamini and Hochberg, 1995) (*p < 0.05; **p < 0.01).

Common Mam.  Fishes  Birds  Reptiles Rare Mam. 
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Figure 7 | influences of animal specie on subject performance. (A) Various 
classes of animals: mammals, fish, birds and reptiles are represented for color 
and BW images. Mammals were first sub-divided into two groups, common 
mammals (Common Mam.) and rare mammals (Rare Mam.), but no significant 
difference could be shown (see text) so they were grouped together for later 

analysis. (B) Variation of subject accuracy with time for different classes of 
images. Accuracy is best for the reptile class. The vertical dotted line at 335 ms 
indicates the earliest latency at which the reptile category differs from the 
mammal category. (C) Reaction time distributions for the different classes 
of images.

appears early: before 335 ms for accuracy, a time when only 15% 
of the responses have been produced. We verified that this effect 
was not due to the luminance or the size effect shown earlier. The 
luminance of reptile images (average 2.1 cd/m2) was not statistically 
different (bootstrap and non-parametric tests) from the luminance 

of the whole pool of target images (average 1.9 cd/m2). Regarding 
size, reptile images were split according to the four sets studied (very 
small, n = 5; small, n = 5; large, n = 7; and very large, n = 5) and 
compared to 10 sets of randomly selected images of same size mam-
mals. The 10 comparisons all showed the “reptile” effect  starting 
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at 335 ms; but, due to reduced number of images, significance as 
defined in methods is reached around 400 ms. Note that we also 
differentiated between two subcategories of mammals: common 
mammals for which we know the name (horse, cow, tiger, lion…) 
and rarer animals that most people would find hard to identify (this 
included lemurs, atypical bovines, atypical coyotes…). In case of 
doubt, animals were classified in the rare animal class by experi-
menter AD. We failed to find any significant differences between 
the two groups of images for either accuracy or RTs. Although 
this result should be confirmed by a specific study addressing this 
question, the data suggest that reptiles might be categorized as an 
animal faster than any of the other animal groups tested here.

dIscussIon
All along the ventral stream of visual processing, the retinal image is 
processed in a succession of cortical areas coding visual features of 
increasing complexity but it is still debated whether object recogni-
tion/categorization requires the complete processing of the object 
or whether it can rely on the recognition of some diagnostic partial 
(intermediate) object parts. Our analysis provides a number of clues 
about some of the image and target characteristics required by rapid 
categorization of natural images in the early processing of visual 
information. One important result of our study is that it reveals a 
top–down influence on the visual system when subjects are involved 
in categorizing animals in natural scenes. Performance is influenced 
by global target configuration such as the canonical aspect of the 
animal posture and by the presence of diagnostic animal parts. It 
seems thus that, in such rapid categorization tasks, the subjects 
might base their responses on the global aspect of the target and the 
processing of one or several intermediate features that are diagnos-
tic of the target category. The subjects could prime the processing 
of pertinent intermediate features through top–down influences, 
and such biases could result in faster object processing.

As far as global image characteristics are concerned, the present 
study analyzed the effect of color, brightness, and relative target/
background size. Whereas color is usually shown to play a crucial 
role in recognition memory paradigms such as delayed to match-
ing task (Gegenfurtner and Rieger, 2000; Wichmann et al., 2002; 
Spence et al., 2006), its role is disputed in visual search in real-world 
cuing (Ehinger and Brockmole, 2008) and rapid categorization 
(Delorme et al., 2000; Fei-Fei et al., 2005). Here we reproduce the 
small effect of color removal in the rapid categorization task that 
was obtained both in man and monkey in Delorme et al. (2000) 
but with a much larger group of subjects. For fast responses, the 
absence of color information has no effect on response speed or 
categorization accuracy. The effects that do occur are seen later, 
starting for responses with latencies over 325 ms so that color could 
be used in late stage of processing (Yao and Einhauser, 2008; Elder 
and Velisavljevic, 2009). Regarding image luminance, the expected 
advantage for high luminance stimuli was seen for both color and 
BW stimuli but the effect was earlier and stronger on accuracy with 
BW stimuli. For low luminance chromatic stimuli, it is possible 
that color information could partially compensate the information 
missing in low luminance gray level stimuli.

One of our goals mentioned in the introduction was to try to 
determine how visual processing could be biased by image and 
target characteristics using d ′ curves. A fixed shift of a d ′ curve 

towards shorter latencies – present even for the earliest responses – 
could reveal the pre-activation of some feature detectors leading 
to lower target detection threshold. In contrast, an increase in the 
rate of information accumulation would result in a shift of the 
d ′ speed accuracy trade-off curves which amplitude would vary 
with response latency, in other terms a change in the d ′ curve 
slope. A clear shift of d ′ curves towards shorter latencies was 
observed with high luminance stimuli when compared with low 
luminance stimuli (about 10 ms see Figure 2) and an even larger 
shift (about 20 ms see Figure 3) was seen with large target/scene 
size ratio compared with very small ones. The explanation for the 
difference observed between high and low luminance stimuli lies 
probably in the increased latency of neuronal responses with low 
luminance and low contrast stimuli (Bolz et al., 1982). But the 
optimal performance observed when the target-animal occupies 
about 20–30% of the total image may depend upon a conjunction 
of advantages.

The advantage for “large” animals is consistent with the lit-
erature, since a similar result was reported recently by Serre et al. 
(2007) in a backward masking protocol of rapid animal catego-
rization. Both their feed-forward model and their behavioral 
experimental results showed best performance for “close-body” 
and worst performance for “far-body” images of animals. In our 
study the effect of target size on d ′ curve is observed even on 
the earliest responses. Following our hypothesis, such early effect 
could reflect pre-activation of the visual system leading to lower 
threshold for target detection. This pre-activation could be due to 
the fact that human subjects are quite familiar with the processing 
of natural photographs. This expertise could also lead to implicit 
bias about the scale of an animal target within a natural scene. This 
idea of subject’s biased animal representation is further strength-
ened by the performance improvement obtained when the animal 
is seen in a canonical posture, which again might be expected by 
the subject.

Alternatively when processing canonical views and the targets at 
optimal scale, the visual system can rely both on global target shape 
and on the maximum number of diagnostic features present, pro-
ducing a joint effect on the rate of information accumulation. This 
view is supported by the slight performance improvement observed 
when the animal is totally visible. However, the effects observed in 
terms of total visibility were small and affected performance rela-
tively late, when most responses had already been produced (>80% 
of the responses). This paradoxically small effect could be explained 
by certain confound such as the fact that very small animal – hardly 
detectable – would be included in the pool of “totally visible ani-
mals” thus masking the role of global shape. Finally, because we 
use natural scenes, the optimal target/ background size ratio might 
also result from contextual facilitation. Optimal processing of a 
target-object might be obtained when other contextual objects that 
usually co-occur with the target are also present such as trees, rocks, 
grass, flowers… (Bar, 2004; Davenport, 2007; Oliva and Torralba, 
2007; Joubert et al., 2008).

With the exception of global stimulus luminance, target/back-
ground size ratio, and target canonical views, other global image 
characteristics had only small effects on categorization perform-
ance. On the other hand, an effect on both accuracy and speed 
of performance was seen for each of the diagnostic animal parts 
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with these recent modeling studies. In his recent review, Ullman 
(2007) proposed that “classification performance will increase with 
fragment-class mutual  information”. Extrapolating from Ullman’s 
model, the presence of different diagnostic fragments should lead 
to better performance. Indeed our results show that although the 
presence of four limbs is very informative for detecting an animal, 
the presence of another animal feature such as an eye or a mouth 
had an additional effect to reduce response latencies.

However categorization cannot be based only on the presence 
of some critical object parts: for example the absence of eyes in 
images containing animals did not prevent subjects from catego-
rizing them. The fact that most animal target characteristics affect 
the performance of early responses (at about 320 ms) argues for 
the existence of mechanisms involving massively parallel visual 
processing of a large set of animal parts or features, the absence of 
some features being compensated by the presence of others. The 
early influence of such critical features argues for top–down influ-
ences based on task requirements that would bias visual processing 
in specific populations of neurons selective to pertinent animal 
feature(s). This top down biases could originate in the prefrontal 
or even the parietal cortex (Desimone and Duncan, 1995; Miller 
et al., 1996). Such evidence has been found both at the level of IT 
and earlier in the ventral pathway in V4 (Vogels, 1999; Sigala and 
Logothetis, 2002; Bichot et al., 2005) with a change in baseline 
activity that depends on task requirements (Mirabella et al., 2007). 
Neural activity is affected by the pertinent target features all over 
the visual field (Bichot et al., 2005), and non-pertinent features 
could be filtered out (Mirabella et al., 2007).

In addition, global shape and relative spatial configuration of 
diagnostic features might also influence performance. Indeed, 
some studies have shown that scrambled images of objects that 
contain object parts but without the appropriate global shape or 
spatial organization of features are categorized slower and with 
lower accuracy both in man (Cave and Kosslyn, 1993) and monkey 
(Vogels, 1999). This aspect of spatial configuration is particularly 
important in face perception and even more in face recognition 
for which the relative distance between the eyes and the mouth is 
critical (Cooper and Wojan, 2000; Leder and Bruce, 2000). The 
fact that in the presence of animal parts (mouth, eye, four limbs) 
response latencies are shortened when animal targets are presented 
in a canonical view (Table 2) might reflect the use of spatial animal 
configuration in expected posture.

The last aspect that was found to influence categorization per-
formance was the animal type, with reptiles being classified bet-
ter (99% correct) and faster than any of the other animal groups 
(median RT 388 ms only the set of 15 “4 limbs” pictures induced 
a shorter med RT of 381 ms). One could have thought that the 
general abstract prototypes of animals that we build over the years 
are more likely to have been strongly influenced by the appearance 
of mammals. The fact that accuracy on reptiles is higher than for 
mammals (99.2% vs. 96.7%) and affect responses that are triggered 
over 335 ms (around 85% of the responses) could be related to 
innate aversive reactions in primates (Cook and Mineka, 1990) 
and could suggest an inbuilt representation of “dangerous animals” 
that evolved gradually in human. Indeed this has been recently 
suggested in a study using change blindness (New et al., 2007), 
in which the authors showed that changes involving animals or 

that were studied, namely, the eyes, mouth, and limbs and was 
increased when features appeared in conjunction. The presence 
of such animal parts appears to play a crucial role. Faster response 
speed (median RTs were shorter by 7–16 ms when present) was also 
associated with higher accuracy: an accuracy increase of 3.1–3.6% 
is observed when all four limbs can be seen or when an eye is 
visible and the effect reaches 7.5% with the presence of a mouth 
(muzzle, beak). Moreover the presence of such features can influ-
ence accuracy even for fast responses. The sensitivity d ′ curves 
processed in the absence or presence of animal features diverge 
early when most response still have to be initiated. With the pres-
ence of an eye or when all four limbs are visible, d ′ curves diverge 
around 315–328 ms when only 8–12% of the responses have been 
produced. The effect obtained with an animal mouth (or equiva-
lent) became significant later, at 351 ms but still influenced over 
77% of the responses that occurred after that latency. Considering 
the behavioral effect induced by the presence of animal parts, a 
shift of the d ′ curves towards shorter latencies (10–20 ms) in the 
“feature present” condition is observed early but not from the very 
beginning. Since neural mechanisms selective for such features of 
intermediate complexity are probably not found before V4 or even 
IT, it might be that the effect we observed results from top–down 
priming of detection mechanisms, resulting in faster accumulation 
of information (Ullman, 2007).

The fact that target characteristics have a large influence on 
accuracy and speed of categorization argues in favor of categori-
zation mechanisms based on elements that are diagnostic for the 
animal targets (Schyns, 1999; Humphreys and Forde, 2000). This 
means that the subject might be able to respond using features of 
intermediate complexity (Rousselet et al., 2003, 2004b). This also 
suggests that visual processing could depend on the task at hand. In 
the case of animal fast detection, the presence of a diagnostic part 
of an animal, for instance the presence of eyes, could be sufficient. 
In fact, target detection is more difficult when targets and distrac-
tors share some intermediate features. Accuracy drops for animal 
detection (and not for vehicle detection) when humans are used 
as distractors (Evans and Treisman, 2005), and speed of response 
is much slower for dog or bird detection when other animals are 
used as distractors (Macé et al., 2009). The role of such intermedi-
ate features in classification tasks has been clearly emphasized by 
Ullman et al. (2002) and Ullman (2007). Ullman and colleagues 
looked for which fragments of image were considered when maxi-
mizing incoming information. Informative object fragments for 
faces included the region of the eye(s), nose, and mouth; for cars 
they included wheels and windows and for horses they included 
head, four legs, and neck among others. Rapid categorization of 
animals could be based on a rich set of such pertinent features. Such 
features of intermediate complexity based on object fragments have 
also been shown to emerge with unsupervised learning in a network 
presented with natural images (Masquelier and Thorpe, 2007). In a 
feed-forward network of spiking neurons presented with a large set 
of faces or/and a large set of motorbikes, Masquelier and Thorpe 
(2007) showed that the use of a temporal code associated with a 
simple spike time dependant plasticity rule allows the emergence 
of object fragments that are similar to those found by Ullman et al. 
(2002) and Ullman (2007). The results obtained in the present study 
on the role of animal diagnostic features are thus in agreement 
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