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Matching by adjustment: if X matches Y, does Y match X?

Ehtibar Dzhafarov* and Lacey Perry

Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA

When dealing with pairwise comparisons of stimuli in two fixed observation areas (e.g., one 
stimulus on the left, one on the right), we say that the stimulus space is regular well-matched if 
(1) every stimulus is matched by some stimulus in another observation area, and this matching 
stimulus is determined uniquely up to matching equivalence (two stimuli being equivalent if 
they always match or do not match any stimulus together); and (2) if a stimulus is matched 
by another stimulus then it matches it. The regular well-matchedness property has non-trivial 
consequences for several issues, ranging from the ancient “sorites” paradox to “probability-
distance hypothesis” to modeling of discrimination probabilities by means of Thurstonian-type 
models. We have tested the regular well-matchedness hypothesis for locations of two dots 
within two side-by-side circles, and for two side-by-side “flower-like” shapes obtained by 
superposition of two cosine waves with fixed frequencies in polar coordinates. In the location 
experiment the two coordinates of the dot in one circle were adjusted to match the location 
of the dot in another circle. In the shape experiment the two cosine amplitudes of one shape 
were adjusted to match the other shape. The adjustments on the left and on the right alternated 
in long series according to the “ping-pong” matching scheme developed in Dzhafarov (2006, 
J. Math. Psychol., 50, 74–93). The results have been found to be in a good agreement with 
the regular well-matchedness hypothesis.

Keywords: adjustment method, equivalent stimuli, matching, observation areas, point of subjective equality, sorites, 
symmetry of matching, transitivity of matching

This simple observation leads us to propose that a valid theoreti-
cal definition of the notion “stimulus y matches stimulus x”1 should 
be constructed so that the relation it depicts be symmetric:

	 y x x ymatches if and only if matches (1). 	 (1)

Note that if x and y in the relation “y matches x” are, say, the left 
and the right stimuli, respectively (and so the relation in question 
means that the right stimulus matches the left one in some property 
or overall, but ignoring the conspicuous difference in locations), 
then they retain these locations in the relation “x matches y.” So, 
the statement in (1) for left–right stimuli should be read as

y (on the right) matches x (on the left)
if and only if

x (on the left) matches y (on the right).

Analogously, if x and y in the relation “y matches x” are presented 
in a temporal succession, x first, y second, then (1) means

y (second) matches x (first)
if and only if

x (first) matches y (second),

and not (contrary to a common procedural mistake)2

1.  Introduction
Consider a description of an experiment in which two stimuli 
were visually presented side-by-side. Let the description say, in 
part, that

a participant adjusted the color [or intensity, or shape] of a stimu-
lus on the right until the appearance of this stimulus matched the 
appearance of the stimulus on the left.

The author of this quote would not probably hesitate to rewrite 
it as

a participant adjusted the color [or intensity, or shape] of a stimulus 
on the right until the appearance of this stimulus was matched by 
the appearance of the stimulus on the left.

Or
a participant adjusted the color [or intensity, or shape] of a stimulus 
on the right until the appearance of this stimulus and the appear-
ance of the stimulus on the left matched each other.

Note that we are not dealing here with differently formulated 
instructions to a participant, nor with different procedures of 
adjustment. Rather we have three “theoretical” descriptions of a 
certain performance (under a given instruction and by a given 
procedure), and these three descriptions appear interchangeable. 
This theoretical belief is likely to be shared by the participants in 
such an experiment themselves: if a participant declares “I think 
that now this right shape matches this left one,” then the questions 
like “And do you also think that the left one matches the right one?” 
or “Do you also think they both match each other?” are likely to be 
met by a questioning stare.

1We use boldface letters, x,y,…, to denote stimulus values when we discuss stimuli 
of arbitrary nature (whether representable by numbers, functions, sets, names, etc.) 
and when stimulus values are known to be vectors of real numbers (as in the most 
of this paper). When stimulus values are single real numbers we may use lightface 
letters, x,y,….
2This is an example of why it is always important to think of the x and y sti-
muli being compared as belonging to distinct “observation areas” (Dzhafarov, 
2002b), such as left vs right, first vs second, left-and-red vs right-and-green vs  
left-and-green vs right-and-red, etc.
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With this definition of matching it is no longer obvious that y 
matches x if and only if x matches y. In fact, it is very easy to 
construct models that would be incompatible with this statement. 
This is true, in particular, for Thurstonian-type models, a widely 
used theoretical tool about which Luce (1977, p. 462) said that 
“this conception of internal representation of signals is so simple 
and so intuitively compelling that no one ever really manages to 
escape from it.”

Consider the simplest such a model, proposed in Luce and 
Galanter (1963). Stimuli x and y in this model are mapped into 
independent univariate normal random variables R

x
 and R

y
, and 

the response “same” is given if and only if |R
x
 − R

y
| is less than 

some fixed constant. Suppose that the variances σx
2 and σy

2  are 
continuously differentiable functions of the corresponding means, 
σ µ σ µx x y y

2
1

2
2= =f f( ), ( ). Since in this case any two x-values that 

map into an R
x
 with a given mean, hence also a given variance, 

are equivalent (i.e., they match or do not match any stimulus y 
together), and analogously for y-values, we can conveniently speak 
of “stimuli μ

x
 and μ

y
” in place of x and y.4 Assuming that μ

x
 and μ

y
 

fill in respective intervals of reals, it can easily be shown (Dzhafarov, 
2003a, 2006b) that there are some functions H and G such that (A) 
any stimulus μ

x
 is matched by a single μ

y
 = H(μ

x
), (B) any stimulus 

μ
y
 is matched by a single μ

x
 = G(μ

y
), but (C) G is not the inverse of H 

unless the variances σx
2 and σy

2  have constant values. In other words, 
if σx

2 and σy
2 in this model change with stimuli, then the PSE of the 

PSE of a given stimulus (μ
x
 or μ

y
) is generally different from this 

stimulus. One can show that this situation cannot be “corrected” 
by replacing the independent univariate normal distributions in 
this model with more complex and stochastically interdependent 
distributions on other probability spaces (provided that the model 
remains “well-behaved” in some rather non-restrictive sense; see 
Dzhafarov, 2003a,b, 2006a, and Kujala and Dzhafarov, 2009). We 
see that the requirement that y match x if and only if x matches y 
is far from being innocuous: it imposes rather stringent constraints 
on the possible Thurstonian-type models (see Dzhafarov, 2006b, 
in response to Ennis, 2006).

Another modeling scheme for which the requirement in ques-
tion is critical is the “probability-distance hypothesis” (Dzhafarov, 
2002a). In this class of models, assuming that both x and y stimuli 
(say, presented on the left and on the right, respectively) take their 
values in some common set Z, the probability with which x and y 
are judged to be different is an increasing function Φ of some 
metric D imposed on Z:

	 ψ( )x, y x, y= Φ[ ( )].D 	 (4)

Although traditionally applied to greater–less rather than same–
different judgments, this modeling scheme pertains to what Luce 
and Edwards (1958, p. 232) called “the old, famous psychological 
rule of thumb: equally often noticed differences are equal.” Now, a 
direct application of (4) implies that y x, y ψ( ) achieves its mini-
mum (i.e., y matches x) if and only if y = x; and that x x, y ψ( ) 
achieves its minimum (i.e., x matches y) if and only if x = y. The 
symmetry requirement therefore must be satisfied in order for the 

y (second) matches x (first)
if and only if

x (second) matches y (first).

The latter statement is generally wrong due to the presence of con-
stant error (here, time order effect).

Our goal in this paper is to construct a definition of match-
ing and to experimentally test its compliance with the symmetry 
requirement (1) for the matching-by-adjustment paradigm. Given 
our opening example, one might wonder why we need a theoretical 
definition of matching in the first place. Why cannot we simply 
say that stimulus y matches stimulus x when an observer says so? 
The reason is that pairwise comparisons are probabilistic: one can-
not say “y is judged to be the same as x” without adding “in this 
trial” (and then in another trial this may not be true) or “with this 
probability” (and then another stimulus y′ will be judged to be the 
same as x with some other probability). As a result, the identity of 
a stimulus y matching x has to be computed from a set of responses 
rather than observed in a single one.

To make this clear, consider the classical paradigm of greater–less 
comparisons. Let us say x is the stimulus presented on the left, y 
is presented on the right, and in response to a left–right pair (x,y) 
a participant says which of the two contains more of a certain 
property (say, brightness). The participant is not allowed to say 
that the two stimuli are equally bright, so one could not identify 
the matching relation with the participant’s judgments even if they 
were deterministic. The fact is, however, they are probabilistic, and 
each pair of stimuli maps into a probability with which the right 
stimulus is judged to be greater (in brightness) than the left one,

	 ξ( ) Pr is judged to be greater thanx, y y x= [ ].	 (2)

If we view this function as y x, y ξ( ), with x fixed, then the match 
(or point of subjective equality, PSE) for x is traditionally defined 
as any value of y (may not be unique if y is not unidimensional)3 
for which ξ(x,y) = 1/2. Viewing the function as x x, y ξ( ), with 
y fixed, the match (or PSE) for y is analogously defined as any value 
of x at which ξ(x,y) = 1/2. It is easy to see that with this definition 
of matching, y matches x if and only if x matches y.

The symmetry of the matching relation, however, is not always a 
mathematical necessity. With other definitions of matching it may be 
an empirical hypothesis. Nor is this hypothesis always innocuous and 
trivial. It often has in fact unexpectedly restrictive consequences. To 
see this, consider the paradigm of same–different comparisons. Let 
stimuli x,y, again, be presented on the left and on the right, respec-
tively, and let a participant say in response to a pair (x,y) whether 
the two stimuli are different (in some respect, such as brightness, or 
overall). Each stimulus pair now is associated with the probability

	 ψ( ) Pr[ and are judged to be different]x, y y x= . 	 (3)

A natural definition of a match (PSE) for x here is any value of 
y such that ψ(x,y) is the smallest value of the function y x y ψ( ).,  
Analogously, any value of x at which the function x x y ψ( ),  
achieves its minimum value is taken to be a match (PSE) for y. 

3“Unidimensional” and “univariate” in this paper always mean “representable by 
real numbers.” Non-unidimensional stimuli can but need not be multidimensional 
(representable by vectors of real numbers): they may instead be representable by 
functions, sets, names, etc.

4This is an example of the (re)labeling of stimuli mentioned in Section 2, resulting 
in all equivalent stimuli receiving one and the same label.
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x, however close to y. It is reasonable to assume in fact, as it is done 
in all models and fits of psychometric functions known to us from 
the literature, that the value of y (or x) for which ξ(x,y) = 1/2 is 
unique for all x (respectively, y) – because with conventional choices 
of stimulus continua y x y ξ( ),  is strictly increasing in the vicin-
ity of its median (respectively, x x y ξ( ),  is strictly decreasing in 
the vicinity of its median). Even if we speculate, with no empirical 
justification, that in some cases the function y x y ξ( ),  may have a 
plateau at the level 1/2 over some interval ]y − ε, y + ε[, it is reason-
able to assume then (in the absence of any empirical evidence to 
the contrary and in accordance with the regular well-matchedness 
hypothesis formulated in Section 2) that any two y

1
,y

2
 stimuli in 

this interval are equivalent: ξ(x,y
1
) = ξ(x,y

2
) for all x.

Let us return now to our opening example: two stimuli, one 
of them fixed, the other manipulated by a person until it appears 
matching the fixed one. A mapping of some physical process (such 
as trackball rotation) into a set of stimuli normally requires a para-
metrization of stimuli by reals, so we may assume that x and y are 
vectors of reals. If we imagine the adjustment procedure repeated 
infinitely many times under the same conditions, each fixed stimu-
lus, x or y, will correspond to a random variable Y

x
 with y-values 

(respectively, a random variable X
y
 with x-values). How should one 

define the matching stimulus (PSE) for x or y in this situation? The 
traditional answer is to take some measure of central tendency of Y

x
 

and X
y
, such as their expected values or componentwise medians. 

One needs, however, a theory that would justify suitable choices for 
this measure. Most important in the present context, given differ-
ent choices one should opt for those that ensure (or at least make 
it plausible) that the matching relation is symmetric: denoting a 
measure of central tendency by m,

	
y m Y x m Xx y= =[ ] [ ]if and only if .	 (6)

This consideration makes it clear that a suitable definition of 
the PSE for x or y has to be tied to a particular parameterization of 
stimuli. Indeed, with no conventional choice of m, if (6) holds for x 
and y will it also hold for x′ = T

1
(x) and y′ = T

2
(y) across all possible 

reparametrizations T
1
,T

2
, even if one confines the latter, as we do 

in this paper, to diffeomorphisms only (continuously differentiable 
bijections with continuously differentiable inverses).

2.  An Approach to Matching by Adjustment
2.1. R egular Well-Matchedness
The general notion of a regular well-matched stimulus space has 
been developed in Dzhafarov and Dzhafarov (2010b) for an arbi-
trary set of stimuli and observation areas (defined, e.g., by multi-
ple locations of stimuli compared in shape, or multiple colors of 
stimuli compared in brightness). For detailed discussions of the 
notion of an observation area and its importance in the theory 
of comparative judgments see Dzhafarov (2002b), Dzhafarov and 
Colonius (2006), and Dzhafarov and Dzhafarov (2010b). Here we 
confine our consideration to the case when stimuli belong to two 
fixed observation areas. Let us agree to use letters x and a to denote 
stimulus values in the one of them (say, left, or first), and letters y 
and b to denote stimulus values in the other (right, second). More 
rigorous notation would be (x, 1) or x(1), meaning the stimulus 
with value x in observation area 1, and analogously for y, but the 
simplified notation seems sufficient in the present context.

model to hold. A more sophisticated approach takes into account 
the possibility of constant error (non-coincidence of the values of 
a stimulus and its PSE) and modifies (4) as

ψ(x,y) = Φ[D(H(x),y)],

where H is some bijective function. It is easy to see that both 
y x y ψ( ),  and x x y ψ( ),  achieve their (common) minimum 
if and only if y = H(x), ensuring thereby that y matches x if and 
only if x matches y.

Yet another issue in which the symmetry in question plays an 
important role is known in philosophy as the perceptual variety of 
the “sorites paradox” (see, e.g., the collections of chapters edited 
by Keefe and Smith, 1999; Beall, 2003). In both philosophy and 
psychophysics the issue is also known as that of nontransitiv-
ity of matches (Goodman, 1951/1997; Luce, 1956). Somewhat 
simplifying, let the matching y for x be determined uniquely, 
y = H(x), and let the matching x for y be determined uniquely as 
well, x = G(y). Then the PSE for y = H(x) is x′ = G ◦ H(x). If G 
is not the inverse of H, x′ does not generally coincide with x. The 
PSE for x′ in turn is y′ = H ◦ G ◦ H(x), which does not generally 
coincide with y and therefore does not match the initial value of 
x. We obtain thus a “tetradic soritical sequence” (Dzhafarov and 
Dzhafarov, 2010b)

	

( ) ( ) ,

( ) ( ) ,

(

left is matched by right

right is matched by left

le

x y

y x′
fft is matched by right

but

left is not matched by right

) ( ) ,

( ) ( )

x y

x

′ ′

yy ′.

	 (5)

This situation does not occur if matches are symmetric, G ≡ H−1. 
Then x′ = x and y′ = y, that is, the last element of the sequence, y′, 
matches its first element, x.5

It should be mentioned, to prevent misunderstandings, that the 
possibility or impossibility of soritical sequences is determined not 
only by the issue of symmetry of matches but also by that of their 
uniqueness. Thus, many authors take it for granted that if y matches 
x then any y* which is sufficiently close to y will also match x. This 
position, however, is logically untenable as it leads to a contradic-
tion (see Dzhafarov and Dzhafarov, 2010a, for a detailed analysis). 
Not to discuss this on a general level, let matching be determined 
through the function ξ(x,y) in (2), and let the stimulus values be 
unidimensional, which we indicate by using the notation x = x, 
y = y. Let (x,y) be a left–right pair of matching stimuli, which we 
know to mean that ξ(x,y) = 1/2. It would be fallacious now to main-
tain that whenever this happens, ξ(x,y + ε) must remain equal to 1/2 
for sufficiently small |ε| – such an assertion would in fact imply that 
the function y x y ξ( ),  equals 1/2 over all values of y. If the latter 
is not the case, then there must be at least one value of y matching x 
such that no value y* to the right and/or to the left from y matches 

5We have here another example of why it is always important to think of the x and 
y stimuli being compared as belonging to distinct observation areas. Transitivity 
or intransitivity of matching is usually discussed in terms of traditional triadic se-
quences (given x matched by y matched by z, is x matched by z?) but this does not 
make sense in the common case when there are just two observation areas (say, 
left and right) whereby z belongs to the same observation area with x (one cannot 
compare two “left” stimuli).
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G ≡ H−1. Figure 1 illustrates three situations of interest: when MS 
is violated, when it is satisfied, and when it is violated but it is dif-
ficult if not hopeless to distinguish it from the case of compliance 
with MS in a realistic experiment. With an appropriately formu-
lated general model the situations illustrated in the left-hand and 
middle panels of the figure can be made sources for competing 
statistical hypotheses.

2.2. G eneral Model
The general model in question is as follows. Let the values of x 
and y (after equivalent stimuli have been identically labeled) be 
representable by real-valued vectors, x = (x1,…, xn), y = (y1,…,yn), 
filling in two open connected areas of Rn.6 Let the random vectors 
Y

x
 and X

y
 be as defined above. We assume the existence of two dif-

feomorphic transformations, x = T
1
(a) and y = T

2
(b), with each 

of a and b filling in Rn, such that

	

Y T h a b

X T g b a

T

T

1

2

2

1

( )

( )

( ( ) ),

( ( ) ),

a

b

= +

= +






δ

δ
	 (7)

where h and g are continuously differentiable functions, and (δa, δb) 
is a 2n-vector of independent normally distributed variables with 
zero means7. We define the PSE functions for, respectively, x = T

1
(a) 

and y = T
2
(b) as the continuously differentiable functions

	

T h a T h T x H x

T g b T g T y G y

2 2 1
1

1 1 2
1

◦ ◦ ◦
◦ ◦ ◦

( ) ( ) ( ),

( ) ( ) ( ).

= =

= =







−

−
	 (8)

Let us assume that the set of all x and y stimuli is endowed with 
a binary relation M (“is matched by”) which can only hold true 
for two stimuli from different observation areas: xMy or yMx but 
never x

1
Mx

2
 or y

1
My

2
. Let us also define a binary relation E (“is 

equivalent to”) which, on the contrary, only holds for two stimuli 
from one and the same observation area: x

1
Ex

2
 means that for 

any y, yMx
1
  ⇔  yMx

2
; analogously, y

1
Ey

2
 means that for any x, 

xMy
1
 ⇔ xMy

2
.

We say that the x and y stimuli form a regular well-matched 
space if they satisfy the following statements:

WM �(well-matchedness property). For any stimulus (x or y) there is 
a stimulus in another observation area (respectively, y or x) such 
that the two stimuli match each other (xMy and yMx).

R �(regularity property). If two stimuli in the same observation area 
(x

1
,x

2
 or y

1
,y

2
), are matched by another stimulus (respectively, y or 

x), then they are equivalent (x
1
Ex

2
, or y

1
Ey

2
, respectively).

The requirement of regular well-matchedness is all one needs 
to ensure that matching is “non-paradoxical”: no possibility for 
nontransitive sequences like (5), and no violations of symmetry (1). 
It is convenient in the present context to reformulate the definition 
of a regular well-matched space of stimuli in the form maximally 
emphasizing the symmetry property. Assume that all x and y stimuli 
have been (re)labeled so that any two equivalent stimuli receive one 
and the same label. Retaining the same notation (x and y) for thus 
(re)labeled stimuli, no two different x (or y) stimuli are equivalent. 
With this proviso, the stimuli form a regular well-matched space if 
the following statements hold:

MF �(matching is a function). For every stimulus there is one and only 
one stimulus in the other observation area which matches it; that 
is, there is a function H such that xMy ⇔ y = H(x), and a function 
G such that yMx ⇔ x = G(y).

MS (matching is symmetric). For any x, y, yMx ⇔ xMy.

The equivalence of MF–MS to WM–R is obvious. The func-
tions H and G are referred to as PSE functions, with H(x) being 
the PSE for x and G(y) the PSE for y. Once MF is accepted, the 
property MS says that the functions H and G are bijective and 
each other’s inverses: G  ≡  H−1. This formulation is close to the 
definitions of Regular Minimality and Regular Mediality given 
in Dzhafarov (2003a) and Dzhafarov and Colonius (2006) for, 
respectively, same–different and greater–less comparisons (the 
formulation in Dzhafarov and Dzhafarov, 2010b, is better suited 
for multiple observation areas).

The reason MF–MS is more convenient for our purposes 
than WM–R is that it is usually easy to construct a definition 
of matching that satisfies MF, and whenever this is the case (as 
it is, e.g., in the Luce–Galanter model mentioned in Section 1), 
the question of whether a stimulus space is regular well-matched 
reduces to the title question of this paper. Most importantly in 
the present context, MF is trivially satisfied for the matching-by-
adjustment paradigm: if each x corresponds to a one and only one 
random variable Y

x
 (with values representing declared y-matches 

to x in different trials), then any measure of central tendency m[Y
x
] 

is a function of x, m[Y
x
]  =  H(x); and analogously with y and 

m[X
y
] = G(y). The question is whether m can be chosen so that 

H(x) H(x)
H(x)

G(y)
G(y)

G(y)

x0 G H(x0)

H(x0)

H G H(x0)

x0

H(x0)

Figure 1 | x and y stimuli (for illustration purposes unidimensional) 
with the PSE functions H(x) and G(y). The abscissa segment and ordinate 
segment depict “sufficiently large” areas of stimuli around x0 and y0 = H(x0), 
respectively. Left-hand panel: the symmetry assumption, MS, is not 
satisfied, and the two functions do not cross within the areas depicted. 
Middle panel: MS is satisfied. Right-hand panel: MS is not satisfied but the 
two functions have numerous crossings within the areas depicted. In the 
left-hand panel the PSE for the PSE of x0 is not x0 itself, and analogously for 
y0 = H(x0): there are systematic differences between G ◦ H(x0) and x0, and 
between H(x0) and H ◦ G ◦ H(x0) which may be detectable if the procedure is 
repeated many times and the errors of matching are sufficiently well-
behaved. In the middle panel the PSE for the PSE of x0 is x0 itself, and 
analogously for y0 = H(x0): if the procedure is repeated many times any 
variance among successive adjustments of x and y will be due to matching 
errors only.

6It is usually assumed that the values of x and y belong to the same set, but this as-
sumption is not critical for our analysis. The latter would even apply to a case when 
x stimuli are, say, visual and y stimuli auditory.
7The only property of these variables essential for this paper is their independence 
and symmetry around 0. The normality, however, is convenient due to the unique-
ness properties mentioned at the end of this section.



www.frontiersin.org	 July 2010  | Volume 4  |  Article 24  |  5

Dzhafarov and Perry	 Matching by adjustment

H y T h T y T T y G y− − − −= = =1
1

1
2

1
1 2

1( ) ( ) ( ) ( ),◦ ◦ ◦ ◦g

or (as illustrated in the middle panel of Figure 1)

G ≡ H−1.

From (9) we have then

xMy if and only if yMx.

2.4.  Alternative Model
The alternative model corresponds to the left-hand panel of 
Figure 1. Since its difference from the right-hand panel is a matter 
of scale only, the alternative model has to be formulated in reference 
to the set of stimuli recorded in a specific experiment (whether set 
by experimenter or adjusted by participant). Let {x

1
,…,x

M
} and 

{y
1
,…,y

N
} be these stimuli. Let us define a sufficiently large stimulus 

area for x as any open connected area X of x-values that contains 
{x

1
,…,x

M
} ∪ {G(y

1
),…,G(y

N
)}, where G is the true PSE function for 

y as defined by (8) in the general model. Analogously, a sufficiently 
large stimulus area Y for y is any open connected area of y-values 
that contains {y

1
,…,y

N
} ∪ {H(x

1
),…,H(x

M
)}.

The alternative model says that in some sufficiently large areas 
X and Y the graphs of the corresponding components of PSE 
functions H(x) and G(y) do not cross. This means that for any 
i = 1,…,n, the ith component of the difference H(x) − y has one 
and the same sign across all x ∈ X and y ∈ Y such that H(x) ∈ Y 
and G(y) = x; analogously, for any i = 1,…,n, the ith component of 
the difference G(y) − x has one and the same sign across all y ∈ Y 
and x ∈ X such that G(y) ∈ X and H(x) = y.

3. Pi ng-Pong Matching Paradigm
If there was no matching error involved, then starting with any x ∈ X 
one could create two sequences of stimuli, one in each observation 
area (let them be again “left” and “right”), chain-matched as shown in 
Figure 2. Under our alternative model, each stimulus in each observa-
tion area is different from the one immediately following it. Moreover, 
for any i = 1,…,n, the differences x x x x x xi i i i i i

1 2 2 3 3 4− − −, , , etc., have one 
and the same sign, and so do the differences y y y y y yi i i i i i

1 2 2 3 3 4− − −, , , 
etc., in the other observation area. If the null model is true, however, 
then (in the absence of matching errors) all x’s are the same and so 
are all y’s, whence all the componentwise differences between suc-
cessive stimuli in either observation area are 0.

The ping-pong matching paradigm proposed in Dzhafarov 
(2006b) is aimed at distinguishing between these two competing 
possibilities in the presence of matching errors. The logic of the 

In our general notation,

	

x y y H x

y x x G y

M

M

if and only if

if and only if

=
=






( ),

( ).
	 (9)

Note that this definition of the PSE functions H and G does 
not tell us how to compute them from Y

x
 and X

y
, respectively, as 

our general model does not specify the transformations T
1
,T

2
. 

We will be able to circumvent this difficulty in the applica-
tion of the model to our experiments (in Section 3.1) by using 
linear approximations to T

1
 and T

2
. In Section 7 we mention 

an approach which may make the reliance on approximations 
unnecessary. This issue is related to the uniqueness properties 
of T

1
,T

2
, which is worth mentioning even if not essential for the 

analysis to follow.
Clearly, if T

1
, T

2
 exist, then T

1
 ° L

1
, T

2
 ° L

2
 will be another pair of 

transformations providing (7), for any choice of orthogonal lin-
ear transformations L

1
, L

2
. Linear transformations, however, are 

inconsequential, as they do not change the PSE functions H and 
G. If x,y belong to R1 or R2 (arguably the most important cases 
amenable to experimental analysis), then it is known that within 
a class of transformations including diffeomorphisms (under 
certain constraints trivially satisfied in our general model), linear 
transformations are the only ones which preserve the normality 
of δa and δb (Ghosh, 1969; Khatri and Mukerjee, 1987). In other 
words, for univariate and bivariate stimuli the PSE functions in 
the general model are determined uniquely. There are reasons 
to conjecture (Khatri, 1987) that this is also true for n > 2, but 
the results we know of are less general than for n = 1, 2. There 
does not, however, seem to be a known example of a nonlinear 
diffeomorphism in Rn that would map n + 1 normal distribu-
tions with distinct means into n + 1 normal distributions with 
distinct means.

2.3. N ull Model
We say “null model” instead of “null hypothesis” to emphasize that 
the former is an essentially non-statistical theoretical construct 
which may be used as a source of (generally more than one) sta-
tistically testable consequences, which then will be referred to as 
null hypotheses.

The null model is obtained from the general model by positing 
that h and g in (7) are diffeomorphisms, and

g ≡ h−1.

It follows from (8) that

x0 x1 x2 · · ·

���

x → H (x) → G ◦ H (x) → H ◦ G ◦ H (x) → G ◦ H ◦ G ◦ H (x) → H ◦ G ◦ H ◦ G ◦ H (x) → · · ·

���

y1 y2 y3 · · ·

Figure 2 | A chain-matched sequence of left and right stimuli. The arrows should be read “is matched by” (i.e., they represent the relation M).
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Dzhafarov (2006b), however, does not offer a general model 
of matching-by-adjustment. Also, one can be skeptical about the 
generalizability of unidimensional results to multidimensional 
stimuli.8 The present work is to fill in these gaps. In the remainder 
of this section we show how the general model of Section 2 and its 
null and alternative versions apply to the ping-pong adjustment 
paradigm.

3.1.  Application of the General Model
Let us enumerate the trial pairs (as described in the legend to 
Figure 3) 1,2,…,N, in chronological order. Denote the balance 
points established in the kth trial pair by (y

k
,x

k
) and the first-order 

differences (or ∆’s for short) by ∆x
k
 = x

k+1
 − x

k
 and ∆y

k
 = y

k+1
 − y

k
. 

It is shown in the Appendix that the general model of Section 2 
implies

	

∆

∆

y v M a M b o

x w N

k k i ki

k

i i ki

k

i

k k i ki

k

= + + +

= +
= =

+

=

∑ ∑11 21

1

11

, , , ,

, ,

δ δ ,

++

=

+∑ ∑+ +






 1

21

1
δ δa N b oi i ki

k

i, , ,
	

(10)

where M…,N… denote n × n matrices, and o designates any function 
whose norm |o| (say, the supremal one) is o{1}|(δa

1
,δb

1
,…,δa

k+1
,δb

k+1
)|. 

We know that (δa
k
,δb

k
) is a 2n-vector normally distributed with zero 

paradigm is presented in Figure 3. As an example, in three ping-
pong matching experiments reported in Dzhafarov (2006b), stimuli 
were straight line segments presented side-by-side in a frontal plane, 
and in each trial a participant had to adjust one of the segments 
until it appeared of the same length as the other one, held fixed. 
Every time a “balance point” was achieved, the balance was upset 
by randomly changing the length of the segment which was fixed in 
the previous trial, and the participant had to adjust it “back,” until 
it matched the length of the other segment (which remained fixed 
at its previously established value). This alternating procedure was 
replicated 200 times (100 balance points on each side), and each 
of these 200-trial series was repeated 10–25 times. In reference to 
Figure 3, x = x and y = y are unidimensional, so the first-order 
differences are ∆x

k
 = x

k+1
 − x

k
 and ∆y

k
 = y

k+1
 − y

k
.

As shown below (Sections 3.1–3.3), to the extent one can drop 
non-linear terms in certain Taylor expansions, it follows from the 
null model that the distributions of the ∆x

k
 and ∆y

k
 should be sym-

metric around 0. The histograms and statistics shown in Figure 4 
do not contradict this prediction.
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Figure 4 | Histograms of first-order differences for ping-pong 
adjustments of line segments’ lengths. The data are shown for a single 
participant in three experiments: with two short horizontal lines on the left and 
on the right (top panel), and with a horizontal line on the left and a vertical line 
on the right (middle panel for short lines, bottom panel for longer lines). The 
abscissae are calibrated in screen pixels (1 px ≈ 55 sec arc). The means and 
medians are shown in sec arc. See the opening text of this section and 
Dzhafarov (2006b) for details.

x0

trial pair 1 

x1

x2

x3

y1

y2

y3

trial pair 2 trial pair 3 

Figure 3 | A schematic representation of ping-pong adjustments. The top 
and bottom panels correspond to two observation areas, the vertical axes 
representing stimulus values (which need not, however, be unidimensional). 
Trials may or may not be separated by time intervals. A series of adjustments 
consists of many consecutive trial pairs. In the first trial of any trial pair, x 
remains fixed (solid horizontal lines, top panel) at the value established at the 
end of the previous trial pair; the value of stimulus y at the beginning of this 
first trial is randomly offset (dashed vertical lines, bottom) so that it generally 
does not match x, and the participant adjusts this value (oblique solid lines, 
bottom) until it seems to match x (the encircled points, bottom); in the second 
trial of the trial pair, y remains fixed (solid horizontal lines, bottom) at the value 
established at the end of the previous trial; the value of stimulus x at the 
beginning of this second trial is randomly offset (dashed vertical lines, top) so 
that it generally does not match y, and the participant adjusts this value (oblique 
solid lines, top) until it seems to match y (the encircled points, top). The stimuli 
x1,x2,x3,… and y1,y2,y3,… represented by the encircled points are referred to as 
“balance points.” In this work we focus on the first-order differences 
∆xk = xk+1 − xk and ∆yk = yk+1 − yk between balance points.

8In particular, the possibility of a special status of unidimensional stimuli was men-
tioned by Janne V. Kujala and R. Duncan Luce (personal communications to the 
first author, 2006).
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3.3.  Alternative Hypotheses
Under the alternative model, for any i = 1,…,n, the random vari-
ables in the sequence ∆yk

i

k N
{ } = …1 2, , ,

 are neither identically distributed 
nor independent. But they are all distributed normally with the 
means vk

i

k N
{ } = …1 2, ,

, all positive or all negative. Let us denote this 
common sign of the vk

i ’s by sgn(vi). By aggregating ∆yk
i  across all k 

we create a random variable ∆yi which equals ∆yk
i  with probability 

1/N. Since for any positive numbers α < β,

sgn Pr Pr sgnα < β β α≤  − − ≤ < − ( ) = ( )∆ ∆y y vk
i

k
i

k
i ,

we have

sgn(Pr[α ≤ ∆yi < β] − Pr[−β ≤ ∆yi < −α]) = sgn(vi).

It follows that the conclusion we have drawn from the null 
model, that the values of ∆yi in some interval 0 ±  εi should be 
distributed symmetrically around 0, is false under the alternative 
model. In particular, sgn(Pr[0 ≤ ∆yi < εi] − Pr[−εi ≤ ∆yi < 0]) = 
sgn(vi) whence the median of ∆yi in any interval 0 ± εi (including 
for εi = ∞) also shares the sign with vi. The same is true about the 
mean ∆yi, which equals 1 1/N vk

N
k
iΣ = . The consideration of ∆xk

i  and 
their mixture ∆xi is analogous and leads to the same conclusions.

We can now formulate, for each i = 1,…,n and any choice of 
εi,i, the alternative hypotheses corresponding to H1

0
−H3

0
 of the 

previous section.

H1
A
: �For any sequence 0 1< < …< =ε ε εi

l
i i

i
 chosen in H1

0
, it is not 

true that

Pr Pr− ≤ < −  = ≤ < + +ε ε ε εm
i i

m
i

m
i i

m
iy y1 1∆ ∆ ,

  �  where m = 0,1,…,l
i
 − 1; and an analogous negative statement 

holds for ∆xi.9

H2
A
: �The population mean of ∆yi-values falling between any −εi 
and εi chosen in H2

0
 is not 0; and analogously for ∆xi.

H3
A
: �The population median of ∆yi-values falling between −εi and 
εi chosen in H3

0
 is not 0; and analogously for ∆xi.

We have mentioned in the previous section how we chose the 
intervals and partitions for the experiments reported below.

4.  Materials and Methods
4.1. Pa rticipants
Seven paid volunteers, students at Purdue (six females and one 
male) and the second author of this paper (LP) served as par-
ticipants in two experiments. The paid volunteers, naive as to the 
aims and designs of the experiments, are identified as P1–P3 (in 
the location experiment) and P4–P7 (in the shape experiment). LP 
participated in both experiments. All participants were aged around 
20 and had normal or corrected to normal vision.

mean and a diagonal variance matrix, for every k. Let us addition-
ally assume that (δa

k
,δb

k
) and (δa

k′,δb
k′) are independent for any 

k ≠ k′. It follows then that to the extent one can ignore the o-terms, 
every component ∆yk

i  of ∆y
k
 and every component ∆xk

i  of ∆x
k
 are 

approximately normally distributed (i  =  1,…,n). Note however 
that (∆x

k
,∆y

k
) and (∆x

k′,∆y
k′) for k  ≠  k′ generally have different 

means and variances, and any two components of the 4n-vector 
(∆x

k
,∆y

k
,∆x

k′,∆y
k′) are generally stochastically interdependent. The 

sequences ∆yk
i

k N
{ } = …1 2, , ,

 and ∆xk
i

k N
{ } = …1 2, , ,

 therefore are not generally 
sequences of iid variables.

3.2. N ull Hypotheses
The situation simplifies considerably under the null model. As 
shown in the Appendix, (10) then acquires the form

	

∆
∆

y M a M b o

x N a N b o
k k k

k k k

= + +
= + +






+

+ +

1 2 1

1 1 2 1

δ δ
δ δ

,

,
	 (11)

where the matrices M
1
, M

2
, N

1
, N

2
 are now fixed. To the extent 

one can ignore the o-terms, it follows that for i = 1,…,n, either 
of ∆yk

i

k N
{ } = …1 2, , ,

 and ∆xk
i

k N
{ } = …1 2, , ,

 is a sequence of iid variables 
normally distributed around 0 (although any two variables from 
∆ ∆ ∆ ∆x y x yk

i
k
i

k
j

k
j, , ,  with i ≠ j are generally interdependent). One can 

drop index k and speak of random variables

	

∆
∆

y M a M b o

x N a N b o

=
= + +






1 ,

,

δ + δ +
δ ′ δ

2

1 2

	 (12)

where (δa, δa′, δb) is a 3n-vector of independent normal variates 
with zero means. Since the smaller the values of |∆yi| the more likely 
it is to correspond to small values of |δa|,|δa′|,|δb| in (12) and the 
better justified one is in dropping the o-terms, one should expect 
that for a sufficiently small εi > 0, the values of ∆yi in the interval 
0 ± εi should be distributed symmetrically around zero; and the 
same should be true for ∆xi in an interval 0 ± i.

The choice of εi and i, for i = 1,…,n, depends on the precision 
needed (which in turn depends on sample size) and on the test of 
symmetry one chooses to use (cruder tests allow for wider inter-
vals). Thus, εi and i may very well be chosen differently in the three 
null hypotheses we use to assess the compliance of the experiments 
reported below with the symmetry prediction of the null model.

H1
0
: For some sequence 0 1< < < =ε ε εi

l
i i

i
 ,

Pr Pr− ≤ < −  = ≤ < + +ε ε ε εm
i i

m
i

m
i i

m
iy y1 1∆ ∆ ,

  �  where m = 0,1,…,l
i
 − 1 and ε0 0i = ; and an analogous statement 

is true for ∆xi and some partition 0 1< < …< =  i
m
i i

i
.

H2
0
: �The population mean of ∆yi-values falling between −εi and εi 
is 0; and the same is true for ∆xi between −i and i.

H3
0
: �The population median of ∆yi-values falling between −εi and 
εi is 0; and the same is true for ∆xi between −i and i.

In order not to bias the outcomes in favor of the nulls, in the 
analysis of our experiments we simply put ε =  = ∞, that is, we 
used the entire range of data. In H1

0
, however, we could only choose 

narrow grouping bins ε εm
i

m
i, + 1  and  m

i
m
i, + 1  in a small vicinity 

of 0, lumping together more peripheral values. We used the same 
grouping scheme in all conditions of both our experiments.

9This statement could have been strengthened: not only are not all the differences 
Pr Pr− ≤ −  − ≤ + +ε < ε ε < εm

i i
m
i

m
i i

m
iy y1 1∆ ∆  equal to 0, we know also that they 

are all positive or all negative. Our goal is, however, to formulate the H1
A
 as a sim-

ple negation of H1
0
, so that one of them has to be true within the confines of the 

general model.
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recorded). In total each of the four participants worked through 
20 ping-pong series. This amounted to the total of 2000 balance 
points for each of y1, y2, x1, x2, yielding 1980 values for each of the 
corresponding first-order differences.

In the shape experiment the horizontal and vertical rotations 
of the trackball controlled the amplitudes A

3
 (x1 or y1) and A

5
 (x2 

or y2), respectively. Each trial began by the two shapes appearing 
on the screen. One of the shapes remained the same as established 
at the end of the previous trial [or, in trial 1, it was at the initial 
value (A

3
 = 14 px, A

5
 = 14 px)], while the other shape at the begin-

ning of the trial was randomly chosen as shown in Figure 6. The 
participant was instructed to adjust this shape until it matched 
the other, fixed shape, and to click the button on the trackball 
device when satisfied. With this click the trial ended and the 
two stimuli disappeared, to appear again 0.5 s later. Each series 
of ping-pong adjustments consisted of 110 y-adjustments (in 
the odd-numbered trials) and 110 x-adjustments (in the even-
numbered ones), preceded by a practice series of 20 trial pairs 
(which was not recorded). There was one recorded series per 
participant per day, with a few minutes break in the middle (after 
trial 110). In total each of the five participants worked through 
nine ping-pong series, providing the total of 990 balance points 
for each of y1, y2, x1, x2 and 981 values for each of the correspond-
ing first-order differences.

5. R esults
The main results are presented in Figures 7–10 (location experi-
ment) and Figures 11–15 (shape experiment). Each panel shows a 
histogram of first-order differences (∆’s) in one of the two compo-
nents of x or y. The bins of the histograms are all 1 pixel wide (62 sec 
arc), but in the location experiment the ∆’s are integer numbers of 

4.2. S timuli and Procedure
The stimuli used are exemplified in Figure 5 and described in its 
legend, together with the observation conditions. In each trial a par-
ticipant changed the parameters of one of the two stimuli by rotating 
a trackball on which the participant rested her/his dominant hand.

In the location experiment the horizontal and vertical rotations 
of the trackball controlled the horizontal (x1 or y1) and vertical (x2 
or y2) coordinates of one of the dots. Each trial began by the two 
circles with the dots appearing on the screen. In accordance with 
the logic of ping-pong adjustments (Figure 3), one of the dots was 
kept at the same location as established at the end of the previous 
trial [or, in trial 1, at the initial value (27 px, 16 px)], while the 
other dot at the beginning of the trial was at a randomly chosen 
location as shown in Figure 6. The participant was instructed to 
move this dot until its location matched that of the other, fixed dot, 
and to click a button on the trackball device when satisfied. With 
this click the trial ended and the two stimuli disappeared, to appear 
again 0.5 s later. Each series of ping-pong adjustments consisted 
of 100 trial pairs (100 y-adjustments in the odd-numbered trials 
and 100 x-adjustments in the even-numbered ones). There were 
two such series per participant per day, separated by a few minutes, 
each preceded by a practice series of 20 trial pairs (which was not 

Figure 6 | A detailed view of the adjustment procedure in the location 
(left) and shape (right) experiments. The left-hand picture shows the first 
quadrant of the circle in which the location of the dot is manipulated. The cross 
shows the location of the dot in the previous trial. Denoting its polar 
coordinates by (θ,r ), at the beginning of the current trial the dot’s location is 
randomly chosen according to the uniform distribution over the rectangle 
(θ − π/18, θ + π/18) × (r − 0.1 · radius, r + 0.1 · radius) in polar coordinates 
(shown by the colored area). The right-hand picture shows the space of the 
A3,A5-amplitudes, |A3| + |A5| ≤ R, for the shape being adjusted. At the beginning 
of the current trial the values of A3,A5 (irrespective of their values in the 
previous trial) are randomly chosen according to the uniform distribution over 
the square (−0.5R, 0.5R) × (−0.5R, 0.5R). A participant could change the 
A3,A5-values freely within the entire diamond-shaped area, but at any given 
(A3,A5) the rate of further change (per rotation angle of the trackball) in any of 
the four directions shown was proportional to the corresponding distances of 
(A3,A5) to the borders (updating quasicontinuously and ensuring thereby that 
the boundary could never be reached).

x

x

y

y

Figure 5 | Stimuli used in the location experiment (top panel) and the 
shape experiment (bottom). In both experiments the two observation areas 
are defined as “left” and “right.” The two stimuli were displayed on a flat-panel 
monitor viewed (using a chin rest with forehead support) from the distance of 
90 cm, making 1 screen pixel ≈ 62 sec arc. The stimuli were grayish-white on 
black, of a comfortably low fixed luminance, viewed in darkness. In the 
location experiment the stimulus values x on the left and y on the right are 
locations of the dots within their circles: they are measured by the horizontal 
and vertical Cartesian coordinates of the dots with respect to the circles’ 
centers. The width of the circumferences and the diameter of the dots in the 
experiment were 5 px, the circles’ radii measured 70 px, and the distance 
between the circles’ centers was 150 px. The initial value of x in the 
experiment was (27 px, 16 px), corresponding to (π/6, 0.45 · radius) in polar 
coordinates. In the shape experiment the stimulus values x on the left and y 
on the right are the amplitudes A3 and A5 in the formula for a “floral” shape in 
polar coordinates: R + A3cos3θ + A5cos5θ, where |A3| + |A5| ≤ R. In the 
experiment R was 70 px, the distance between the floral shapes’ centers was 
300 px, and the width of the contours 5 px. The initial value of x in this 
experiment was A3 = A5 = 0.2R = 14 px.
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Figure 8 | Histograms of the ∆’s for the location experiment, participant P1. The rest as in Figure 7.
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Figure 7 | Histograms of the first-order differences (∆’s) for the location experiment, participant LP. The insets show the time series of the matching 
adjustments from which the ∆’s were computed. Each panel contains the mean and the median of the corresponding ∆ (in sec arc), with the p-values for the 
hypotheses that the population mean and median are 0, as well as the χ2(df = 9) and the p-value for the symmetry test described in the text.



Frontiers in Psychology  |  Quantitative Psychology and Measurement	 	 July 2010  | Volume 4  |  Article 24  |  10

Dzhafarov and Perry	 Matching by adjustment

Horizontal Direc�on:
Le� Adjustment

Sym χ2 (9)= 10.41 
p= .31

N= 1980

Mean= 2”
p= .64

Median= 0”
p= .43

Horizontal Direc�on:
Right Adjustment

Sym χ2 (9)= 2.95 
p= .97

N= 1980

Mean= 1”
p= .79

Median= 0”
p= .94

Ver�cal Direc�on:
Le� Adjustment

Sym χ2 (9)= 10.64 
p= .30

N= 1980

Mean= -2”
p= .54

Median= 0”
p= 67

Ver�cal Direc�on:
Right Adjustment

Sym χ2 (9)= 15.23 
p= .08

N= 1980

Mean= -3”
p= .41

Median= 0”
p= .55

Ba
la

nc
e 

Po
in

t (
px

)
Trial

Ba
la

nc
e 

Po
in

t (
px

)

Trial

Trial

Ba
la

nc
e 

Po
in

t (
px

)

Ba
la

nc
e 

Po
in

t (
px

)

Trial

Figure 9 | Histograms of the ∆’s for the location experiment, participant P2. The rest as in Figure 7.

Horizontal Direc�on:
Le� Adjustment

Sym χ2 (9)= 6.63 
p= .68

N= 1980

Mean= -2”
p= .72

Median= 0”
p= .18

Horizontal Direc�on:
Right Adjustment

Sym χ2 (9)= 12.04 
p= .21

N= 1980

Mean= -4”
p= .39

Median= 0”
p= .84

Ver�cal Direc�on:
Le� Adjustment

Sym χ2 (9)= 14.05 
p= .12

N= 1980

Mean= -1”
p= .92

Median= 0”
p= .17

Ver�cal Direc�on:
Right Adjustment

Sym χ2 (9)= 9.54 
p= .39

Trial

Ba
la

nc
e 

Po
in

t (
px

)

Ba
la

nc
e 

Po
in

t (
px

)

Trial

Ba
la

nc
e 

Po
in

t (
px

)

Trial

Ba
la

nc
e 

Po
in

t (
px

)

Trial

N= 1980

Mean= 1”
p= .81

Median= 0”
p= .54

Figure 10 | Histograms of the ∆’s for the location experiment, participant P3. The rest as in Figure 7.
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Figure 11 | Histograms of the ∆’s for the shape experiment, participant LP. The rest as in Figure 7.
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Figure 12 | Histograms of the ∆’s for the shape experiment, participant P4. The rest as in Figure 7.
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Figure 13 | Histograms of the ∆’s for the shape experiment, participant P5. The rest as in Figure 7.
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Figure 14 | Histograms of the ∆’s for the shape experiment, participant P6. The rest as in Figure 7.



www.frontiersin.org	 July 2010  | Volume 4  |  Article 24  |  13

Dzhafarov and Perry	 Matching by adjustment

pixels (so the 1-pixel-wide bins are quasicontinuous representations 
of their integer centers), while in the shape experiment the ∆’s are 
grouped into the intervals between successive integers. The insets 
show the time series of the matching adjustments from which the 
∆’s were computed: the abscissa of the inset shows successive trials 
in which the adjustments are made (1, 3, 5,… for the right adjust-
ments and 2, 4, 6,… for the left ones), the ordinate axis of the inset 
corresponds to the abscissa of the histogram.

Each panel shows the results of three tests:

(H1
0
) that the histogram of ∆’s is symmetric around 0 (against 

the generic alternative);

(H2
0
) that the expected value of ∆ is 0 (against the two-directional 

alternative), and

(H3
0
) that the median ∆ in the population is 0 (i.e., that 

Pr[∆ > 0] + Pr[∆ = 0]/2 = 1/2, against ≠1/2).

The symmetry in H1
0
 means that Pr[∆ ∈ interval i] = Pr[∆ ∈ inter-

val − i] for i = 1,…,9, where the intervals i are defined as
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= − =
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for the location experiment and the shape experiment, respec-
tively. Note that the frequency of ∆’s in the intervals −9 and 9 

was very small in the location experiment, which, combined with 
the fact that 8 pixels (≈492 sec arc) seems a good candidate for 
the notion of being “small,” was the reason for choosing this 
range for a “detailed view.” For uniformity, we used the same 
range for the shape experiment, although the frequency of ∆’s 
in the intervals −9 and 9 was not small for participants P5 and, 
especially, P4.

The test for the means was the standard t-test with the test 
statistic

mean

st. err.

∆
∆

The test for the medians was the χ2(df  =  1) test with the test 
statistic

( )

’
.

number of number of

number of all s

∆ ∆
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> − <0 0 2

The symmetry test was the χ2(df = 9) test with the test statistic
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′ nntervals andi ii −=
∑
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6. Di scussion
There are obvious individual differences in the patterns of the 
time series for balance points (the insets of the graphs). Our goal, 
however, is confined to their single feature: the lack or presence 
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Figure 15 | Histograms of the ∆’s for the shape experiment, participant P7. The rest as in Figure 7.
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of a systematic trend, as revealed by the analysis of the first-order 
differences. In assessing the results, note that the choice of the 
significance level for a test (the alpha below which a p-value is 
considered rejecting the null hypothesis) is dubious when one 
deals with multiple tests: the computation of alpha depends on 
one’s subjective decision on how the different tests should be 
grouped. Setting the alpha for a given test for a given condi-
tion for a given participant in a given experiment at 0.05 means 
that the Type I error probability for 12 generally interdependent 
tests per participant per experiment (3 tests × 4 ∆’s) is anywhere 
between 0.05 and 0.6, making the overall Type I error probability 
across all tests for all conditions and all participants be anywhere 
between 0.19 and 0.97 for the location experiment, between 0.23 
and 0.99 for the shape experiment, and between 0.37 and 1.0 if 
the two experiments are combined. The formula for these cal-
culations is

	
1 1 1 1− − ≤ [ ] ≤ − − ×( ) ( ) ,α αp pkPr Type I error

	
(13)

where k is the number of tests per participant per experiment (in 
our case 12) and p is the number of independent applications of 
these k tests (four in the location experiment and five in the shape 
experiment), the tests for different participants × experiments being 
considered stochastically independent. To fix the lower boundary 
for the overall Type I error probability at 0.05 one needs to set the 
alpha for a given test × condition × participant × experiment at 
0.013 for the locations experiment, at 0.010 for the shape experi-
ment, and at 0.006 if the two experiments are combined. Rounding 
these figures to the conventional ones, we are justified to compare 
the p-values in our tests to 0.05 and 0.01. The results are sum-
marized in Table 1.

The conclusions one can derive from the location experiment are 
unequivocal. At α = 0.05 the null hypothesis is rejected in none of 
the 48 tests presented in the 16 panels of Figures 7–10 (although the 
probability of a rejection happening by chance, with all nulls true, is 
greater than 0.19). Equally important is that the values of the mean 
and the median are obviously very small (note that a single screen 
pixel measured 62 sec arc). The matching regularity hypothesis can 
be upheld for locations with very high confidence.

For the shape experiment none of the 60 tests presented in the 
20 panels of Figures 11–15 rejects the null hypothesis at α = 0.01 
(with the overall probability of Type I error exceeding 0.05). 
The hypothesis that the population means are 0 is not rejected 
at α = 0.05, and the mean ∆’s are very small. However, in one 
case out of 60 (Figure 14, right A

5
) the distribution’s symmetry 

is rejected at α = 0.05, and the hypothesis that the population 
median is 0 is rejected at α = 0.05 in four out of 60 cases (right 
A

5
 in Figure 12, left A

5
 in Figure 14, left A

3
 and right A

5
 in Figure 

15). Still, the logic of our tests leads us to conclude that for the 
shape experiment, too, there is little if any evidence against the 
null model of Sections 2.3 and 3.2. Note that there are no figure 
panels where we see a rejection occurring at α = 0.05 in more 
than one of the three tests. The occasional rejections can therefore 
be assumed to be Type I errors (whose probability in the shape 
experiment exceeds 0.23). Moreover, even if the rejected null 
hypotheses are indeed false, it is still possible (and probable, in 
view of the rest of the data) that these were the cases when the 
error terms were not sufficiently small to warrant dropping the 
o-terms in (12).

7. C onclusion
The symmetry of matching, MS of Section 2.1, being a “natu-
ral” proposition firmly built in our colloquial language as well 
as in the language and practice of psychophysics, it seems to be 
a reasonable scientific strategy to dismiss this proposition only 
if the evidence against it is compelling. We have shown that in 
the matching-by-adjustment paradigm, with a reasonable defi-
nition of the PSE functions satisfying MF of Section 2.1, there 
is no empirical  evidence against MS: y matches x if and only 
if x matches y.

Our paper does not, however, provide an algorithm for com-
puting the precise matches for x and y from the distributions of 
the balance points Y

x
 and X

y
, respectively. Rather, to the extent 

the use of the linear part of (12) is justifiable, our null model 
upholds the traditional textbook recommendation, usually 
confined to unidimensional stimuli (see, e.g., Gescheider, 1985, 
p.54): approximate the distribution of within-trial matches to 
a given stimulus by a normal distribution and take its mean 
as the (approximate) PSE for this stimulus. It is also common 
to advise (ibid) that if the distribution is not normal, a trans-
formation may be applied first to make it normal. Our general 
model (Section 2.2) suggests a multidimensional version of the 
advice in question: transform the distribution of within-trial 
matches to a given stimulus into a normal distribution with 
uncorrelated components and then take its mean as the PSE 
for this stimulus. Glossing over statistical issues, this procedure 
provides a “direct access” to the variables a,b of (7), modulo 
linear transformations inconsequential for the analysis, making 
thereby the use of linear approximations unnecessary. Note that 
such transformations need not exist: thus, in the unidimensional 
case, no diffeomorphism would translate Y Y Yx x x1 2 3

, ,  of which 
the first two are normal with distinct means and the third one 
is not normal, into three normal variates (Ghosh, 1969). An 
empirical demonstration that the transformation postulated in 

Table 1 | An assessment of the results presented in Figures 7–10 

(location experiment) and Figures 11–15 (shape experiment).

Experiment	 Significance	 Overall	R ejections/ 

	 per test	 Type I error	 out of

Location	 α = 0.01	 0.04–0.40	 0/48

	 α = 0.05	 0.19–0.97	 0/48

Shape	 α = 0.01	 0.05–0.47	 0/60

	 α = 0.05	 0.23–0.99	 5/60

Both	 α = 0.01	 0.09–0.68	 0/108

	 α = 0.05	 0.36–1.0	 5/108

The fourth column shows the number of tests rejecting their null-hypotheses out 
of the total number of tests. The Type I error is computed according to (13).
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Appendix
We outline derivations of (10) and (11)–(12). For the kth trial 
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where the |o|’s are o{1}|(δa

1
,δb

1
,…,δa

k+1
,δb

k+1
)|. We get (10) after 

renaming the coefficients. Recalling the definition of H and G in 
(8), note that
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In the null model g ≡ h−1, and (14) becomes
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This corresponds to (11). Note that the |o|’s here are o{1}|(δa
1
, 

δb
1
,…,δa

k+1
, δb

k+1
)|. Since the 3n-vector (δa

k
, δa

k+1
, δb

k+1
) is identi-

cally distributed for all k, however, we can drop the index k alto-
gether, denote the 3n-vector (δa, δa′, δb), and view the |o|’s as 
o{1}|(δa, δa′, δb)|. This yields (12).
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