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Probabilistic model of onset detection explains paradoxes in 
human time perception
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A very basic computational model is proposed to explain two puzzling findings in the time 
perception literature. First, spontaneous motor actions are preceded by up to 1–2 s of 
preparatory activity (Kornhuber and Deecke, 1965). Yet, subjects are only consciously aware 
of about a quarter of a second of motor preparation (Libet et al., 1983). Why are they not 
aware of the early part of preparation? Second, psychophysical findings (Spence et al., 2001) 
support the principle of attention prior entry (Titchener, 1908), which states that attended 
stimuli are perceived faster than unattended stimuli. However, electrophysiological studies 
reported no or little corresponding temporal difference between the neural signals for attended 
and unattended stimuli (McDonald et al., 2005; Vibell et al., 2007). We suggest that the key 
to understanding these puzzling findings is to think of onset detection in probabilistic terms. 
The two apparently paradoxical phenomena are naturally predicted by our signal detection 
theoretic model.
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presented simultaneously and attention is directed to one of them 
either endogenously or exogenously. Subjects typically report that 
the attended stimulus appeared first providing empirical support for 
attentional prior entry. Consequently, numerous researchers have 
suggested that attention accelerates the rate of information process-
ing (Stelmach and Herdman, 1991; Jaskowski, 1993; Carrasco and 
McElree, 2001; Shore et al., 2001; Spence et al., 2001; Schneider and 
Bavelier, 2003). However, an electrophysiological study reported 
no corresponding temporal difference between the neural signals 
for attended and unattended stimuli (McDonald et al., 2005). The 
authors argued that attentional prior entry was a result of the in 
increase in signal strength caused by attention (Störmer et al., 2009) 
and not of differential speed of neural processing. Another study 
(Vibell et al., 2007) reported a 4–10 ms difference between the 
ERPs that are associated with stimuli that are judged to be 38 ms 
apart – a physiological finding that is too small to either match or 
explain the size of the behavioral effect.

Here we propose a simple model that can naturally explain the 
apparent contradiction in these findings. The key idea is that time 
perception, just as in perception in general, is constrained by noise 
and uncertainty. Many previous modeling studies have employed 
these concepts (for a review see Chater et al., 2007), and the cur-
rent work is by no means presented as a replacement or competi-
tor to these influential models. The focus is on presenting what 
can be considered as a simplest case of how these concepts can be 
applied, in order to specifically explain the two puzzling findings 
described above.

For instance, one may think that the preparatory activity preced-
ing self-paced action starts at an exact time point prior to motor 
execution, as indicated by the RP measure. However, the RP is the 
result of averaging over many trials. To determine the onset of pre-
paratory activity in every trial, the brain does not have the luxury 
of averaging to reduce noise. Of course, in the RP there is also noise 

IntroductIon
How does the brain process temporal information? How do we 
determine the onsets of stimuli? Despite the impressive volume 
and quality of recent work in this area (Leon and Shadlen, 2003; 
Coull et al., 2004; Eagleman et al., 2005; Battelli et al., 2008; Brass 
and Haggard, 2008), the exact mechanism of time perception is 
not completely known yet. Here we focus specifically on two well-
known puzzling findings in onset perception, and describe a sim-
plistic model that explains the apparent contradictions.

It has been shown (Kornhuber and Deecke, 1965; Deecke and 
Kornhuber, 1978) that self-paced motor actions are preceded by a 
gradually increasing neural signal known as the readiness potential 
(RP), recordable from the scalp using EEG. The RP is particularly 
salient around the vertex. Single-cell recordings in monkeys in the 
underlying region, the supplementary motor area (SMA), have con-
firmed there are neurons that start firing at up to 2.6 s prior to motor 
execution (Romo and Schultz, 1987). However, Libet et al. (1983) has 
famously used a cross-modal timing method to measure the earliest 
time at which subjects detect any sense of motor preparation (the 
“urge” or intention of wanting to make the action), and it was found 
that subjects reported that they had the intention to move only about 
250 ms prior to motor execution. One question that has exercised 
the imagination of researchers for decades is: why don’t we become 
aware of the motor preparation earlier, perhaps as early as the onset 
of the RP? We call this the Kornhuber–Deecke–Libet paradox, due 
to their pioneering but apparently contradictory findings.

The second finding: Titchener’s law of attentional prior entry 
(Titchener, 1908) states that attended stimuli are perceived quicker 
(i.e., having earlier onset) when compared to unattended stimuli. 
Numerous papers have provided psychophysical evidence for this 
claim using the temporal-order-judgment (TOJ) task (Stelmach 
and Herdman, 1991; Jaskowski, 1993; Shore et al., 2001; Spence 
et al., 2001; McDonald et al., 2005). In this task, two stimuli are 
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ModelIng the Kornhuber–deecKe–lIbet paradox
We presented the same true signal multiple times, each time with 
an onset chosen uniformly at random. We modeled the noise at 
each time bin to come from a Gaussian distribution with a mean of 
0 and SD of 1. The units here are arbitrary and all other variables 
are expressed in terms of the SD of the noise distribution. For each 
series of simulations we used a different criterion. In each trial, we 
recorded the detection time relative to the onset of the true signal 
in that trial (that is, we subtracted the onset from the detection 
time). In this way, we approximated the probability distribution 
of the relative detection time. We then computed the mean square 
error (MSE) for the resulting distribution. The mean squared error 
is simply E[(T−t_0)∧2] where t_0 is the true onset and E[] denotes 
expected value. Mathematically, the MSE equals the variance of 
the estimated onset plus the squared error of the estimation (also 
called bias):

E[(T−t_0)^2] = Var(T) + (E[T]−t_0)∧2 = variance + bias∧2

We defined the optimal criterion as the one that minimizes the 
MSE. We chose to use the mean squared error as it is one of the 
most widely used measures in statistics to quantify the amount of 
deviation from a value. It may appear as if the choice of MSE is 
central to our model but we believe that this is not the case. Initial 
models using the absolute deviation from the true onset (defined 
as E[|T−t_0|]) provided similar results.

The true signal was either a step or a slowly rising function 
designed to approximate the RP. The step function started at 0, 
then rose sharply to a particular value, and finally went back to 0 
again until the rest of the trial epoch. The slowly rising function 
started at 0, then rose slowly to a particular value (we used a log-
sinusoidal function to approximate the RP), and finally went back 
to 0 again until the rest of the trial epoch.

ModelIng attentIonal prIor entry
We calculate the respective optimal distributions of two signals – 
an attended signal and an unattended signal – with identical 
shapes and noise levels. Compared to the unattended signal, 
the attended signal was modeled with greater signal strength. 
In accordance with the method for finding the optimal distribu-
tion, the onsets of the two stimuli were still random in each trial, 
but this time the attended stimulus preceded the unattended 
stimulus by a fixed time gap, which we called the onset advan-
tage. Using the two distributions, P(T_a) and P(T_u), we then 
calculated P(T_a<T_u), the probability that the attended stimu-
lus is perceived first. We varied the onset advantage from nega-
tive values (unattended signal first) to positive values (attended 
signal first) in order to estimate the location of the point of 
subjective simultaneity.

results
probabIlIstIc onset detectIon
We varied the stimulus interval, the trial epoch, signal-to-noise 
ratio, and criterion used. For each set of values for the above vari-
ables we obtained a distribution of onset estimations P(T) by run-
ning 10,000 trials. We were interested in finding the criterion level 
that would minimize the MSE.

from the EEG measurement. But even for actual neuronal activity, 
there is trial-by-trial fluctuation, which is not necessarily meaning-
ful with respect to neural processing. Given such presence of noise, 
perception essentially depends on a decision process (Green and 
Swets, 1966); the brain has to decide what the true signal is even 
though it is corrupted by noise. According to Bayesian decision 
theory (Kersten et al., 2004) or signal detection theory (Green and 
Swets, 1966), the statistically optimal observer sets a criterion (or 
threshold) to decide whether the evidence represents signal or noise. 
We apply this concept to develop a model that can determine the 
onset of a stimulus.

MaterIals and Methods
probabIlIstIc onset detectIon
We modeled onset perception as an uninterrupted process of signal 
detection. In a task where a signal is to occur within a certain epoch 
and the subject is to determine its onset, one natural way the brain 
could solve this problem is to perform signal detection at every time 
point. The reported onset T would be at the point where the signal 
is first detected within the trial epoch. Note that even though we are 
treating time as a discrete variable, the same simulations can be done 
when time is treated as a continuous variable. However, it has previ-
ously been suggested that certain aspects of perception may be based 
on discrete sampling at about 12.5 Hz (VanRullen et al., 2007), and 
this is followed for the additional benefit of ease of computation.

At every time point, the chance of detection depends on the 
signal and noise distributions. We call the whole duration of a 
trial “trial epoch,” while the period in which the signal is present 
“signal interval.” In all our simulations we assume that the signal 
has a positive value during the signal interval and a value of 0 in 
the rest of the trial epoch. Further, we call the value of the signal 
that is not corrupted by noise simply “true signal” and the value 
of the signal corrupted by noise “internal evidence.” Note that the 
problem that the brain deals with, and that we are modeling here, 
is how to use the internal evidence in order to guess the onset of 
the true signal.

We used a signal detection theoretic framework (Green and 
Swets, 1966), according to which the brain sets a criterion for 
detection, and gives a positive response when the internal evidence 
crosses the criterion. Due to the presence of noise, the estimated 
onset T is a random variable with a certain distribution P(T). We 
ran the signal detection model on multiple trials in order to empiri-
cally obtain the distribution P(T).

In each trial, the signal had a random onset and was detected at a 
particular time bin. If the signal was not detected by the end of the 
trial epoch, the system was forced to guess the onset randomly using 
a uniform distribution over the duration of the whole trial epoch. 
There were two alternatives to this method that we considered. First, 
trials in which the signal was not detected could simply be discarded. 
However, such an approach does not punish misses and resulted in 
extremely high optimal criteria, which missed the signal on a very 
large percentage of the trials. Second, for trials in which the signal 
was not detected, the system could have chosen the last time bin 
as the correct answer. This option seemed further removed from 
what the brain might do in a similar situation. Thus, we decided 
to choose the onset from a uniform distribution as the best way of 
approximating how the brain may deal with this problem.
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We would like the system to give an average response that is close 
to the actual onset. Also, we would like it to give responses that 
are not extremely varied across trials. These two factors are jointly 
captured by the statistical construct of mean squared error (MSE) 
(Degroot, 1980), which characterizes how well a system behaves 
with respect to both bias and consistency. Our simulations showed 
that at an optimal criterion (Figure 1, 3rd panel), P(T) should 
be mildly skewed to the right under the present noise level. This 
means that an optimal system cannot afford to use a criterion 
that is low enough to guarantee that the first bit of the signal will 
always be detected; at such low criterion it would produce too many 
early false positives to upset the overall performance (Figure 1, 

Figure 1 shows the simulated distribution P(T) under different 
criterion levels, for the same signal (stimulus interval = 2 s) and 
a constant Gaussian noise level (signal-to-noise ratio, S/N = 2.5). 
One could see that at low criterion levels, P(T) is skewed to the 
left. This is because at such liberal criterion, the system produces 
early false positives even in the absence of a true signal. At a higher 
criterion level, P(T) is skewed to the right, because at a conservative 
criterion, the system may miss the early part of the signal and only 
detect it at a later stage.

The crucial question is what would be the optimal criterion and 
the corresponding P(T). For the system to perform satisfactorily in 
this task, it must take into account two factors: bias and  consistency. 

Figure 1 | We set the duration of the trial epoch to 16 s and broke the 
time interval into 200 time bins, in accordance with a signal sampling 
rate of 12.5 Hz. The signal was a step function and had duration of 2 s, 
constant signal strength of 2.5 times the SD of the noise which was 
modeled to have a Gaussian distribution with a mean of 0 and SD of 1. We 
computed the distribution of detection times for each of 21 values of the 
criterion, from c = 0 to c = 5 (only 4 of them are shown in this figure). 
Detection times vary from 14 s prior to the onset of the signal to 16 s after 

the onset because the onset could have had its onset anytime between the 
beginning and 14th second of the 16-s trial epoch. To compute each 
distribution, we simulated a signal detection task 10,000 times. As the 
criterion for detection increased, so did the mean estimated onset<T>. The 
mean square error (MSE) first decreased and then increased again, reaching 
its minimum for c = 3.5. Thus, the optimal detection strategy is achieved for 
c = 3.5 and produces an average estimate of the onset 308 ms later than the 
true onset of the signal.
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the Kornhuber–deecKe–lIbet paradox
We then simulated how an optimal system would determine the 
onset of a slowly ramping-up signal, in order to shed light on the 
mechanism underlying introspective reports of the onset of motor 
preparation (see Introduction).

Figure 2 shows the simulated distribution P(T) under different 
criterion levels, for a signal that has a shape similar to the RP (dura-
tion = 2 s, S/N at the peak of the signal = 5). The choice of signal-to-
noise ratio was motivated by previous electrophysiological studies. 
For example, Kargo and Nitz (2004) recorded from cells in the 
monkey motor cortex and reported the ratio of mean spiking rate 
to the SD of the spiking rate to be between 2 and 6 and to increase 
with training. These values are in agreement with similar measure-
ments from the monkey pre-motor and motor cortex (Lecas et al. 
1986; Crammond and Kalaska 2000; Churchland et al., 2006).

1st and 2nd panel). Similarly, an optimal system cannot afford 
to place the criterion too high since the signal would be missed 
too often and this would result in more uncertainty in the onset 
detection (Figure 1, 4th panel). Rather, it would use a criterion 
that is higher than the average signal strength. The signal would 
still be detected because the presence of noise is sufficient to push 
the signal over the criterion such that the system is actually most 
likely to report the true signal onset as T. Also, the signal lasts for 
more than one sampling point, such that even if the signal is not 
detected immediately at the first point, it is likely to be detected 
shortly afterward.

We achieved similar qualitative results by varying the length of 
the trial epoch and the stimulus interval, as well as the signal-to-
noise ration, thus confirming that our results are not dependent 
on the particular values of these variables.

Figure 2 | As in Figure 1 we used a trial epoch duration of 16 s and 200 
time bins. The signal was a log-sinusoidal function that approximates the shape 
of the readiness potential. Specifically the signal strength at time bin n is 
s(n) = (s_peak/2)*{1−sin[log(−(n−a)/T)]}, where s_peak is the peak signal strength 
(we used 5 times the SD of the noise distribution), a = signal onset + signal 
duration and T = signal duration/exp(pi/2). We computed the distributions for 23 

values of the criterion, from c = 0 to c = 5.5 by simulating 10,000 signal 
detection tasks. Again, as the criterion for detection increased, so did the mean 
estimated onset<T>. The mean square error (MSE) first decreased and then 
increased again, reaching its minimum for c = 3.75. Thus, the optimal detection 
strategy is achieved for c = 3.75 and produces an average estimate of the onset 
1.67 s later than the true onset of the signal.
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signals for attended and unattended stimuli (McDonald et al., 
2005). In that study, attentional prior entry was associated with 
changes in the strength, not the timing, of neural responses to 
visual targets. We investigated whether our model can account for 
these  surprising results.

We assume that attention boosts the signal-to-noise ratio of a true 
signal, either by increasing the signal magnitude, reducing the noise 
level, or both. Figure 3 (left panels) shows the P(T) associated with 
two similar signals with different signal-to-noise ratio, assuming that 
the system behaves optimally in both situations. One can see that for 
the stronger signal (lower left panel), P(T) is less skewed to the right, 
as compared to the weaker signal (upper left panel). This is because if 
the signal is strong, it is more likely to be detected immediately after 
the true onset. The fact that the stronger signal is associated with 
a P(T) that is less skewed to right means that the expected value of 
T, or the statistical average T, for the stronger signal is going to be 
earlier than the expected value of T for the weaker signal, even if the 
actual signal onsets are the same for both, and importantly, even if 

One could see that at the optimal criterion, the expected time 
of reported onset, i.e., expected T, is much later than the onset of 
the signal where it begins to ramp up. The reason for this late T is 
the ramping-up shape of the signal. In order to detect the earli-
est onset, the system would need to set a criterion almost as low 
as baseline. But at that criterion, given the presence of noise, the 
system’s performance would be upset by a high amount of early 
false positives. In order to reduce variability, the optimal system 
would set a higher criterion, inducing a bias toward late detection 
in order to maintain a reasonable level of consistency.

attentIonal prIor entry
Psychophysical findings (Stelmach and Herdman, 1991; Jaskowski, 
1993; Shore et al., 2001; Spence et al., 2001; Schneider and Bavelier, 
2003) support the principle of attention prior entry (Titchener, 
1908), which states that attended stimuli are perceived faster 
than unattended stimuli. However, an electrophysiological study 
reported no corresponding temporal difference between the  neural 

Figure 3 | Left panels: We set the duration of the trial epoch to 16 s and 
the signal onset to the 10th second of the trial epoch. The signal was a 
step function with signal-to-noise ration of either 3 (upper panel) or 5 (lower 
panel) simulating an unattended and an attended condition. In the former case 
the optimal criterion was c = 3.75 resulting in 220 ms delay for the onset 
estimate; in the latter case the optimal criterion was c = 4.75 resulting in 
60 ms delay for the onset estimate. This shows that lower signal-to-noise 
ratios result in later optimal estimates of the signal onset. Right panels: Data 

obtained by varying the cued onset advantage. Upper panel shows the data 
obtained by McDonald et al. (2005). Lower panel shows data simulated by our 
signal detection model. For each value of the onset advantage we first 
computed the optimal criterion for the attended and unattended signals 
(signal-to-noise ratios of 5 and 3, respectively) and then compared the average 
onset detection in each case. Each estimation was done on the basis of 
10,000 trials. We qualitatively approximated the experimental data by 
McDonald et al.
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lIMItatIons of the Model
Is the model we proposed here realistic? Admittedly, it is unlikely 
that the brain treats each data point independently and performs 
signal detection on each of them. This is an abstraction that allows 
ease of computation and illustration. However, we have also tried 
augmenting the model such that it accumulates evidence over time 
(Ratcliff and McKoon, 2008), or performs temporal smoothing of 
the data before the onset is determined retrospectively (Rao et al., 
2001). A third model incorporates Poisson-like neural noise with 
positive baseline neuronal activity (Ma et al., 2006). All of these 
models produced similar results thus providing evidence that our 
conclusion do not depend on the specific parameters of our model 
(see Supplementary Materials for details). The reason for that is that 
the key characteristic of the model (the necessity of a high criterion 
in order to minimize the total amount of error) is present in all 
of the above versions. So long as there is uncertainty and onset is 
defined as the first instance where the signal passes a criterion, all 
of our arguments hold and the results are to be expected.

In our model, we assume that the brain tries to minimize error 
in its onset judgments, even for endogenously generated signal (i.e., 
the motor preparation activity, or “intention”). Is this a reasonable 
assumption? How can the brain compute the MSE for such judg-
ments given that the true onset of the motor preparation activity is 
not known? We acknowledge it is unclear how the brain can achieve 
this exact computation. It is likely that the brain does not directly 
compute MSE in such situations, but rather uses some heuristics 
developed from other situations where the true onset of the event 
can be verified. However, it is important to note that our argument 
does not depend on the brain actually computing the exact value of 
the MSE. Our argument, as in many other modeling studies (e.g., 
“Bayesian” models, Ma et al., 2006), is that our results would be 
obtained if the brain was engineered to try to achieve some kind 
of optimality. Whereas we do not know for sure whether the brain 
is exactly engineered to perform this way, such assumptions form 
a reasonable basis for building a model, which can then allow us 
to compare the results of the model to actual data. In our case, by 
assuming some kind of error minimization, we found that we can 
explain the two paradoxes quite well.

The idea that a high criterion would predict late onset detection 
is not new. In fact, Libet et al. (1983) suggested that if a subject 
used a high threshold (or criterion), this will predict a late onset 
detection of the RP, thus explaining why the felt intention was 
late in their results. However, Libet et al. suggested that the system 
would still need to decide when to start applying such a thresh-
old, or in the case of a random-walk-like model (see Figure S2 in 
Supplementary Material), when to start accumulating evidence. 
They further suggested that such evidence accumulation mecha-
nisms “would have to be initiated at the onset of averaged RP, 
preceding the achievement of threshold for the decision” (Libet 
et al., 1983, p. 637). This means that the system or the observer 
would still need to be aware of the approximate onset of the RP 
for such mechanisms to work. We do not agree. In our model, the 
observer has no knowledge of the onset of the signal. Instead, a 
criterion is applied throughout and the system constantly accumu-
lates evidence. The reason why constant accumulation is needed 
is precisely because the system could not know when is the true 
onset of the RP; if this were known, there would be no need for 

the most likely reported T (i.e., the peaks of the distributions) are 
the same for both. Because psychophysical experiments support-
ing the law of prior entry typically use a temporal-order-judgment 
(TOJ) procedure in which subjects determine which of two stimuli 
come first over many trials, the results correspond to the statistical 
average or expected value of T. This value would be earlier when 
the signal-to-noise ratio is high.

To make this point more clear, we have extended our model to 
stimulate a TOJ experiment. Figure 3 (upper right panel) shows 
the actual data supporting prior entry adapted from McDonald 
et al. (2005). Figure 3 (lower right panel) shows the simulated 
data from our model. It can be seen that if attention changes the 
signal-to-noise ratio for a stimulus, our model predicts results that 
are qualitatively similar to the actual data.

dIscussIon
suMMary of results
Our model provides an explanation to the apparent contradiction 
in the Kornhuber–Deecke–Libet paradox. The RP is averaged over 
many trials. Although it may reflect the shape of the underlying 
signal, the brain does not have the luxury of averaging when it has 
to make a decision in real time after each motor action. The early 
part of the RP might be on average higher than baseline, but in fact 
the signal-to-noise ratio is weak, as compared to the later part of the 
preparatory activity. To detect the earliest part, the system would 
have to use a very low criterion and may therefore suffer from low 
consistency because of the false alarms generated. To detect the onset 
of the RP, the brain must set a certain criterion by taking into account 
the trade-off between bias and consistency. Our analysis suggests 
that the optimal trade-off would mean that a reasonably consistent 
system would give a sufficiently large late bias. This may explain why 
we are only aware of the later part of the preparatory activity. The 
findings by Libet et al. (1983) and Kornhuber and Deecke (1965) 
may therefore be consistent with the possibility that the brain is 
behaving close to optimality, given the presence of noise.

Second, our model also helps to explain the discrepancy of 
results regarding attentional prior entry. Previous work has failed 
to find shifts of ERP onsets that reflect the behavioral effect that 
attention seems to speed up perception. McDonald et al. (2005) 
specifically suggested that the behavioral effect of attention prior 
entry may be associated with down-stream decisional mechanisms. 
Our model captures what such mechanism may be. Specifically, one 
could judge a sensory stimulus to arise earlier than another one 
even when the sensory signals underlying both of them have the 
same onset. An increase in signal-to-noise ratio, which is likely to 
be induced by attention, would be sufficient to increase the likeli-
hood for a stimulus to be judged as arising early. This is especially 
salient when we average the results of temporal judgments over 
many trials. A reasonably sensitive system should detect the onset 
of a stimulus relatively accurately on most trials. However, there 
might be a small portion of trials in which the onset was detected 
late, because the early part of the signal was missed due to chance 
fluctuation. When we look at averaged results over many trials, 
these “late” detection trials would play a role. We assume that atten-
tion boosts signal-to-noise ratio, and thereby reduces these “late” 
 detection trials, which means the attended stimuli would be judged 
as arising earlier on average.
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using a threshold in the first place. Our model demonstrates that 
even if the averaged onsets of the RP is not known, the system or 
the observer can still try to achieve the most optimal detection 
time given that the signal is embedded in noise.

The parameters chosen for the model may seem ad hoc. But our 
modest goal here is mainly to demonstrate as an example case of 
how this could work conceptually. We have not been able to provide 
analytic solutions to some most of the optimization problems yet. 
We hope future work can address these issues.

A related criticism could be that the model does not specify the 
neuronal mechanism underlying onset detection. Currently the 
exact neuronal mechanism is unknown, and we hesitate to speculate 
about such details. The model we propose is on a more abstract, 
general cognitive level. A useful analogy is that signal detection the-
ory has been useful for perception research even though a neuronal 
mechanism for detection criterion has not been specified. In fact, 
recent work in neurophysiology tends to adopt diffusion-style mod-
els (Gold and Shadlen, 2007) which, unlike signal detection theory, 
take into account the dynamics of the decision process. However, 

this should not mean that the basic concept of signal detection 
theory is irrelevant. Our model can be similarly considered as a 
conceptual device that allows us to resolve certain controversies 
and paradoxes in time perception. The key ingredient behind this 
conceptual device is the idea that the brain needs to deal with noise 
and uncertainty, regardless of the exact mechanism.
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