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The current study assessed the viability of mixture confirmatory factor analysis (CFA) for 
measurement invariance testing by evaluating the ability of mixture CFA models to identify 
differences in factor loadings across populations with identical mean structures. Using simulated 
data from a model with known parameters, convergence rates, parameter recovery, and the 
power of the likelihood-ratio test were investigated as impacted by sample size, latent class 
proportions, magnitude of factor loading differences, percentage of non-invariant factor loadings, 
and pattern of non-invariant factor loadings. Results suggest that mixture CFA models may 
be a viable option for testing the invariance of factor loadings; however, without differences 
in latent means and measurement intercepts, results suggest that larger sample sizes, more 
non-invariant factor loadings, and larger amounts of heterogeneity are needed to successfully 
estimate parameters and detect differences across latent classes.
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of self-esteem are hypothesized to be different for Western and 
Eastern cultures implying that items on a questionnaire translated 
from English to Chinese may have weaker factor loadings (Chen, 
2008). However, oftentimes manifest groups are used in empirical 
research as proxies for other more nuanced characteristics that 
are not included in a dataset. The psychometric insufficiency of 
using manifest groups to define sources of measurement hetero-
geneity has been discussed in the social and behavioral sciences, 
for example, when modeling data from psychological instruments 
(e.g., Muthén, 1989), marketing research (e.g., Moore, 1980) and 
test items (e.g., Mislevy and Verhelst, 1990).

In educational testing, latent classes can represent heterogene-
ous qualitative characteristics, such as instructional background 
(Muthén, 1989) or solution strategies (Mislevy and Verhelst, 1990; 
Rost, 1990). The use of latent classes instead of manifest groups has 
been advocated in the test theory literature for detecting differential 
item functioning (DeAyala et al., 2002; Samuelsen, 2007) and has 
been shown to provide more meaningful inferences in applications 
(Webb et al., 2008; Scarpati et al., 2009). An advantage of mixture 
models is that latent classes can be detected without knowing the 
source of the heterogeneity.

There is extensive methodological and applied literature on using 
item response theory (IRT) and CFA to model heterogeneous discrete 
item responses across populations with both observed and unob-
served membership (e.g., Muthén and Christoffersson, 1981; Mislevy 
and Verhelst, 1990; Rost, 1990; Mislevy and Wilson, 1996; French 
and Finch, 2006; Muthén and Asparouhov, 2006; Lubke and Neale, 
2008), using multigroup CFA to model heterogeneous continuous 
indicator variables across observed populations (e.g., Jöreskog, 1971; 
Sörbom, 1974; Byrne et al., 1989; Cheung and Rensvold, 2002; Meade 
and Lautenschlager, 2004; French and Finch, 2006; Meade and Bauer, 
2007), and using mixture CFA to model heterogeneous latent means 
across unobserved populations (e.g., Gagné, 2004; Lubke and Muthén, 
2005; Lubke and Neale, 2006; Lubke and Muthén, 2007). However, 
little is known about how well mixture CFA can successfully model 

IntroductIon
Modeling and testing for heterogeneity in the relationship between 
latent variables and their continuous measured indicator variables 
in cross-sectional confirmatory factor analysis (CFA) models is of 
interest when the assumption of a homogeneous measurement 
scale may not be tenable. Measurement invariance testing is both 
practically and theoretically important to insure that inferences 
drawn are about the intended population and that cross-population 
comparisons are accurate and valid. Validity can be substantially 
comprised if a measurement instrument is assumed to be invari-
ant across populations that are being compared at the structural 
level when it truly is not or when inferences about a homogeneous 
population are drawn from a single-population model using data 
that is truly derived from two or more populations.

Testing for measurement invariance across known groups using 
multigroup CFA has been widespread (for summaries of applica-
tions see Vandenberg and Lance, 2000; Schmitt and Kuljanin, 2008). 
However, there may be substantive reasons why it is not tenable to 
assume that a manifest group is homogeneous with respect to indi-
cator variable performance, particularly when broad groups such as 
gender or race are used out of convenience or post hoc considera-
tion. For example, early interest in latent sources of measurement 
heterogeneity included work by French (1965) who hypothesized 
that factor loading values were influenced by populations of test-
takers who differed with respect to their problem-solving skills and 
abilities. The use of multigroup CFA when manifest groups are not 
homogeneous may result in incorrect inferences about popula-
tion heterogeneity or may lead to incorrect parameter estimates 
in the structural portion of a latent variable model. Alternatively, 
mixture CFA can be used to incorporate theoretically important 
unmeasured characteristics to capture heterogeneity and test for 
measurement invariance across latent classes.

In some disciplines, manifest groups may be sufficient for 
modeling heterogeneity and statistical analyses can verify substan-
tive theories about population differences. For example, sources 
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reasons, such as when theory suggests that a construct differs across 
 populations. For example, scale items may function differently 
across ethnic groups due to secondary attributes in addition to 
the primary construct. Alternatively, a researcher addressing ques-
tions of moderation in structural relations or latent means must 
first examine the cross-population equality of parameters resid-
ing in the CFA portion of the model. For example, mean levels of 
self-concept can be compared across gender groups if the latent 
reading self-concept scales are similar for girls and boys. In the 
former case, the intent is to find evidence of non-invariance to 
support a hypothesis. In the latter, the intent is to find sufficient 
statistical support for invariance or partial invariance so that infer-
ences about structural parameters or latent means are accurate 
and meaningful (Byrne et al., 1989).

When the number of latent classes is assumed to be known, 
invariance testing with a mixture CFA model involves only cross-
population constraints. Comparing goodness-of-fit between 
alternative configurations of cross-population constraints 
requires estimation of a null hypothesized model with all param-
eters of theoretical interest constrained equal across populations 
while all other parameters except those needed for identifica-
tion1 are free to vary. An alternative model also is estimated 
with the same identification constraints as the null hypothesized 
model but with all parameters of theoretical interest free to vary 
across populations in order to compare goodness-of-fit across 
the models.

The most commonly used method of invariance testing in 
multigroup CFA is the likelihood-ratio (LR) test (Vandenberg 
and Lance, 2000) which allows for goodness-of-fit comparisons 
of nested models by comparing chi-square values and can be used 
in mixture CFA when the number of latent classes is assumed to 
be known. Invariance testing within a mixture modeling frame-
work when the number of latent classes is theoretically unknown 
poses challenges because model selection involves both choosing 
the number of latent classes and choosing between different con-
figurations of cross-population invariance constraints. Models with 
different numbers of latent classes are nested; however, the standard 
LR statistic for comparing models with different numbers of latent 
classes does not follow the theoretical chi-square distribution and 
as such, the models cannot be compared with chi-square values 
(e.g., Dayton, 1998).

heterogeneous factor loadings and test for measurement invariance 
when the source of population heterogeneity is unobserved. As such, 
the current study examined the feasibility of mixture CFA to suc-
cessfully model (in terms of convergence and parameter recovery) 
and test for heterogeneous factor loadings. While heterogeneity in a 
measurement model can be due to cross-population differences in 
factor loadings, measurement intercepts, or error variances/covari-
ances, the focus of the current study was on modeling heterogeneous 
factor loadings, as factor loadings are the first and most commonly 
tested set of parameters when investigating the equivalence of meas-
urement models across populations (e.g., Vandenberg and Lance, 
2000; Schmitt and Kuljanin, 2008).

theoretIcal framework
The following equations define the general form of the finite 
mixture CFA model with continuous indicator variables for cross-
sectional data. The measurement model with p indicators of m 
exogenous latent variables for observation i in latent class c is 
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Maximum-likelihood (ML) estimation of mixture CFA mod-
els can be accomplished via the expectation-maximization (EM) 
algorithm or some modification of it (McLachlan and Krishnan, 
2008). Mplus 5.1 (Muthén and Muthén, 2007) is one of several 
existing software programs with the capacity to estimate mixture 
CFA parameters with ML methods. Mplus uses ML estimation via 
the EM algorithm; a description of the estimation in general for 
latent variable mixture modeling is described in the Mplus 5.1 tech-
nical appendices (Muthén, 1998-2004) with more details provided 
in Muthén and Shedden (1999). The EM algorithm is described in 
detail specifically for mixture CFA models in Yung (1997).

Failure to converge to a stable solution within a given number of 
iterations or converging to a local maximum are common problems 
when estimating any type of mixture model using ML. In univariate 
and multivariate normal mixtures with heterogeneous covariance 
matrices, the likelihood function is unbounded, which frequently 
can lead to non-convergence or convergence to one of multiple local 
maxima that likely exist rather than a global solution (McLachlan 
and Peel, 2000). As such, while non-convergence has been a non-
issue in previous methodological studies that have estimated mul-
tigroup CFA with observed group membership and continuous 
indicator variables using ML estimation (e.g., French and Finch, 
2006; Meade and Bauer, 2007), failure to obtain a global solution 
is a concern when studying and using mixture CFA models.

There are two main purposes for modeling factor loading 
heterogeneity within a CFA framework. A heterogeneous indica-
tor-latent variable relationship may be modeled for substantive 

1Identification of a CFA model with mean structure is accomplished by assigning a 
metric and an origin for the factors. In multigroup modeling, the metric is usually 
set by choosing a referent loading and fixing it to a constant for each factor in each 
population, typically unity. The choice of referent may impact inferences drawn 
from invariance testing using heterogeneous CFA models (Yoon and Millsap, 2007). 
Statistical procedures have been proposed to detect factor loadings that are truly 
invariant across populations to use as referents (see French and Finch, 2008 for 
a review and performance results from simulated data), yet the degree to which 
they are successful is unclear. There are two statistically equivalent ways in which 
parameters can be fixed to set the origin of the factors in a CFA model with mean 
structure: (1) set the factor means of each population to 0 and allow all measure-
ment intercepts in all populations to be freely estimated, or (2) set the factor mean 
of one population to 0 while constraining the measurement intercept associated 
with the referent indicator(s) equal across populations. Fixing the latent means to 0 
in all populations may be appropriate when substantive theory suggests that factor 
means should not differ across populations or when the focus is on measurement 
model heterogeneity (e.g., Yung, 1997; Muthén, 2008). In the latter case, if true 
differences in factor means were to exist, this difference would be reflected in diffe-
rences in the estimated measurement intercepts.
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structure may be invariant include extreme response style in survey 
research (Cheung and Rensvold, 2000), racial differences on intel-
ligence tests (Drasgow, 1984), and non-uniform differential item 
functioning (González-Romá et al., 2005). It was expected that 
heterogeneous factor loadings would be most difficult to detect 
with mixture CFA when the mean structure is invariant because the 
aggregate distribution would appear unimodal, making it difficult 
to differentiate between latent classes. Such an overlap of latent class 
distributions is also expected to negatively impact convergence and 
parameter coverage rates.

If mixture CFA modeling can successfully estimate the model 
parameters and determine the existence of heterogeneous factor 
loadings when the location of latent classes is the same, then it is 
expected that mixture CFA can be used with confidence whether 
or not differences in latent means are hypothesized to exist. The 
performance of mixture CFA models in this context in terms of 
convergence, parameter recovery, and power to detect heteroge-
neous factor loadings was evaluated with data generated under a 
variety of study conditions that represent a broad range of research 
scenarios found in practice to assess the potential of mixture CFA 
for use in measurement invariance testing. These study conditions 
comprise an important subset of conditions that would require 
further methodological evaluation given evidence in support of the 
feasibility of mixture CFA modeling for measurement invariance 
testing in the presence of an invariant mean structure.

To test for the number of latent classes, information-based 
indices have been commonly used (see, for example, Henson 
et al., 2007), including the Akaike Information Criterion (Akaike, 
1987), the Bayesian Information Criterion (Schwartz, 1978), the 
consistent Akaike Information Criterion (Bozdogan, 1987), and 
the sample-size adjusted BIC (Sclove, 1987). LR-based tests 
to determine the number of latent classes that approximate 
the chi-square distribution have also been proposed. These 
include the Lo–Mendell–Rubin test (Lo et al., 2001), the boot-
strapped LR test (McLachlan, 1987) and a modified LR test 
(Stoel et al., 2006). Approaches for deciding on the number 
of latent classes in structured means mixture modeling and 
growth mixture modeling have been studied empirically by 
several authors (e.g., Henson et al., 2007; Nylund et al., 2007; 
Tofighi and Enders, 2008).

Mean separation is not a requirement in multigroup CFA mod-
eling when solely testing parameters in the covariance structure. In 
mixture CFA modeling, a mean structure is imposed even when the 
focus is on heterogeneity in the covariance structure (e.g., Yung, 
1997). In the current study, the performance of mixture CFA was 
evaluated in the presence of a completely invariant mean  structure. 
Testing for cross-population factor loading differences in the pres-
ence of an invariant mean structure represents a substantively inter-
esting and methodologically extreme case. Examples of applications 
in which factor loadings are hypothesized to differ while the mean 

Table 1 | Factor loading model generating values.

 Non-invariance of factor loadings

Size % Pattern Class λ11 λ21 λ31 λ41 λ51 λ61 λ71 λ81

 High Uniform 1 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

   2 0.85 0.45 0.45 0.45 0.45 0.45 0.45 0.45

  Mixed 1 0.85 0.85 0.85 0.85 0.45 0.45 0.45 0.45

   2 0.85 0.45 0.45 0.45 0.85 0.85 0.85 0.85

0.40 Medium Uniform 1 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

   2 0.85 0.85 0.85 0.85 0.45 0.45 0.45 0.45

  Mixed 1 0.85 0.85 0.85 0.85 0.85 0.85 0.45 0.45

   2 0.85 0.85 0.85 0.85 0.45 0.45 0.85 0.85

 Low Uniform 1 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

   2 0.85 0.85 0.85 0.85 0.85 0.85 0.45 0.45

  Mixed 1 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.45

   2 0.85 0.85 0.85 0.85 0.85 0.85 0.45 0.85

 High Uniform 1 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

   2 0.85 0.60 0.60 0.60 0.60 0.60 0.60 0.60

  Mixed 1 0.85 0.85 0.85 0.85 0.60 0.60 0.60 0.60

   2 0.85 0.60 0.60 0.60 0.85 0.85 0.85 0.85

0.25 Medium Uniform 1 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

   2 0.85 0.85 0.85 0.85 0.60 0.60 0.60 0.60

  Mixed 1 0.85 0.85 0.85 0.85 0.85 0.85 0.60 0.60

   2 0.85 0.85 0.85 0.85 0.60 0.60 0.85 0.85

 Low Uniform 1 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

   2 0.85 0.85 0.85 0.85 0.85 0.85 0.60 0.60

  Mixed 1 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.60

   2 0.85 0.85 0.85 0.85 0.85 0.85 0.60 0.85

Remaining parameter generating values: τj,c = 0 ∀c, ∀j; κc = 0 ∀c; φ11,c = 1 ∀c; and δj,c = 1 2− λ j c, ∀c, ∀j, c = 1, 2; j∈{1,…,8}.
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class to provide a metric for the factor; this value was used rather 
than the customary value of 1 merely to put parameters on the 
scale of the original population values, and in no way affects the 
estimation process. In the current study, factor means were con-
strained equal across classes and set to 0 for model identifica-
tion because the focus was on measurement model heterogeneity. 
Residual variances were freely estimated. The factor variance and 
all measurement intercepts, although truly invariant, were freely 
estimated and unconstrained across classes, consistent with the 
hierarchy recommended in the invariance testing literature (e.g., 
Bollen, 1989).

In order to conduct the analyses described below, two nested 
models were estimated with varying degrees of severity of cross-
population constraints on the factor loadings (excluding the ref-
erent factor loading). Specifically, models with all factor loadings 
except the referent freely estimated across latent classes (herein 
referred to as unconstrained models) and models with all factor 
loadings constrained equal across latent classes (herein referred 
to as constrained models) were estimated. The remaining param-
eters except those fixed for identification were freely estimated as 
described above identically in both model configurations.

The impact of study conditions on the ability of mixture CFA 
to accurately estimate parameters of the unconstrained model was 
evaluated3. Ninety five percent confidence intervals were computed 
using parameter estimates and their standard errors for each of 
the (up to) 500 replications that achieved a global solution. The 
percentage of confidence intervals that contained the parameter 
generating value across replications was recorded for each indi-
vidual parameter for each study condition. These coverage rates 
were then averaged across latent classes and parameters in each of 
the following matrices: factor loadings, measurement intercepts, 
residual variances, factor variance, and latent class proportions.

An omnibus LR test on the entire factor loading matrix was 
performed, comparing a two-class model with all factor loadings 
constrained to be equal across classes (H

0
; the constrained model) 

to a two-class model with all factor loadings free to vary across 
classes except for referent factor loadings (H

A
; the unconstrained 

model). All other parameters were estimated freely except for fac-
tor means which were fixed to 0 for identification as described 
above for both null and alternative models. Power of the omnibus 
test for each study condition was computed as the percentage of 
correctly rejected LR tests across replications with global solutions 
using α = 0.05.

The number of replications required to achieve 500 global 
solutions is reported for all study conditions. Analysis of variance 
(ANOVA) with a five-way [2 (latent class proportions) × 3 (sample 
size) × 2 (size of factor loading differences) × 2 (pattern of factor 
loading non-invariance) × 3 (percentage of non-invariant factor 
loadings)] unbalanced design was performed to evaluate the impact 
of study conditions on parameter recovery and power. Results for 
these outcome measures are reported for study conditions that 
are included in the highest significant interaction from each five-
way ANOVA.

methods
A two-class one-factor model was used to generate eight continuous 
indicator variables from a multivariate normal distribution depend-
ing on class membership for each study condition. Population gen-
erating values for the factor loadings (λ

11
 to λ

81
), factor variance 

(φ
11

), factor mean (κ), measurement intercepts (τ
1
 to τ

8
), and error 

variances (δ
1
 to δ

8
) are shown in Table 1. A factor loading below 0.6 

is indicative of a mediocre to weak relationship between a latent 
variable and its measured indicator (Ximénez, 2006).

The non-invariance of factor loadings was manipulated in three 
ways: the pattern of non-invariance across classes was either uni-
form or mixed, factor loadings differed by either 0.25 or 0.40 and 
the percentage of non-invariant factor loadings was either low, 
medium, or high. In conditions with uniform non-invariance, the 
population generating values of all non-invariant class 1 factor 
loadings were higher than those for class 2. In mixed conditions, 
half of the non-invariant factor loadings were higher for class 1 
and half were higher for class 2. The percentages of factor loadings 
chosen to be non-invariant were 25% and 50% for conditions with 
low or medium percentages, with the addition of high conditions 
with 88% of the factor loadings non-invariant.

Samples sizes and latent class proportions were chosen to repre-
sent moderate to large numbers of individuals. Total sample sizes 
of 200, 400, and 800 were used with equal class proportions. An 
unequal group size condition was also considered with latent class 
proportions equal to 0.25 and 0.75 for total sample sizes of 400 and 
800. As such, the smallest class studied had 100 observations2. For 
conditions with unequal latent class proportions and a uniform 
pattern of non-invariance, the larger class had the smaller factor 
loadings. There are 36 conditions with equal latent class propor-
tions and 24 conditions with unequal latent class proportions for 
a total of 60 study conditions.

Based on pilot analyses, the rates of non-convergence or local 
maxima in the current study were hypothesized to be higher 
than in existing work on mixture CFA for testing differences in 
latent means (e.g., Gagné, 2004; Lubke and Muthén, 2007), given 
a completely invariant mean structure. As such, model estimation 
occurred concurrently with data generation. Specifically, datasets 
were generated in SAS 9.0 for each study condition and the model 
was estimated until global solutions were achieved for 500 rep-
lications, with an upper limit of 5,000 replications. Conditions 
under which 5,000 replications were reached without achieving 500 
global solutions would then have a 90% or higher rate of unsuc-
cessful estimation. The number of replications required to reach 
500 global solutions was recorded for each study condition and the 
datasets with properly converged solutions were used to evaluate 
the outcome measures.

Mplus 5.1 (Muthén and Muthén, 2007) was applied to the 
generated data to obtain ML estimates of parameters in the true 
two-class models. Fifty sets of random starting values were used 
with ten iterations for each set, consistent with previous research 
on mixture CFA modeling (e.g., Lubke and Neale, 2006; Lubke 
and Muthén, 2007). During estimation, the first loading associ-
ated with each factor was fixed to the true value (0.85) for each 

2Pilot analyses suggested that smaller sample sizes were infeasible under the current 
study design with a completely invariant mean structure.

3In practice, a model with all factor loadings except for the referent free to vary 
across populations is typically used as the alternative model in the omnibus test of 
complete invariance of the factor loading matrix (Cheung and Rensvold, 2002).
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only when the difference between factor loadings was large and 
there were many non-invariant factor loadings following a mixed 
pattern of non-invariance.

For a given total sample size, conditions with unequal latent 
class proportions had fewer successfully converged replications 
than conditions with equal latent class proportions. In particular, 
with a total sample size of 800 and unequal latent class propor-
tions, the numbers of replications needed to achieve convergence 
to the global solution were higher than for conditions with N = 800 
and equal class proportions. When comparing conditions with the 
same number of observations in the smaller class, conditions with 
unequal latent class proportions (and therefore a higher total sam-
ple size) had higher rates of convergence to the global solution than 
conditions with equal latent class proportions when the pattern 
of non-invariance was mixed and there were many non-invariant 
factor loadings.

The results suggest a trade-off among sample size, size of factor 
loading differences, and percentage and pattern of non-invariant 
factor loadings. When the pattern of non-invariance was uniform, 
the average communality in one class was smaller than in the other, 
and was particularly low when there were many non-invariant fac-
tor loadings and large factor loading differences. As such, larger 
sample sizes were required to compensate for the difficulty in esti-
mating parameters for the class with the lower factor loadings. 
Conditions with few non-invariant factor loadings posed problems 
for attaining global solutions, even with as many as 400 observa-
tions per class. This suggests the need for a more theory-based and 
parsimonious model, at least when the mean structure is completely 
invariant. Overall, data that were characterized by larger sample 
sizes, larger differences between factor loadings, and many non-
invariant factor loadings showed promise in the ability to achieve 
convergence to the global solution.

Parameter coverage rates are reported separately for each 
parameter matrix in Table 3. The five-way interaction was statisti-
cally significant for the factor loadings (F = 7.71, df = 2, p < 0.01, 
ω2 = 0.0003), measurement intercepts (F = 18.85, df = 2, p < 0.01, 
ω2 = 0.001), factor variance (F = 7.20, df = 2, p < 0.01, ω2 = 0.0004), 
error variance (F = 8.94, df = 2, p < 0.01, ω2 = 0.0004) and latent 
class proportion (df = 2, F = 5.93, p < 0.01, ω2 = 0.0003). As such, 
percentages are reported for all study conditions for each of the 
parameter matrices. Together, the five study conditions and their 
interactions accounted for 18–33% of the variation in recovery 
rates across the five parameter matrices with the percentage of non-
invariant factor loadings accounting for the most variation4.

Average parameter coverage rates for the factor loading matrix 
ranged from 79% to 96% across conditions. For measurement 
intercepts, average parameter coverage rates ranged from 52% to 
97%. Average coverage rates for the remaining parameter matrices 
were 68–95% for residual variances, 72–97% for the variance of 
the factor, and 25–99% for latent class proportions.

Latent class proportions had the widest range of coverage rates 
among the parameter matrices. Many study conditions had cover-
age rates lower than 50%, pointing to difficulty in distinguishing 
two separate latent class distributions from the unimodal aggre-

results
The number of replications required to achieve 500 global solutions, 
with an upper limit of 5,000 replications, is reported in Table 2 for 
each study condition. Counts closer to 500 indicate better rates of 
convergence to the global maximum. As counts increase, the feasi-
bility of estimating a CFA mixture model under a given study con-
dition decreases. In general, as expected, larger sample sizes, larger 
differences in factor loadings, a mixed pattern of non-invariance, 
and more non-invariant factor loadings were associated with higher 
rates of convergence to the global solution.

Six of the 60 study conditions had less than a 10% rate of 
convergence to the global solution. Data generated under these 
conditions were characterized by one or more of the following: 
fewer than 100 observations in the smallest latent class, small dif-
ferences in factor loadings, few non-invariant factor loadings, and 
a uniform pattern of non-invariant factor loadings. Eleven of 60 
conditions had a 90% or better rate of convergence to the global 
solution. Data generated under these conditions were characterized 
by more than 200 observations in the smaller latent class, many 
non-invariant factor loadings, and large differences in factor load-
ings. Conditions with 100 observations in the smaller latent class 
achieved acceptable rates of convergence to the global solution 

Table 2 | Number of replications out of 5,000 needed to achieve 500 

global solutions.

 Non-invariance of 

 loadings

LC Size % Pattern N = 800 N = 400 N = 200

 0.40 High Uniform 500 543 1107

   Mixed 500 500 631

  Medium Uniform 504 702 1848

   Mixed 501 680 1606

0.5/0.5  Low Uniform 1011 2677 4488

   Mixed 930 2493 4953

 0.25 High Uniform 562 1276 3861

   Mixed 507 796 2412

  Medium Uniform 1125 2632 4545

   Mixed 957 2364 4206

  Low Uniform 3501 4629 5000+a

   Mixed 3235 4800 5000+b

 0.40 High Uniform 534 1066 

   Mixed 501 532 

0.75/0.25  Medium Uniform 977 2719 

   Mixed 544 1024 

  Low Uniform 3876 5000+c 

   Mixed 1445 3398 

 0.25 High Uniform 1570 4604 

   Mixed 600 1399 

  Medium Uniform 3673 5000+d 

   Mixed 1641 3684 

  Low Uniform 5000+e 5000+f 

   Mixed 4102 5000+g 

Total number of replications out of 5,000 with global solutions: a462, b468, c386, 
d467, e450, f340, g473.

4ω2 = 0.15 for intercepts, ω2 = 0.10 for error variances, ω2 = 0.07 for factor loadings 
and latent class proportions, and ω2 = 0.03 for the factor variance.
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loadings were constrained equal across latent classes in order to 
estimate the null hypothesized model for the omnibus LR test, 
fewer replications converged to the global maximum than when 
the  factor loadings were freely estimated for some study conditions. 
This is not surprising since non-invariant factor loadings in the 
constrained model were misspecified while only residual variances 
(both invariant and non-invariant depending on the study con-
ditions) and parameters that were truly invariant (measurement 
intercepts and the factor variance) were allowed to vary across 
classes during estimation. As such, the only source of heterogeneity 
in the estimated null hypothesized model was from deviations due 
to random sampling error and differences in the residual variances 
across classes, leading to more replications in which the global 
solution was not found.

All five study conditions explained 19% of the variation in power 
rates. Results are disaggregated across study conditions since the 
interaction of all five study conditions from ANOVA was statisti-
cally significant (F = 4.24, df = 2, p < 0.05, ω2 = 0.0003). Across 
all study conditions, power ranged from 56% to 100%. Power was 
lowest for conditions with a combination of small sample size, 
small factor loading differences, and a uniform pattern of non-
invariance, as expected. A mixed pattern of non-invariant factor 
loadings was associated with higher power relative to a uniform 
pattern of non-invariance except when only two factor loadings 

gate distribution. For all parameter matrices, the lowest coverage 
rates occurred for conditions with N = 200, small differences in 
factor loadings, and few non-invariant factor loadings. The high-
est coverage rates occurred for conditions with N = 800, large 
factor loading differences, and a moderate to high percentage of 
non-invariant factor loadings. For the smallest class size of 100 
with either equal or different latent class proportions, coverage 
rates for all parameter matrices were 90% or above when the data 
exhibited all of the following: all factor loadings non-invariant 
(except the referent) in a mixed pattern across latent classes with 
a difference in factor loadings equal to 0.40. Coverage rates for 
the factor loading matrix and the residual variance matrix were 
generally higher than for the other parameter matrices, as expected, 
since those matrices were truly non-invariant. For parameters in 
the factor loading matrix, as differences between factor loadings 
became larger, the accuracy of parameter estimates was higher. 
A mixed pattern of non-invariant factor loadings across latent 
classes was also associated with higher coverage rates in general. 
Alternatively, coverage rates for the factor loadings were never 
above 90% when there were only two truly non-invariant factor 
loadings in the entire parameter matrix.

Power of the omnibus LR test is reported in Table 4 with the 
total number of replications in which the constrained model 
converged to a global solution in parentheses. When all factor 

Table 3 | Percentage of replications out of 500 in which 95% confidence interval covers parameter (Λ, factor loading; τ, measurement intercept; δ, 

error variance, Φ, factor variance, π, latent class proportion).

 Non-invariance of loadings N = 800 N = 400 N = 200

LC Size %  Pattern Λ τ δ Φ π Λ τ δ Φ π Λ τ δ Φ π

 0.40 High Uniform 95 95 94 96 98 95 95 94 95 97 92 92 87 91 86

   Mixed 95 95 94 94 99 95 96 93 95 98 94 94 90 93 94

0.5/0.5  Medium Uniform 96 97 95 97 98 93 94 92 92 90 88 82 81 85 66

   Mixed 95 96 94 95 97 94 94 92 94 92 89 83 82 89 69

  Low Uniform 93 92 91 93 82 85 78 80 85 56 81 59 71 77 36

   Mixed 92 92 91 93 84 86 79 81 86 56 81 59 71 75 32

 0.25 High Uniform 95 95 94 97 94 92 92 87 92 82 84 74 71 79 54

   Mixed 96 96 95 96 97 93 93 90 94 86 87 81 79 88 66

  Medium Uniform 92 92 90 94 82 86 78 77 86 55 81 58 68 74 35

   Mixed 93 93 90 94 84 84 79 76 85 56 80 63 68 76 37

  Low Uniform 82 70 76 82 36 81 61 70 78 26 81 52 70 72 26

   Mixed 83 72 77 83 42 82 59 71 78 28 80 54 69 72 25

0.75/0.25 0.40 High Uniform 96 96 94 95 87 92 93 90 93 84     

   Mixed 95 96 94 94 79 95 95 92 94 91     

  Medium Uniform 92 92 91 94 85 84 78 81 86 63     

   Mixed 95 95 94 95 88 92 92 88 92 83     

  Low Uniform 81 69 78 81 48 79 61 74 77 46     

   Mixed 90 87 87 92 74 84 73 78 83 60     

 0.25 High Uniform 89 90 87 92 77 81 72 72 81 34     

   Mixed 95 96 93 95 88 91 89 85 91 81     

  Medium Uniform 80 71 73 84 50 80 63 71 79 49     

   Mixed 90 88 85 90 75 82 72 73 82 61     

  Low Uniform 79 62 73 79 33 81 55 73 75 41     

   Mixed 83 68 74 80 44 81 60 71 77 43     

Percentages out of fewer than 500 replications for conditions where noted in Table 2.
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fer with respect to their factor loadings. Researchers who wish to 
make inferences about cross-population differences in construct 
representation, values of latent means, or structural relations must 
assess  measurement invariance to ensure inferences are valid for 
the intended populations.

Results from estimating two-class one-factor mixture CFA 
models with simulated data revealed some situations under 
which mixture CFA models can successfully estimate param-
eters and detect heterogeneous factor loadings when the mean 
structure is completely invariant. In general, parameters that 
were truly non-invariant (factor loadings and residual variances) 
were estimated most successfully while latent class proportions 
were least accurately estimated. Convergence and parameter 
coverage rates were low when there were only two heteroge-
neous factor loadings and all factor loadings (except referent 
loadings) were free to vary across classes. A uniform pattern of 
non-invariance also made it difficult to successfully estimate 
the mixture CFA model.

The true number of latent classes was used when estimating all 
models in the current study, which allowed for use of the standard 
LR statistic to conduct invariance testing. In practice, the number 
of latent classes may be assumed known, for example, when there 
is substantive support for known qualitative differences between 
populations. The LR test had adequate power when there was more 
heterogeneity across latent classes in the residual variances which 
allowed for the completely restricted model to be estimated suc-
cessfully. The invariant mean structure had the least negative con-
sequences for successful estimation and invariance testing when 
total sample size was equal to 800, latent class proportions were 
equal, and factor loadings differed by 0.40.

The results showed that a total sample size of at least 800 with 
equal latent class proportions was adequate to derive accurate 
conclusions about parameter values and their cross-population 
equality when there were moderate to many non-invariant factor 
loadings. This suggests that any deviations of these character-
istics toward fewer observations and less heterogeneity would 
lead to problems with convergence, recovery of parameter esti-
mates, and power to detect factor loading heterogeneity when 
the mean structure is completely invariant. Problems with con-
vergence and accuracy of estimates when there were only a few 
non-invariant factor loadings even with large sample sizes and 
large cross-population differences suggest that, at least when 
the mean structure is invariant, mixture CFA cannot be used 
for exploratory analyses.

When the number of classes is assumed to be known a priori, 
the LR test may be a viable option when it is expected that there 
are other sources of heterogeneity beyond the parameters being 
tested. When there is little or no heterogeneity in other param-
eters, then the LR test may not be a good choice, and researchers 
should instead consider the multivariate Wald test, which does not 
require the null model to be estimated, to evaluate the equality 
of factor loadings. When the number of classes in not known a 
priori, bootstrapped and adjusted LR tests (e.g., McLachlan, 1987; 
Lo et al., 2001; Stoel et al., 2006) can be used. Such tests allow for 
comparisons of models across different numbers of latent classes 
and have been shown to be successful in latent variable mixture 
modeling (e.g., Nylund et al., 2007).

exhibited small differences. When the pattern of non-invariance 
was uniform, power was considerably lower for conditions with 
many non-invariant factor loadings.

Conditions with unequal latent class proportions had similar 
power levels to conditions with equal latent class proportions when 
total sample size was 800, the percentage of non-invariant factor 
loadings was high and their difference was large. Conditions with 
a mixed pattern of non-invariance also had similar levels of power 
for both equal and unequal latent class proportions when there 
were many factor loadings with small cross-population differences 
or a moderate percentage of factor loadings with a large difference 
across population. Overall, power was highest under conditions 
with total sample size equal to 800 and many factor loadings that 
differed by 0.40, as well as conditions that achieved more global 
solutions and produced accurate parameter estimates.

dIscussIon
The current study provided an analysis of convergence, param-
eter recovery, and power when testing for heterogeneous factor 
loadings with mixture CFA in the presence of a completely invari-
ant mean structure, thereby assessing the potential of using latent 
classes when conducting measurement invariance testing with 
continuous, cross-sectional data. When conducting research on 
multiple populations in the social and behavioral sciences, much 
attention is paid in particular to whether or not populations dif-

Table 4 | Percentage of correctly rejected LR tests for invariance of the 

factor loading matrix, number of replications in parentheses.

 Non-invariance of 

 loadings

LC Size % Pattern N = 800 N = 400 N = 200

0.5/0.5 0.40 High Uniform 99.6 (500) 89.8 (499) 64.3 (473)

   Mixed 100 (497) 100 (470) 99.7 (369)

  Medium Uniform 100 (484) 98.5 (407) 85.2 (324)

   Mixed 100 (464) 99.7 (366) 90 (321)

  Low Uniform 96.4 (358) 80.3 (290) 62.3 (265)

   Mixed 97.6 (339) 81.7 (278) 63 (246)

 0.25 High Uniform 81.3 (497) 56.1 (460) 55.9 (381)

   Mixed 99.8 (461) 97.6 (377) 86 (329)

  Medium Uniform 93.5 (397) 73.2 (321) 56 (282)

   Mixed 96.8 (380) 81.1 (307) 65 (260)

  Low Uniform 74.9 (299) 59.6 (245) 57.4 (216)

   Mixed 69.5 (279) 61.9 (247) 55.7 (228)

0.75/0.25 0.40 High Uniform 100 (497) 93.7 (441) 

   Mixed 100 (495) 99.8 (441) 

  Medium Uniform 98.1 (359) 82 (261) 

   Mixed 99.8 (438) 99.1 (343) 

  Low Uniform 69.9 (296) 58.7 (189) 

   Mixed 93.4 (334) 78.3 (277) 

 0.25 High Uniform 77.9 (438) 60.3 (343) 

   Mixed 99.8 (443) 92 (364) 

  Medium Uniform 73.7 (289) 57.7 (241) 

   Mixed 89.3 (337) 68.4 (288) 

  Low Uniform 68.9 (219) 56.5 (170) 

   Mixed 64 (286) 63.4 (191) 
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in applications, there are conflicting results about its success in 
multigroup CFA (e.g., Cheung and Rensvold, 2002; French and 
Finch, 2006; Chen, 2007). In addition, since the standard LR statistic 
used in the current study cannot be used to compare models with 
 different numbers of latent classes, the results cannot be generalized 
to exploratory modeling with mixture CFA models.

Results from this simulation study offer foundational evidence 
that mixture CFA models can be used for testing for heterogene-
ous factor loadings across latent classes when the mean structure is 
hypothesized to be equal across populations provided that sample 
sizes are large and the magnitude of heterogeneity is expected to 
be large in order to compensate for the potential lack of mean 
differences. More research would be needed to find strategies to 
improve the capabilities of mixture CFA modeling for invariance 
testing in order for it to be used under a wider variety of situ-
ations found in practice, in particular because most conditions 
in the current study that had a significant impact on successful 
estimation cannot be controlled through research design. Such 
follow-up research includes, for example, a comparison of mixture 
CFA to multigroup CFA for invariance testing (see Buzick, 2010, 
for a simulation study and application), a comparison of strate-
gies for testing for parameter invariance concurrently with class 
enumeration, an evaluation of the performance of mixture CFA 
with more complex models (e.g., more factors, more latent classes), 
and an evaluation of the performance of mixture CFA when testing 
other measurement model parameters. The results of the current 
study provide support for such further methodological research 
and also for the consideration of latent classes in applications of 
measurement invariance testing, not only when important mod-
erator variables are unobserved, but to add theoretically important 
qualitative information in order to improve parameter estimates 
and enrich inferences.
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While mixture CFA has the potential to accurately model and 
test for heterogeneous factor loadings when the mean structure is 
invariant, many study conditions led to unsuccessful estimation. 
A potential way to improve convergence and accuracy when using 
mixture CFA models is to include observed covariates to explain 
latent class membership. For example, Lubke and Muthén (2007) 
showed improved convergence rates when covariates were included 
to model heterogeneous factor loadings with mixture CFA and a 
non-invariant mean structure.

Conditions in the current study were chosen in order to provide 
an analysis of the potential for using mixture CFA modeling to 
test factor loading heterogeneity as an alternative to multigroup 
CFA models. Given the current paucity of research on mixture 
CFA models for continuous data when the focus is on factor 
loading heterogeneity, the current study focused on an extreme 
methodological case to offer preliminary analyses on the viability 
of testing the invariance of factor loadings across latent classes, 
with the expectation that the method would be used more fre-
quently by applied researchers if it can be carried out similarly to 
multigroup CFA and would be applicable in the same substantive 
situations. The invariant mean structure only allowed for investi-
gation of moderate to large sample sizes in the current study, with 
the smallest latent class comprised of 100 observations. Questions 
still remain about the performance of mixture CFA for testing the 
invariance of measurement model parameters when samples are 
small as well as the nature of the trade-off between mean separa-
tion and sample sizes.

There are several limitations of the current study. High rates of 
convergence to local maxima may have impacted the generalizabil-
ity of inferences about parameter coverage and power. Specifically, 
using only replications that resulted in proper solutions may have 
inflated parameter recovery percentages and power. In practice, 
non-convergence may indicate that the model is misspecified or 
that the estimation algorithm is on the edge of the parameter space. 
Increasing the number of iterations or decreasing the change in 
stop criterion may result in convergence to a global solution in 
practice that is less accurate than the results of this study may sug-
gest. In addition, the current study was limited to one type of fit 
statistic for invariance testing, the LR test statistic. While popular 
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