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Bayes’ rule for clinicians: an introduction
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Bayes’ Rule is a way of calculating conditional probabilities. It is difficult to find an explanation 
of its relevance that is both mathematically comprehensive and easily accessible to all readers. 
This article tries to fill that void, by laying out the nature of Bayes’ Rule and its implications for 
clinicians in a way that assumes little or no background in probability theory. It builds on Meehl 
and Rosen’s (1955) classic paper, by laying out algebraic proofs that they simply allude to, and 
by providing extremely simple and intuitively accessible examples of the concepts that they 
assumed their reader understood.
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The first section consists of a general introduction to under-
standing conditional probabilities. The second section introduces 
Bayes’ Rule itself, in an historical and mathematical setting. The 
third section lays out some implications of Bayes’ Rule that follow 
as a direct result of its definition.

Conditional Probabilities
Conditional probabilities are those probabilities whose value 
depends on the value of another probability. Such probabilities 
are ubiquitous. For example, we may wish to calculate the prob-
ability that a particular patient has a disease, given the presence of a 
particular set of symptoms. The probability of disease may be more 
or less close to certain, depending on the nature and number of 
symptoms. We will certainly wish to take into account a patient’s rel-
evant prior history with medication (e.g., the known probability of 
responding) before prescribing medication (Belmaker et al., 2010). 
Or we may wish to take into account factors (such as defensiveness) 
that might impact on a success in psychotherapy before we begin 
that therapy (Zanarini et al., 2009). More generally, restating all 
these specific cases in a more abstract way, we may wish to calcu-
late the probability that a given hypothesis is true, given a diverse 
set of evidence (say, results from several diagnostic instruments) 
for or against it. Hypothesis testing is just one way of assigning 
weight to belief. Conditional probabilities come into play when we 
wish to decide how much confidence we wish to assign to a given 
such beliefs as “this patient will respond to this intervention,” or 
“this person should receive this specific diagnosis” or “it is worth 
incorporating this method into my clinical practice.”

A very simple example of conditional probability will elucidate 
its nature. Consider the question: How likely is that you would win 
the jackpot in a lottery if you didn’t have a lottery ticket? It should 
be obvious that the answer is zero – you certainly could not win if 
you didn’t even have a ticket. It may be equally obvious that you 
are more likely to win the lottery the more tickets you buy. So the 
probability of winning a lottery is really a conditional probability, 

Bayes’ Rule is a way of calculating conditional probabilities. 
Although it is simple in its conception, Baye’s Rule can be fiend-
ishly difficult for beginners to understand and apply. In part this 
is because it forces us to confront and overcome strong biases in 
our natural way of thinking and in part it is because it is not easy 
to be specific about exactly where Bayes’ Rule will apply, or how 
it may apply in any particular case. The purpose of this paper is 
to present and explore the simplest forms of Bayes’ Rule, and to 
explain how it may be used in practical reasoning, especially in 
clinical settings.

A great deal has been written about the importance of condi-
tional probability in diagnostic situations. However, there are, so 
far as I know, no papers that are both comprehensive and simple. 
Most writing on the topic, particularly in probability textbooks, 
assumes too much knowledge of probability for diagnosticians, 
losing the clinical reader by alluding to simple proofs without 
giving them. Many introductory psychometrics textbooks err on 
the other side, either ignoring conditional probability altogether, 
or by considering it in such a cursory manner that the reader 
has little chance to understand what it is and why it matters. 
This paper is intended to fill the void between simplicity and 
thoroughness. The exposition provided here assumes only the 
most basic understanding of non-conditional probability, and 
provides both concrete examples and simple algebraic proofs of 
some implications of Bayes’ Rule that are clinically relevant. It 
may be reasonably considered an interpretive guide to perhaps 
the best introduction to Bayes’ Rule for the clinician, Meehl and 
Rosen’s classic (1955) paper, Antecedent probability and the effi-
ciency of psychometric signs, patterns, or cutting scores. Many read-
ers find this paper very difficult to understand, in part because 
the authors do make mathematical claims without providing 
any detailed explanation of where they came from. The present 
paper frames Meehl and Rosen’s claims with a much more basic 
introduction than they give, and fills in some simple proofs to 
which they only allude.
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simple (that is, non-conditional) probability. Like any simple prob-
ability question, it can be solved by dividing the number of ways 
the outcome of interest (“being tall”) can happen by the number of 
ways any outcome in the domain (“being a woman”) can happen. 
So: 4 tall women/(4 tall woman + 4 short woman) = 0.5 probability 
that a person on the picnic was tall, given that she was a woman.

A formally identical way of solving the same problem can be 
seen by drawing a 2 × 2 table such as the following:

Gender/Height Female Male

Tall 4 3

Short 4 2

The condition “Given that she was a female” means that we can 
simply ignore the rightmost column of this box, the males, and act 
as if the question about the probability of being tall only applied 
to the leftmost column, the woman.

Here comes the tricky part. This diagram makes clear what the 
question is asking: What is the ratio of people who are both tall 
and female (top left cell) to people who are female (sum of left 
column)? We can re-state this and solve the problem in a third 
way by asking: What is the ratio of the probability that a person 
is both female and tall to the probability that a person is female? 
To see why, consider the concrete example again. There were 13 
people on the picnic. Since 4 were tall females, the probability of 
being a tall female is 4/13. Since 8 were females, the probability of 
being female was 8/13. The ratio of people who were both tall and 
female to people who were female is therefore 4/13 / 8/13, or 4/8, 
or 50%. The reason this may seem “tricky” is that here we consider 
the domain as a whole – all people who went on the picnic– and 
then take the ratio of two subsets within that domain.

If you understand this third method of calculating the con-
ditional probability, then you will understand Bayes’ Rule. Bayes 
Rule is a way to “automatically” pick out this very same ratio: the 
ratio of the probability of being in the cell of interest (in this case, 
the cell consisting of tall and female picnickers) to the probability 
of being in the sub-domain of interest that is specified by the 
conditional clause (in this case, woman, a subset of all the people 
who went on the picnic).

Before we look at how the math works, let’s introduce the rule 
itself.

bayes’ rule
Bayes’ Rule is very often referred to Bayes’ Theorem, but it is not 
really a theorem, and should more properly be referred to as Bayes’ 
Rule (Hacking, 2001). In either case, it is so-called because it was 
first stated (in a different form than we consider here) by Reverend 
Thomas Bayes in his “Essay toward solving a problem in the doctrine 
of chances,” which was published in the Philosophical Transactions of 
the Royal Society of London in 1764. Bayes was a minister interested 
in probability and stated a form of his famous rule in the context 
of solving a somewhat complex problem involving billiard balls 
that need not concern us here.

Bayes’ Rule has many analogous forms of varying degrees of 
apparent complexity. This paper concerns itself almost entirely 
with the simplest form, which covers the cases in which two sets of 

where your odds of winning are conditional on the number of 
tickets you have purchased. If you have zero tickets, then you have 
no chance of winning. With one ticket, you have a small chance to 
win. With two tickets, your odds will be twice as good.

We symbolize conditionality by using a vertical slash “ | ”, which 
can be read as “given.” Then the odds of winning a lottery with one 
ticket could be expressed as P(Winning | One ticket). There are 
many “keywords” in a problem’s definition that may (but need not 
necessarily) suggest that you are dealing with a problem of con-
ditional probability. Phrases like “given,” “if,” “with the constraint 
that,” “assuming that,” “under the assumption that” and so on all 
suggest that there may be a conditional clause in the problem.

One thing that sometimes confuses students of probability is the 
fact that all probability problems are really conditional. Consider 
the simple probability question: “What is the probability of getting 
a head with a coin toss?” The question implicitly assumes that the 
coin is fair (that is, that heads and tails are equally probable), and 
should really be phrased “What is the probability of getting a head 
with a coin toss, given that the coin is fair?” Non-conditional prob-
ability problems conceal their conditional clause in the background 
assumptions that either explicitly or implicitly limit the domain in 
which the probability calculation is supposed to apply.

This observation sheds light on what conditionality actually 
does. A condition always serves exactly this role: to limit the domain 
in which the “non-conditional” portion of the question is supposed 
to apply. When you are asked “What is the probability of getting a 
head with a coin toss?” you are supposed to understand that we are 
limiting the domain to which the question applies by considering 
only fair coins. When you are asked “What is the probability that 
you have disease X, given that you have symptom Y?,” you are sup-
posed to understand that the probability calculation only applies 
to those people who do have symptom Y. An appropriate way of 
thinking about conditional probability is to understand that a con-
ditional limits the number and kind of cases you are supposed to 
consider. You can think of the vertical slash as meaning something 
like “ignoring everything to which the following constraint does 
not apply.” So “What is the probability of getting a head with a coin 
toss, given that the coin is fair?” means “What is the probability of 
getting a head with a coin toss, ignoring every coin to which the 
following statement does not apply: The coin is fair.”

Bayes’ Rule and other methods of solving conditional probability 
questions are simply mathematical means of limiting the domain 
across which a calculation is being computed. To see that this is so, 
consider the following simple question:

Three tall and two short men went on a picnic with four tall and 
four short woman. What is P(Tall | Female), the probability that a 
person is tall, given that the person is female?

The solution to this problem may be immediately obvious, but 
it is worth working through a few ways of solving it. These are all 
formally the same, though they may appear to be different.

The first way is just to turn the question into a very simple 
non-conditional question that we know how to solve. Following 
the discussion above, the question can be re-phrased to say “What 
is the probability that a person is tall, ignoring everyone who is not 
a woman?” If we ignore the men, we have a really simple question, 
viz. “Four tall and four short woman went on a picnic? What is the 
probability that a woman who went on the picnic was tall?” This is 
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concern yourself with females who are tall or tall people who are 
females – in the end you must get to the same answer if you want 
to know about people who are both tall and female. A tall female 
person is also a female tall person.

So now we have

P(A | B) = P(B | A)P(A)/P(B) = P(A | B)P(B)/P(B)

Although either form will give the same answer, the first form 
is the “canonical” form of Bayes’ Rule, for a reason that should be 
obvious: because the second form contains the same element on the 
right, P(A | B), as the left element that we are trying to calculate. If 
we already know P(A | B), then we don’t need to compute it. If we 
don’t know it, then it will not help us to include it in the equation 
we will use to calculate it.

Bayes’ Rule can be easily derived from the definition of P(A | B), 
in the following manner:

1. P(A | B) = P(A & B)/P(B) [By definition]
2. P(B | A) = P(A & B)/P(A) [By definition]
3. P(B | A) P(A) = P(A & B) [Multiply 2.) by P(A)]
4. P(A | B) P(B) = P(B | A) P(A) [Substitute 1.) in 3.)]
5. P(A | B) = P(B | A) P(A)/P(B) [Bayes’ Rule]

It might seem at first glance that Bayes’ Rule cannot be a very 
helpful rule, because it says that to solve a conditional probability 
P(A | B) you have to know another conditional probability P(B | A). 
However, Reverend Bayes’ insight was that in many cases the sec-
ond possibility is knowable when the first is not. In diagnostic 
cases where were are trying to calculate P(Condition | Symptom) 
we often know P(Symptom | Condition), the probability that you 
have the symptom given the condition, because this data has been 
collected from previous confirmed cases.

imPliCations of bayes rule
Bayes’ Rule is very simple. However, its implications are often unex-
pected. Many studies have shown that people of all kinds – even 
those who are trained in probability theory – tend to be very poor 
at estimating conditional probabilities. It seems to be kind of innate 
incompetence in our species. As a result, people are often surprised 
by what Bayes’ Rule tells them.

Let us consider a concrete example given in Meehl and Rosen 
(1955), from which much of the discussion in this section is drawn. A 
particular disorder has a base rate occurrence of 1/1000 people. A test 
to detect this disease has a false positive rate of 5% – that is, 5% of the 
time that it says a person has the disease, it is mistaken. Assume that 
the false negative rate is 0% – the test correctly diagnoses every per-
son who does have the disease. What is the chance that a randomly 
selected person with a positive result actually has the disease?

When this question was posed to Harvard University medical 
students, about half said that the answer was 95%, presumably 
because the test has a 5% false positive rate. The average response 
was 56%. Only 16% gave the correct answer, which can be com-
puted with Bayes’ Rule in the following manner:

Let: P(A) = Probability of having the disease = 0.001
P(B) = Probability of positive test
 = Sum of probabilities of all independent ways to get a 

 positive test

mutually exclusive possibilities A and B are considered, and where 
the total probability in each set is 1. At the end of the paper we will 
briefly examine how this most simple case is just a specific case of 
a more general form of Bayes’ Rule. The simplest case covers many 
diagnostic situations, in which the patient either has or does not have 
a diagnosable condition (possibility set A) and either has or does not 
have a set of symptoms (possibility set B). For such cases, Bayes’ Rule 
can be used to calculate P(A | B), the probability that the patient has 
the condition given the symptom set. Bayes’ Rule says that:

P(A | B) = P(B | A) P(A) / P(B)

P(A) is called the marginal or prior probability of A, since it is the 
probability of A prior to having any information about B. Similarly, 
the term P(B) is the marginal or prior probability of B. Because it 
does depend on having information about B, the term P(A | B) is 
called the posterior probability of A given B. The term P(B | A) is 
called the likelihood function for B given A.

In the third solution to the example above, we solve for the 
probability of being female, given that you are tall, by considered 
the ratio of those who were tall and female to those who were 
female:

P(Tall | Female) = P(Tall & Female)/P(Female)

This suggests that Bayes’ Rule can also be stated in the follow-
ing form:

P(A | B) = P(A & B) / P(B)

From this it should be evident, by equating the numerators of 
the two equations above, that:

P(A & B) = P(B | A) P(A)

This is true by the definition of “&.” Let us try to understand 
why this is so, by again considering the three tall and two short men 
went on a picnic with four tall and four short woman. We have 
already convinced ourselves that P(Female & tall) is 4/13, because 
there are 4 people in the cell of interest and thirteen people in the 
problem’s domain. Let’s see how the definition agrees with this 
answer. The definition above says that P(Female & Tall) = P(Tall | 
Female)P(Female). P(Tall | Female), the probability of a picnicker 
being tall given that she is female, is 4/8. P(Female) is 8/13, because 
eight of the thirteen people on the picnic are females. 4/8 multiplied 
by 8/13 is 4/13.

Note that it is equally correct to write that:

P(A & B) = P(A | B) P(B)

In other words:

P(B | A)P(A) = P(A | B) P(B)

Let’s see why using the same example. Now we will see that 
P(Female & Tall) = P(Female | Tall)P(Tall). P(Female | Tall), the 
probability of a picnicker being female given that he or she is tall, 
is 4/7, because there are four tall females and seven tall people 
altogether. P(Tall) is 7/13, because seven of the 13 people on the 
picnic are tall. 4/7 multiplied by 7/13 is 4/13.

If you go back and look at the 2 × 2 table above, you should be 
able to understand why these two calculations of P(A & B) must 
be the same. The first calculation picks out the cell of tall females 
by column. The second picks it out by row. It doesn’t matter if you 
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When base rates are taken into account, the test’s true positive 
rate is just 13%, not 55% as claimed. The test is still better than 
guessing that everyone is maladjusted. With that strategy 5% of 
positive diagnoses would be correct. However, note that the test’s 
diagnosis of maladjustment is much more likely to be wrong (87% 
probability) than right (13% probability).

Of course clinicians prefer to make diagnoses that are more likely 
to be right than wrong. We can state this desire more formally by 
saying that we prefer the fraction of the population that is diag-
nosed correctly to be greater than the fraction of the population 
that is diagnosed incorrectly. Mathematically this leads to a useful 
conclusion in the following manner:

Fraction diagnosed correctly > Fraction diagnosed incorrectly
Fraction diagnosed incorrectly / Fraction diagnosed 

correctly < 1
Let D = Diseased and S = Selected (“∼” means “not”)
P(D & ∼S)/P(D & S) < 1 [Substitute symbols]
P(D | ∼S)P(∼S)/P(D | S) P(S) < 1 [By definition of “&”]
P(D | ∼S)/P(D | S) P(S) < 1/P(∼S) [Divide by P(∼S)]
P(D | ∼S)/P(D | S) < P(S)/P(∼S) [Multiply by P(S)]
In English this can be expressed as:
False positive rate/True positive rate < Positive base rate/Negative 

base rate
We need the ratio of positive to negative base rates to be greater 

than the ratio of the false positive rate to the true positive rate, if 
we want to be more likely to be right than wrong.

This can be a handy heuristic because it allows us to calculate 
the minimum proportion of the population we are working with 
that needs to be diseased in order for our diagnostic methods to be 
useful. In the example above, the ratio of false positive to true posi-
tive rates is 0.19/0.55 or 0.34. This means that the test can only be 
useful – in the sense of having a positive diagnosis that is more likely 
to be true than false – when it is used in settings in which the ratio of 
the maladjusted people (positive base rate) to the number of people 
who are not maladjusted (negative base rate) is at least 0.34.

Again we can consider one example from Meehl and Rosen 
(1955). Imagine that you have a test that correctly identifies 80% of 
brain-damaged patients, but also misidentifies 15% of non-brain-
damaged people. The calculation above says that this test will only 
be reliable if the ratio of brain-damaged to non-brain-damaged 
people is greater than 0.15/0.80, or about 0.19. If we are using the 
test in a setting which has a lower ratio of brain damaged people, 
we will run in to the problem described above, in which we find 
that the base rates have made it more likely that we are wrong than 
right when we make a diagnosis.

As another example, let us consider an analysis of the utility of 
the screening version of the Psychopathy Checklist (PCL:SV; Hart 
et al., 1995) in predicting violence within a year after discharge from 
a civil psychiatric institute. Skeem and Mulvey (2001) report that “a 
threshold of approximately 8 [much lower than the cut off of 17 for 
probable diagnoses of psychopathy] simultaneously maximizes the 
sensitivity and specificity of the PCL:SV in predicting violence in 
this sample” (p. 365). They therefore suggest 8 as the optimal cut-
off. With that cut-off, the test has a true positive rate (sensitivity) of 
0.72. It has a true negative rate (specificity) of 0.65, and therefore a 
false positive rate of 0.35. The ratio of false to true positives is thus 

 = Probability of true positive + probability of false positive
 = (True positive base rate × Percent correctly identi-

fied) + (Negative Base Rate × Percent incorrectly identified)
 = (0.001 × 1) + (0.999 × 0.05)
 = 0.051
P(B | A) = Probability of positive test given disease = 1
Then: P(A | B) = P(B | A) P(A)/P(B)
 = (1 × 0.001)/(0.051)
 = 0.02, or 2%
Although the test is highly accurate, it in fact gives a correct 

positive result just 2% of the time. How can this be? The answer 
(and the importance of Bayes’ Rule in diagnostic situations) lies 
in the highly skewed base rates of the disease. Since so few people 
actually have the disease, the probability of a true positive test result 
is very small. It is swamped by the probability of a false positive 
result, which is fifty times larger than the probability of a true 
positive result.

You can concretely understand how the false positive rate 
swamps the true positive rate by considering a population of 
10,000 people who are given the test. Just 1/1000th or 10 of those 
people will actually have the disease and therefore a true positive 
test result. However, 5% of the remaining 9990 people, or 500 
people, will have a false positive test result. So the probability that 
a person has the disease given that they have a positive test result 
is 10/510, or 2%.

Many cases are subtle. Consider another case cited by Meehl 
and Rosen (1955). This involved a test to detect psychological 
adjustment in soldiers. The authors of the instrument validated 
their test by giving it to 415 soldiers known to be well-adjusted, 
and 89 soldiers known to be mal-adjusted. The test correctly 
diagnosed 55% of the mal-adjusted soldiers as mal-adjusted, 
and incorrectly diagnosed only 19% of the adjusted soldiers. 
Since the true positive rate (55%) is much higher than the false 
positive rate (19%), the authors believed their test was good. 
However, they failed to take into account base rates. Meehl and 
Rosen did not know P(Maladjusted), the probability that a ran-
domly selected soldier was maladjusted, but they guessed that 
it might be as high as 5%. With this estimate, we can use Bayes’ 
Rule as follows:

Let P(M) = Probability of being maladjusted = 0.05, by 
assumption

Let P(D) = Probability of being diagnosed as being 
maladjusted.

=Probability of true positive + probability of false positive
=(True positive base rate × Percent correctly identi-

fied) + (Negative Base Rate × Percent incorrectly identified)
=(0.55 × 0.05) + (0.95 × 0.19)
=0.208
P(D | M) = Probability of being diagnosed, given maladjustment.
=0.55, as found by the authors.
P(M | D) = Probability of maladjustment given diagnosis as 

maladjusted

=P(D | M)P(M)/P(D) [Bayes’ Rule]

=(0.55)(0.05)/0.208

=0.13 or 13%
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and a stronger verbal than visual memory test result. The memory 
test result is also a key piece of lateralizing evidence (suggesting left 
lateralized language) that can be obtained relatively cheaply and 
safely. Based on the base rate information for this particular subset 
of patients with right temporal lesions and clear memory test results, 
Kemp et al. concluded that “that this group of patients is at negligible 
risk of failing the Wada test and the risks of the procedure probably 
outweigh the information obtained” (p. 632).

This is one “degenerate” case in which the base rate in one 
subsample of interest went 100% in one direction, eliminating 
the possibility that another test could add any further certainty to 
the diagnostic question of language lateralization. The degener-
ate case in the opposite direction – when base rates are 0% – has 
equally clear implications: except perhaps as a confirmation of 
the continuing absence of the disease in a population, it is a waste 
of resources to test for a condition that no one has. In between 0 
and 100%, the implications of a conditional clause, such as a the 
probability of that a person has a disease given a positive tests 
results, become more severe as the base rates moves away from 
0.5 in either direction. The further the base rate is from 50/50, 
the further it takes the posterior probability P(A | B) from the 
simple “hit rate,” given by taking the ratio of the true positive 
rate to the positive diagnoses rate (the sum of the true and false 
positive rate).

Mathematically, we can see this by expanding the canonical form 
of Bayes’ Rule given above, just as we did with the example of the 
maladjusted soldiers above:

Let P(C) = Probability of belonging to the diagnostic category
Let TP = True positive rate = P(C & Diagnosed)
Let FP = False positive rate = P(∼C & Diagnosed)
Let B = Base rate of the diagnostic category
Let P(D) = Probability of being diagnosed as being 

maladjusted.
 =  Probability of true positive + probability of false positive
 =  (True positive base rate × Percent correctly identi-

fied) + (Negative Base Rate × Percent incorrectly identified)
 =  (B × TP) + ((1 − B) × FP)
P(C | D) = Probability of belonging to the category given 

diagnosis
 = P(D | C)P(C)/P(D) [Bayes’ Rule]
 =  (TP × B)/(B × TP) + ((1 − B) × FP) [Substitute P(D)]
 = (TP × 0.5)/(0.5 × TP) + (0.5 × FP) [Let the base rate 

B = 0.5]
 = TP/TP + FP [Divide by 0.5]
Along with the extreme cases considered above (100% or 0% 

base rates), this case of 50% base rates is another “degenerate” case 
of Bayes’ Rule, in which the rule is not really needed. When the 
base rate of a disorder is 50%, the conditional collapses to the 
simple (i.e., unconditional) probability that is given by the ratio 
of the probability of getting diagnosed correctly to the probability 
of getting diagnosed at all, whether correctly or not. One way of 
understanding what is happening in this case is to note that the true 
and false positive rates are sampling equally from the population. 
When this is so, we don’t need to bother to “weight” their respec-
tive contributions to the conditional probability of belonging to 
the category given a diagnosis.

0.35/0.72, or 0.486. With the prescribed cut-off point, the test will 
only predict violence correctly if at least 48.6% of people in the 
sample are violent. In the sample, 245/871 or 28% were actually 
violent. A person would be more accurate than using the cut-off if 
she simply guessed that no one will be violent, since she would then 
correctly classify the 72% of the discharged who will not be. With 
a higher cut-off of 16, the true positive rate is just 0.21 but the false 
positive rate plummets from 0.35 to 0.06. This gives a ratio of false to 
true positives of 0.06/0.21 or 0.286, close to the actual ratio of violent 
individuals in the population, suggesting this (or a higher) cut-off 
point is better from the point of view of maximizing accuracy. In this 
case, the mathematical result is somewhat equivocal because of the 
unequal costs of making false positive and false negative identifica-
tions. The rate of identifying future violence is certainly very poor 
with the prescribed cut-off of 8. The ratio of false to true positives 
shows that if a person uses this cut-off, he will do only a little better 
than he would if he predicted who will be violent by flipping a coin, 
since using the cut-off will make him wrong (48.6% of time) almost 
as often as he is right (51.4% of the time). However, it may be more 
desirable to err on the side of conservatism by incorrectly treating 
35% of people as likely to be violent than to lower the overall error 
rate (by raising the cutoff above 16) at the cost of missing 79% of the 
people who actually will be violent. Sometimes we have pragmatic 
reasons to prefer one kind of inaccuracy to another.

Note that Meehl’s heuristic does not mean that the true popu-
lation base rate must be as high as the calculation prescribes – it 
is sufficient for the base rate of the subpopulation to which the 
test is exposed to be high enough. If the test is used in settings 
(such a mental clinic to which front-line physicians refer) that have 
“higher concentration” of maladjusted subjects than the general 
population as a result on non-random sampling of that popula-
tion, then the test may be useful in that setting, even though it 
may not be reliable if subjects were randomly selected from the 
population as a whole. For example, Fontaine et al. (2001) looked at 
how an elevated t-score on the Minnesota Multiphasic Personality 
Inventory-Adolescent (MMPI-A; Butcher et al., 1992) was able to 
classify subjects as “normal” or “clinical” in an inpatient sample 
with a base rate of 50% versus a normative sample with a base rate 
of 20%. They found, as Bayes’ Rule guarantees they must, that “the 
classification accuracy hit rates generally increased as the clinical 
base rate increased from 20 to 50% of the total sample” (p. 276).

This ability to skew true diagnosis rates in a favorable direction 
by pre-selecting subjects has important implications. In most of the 
examples we have considered so far, we have assumed low base rates. 
If the base rates are very high, an opposite issue arises: it becomes 
increasingly less worthwhile to give a diagnostic test if the base rate 
odds of the diagnosis are very high to begin with, because test results 
may add so little certainty to the base rate as to make it not worth the 
effort (or risk) of administering the tests. A recent practical exam-
ple with a very strong result concerns the use of the Wada test, an 
invasive, potentially dangerous, and expensive test for determining 
language lateralization prior to surgery. The test involves injecting 
sodium amytal into each internal carotid artery to anesthetize each 
cerebral hemisphere independently. Kemp et al. (2008) looked at 141 
consecutive administrations of the Wada test. One key finding was 
that no patient failed the test who had both a right temporal lesion 
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A slightly more complex way of generalizing Bayes’ Rule comes 
about when there is more than one competing hypothesis, diagnosis, 
or possibility to be considered. In that case, evidence brought to 
bear in favor of any single hypothesis needs to be considered in the 
context of the domain of all other competing hypotheses. In fact 
the simple forms of Bayes’ Rule we have considered in this paper 
does exactly this. We have seen that P(H | E) = P(E | H) P(H)/P(E), 
where H is some hypothesis, diagnosis, or possibility, and E is some 
evidence bearing on it. We have also seen in several examples that 
the denominator P(E) – to be concrete, the probability of getting 
a positive diagnosis – can be expanded into sum of (the true posi-
tive rate × the positive base rate) and (the false positive rate × the 
negative base rate). The two elements in this sum are just two dif-
ferent hypotheses about where a positive diagnosis could have come 
from: it could either have come from a mistaken diagnosis or a true 
diagnosis. If there was also a possibility of a deliberately fraudulent 
diagnosis, we would have to add that in to our calculation of the 
probability of getting a positive diagnosis, as a third term in P(E).

The generalization of Bayes’ Rule to handle any number of compet-
ing hypotheses simply makes explicit that the denominator in Bayes’ 
Rule is the domain of possible kinds of evidence that could explain H- 
or said another way, the domain of possible ways the evidence under 
consideration could come about. The generalized expression is:

P(H
n
 | E) = P(E | H

n
)P(H

n
)/Σ[P(E | H

n-1
) P(H

n-1
)]

H
n
 is a current hypothesis, and E is, as ever, some new piece of 

evidence, such as a diagnostic sign. The denominator, as above in 
the specific cases we have considered, is simply the sum of all ways 
the diagnostic sign might occur, howsoever that may be.

ConClusion
Bayes’ Rule has important implications for clinicians, allowing as it 
does for formal specification of the probability of a diagnosis being 
correct taking into account relevant prior probabilities. Although 
Bayes’ Rule is simple, it is often ignored in practice, perhaps because 
the mathematics underlying the rule is often either dealt with in 
cursory manner in clinical training or else left under-specified. 
Although Meehl and Rosen’s (1955) exposition of the importance 
of Bayes’ Theorem is thorough and convincing, it left many proofs 
for the reader, with an apparent (probably erroneous) assumption 
that they were too simple to include. In this article I have followed 
the substance of Meehl and Rosen’s exposition, but started from a 
simpler base and provided all the details of algebraic derivation that 
were left out of that article. My goal in doing so has been to make 
their exposition of Bayes’ Rule more accessible, and thereby make it 
possible for more clinicians to benefit from their ground-breaking 
work demonstrating the importance of the rule in clinical settings.
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A concrete example may make this interpretation more clear. 
Consider the conditional probability of having blue eyes, given 
that you are female. Since eye color is not a sex-linked character, 
the conditional is the same for both those who are in the group of 
interest (females) and those who are not (males). You may be able 
to intuit in this case that the conditional is therefore irrelevant: that 
is, the probability of being blue-eyed given that you are female is 
just the same as the probability of being blue-eyed.

This degenerate case of exactly equal base rates with and without 
the character of interest may occur only rarely, but the general prin-
ciple illustrated by this case is of wider relevance for the reason note 
above: the further the positive and negative base rates are from being 
equal, the greater the difference between the conditional probability 
that depends on that base rate and the simple probability given by 
the ratio of the probability of getting diagnosed correctly to the 
probability of getting diagnosed at all (that is, the ratio of the true 
positives to the sum of the true and false positives).

Intuitively, this makes sense for the following reasons. Insofar 
as a disease is less common, it becomes more likely that a larger 
portion of the positives are false positives, as in the case considered 
above that bamboozled so many of the Harvard medical students. 
By the same token, insofar as a disease is more common, it becomes 
more likely that many of the negative diagnoses are false. At some 
point as base rates increase, they may come to exceed the ability of 
the test to identify them, rendering the test worse than guessing, 
as discussed above.

Bayes’ Rule may be easily generalized to incorporate multiple 
pieces of evidence bearing on a single belief, hypothesis, or diag-
nosis, or to incorporate multiple pieces of evidence bearing on 
multiple beliefs, hypotheses, or diagnoses.

The simplest way to “extend” Bayes’ Rule is to note that the pos-
terior probability may depend on more than one piece of evidence. 
This is not an extension at all, since we noted at the beginning that 
what was given in a conditional may be a set of evidence rather than 
a single piece of evidence. However, it is worth emphasizing this 
point, since so many of the examples considered in this paper have 
treated the conditional as a single piece of evidence. Given a belief, 
hypothesis, or diagnosis H, and a single relevant piece of evidence 
E1, we have seen how to compute some new probability P(H | E1). If 
we get a new piece of relevant evidence E2, that is independent from 
E1, we could as easily calculate P(H | E2) for the same H. However, 
that calculation would not take into account the fact that we already 
attached a certain level of probability to H because of the prior 
evidence A. To get that, we need to calculate P(H | E1&E2).

For example, imagining trying to guess a single card from a deck. 
If you know it is red, then you have P(Guess | Red) = 1/26, because 
there are 26 red cards in a deck. If you know it is a face card, you 
have P(Guess | Face) = 4/13, because there are four face cards per 
suit of 13 cards. If you know it is both a face card and red, you need 
to calculate P(Guess | (Face & Red) = 8/52 or 2/13, because there 
are eight cards that are both red and a face card.
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