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Single-trial regression elucidates the role of prefrontal theta 
oscillations in response conflict
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In most cognitive neuroscience experiments there are many behavioral and experimental 
dynamics, and many indices of brain activity, that vary from trial to trial. For example, in studies 
of response conflict, conflict is usually treated as a binary variable (i.e., response conflict exists 
or does not in any given trial), whereas some evidence and intuition suggests that conflict may 
vary in intensity from trial to trial. Here we demonstrate that single-trial multiple regression of 
time–frequency electrophysiological activity reveals neural mechanisms of cognitive control 
that are not apparent in cross-trial averages. We also introduce a novel extension to oscillation 
phase coherence and synchronization analyses, based on “weighted” phase modulation, that 
has advantages over standard coherence measures in terms of linking electrophysiological 
dynamics to trial-varying behavior and experimental variables. After replicating previous response 
conflict findings using trial-averaged data, we extend these findings using single-trial analytic 
methods to provide novel evidence for the role of medial frontal–lateral prefrontal theta-band 
synchronization in conflict-induced response time dynamics, including a role for lateral prefrontal 
theta-band activity in biasing response times according to perceptual conflict. Given that these 
methods shed new light on the prefrontal mechanisms of response conflict, they are also likely 
to be useful for investigating other neurocognitive processes.
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et al., 2008; Scholte et al., 2009), decision-making (Philiastides and 
Sajda, 2007; Ratcliff et al., 2009), or other parameters that vary 
from trial to trial.

Correlating single-trial brain and behavior 
dynamiCs
Although most cognitive neuroscience studies use cross-trial 
averaging, there are many examples of how single-trial analyses 
have yielded important insights into neurocognitive function. 
Single-trial analyses have the obvious advantage of finding linear 
relationships between brain activity and trial-varying behavior 
or experimental manipulations. Within the field of cognitive 
control, for example, single-trial analyses have linked online and 
reactive behavior adaptations to medial frontal EEG and fMRI 
responses (Debener et al., 2005; Mars et al., 2008; Boehler et al., 
2010; Cavanagh et al., 2010). One limitation, however, is that with 
simple correlations, only one variable should be tested. Multiple 
simple correlations may be suboptimal because shared variance 
among variables can bias correlation coefficients.

a dynamiC solution: single-trial multiple 
regression
The approach we advocate here is an extension of the single-trial 
correlation approach. Multiple regression has several important 
advantages over correlation. First, many independent variables 
can be entered into the regression, and variance due to different 
variables can be parceled out. Second, interaction terms between 

the “many-to-many mapping” problem of Cognitive 
neurosCienCe
In this report, we demonstrate how single-trial multiple regression 
analyses can help elucidate brain-behavior relationships, specifi-
cally linking cortical electrophysiological oscillatory dynamics to 
cognitive control processes. The heart of the issue is attempting to 
resolve the “many-to-many” mapping problem: in many cognitive 
neuroscience experiments, there are many behavioral and many 
experimental dynamics, and many indices of electrophysiological 
brain activity (e.g., over time, space, frequency), that vary from trial 
to trial. Determining which measurements of behavioral dynamics 
correspond to which measurements of brain activity is difficult but 
of central importance to cognitive neuroscience.

Experimental or behavioral variables that vary from trial to trial 
are often ignored or amalgamated, thereby reducing “many” to 
“few.” The logic behind trial averaging is that, at the single-trial level, 
brain measurement tools (EEG, MEG, fMRI) and the neurocogni-
tive systems they measure contain more noise than signal; thus, by 
averaging data over many trials of the same or similar experiment 
condition, signal-to-noise ratio increases and randomly distributed 
variance averages out. This reasoning is irrefutable – the influence 
of noise decreases as a function of the number of trials noise

trails( ), and 

some cross-trial variance is unrelated to the hypotheses under inves-
tigation. In other situations, however, hypotheses must or should 
be tested using data from single trials within subjects, for example 
when linking neural dynamics to response time (Weissman et al., 
2006; Yarkoni et al., 2009), visual stimulus parameters (Rousselet 
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negative performance feedback) increases theta-band oscillatory 
activity over medial frontal cortex (Luu and Tucker, 2001; Cohen 
et al., 2008; Hanslmayr et al., 2008; Cavanagh et al., 2009; Cohen 
et al., 2009). This medial frontal theta has been proposed to reflect 
an electrophysiological mechanism for coordinating neural net-
works involved in monitoring behavior and the environment as 
well as facilitating task-specific adaptive changes in performance in 
conjunction with lateral prefrontal cortex and sensory-motor areas.

In typical cognitive control experiments, response conflict is 
induced either at the response, the perceptual, or the semantic level. 
Conflict at the response level is elicited by priming two competing 
responses when only one is correct. At the stimulus-level, conflict 
can be induced by making the stimuli ambiguous (Szmalec et al., 
2008) or low in luminance (Yeung et al., 2007). These examples 
reflect the common treatment of conflict as a discrete variable, 
such that conflict is assumed to be present or absent on any given 
trial. For example, these stimulus-level conflict studies used dim 
vs. bright stimuli, or high vs. low ambiguous stimuli (Yeung et al., 
2007; Szmalec et al., 2008). Although these experimental manipu-
lations are categorical (i.e., trials either contain or do not contain 
response conflict), the effects of these manipulations on internally 
experienced conflict may not be discrete, but rather may vary from 
trial to trial (e.g., the Gratton effect).

It is clear that response conflict is not an all-or-none phenom-
enon in the brain. Given that the strength of conflict elicited by 
exogenous (i.e., parametric experimental manipulations not under 
subjects’ control) and endogenous (i.e., fluctuations in internal cog-
nitive processes) factors may vary from trial to trial, it is apparent 
that trial averaging provides a limited characterization of the neu-
ral mechanisms underlying cognitive control processes. Therefore, 
alternative analytical techniques are needed to link trial-varying 
behavioral dynamics to corresponding trial-varying neural dynam-
ics. Thus, the purposes of this experiment were to use single-trial 
regression to isolate spatial–temporal–frequency characteristics 
predicted by (1) exogenously induced conflict via continuous 
(trial-varying luminance) and discrete (trial type) manipulations, 
and (2) endogenously experienced conflict, as measured through 
reaction time. Reaction times are often used as a dependent meas-
ure to quantify the behavioral effects of conflict (Gratton et al., 
1992; Egner, 2007), but to the extent that they reflect internally 
experience conflict, reaction times can be used as an independent 
variable (Weissman et al., 2006; Forstmann et al., 2008). Here, EEG 
data were transformed into their time–frequency representation, 
and these estimates of time-, space-, and frequency-specific power 
were regressed against reaction time, stimulus luminance, and the 
interaction between the two. We also introduce a method to link 
these single-trial experimental dynamics to oscillation phase angle 
(“weighted” phase modulation), which has advantages over stand-
ard inter-trial phase coherence measures.

methods
subjeCts
Seventeen subjects from the University of Amsterdam community 
(aged: 18–31, two male) participated in exchange for course credit 
or 14 Euros. Subjects were self-reported free of neurological diseases 
and signed informed consent documents that were approved by 
the local ethics committee. Data from two subjects were removed 

variables can be constructed to estimate possible non-linear effects 
of combinations of experimental and behavior variables. Third, 
with multiple regression one can examine not only the slopes (i.e., 
linear relationship between two variables) but also the intercept of 
the model (“DC” or mean-offset of the relationship), which may 
be useful for dissociating random (i.e., idiosyncratic relationships 
with an independent variable) versus fixed (i.e., all subjects show a 
general increase in brain activity as a function of condition) effects. 
Forth, related extensions to multiple regression such as hierarchi-
cal linear modeling are amenable for more in-depth analyses into 
differences across groups of subjects.

Single-trial multiple regression has been applied to EEG data. 
For example, multiple regression of visual stimulus properties dem-
onstrated early responses to noise and feature processing during 
face viewing (Rousselet et al., 2008), which is affected by aging 
(Rousselet et al., 2009). Eichele et al. (2010) recently used single-
trial multiple regression to remove variance due to factors less 
relevant to the hypotheses (e.g., P300 modulation). Regression is 
also one method for removing blink and other artifacts (Schwind 
and Dormann, 1986). In these studies, regressions were per-
formed on time-domain EEG data. However, because EEG data 
are driven largely by oscillatory cortical processes, considerable 
information in EEG may be contained in the frequency domain 
and therefore lost in the time domain (Cohen, 2011b). Therefore, 
in this study we conducted single-trial multiple regression over 
time–frequency estimates of power, and we introduce a method 
to link non-linear phase distributions to trial-varying behavioral 
and experimental variables.

response ConfliCt: a trial-varying phenomena that 
is often averaged over in experiments
Response conflict occurs when multiple response options are acti-
vated, but only one should be selected according to task demands. 
Response conflict activates the cognitive control system, a set of 
high-level neurocognitive processes that monitor behavior and the 
environment for errors, potential errors, and negative perform-
ance feedback, and facilitate flexible and adaptive adjustments in 
behavior to improve future performance. It is thought that struc-
tures in the medial frontal cortex are a fulcrum for the cognitive 
control system, and work with other prefrontal and task-specific 
sensory and motor regions to support flexible behavior adapta-
tion (Ridderinkhof et al., 2004). The cognitive control system is 
thought to wane when no response conflict is detected, and to 
wax when response conflict is detected. Consequently, a trial con-
taining response conflict elicits a reactive activation of the cogni-
tive control system only when the preceding trial contained no 
response conflict. This phenomenon is termed the “Gratton effect” 
(Gratton et al., 1992), has been observed in a variety of empirical 
studies (Egner, 2007), and can be captured by mathematical models 
(Botvinick et al., 2001). For this reason, researchers often separate 
trials according to the response conflict on the previous as well as 
on the current trial.

Activation of the cognitive control system (e.g., during response 
conflict) can be measured through a variety of dependent variables, 
including behavioral (reaction time and accuracy), hemodynamic, 
and electrophysiological. Relevant for the present study, response 
conflict (and other cognitive control situations such as errors or 
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oculomotor artifacts or other artifacts that could be clearly dis-
tinguished from brain-driven EEG signals were subtracted from 
the data.

eeg analyses: time–frequenCy deComposition
All analyses were performed in matlab. Single-trial data were 
first decomposed into their time–frequency representation by 
multiplying the power spectrum of the EEG (obtained from 
the fast-Fourier-transform) by the power spectrum of complex 
Morlet wavelets [e ei tf t2 2 2π σ− /( ),2  where t is time, f is frequency, which 
increased from 1 to 40 Hz in 30 logarithmically spaced steps, and σ 
defines the width of each frequency band, set according to 4/(2πf)], 
and then taking the inverse fast-Fourier-transform. From the 
resulting complex signal, an estimate of frequency band-specific 
power at each time point was defined as the squared magnitude of 
the result of the convolution Z (real[z(t)]2 + imag[z(t)]2), and an 
estimate of frequency band-specific phase at each time point was 
taken as the angle of the convolution result. Relatively long epochs 
were cut from the continuous EEG data (−1.5 to 2 s) to allow edge 
artifacts due to sudden transitions in signal values between trials 
to subside outside the window of interest. Taking long epochs 
and trimming edge artifacts is preferred over windowing, because 
the latter method attenuates real signal whereas the former does 
not. Power was normalized using a decibel (dB) transform (dB 
power = 10 × log 10[power/baseline]), where the baseline activity 
was taken as the average power at each frequency band, averaged 
across conditions, from −300 to −100 ms pre-stimulus. Conversion 
to a dB scale ensures that data across all frequencies, time points, 
electrodes, conditions, and subjects are in the same scale and thus 
comparable. Inter-trial phase coherence (the consistency of fre-
quency band-specific phase angles over trials time-locked to the 
response) was computed according to | |,

[ ]1
1n t

n i
e jt× ∑ =

φ  where n is the 
number of trials, and φ

j
 are the phase angles of electrode j. Phase 

coherence varies from 0 (no phase consistency across trials) to 1 
(oscillations take on identical phase values across trials; Lachaux 
et al., 1999; Delorme and Makeig, 2004). Frequency band-specific 
phase synchronization (functional connectivity) was computed 
according to | |,

[ ]1
1n t

n i
e jt kt× ∑ =

−φ φ  where n is the number of trials, and 
φ

j
 and φ

k
 are the phase angles of electrodes j and k. In all analyses 

and plots, data are time-locked to the response; thus time 0 in the 
figures corresponds to the button press.

eeg analyses: single-trial regression
Single-trial analyses were conducted separately for power and 
phase. For power analyses, a robust regression was computed 
that estimated parameters at each time–frequency–space point 
for the following linear equation: Y = INT + b

1
RT + b

2
LUM + b

3

RT × LUM + E. Y is the data vector (power values at each time–
frequency point across trials), INT is the intercept, b

1–3
 are regres-

sion coefficients, E is unexplained variance, and RT and LUM 
are trial vectors of the subject’s reaction time and the stimulus 
luminance on each trial. Reaction time and luminance data were 
z-scored so that the interaction term was not dominated by reac-
tion time, which has values an order of magnitude larger than 
luminance (note that this means the intercept simply accounts 
for Power Law scaling across frequencies and therefore is not 
of interest here). Robust regression was used to minimize the 

because one subject had excessive noise and EMG artifacts (over 
30% of trials were rejected) and one subject did not complete the 
experiment because he felt ill. Thus, data from 15 subjects were 
included in the final analyses.

task
A modified flankers task was used, in which subjects responded to 
a central target letter while ignoring flanking letters. There were 
1200 trials in three blocks. Each block contained two letters (M 
and N, E and F, and X and Y, counter-balanced across subjects); 
one letter required a left-hand response and the other required 
a right-hand response. “Congruent” trials contained the same 
flanking and target letter (e.g., XXXXX); “incongruent” trials con-
tained different target and flanking letters (e.g., XXYXX). Thus, 
conflict was induced when the flanking letters were associated 
with a different response compared to the target letter. Subjects’ 
eyes were approximately 90 cm from the monitor, making the 
letters 0.382° high and 0.2546° wide, with a 0.2546° blank space 
separating each letter. The target and flankers were presented for 
100 ms on a white background. A 1200-ms inter-trial-interval 
separated trials. Luminance was randomly selected on each trial to 
be between 0 and 200 (RGB values that vary between 0 and 255). 
Thus, higher luminance values mean the stimuli were closer to the 
background color and therefore more difficult to see. Luminance 
was applied equally to target and flankers. This was done, rather 
than, e.g., manipulating luminance only of the flankers, for two 
reasons: (1) This manipulation is experimentally orthogonal to 
the conflict conditions and therefore is appropriate for multiple 
regression with interaction terms; (2) manipulating the luminance 
of all stimuli is more experimentally tractable because differen-
tial luminance might produce non-linear net luminance effects 
on striate cortex at the level measured by EEG. There are many 
ways to modulate stimulus-level conflict in such tasks, including 
luminance, size, eccentricity, onset times, etc.; we would expect 
to find overall similar patterns of results when using different 
stimulus-level manipulations.

As discussed in the Section “Introduction,” response conflict 
effects depend on whether conflict was present in the previous 
trial. Therefore, trials were discretized into four conditions: cC, 
cI, iC, and iI (“cI” means that the previous trial was congruent 
and the current trial was incongruent). Trials containing errors, 
and the trials thereafter, were removed prior to analyses, as were 
the first trials following each rest break. After EEG trial rejection 
(described below), there were on average, respectively, 213, 307, 307, 
and 177 trials per condition (minimum/maximum across subjects, 
respectively: 185/244, 241/358, 240/357, 84/206).

eeg data ColleCtion
EEG data were acquired at 512 Hz from 64 channels placed accord-
ing to the international 10–20 system and from both earlobes 
(used as reference). Offline, EEG data were high-pass filtered at 
0.5 Hz and then epoched from −1.5 to +2 s surrounding each trial 
(to avoid edge artifacts resulting from wavelet filtering). All trials 
were visually inspected and those containing EMG or other arti-
facts not related to blinks were manually removed. Independent 
components analysis was computed using EEGLAB software 
(Delorme and Makeig, 2004), and components  containing blink/
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(electrodes) × condition matrix of z values for each subject, which, 
like the b values described for the power regression, can be tested 
using parametric statistics. This entire procedure was then redone 
for luminance and the reaction time–luminance interaction. Note 
that this method, like robust regression, minimizes the impact of 
outliers because the results are based on within-subject permuta-
tion testing of observed data.

independent Components analyses
In order to compare our results (using data recorded from the 
electrodes) with another approach often used for single-trial 
analyses (independent components that estimate temporally 
dissociable sources of variance), independent components were 
selected and their time courses were subjected to the same analyses 
described above. We selected three components for each subject, 
one representing medial frontal dynamics and two representing 
lateral prefrontal dynamics (centered on FCz, F5, and F6, which 
were previously used in cognitive control studies; Cavanagh et al., 
2009, 2010). Component selection was done automatically based 
on maximal spatial correlation between the components and tem-
plates. The templates were Gaussians surrounding electrodes of 
interest. For two subjects, right prefrontal components were manu-
ally re-selected because the time course of the automatically selected 
component resembled blinks.

eeg statistiCs
Group-level statistics were performed using ANOVAs. Data from 
each subject were taken from a 100-ms, 4-Hz window surrounding 
the condition-averaged peak time–frequency point. This provides 
a compromise between a subject-specific data-driven approach 
(each subject retains his or her unique time–frequency maxima) 
while addressing the large multiple comparison problem (there are 
155,520 time–frequency–space pixels that could possibly be tested). 
In order to facilitate visualization of spatial topographies, t-tests at 
each electrode were performed and electrodes with non-significant 
results at an uncorrected two-tailed p < 0.01 were set to zero (green 
color). Similarly, black contour lines on the time–frequency plots 
indicate continuous significance at two-tailed p < 0.01, with a mini-
mum of 300 ms and three frequency bands.

results
behavior
As expected based on the Gratton effect, there was a signifi-
cant previous × current conflict interaction (repeated-measures 
ANOVA, F

1,14
 = 14.29, p = 0.002). Reaction times were longest on 

cI trials, shortest on cC trials, and in between during iI and iC 
trials (Figure 1A). To examine the effects of stimulus luminance 
on reaction times, we correlated, for each subject, luminance and 
reaction time separately for each condition (Figure 1B), and then 
tested those correlation coefficients across subjects. Correlation 
coefficients were significantly greater than zero in all conditions 
except for cC (p-values: 0.53, <0.001, 0.002, 0.033 for cC, cI, iC, 
and iI conditions), although the interaction term in a previ-
ous × current conflict repeated-measures ANOVA was not signifi-
cant (F

1,14
 = 0.59). These results indicate that stimulus luminance 

affected subjects’ performance only when the current or previous 
trial contained conflict.

contribution of potential outliers via iterative reweighted least 
squares that minimizes the impact of outliers with large leverage 
(O’Leary, 1990). In this regard, robust regression has a significant 
advantage over trial averaging. Specifically, during standard trial-
averaging, outliers may affect the averaged data. However, with 
robust regression, outliers are de-weighted and therefore have 
minimal effect on the overall result. Ultimately, this procedure 
resulted in a time × frequency × space (electrodes) × condition 
matrix of b values for each subject. The regression was conducted 
separately for each condition rather than including condition as 
a covariate because the four conditions are categorical. Because 
these b values are normally distributed under the null hypothesis, 
they can be entered into standard parametric statistics such as 
t-tests and repeated-measures ANOVA. Before averaging across 
subjects, b values were standardized by scaling the coefficients by 
their SDs; this ensured that the coefficients were in the same scale 
and thus directly comparable across time, frequency, electrodes, 
and subjects.

Single-trial phase values, however, cannot be entered into 
regression because the data are circular (e.g., radian phase values 
of −3.1 and 3.1 are closer to each other than are 0.1 and 1.0). 
Therefore, we used an alternative approach, based on the idea that 
under the null hypothesis of no relationship between, e.g., reac-
tion time and phase values, reaction times across trials should be 
uniformly distributed across phase. The less uniform this distribu-
tion, the more evidence accumulates to reject the null hypothesis. 
Taking each reaction time–phase pair as a vector with the phase 
as the angle and reaction time as the length, the magnitude of 
the average vector can be taken as a modulation of reaction time 
by phase angle (under the null hypothesis of no relationship, the 
average vector length would be close to zero). Here, reaction time 
and luminance data were rank-transformed because this method 
cannot be used with negative-valued data. Two issues inherent in 
magnitude scaling and phase distribution require a non-paramet-
ric intervention prior to group-level statistical analyses. The first 
issue is that non-transformed magnitudes are difficult to interpret 
because they scale with the data (reaction time or luminance val-
ues), which was different across subjects (this can be contrasted 
with inter-trial phase coherence, described above, for which the 
average vector magnitudes have a maximum of 1.0 and are inher-
ently interpretable). The second issue is that if phase values are 
non-uniformly distributed across trials (as would be expected if 
there is, e.g., stimulus-induced phase reset), the distribution of 
reaction time would be artificially non-uniformly distributed. 
To counteract both of these issues, we applied permutation test-
ing, in which the observed reaction time and phase values were 
shuffled with respect to each other. This provides a data-driven 
test of the null hypothesis that there is no consistent relationship 
between reaction time and phase angle. Five hundred iterations 
with shuffled reaction time–phase pairings were performed at each 
point in time–frequency–electrode–condition space, thus creat-
ing a distribution of reaction time–phase modulations under the 
null hypothesis. Finally, the standardized distance between the 
observed modulation and the null distribution was taken as a z 
value corresponding to the probability of finding the observed 
reaction time–phase modulation by chance, given the measured 
data. These processing steps resulted in a time × frequency × space 
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(F
1,14

 = 11.67, p = 0.004), which was driven by significantly larger 
coefficients in cI compared to cC trials (t

14
 = 3.48, p = 0.0037), 

and no significant difference between iI and iC trials (t
14

 = 1.19, 
p = 0.187). The relationship between brain activity and RT may 
reflect conflict and also other response-related processes; however, 
because basic motoric response-related processes are present during 
all responses, the difference between regression coefficients in cC 
and cI trials reflects conflict processing.

There was a main effect of luminance in low frequen-
cies (delta range, ∼1–3 Hz) at central electrodes, mainly in cC 
trials (Figure 3B).

There was an interaction between reaction time and luminance 
in the theta band over lateral prefrontal sites, mainly in cI trials 
(interaction at electrode F6: F

1,14
 = 6.76, p = 0.021; Figure 3C). 

Consistent with the lack of behavior effect of luminance on reac-
tion time during cC trials, there was no corresponding reaction 
time × luminance interaction on theta-band activity.

To illustrate the theta-RT relationship at the individual subject 
level, Figure 4 shows scatterplots from each individual subject. 
In these plots, the time–frequency point with the maximum pre-
stimulus theta power-RT slope (averaged across all four conditions) 
was selected.

single-trial phase-behavior Coupling
In the next set of analyses, we examined how frequency band-spe-
cific phases might be modulated by reaction time, luminance, and 
their interaction. This is different from cross-trial phase coherence 
(plotted in Figures 2B,D) because this analysis tests the reliability 
of the relationship between phase angles and reaction time across 
trials, rather than the consistency of phase angles across trials. As 
seen in Figure 5, there was a robust main effect of reaction time in 
the pre-response theta range in all conditions. Similar to the effects 
observed in the power regressions, there was an interaction between 
current and previous conflict (at FCz: F

1,14
 = 6.56, p = 0.023) which 

was driven by significantly larger coefficients in cI compared to cC 
trials (t

14
 = 5.36, p < 0.001), and no significant difference between iI 

and iC trials (t
14

 = 0.66, p = 0.516). There were no significant effects 
of luminance or reaction time–luminance interaction.

trial-averaged eeg results
The trial-averaged time–frequency–space characteristics of the 
data provide a useful comparison for the results from the single-
trial analyses. In general, the task elicited increased theta-band 
activity over medial frontal electrodes, centered around FCz, and 
maximal just prior to the response (Figure 2A). Although theta 
and delta power were significantly increased during all trials 
compared to baseline (Figure 2C), there was no significant main 
effect of current trial conflict, nor was there a significant previ-
ous × current trial conflict interaction (2 × 2 repeated-measures 
ANOVA: all p’s > 0.05). Inter-trial phase coherence (the consist-
ency of frequency band-specific phase angles across trials) showed 
low-frequency phase coherence and no clear medial frontal spatial 
focus (Figures 2B,D).

single-trial regressions
Figure 3 shows standardized regression coefficients from the single-
trial multiple regression of reaction time (Figure 3A), luminance 
(Figure 3B), and their interaction (Figure 3C). A robust main 
effect of reaction time can be seen in the theta range prior to the 
response, centered around frontal sites. These coefficients were sig-
nificantly greater than zero in all conditions (Figure 3A), and there 
was a significant interaction between previous and current conflict 
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between MFC and lateral prefrontal cortex may be a substrate 
of communication that supports cognitive control processes. 
Although inter-site synchronization increases most strongly dur-
ing errors, synchronization is also observed immediately prior to 

single-trial phase synChronization (funCtional 
ConneCtivity)-behavior Coupling
We (Cavanagh et al., 2009) and others (Hanslmayr et al., 2008) have 
suggested that electrophysiological oscillatory  synchronization 
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(FCz) and target (F6 or other) electrode pairs and reaction time. 
The right three columns in Figure 6A show time–frequency plots 
of modulated phase synchronization between FCz (MFC) and F6 
(lateral prefrontal cortex). This “response-modulated” functional 
connectivity increased prior to the response, and was strongest dur-
ing cI trials (interaction term: F

1,14
 = 5.48, p = 0.035). This indicates 

that on a trial-by-trial basis, longer reaction times during high 
conflict situations were preceded by enhanced electrophysiological 

correct responses. Consistent with previous results, here we found 
increased theta-band synchronization between FCz and lateral 
frontal sites including F6 (this is the electrode pair analyzed in 
Cavanagh et al., 2009, 2010) prior to the response. The left-most 
column of Figure 6A shows that pre-response synchronization 
was significantly greater than that during the inter-trial interval 
(used here as a baseline), but was not different among conditions 
(all p’s > 0.175).

This standard measure of functional connectivity, however, may 
be difficult to link to precise cognitive dynamics, because the con-
nectivity may reflect a combination of several processes including 
response preparation, stimulus evaluation, attention, orientation, 
etc. Thus, we extend this connectivity measure to examine whether 
synchronization is modulated by an experimental variable (e.g., 
reaction time). The idea is that process-specific connectivity should 
be modulated by reaction time, whereas more general inducers of 
connectivity (e.g., orienting attention, general response prepara-
tion) should not be. Similar to the phase analysis above, this method 
tests the relationship between relative phase angles between seed 
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Single-trial power regression analyses revealed similar effects as 
with data from FCz for reaction time (Figure 9), though generally 
less robust (compare to Figure 3A). A more striking difference 
was the lack of luminance × reaction time interaction at the right 
frontal component.

disCussion
the medial frontal Cortex, theta osCillations, and Cognitive 
Control
The trial-average results presented in Figure 2 add to a growing 
body of work linking theta-band oscillatory dynamics recorded 
over medial frontal sites to action monitoring, cognitive control, 
and reinforcement learning (Trujillo and Allen, 2007; Hanslmayr 
et al., 2008; Marco-Pallares et al., 2008; Cavanagh et al., 2009; 
Christie and Tata, 2009; Mazaheri et al., 2009). Together, these 
findings suggest that medial frontal theta is a candidate mecha-
nism for information processing and transfer during conflict, error, 
and negative performance feedback. Spatial filtering methods such 
as current source density, independent components analysis, and 
dipole modeling suggest that these theta dynamics originate in 
the pre-supplementary motor area or anterior cingulate cortex 
(Miltner et al., 2003; Debener et al., 2005; Vocat et al., 2008). This 
is confirmed by direct recordings in humans (Wang et al., 2005; 
Cohen et al., 2008) and functional MRI studies (van Veen et al., 
2001; Mathalon et al., 2003).

Although results of these cross-trial averaging analyses generally 
link medial frontal theta to response conflict, the single-trial regres-
sion analyses provide more behaviorally relevant insights into the 
theta dynamics that may support cognitive control. Indeed, several 

connectivity between medial frontal and lateral prefrontal regions. 
Topographical maps in Figure 6B show that this effect was localized 
primarily to anterior and lateral prefrontal sites.

single-trial analyses based on independent Components 
analysis
Previous reports suggest advantages to conducting single-trial analy-
ses using data from independent components (Debener et al., 2005, 
2007; Eichele et al., 2009). In some cases, independent components 
and other methods (e.g., stable topographical maps based on clus-
tering) provide converging results (De Lucia et al., 2010). Because 
independent components analysis results in a set of electrode weights 
that maximize temporally independent processes, this analysis might 
improve signal-to-noise. However, because each component is a 
weighting of all electrodes, specific maps must be selected for each 
subject. For example, in cognitive control experiments, maps are 
often selected based on a medial frontal topographical distribution 
(Debener et al., 2005; Eichele et al., 2010; Wessel and Ullsperger, 
2010), although more sophisticated approaches are available based on 
higher-dimensional clustering (Onton et al., 2005). Therefore, in the 
interest of comparison with other approaches for analyzing single-
trial data, we performed robust regression on the time– frequency 
representation of independent components. As described in the 
methods, components for each subject were selected according to a 
medial frontal and left/right lateral frontal topography (Figure 7).

The trial-averaged time–frequency representation of the compo-
nents time courses are shown in Figure 8. The medial frontal com-
ponent showed an increase in theta power that peaked just prior 
to the response, similar to results from electrode FCz (Figure 2).

Template Average maps Individual subjects

FiGurE 7 | Selection of independent components for all subjects. Components were selected based on spatial correlation with a priori specified templates (left 
column). The average component across subjects was similar to the templates (middle column). Individual maps from all 15 subjects are shown in the right-most column.
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reaction time in situations of high response conflict, whereas trial-
averaged phase synchronization suggested that connectivity was 
unrelated to conflict.

single-trial multiple regression over time and frequenCy
The dissociation in timing between trial-averaged theta – which 
had a narrow peak 100 ms (power) and 122 ms (cross-trial phase 
coherence) prior to the response – and the single-trial theta 
response time regression coefficients – which started earlier and 
peaked 176 ms before the response (see Figure 9), suggests two 

findings emerged only in the single-trial analyses (discussed in more 
detail below): (1) single-trial regression demonstrated that pre-
response theta is involved in conflict-modulated response selection 
over a longer time period than is apparent in trial-averaged theta; 
(2) single-trial “weighted” phase modulation demonstrated that 
pre-response theta phase predicted endogenous conflict as reflected 
by reaction time, whereas trial-averaged phase coherence showed 
only a low-frequency general phase alignment; (3) single-trial phase 
synchrony modulation demonstrated that medial–lateral prefrontal 
phase synchronization was significantly modulated by upcoming 
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distinct but nearly temporally overlapping roles of medial frontal 
theta dynamics. On the one hand, peri-response theta is involved 
in general response-locked dynamics; on the other hand, it is the 
pre-response theta that is tightly coupled to response time. Indeed, 
medial frontal activity correlating with trial-to-trial RT has been 
reported previously with EEG independent components analysis 
(Delorme et al., 2007), and with a re-analysis of five fMRI data-
sets (Yarkoni et al., 2009). Further, the dissociation between the 
extended pre-response time course of the theta power regression 
and the theta phase modulation analysis (compare red and black 
lines in Figure 10), in combination with the weak pre-response 
phase coherence (Figure 2D), suggests that reaction time dynam-
ics are more closely associated with non-phase-locked oscillatory 
activity compared to phase-locked transients. In other words, the 
neural processes within the medial frontal cortex that influence 
reaction time during conflict might reflect amplitude modulations 
of ongoing oscillations, rather than a sudden resetting of activity.

The interaction of luminance and reaction time predicting theta 
dynamics over lateral prefrontal cortex implicates this region in 
mediating stimulus-induced conflict. This is consistent with previ-
ous findings linking top–down control over visual information to 
lateral prefrontal functioning (Zanto et al., 2010), and in perceptual 
conflict (van Veen et al., 2001). Further, right lateral prefrontal 
cortex has been suggested to play a particularly prominent role in 
top–down control (Aron et al., 2004). More generally, this high-
lights two strengths of the single-trial multiple regression approach: 
(1) Trial-varying stimulus luminance drawn from a random distri-
bution would normally be considered an experimental confound; 
here, this confound becomes an asset that reveals the involvement of 
the lateral prefrontal cortex in regulating decision time according to 
stimulus difficulty. (2) Theta activity is not often localized over lat-
eral prefrontal sites in trial averages (Figure 2A, and also Cavanagh 
et al., 2009; Cohen, 2011a; Nigbur et al., under review), but shows 

robust trial-by-trial modulations with experiment dynamics. This 
finding, together with increased conflict-related synchronization 
with medial frontal sites, demonstrates that lateral prefrontal theta 
is indeed involved in cognitive control processes, but this is difficult 
to infer because trial-averaged theta may not increase significantly 
compared to pre-stimulus baseline activity.

It is not clear why stimulus luminance had a main effect on 
low-frequency oscillations only during cC trials. We speculate that 
because these were the easiest trials, subjects may have had more 
cognitive resources to devote to low-level stimulus properties. 
However, this was not explicitly tested, nor did subjects spontane-
ously mention this.

single-trial phase and phase synChrony modulation
“Standard” inter-trial phase coherence (also called cross-trial phase-
locking) assumes that oscillation phase is relevant when the oscilla-
tion has a similar phase value across trials at each time–frequency 
point. Therefore, this approach mixes a number of potential causes 
of phase coherence, including stimulus-evoked responses, general 
orienting or attention responses, and task-specific dynamics. This 
approach precludes discovery of phase dynamics that are related 
to the task but are not consistent across trials. In contrast, the 
single-trial “weighted” phase modulation analysis performed here 
does not require phase values to be similar across trials; rather, this 
analysis is sensitive to modulations of phase values even if those 
phases are randomly distributed across trials. Indeed, an absence 
of pre-response cross-trial phase coherence would be expected if 
pre-response theta phase were modulated by reaction time (which 
differs from trial to trial).

Similarly, phase synchronization modulation has advantages 
over standard phase synchronization because, as described above, 
inter-site phase synchronization may result from a combination of 
specific task-related parameters and also more general cognitive/
orienting processes. In contrast, the specific modulation of phase 
synchronization by reaction time provides a more focal interpre-
tation of synchronization vis-à-vis conflict dynamics: phase angle 
differences do not need to be consistent over trials at each time–
frequency point; rather, they need only to be consistently related 
to behavioral or experimental variables.

These two analytic approaches are complementary. Inter-trial 
phase coherence provides insights into the overall stimulus- or 
response-related phase consistencies, whereas phase modulation 
is process-specific. Note, however, that this specificity should be 
taken into consideration when interpreting results. For example, 
the phase modulation analyses in Figure 6 do not indicate that 
delta-band phase is irrelevant for the task; rather, they show that 
only theta-band phase is modulated by reaction time, whereas 
delta-band phase coherence may support a more general cognitive 
function that is time-locked to the response but unrelated to vari-
ations in response time. Similarly, comparing the inter-electrode 
phase synchronization with the phase synchronization modula-
tion (Figure 6) suggests that the MFC-lateral prefrontal theta-band 
synchronization reflects both general response initiation processes, 
and, particularly during conflict, reaction time-specific processes.

Based on these findings, it seems that (1) medial frontal cortex 
has both a general role in generating responses, as well as a spe-
cific role in conflict-modulated decision time; (2) lateral prefrontal 
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 cortex is recruited by the medial frontal cortex during situations of 
conflict, and synchronized theta-band activity may be the substrate 
of their communication; (3) lateral prefrontal cortex is additionally 
involved in influencing reaction time according to modulations of 
conflict (stimulus luminance).

Results from the independent components analyses were gener-
ally less robust compared to those based on electrode time courses. 
It is possible that more sophisticated component clustering tech-
niques would reveal the findings to a similar magnitude as with 
the electrode-based analyses. However, in this case, it seems that 
independent components analysis may not necessarily be an opti-
mal approach for single-trial analyses.

Another significant advantage of the methods used here is 
that they are robust to potential outliers at the single-trial level. 
During standard trial averaging, trials are not typically inspected 
for outliers, and it is thus possible that a minority of trials with 
large oscillation power values bias the average activity levels. In 
contrast, robust regression minimizes the contribution of outliers, 
and the phase modulation analyses are based on permutation test-
ing, therefore minimizing the danger of outliers biasing estimates 
of trial-averaged results.

possible extensions to the single-trial multiple regression 
approaCh
One could extend this framework to apply hierarchical regression 
models in which the variance from the single-subject trial-level 
data is used to inform group-level results. This might be particu-
larly useful when comparing groups, e.g., if patients and control 
subjects have similar average effects but patients have more vari-
able responses. This approach could also be applied to fMRI data, 
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