
Over the last decade a wealth of research into alpha activity 
has shown that it is intimately linked to attention and it is now 
considered by many to reflect cortical excitability, with low alpha 
indicating active neuronal processing and high alpha denoting 
inhibition or disengagement of brain areas uninvolved in task 
performance (e.g., Klimesch et al., 1998; Worden et al., 2000; 
Pfurtscheller, 2001; Sauseng et al., 2005b; Kelly et al., 2006; 
Romei et al., 2008a,b; Snyder and Foxe, 2010; for a review see 
Klimesch et al., 2007). It has frequently been reported that when 
participants are spatially cued to anticipate a visual stimulus 
appearing on one side of space, alpha decreases contralaterally 
and increases ipsilaterally (Worden et al., 2000; Yamagishi et al., 
2003; Sauseng et al., 2005b; Kelly et al., 2006, 2009; Thut et al., 
2006; Rihs et al., 2007; Wyart and Tallon-Baudry, 2009). A simi-
lar finding has been reported for the allocation of attentional 
focus in the upper and lower visual fields (Worden et al., 2000; 
Rihs et al., 2007). Furthermore, some studies have reported this 
effect in tandem with an association of alpha power and task 
performance: Faster response latencies (Thut et al., 2006; Kelly 
et al., 2009) and increased accuracy of detection or discrimina-
tion (Kelly et al., 2009; Wyart and Tallon-Baudry, 2009) have 
been shown to coincide with lower alpha power contralaterally 
and higher alpha power ipsilaterally.

IntroductIon
Attention waxes and wanes during the undertaking of a task, 
as our minds wander and subsequently refocus and as our lev-
els of vigilance vary (e.g., Robertson et al., 1997; Gilden, 2001; 
Wagenmakers et al., 2004; Monto et al., 2008), particularly dur-
ing relatively straightforward tasks for which processing becomes 
automated after initial orientation (Smallwood and Schooler, 2006). 
We refer to such fluctuations in task engagement as “attentional 
state.” Here, we assess two very different measures of attentional 
state: participants’ own introspective judgments, and spontane-
ous prestimulus electroencephalogram (EEG) alpha activity. On 
a trial-by-trial basis, we investigate the relationship between these 
disparate measures of attentional state, the timescales over which 
they fluctuate, and their interplay with performance in a rapid serial 
visual presentation (RSVP) detection task.

Alpha is EEG oscillatory activity between approximately 8 and 
12 cycles per second that can occur over the entire scalp but is 
typically highest in amplitude in parieto-occipital areas. It increases 
in amplitude when the eyes are closed and is attenuated by visual 
stimulation (Berger, 1929); it has long been considered to reflect 
general arousal in that low alpha is associated with a state of alert-
ness and high alpha is associated with relaxation or drowsiness 
(Pollen and Trachtenberg, 1972; Ray and Cole, 1985).
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Recently, the causal nature of alpha oscillations in selective 
 attention has been demonstrated: Romei et al. (2010) have shown 
that alpha frequency (10 Hz) repetitive transcranial magnetic stimu-
lation (r-TMS) enhances visual detection when applied to ipsilateral 
visual cortex and impairs visual detection when applied to contral-
ateral visual cortex. Doesburg et al. (2009) have reported that the 
phase-locking of alpha activity between low-level visual cortex and 
parietal cortex during the interval between an informative spatial 
cue and target stimulus onset increases contralaterally and decreases 
ipsilaterally. In a similar vein, Capotosto et al. (2009) have demon-
strated that r-TMS to the right intra-parietal sulcus and right frontal 
eye fields disrupts attentional modulation of alpha power in visual 
cortex and impairs identification accuracy and response latency to a 
target stimulus presented approximately 2 s later. Collectively, these 
results implicate the parietal cortex in the control of attention by 
alpha suppression and enhancement in visual cortex.

There is a good deal of evidence, therefore, that relative alpha 
power within occipital cortex reflects the spatial focus of visual 
attention. In addition, the overall level of alpha power in visual cor-
tex has been shown to be indicative of disengagement with external 
visual input and a focus on other senses or internal thoughts. For 
example, focusing attention on auditory (Foxe et al., 1998; Fu et al., 
2001) or somatosensory input (Linkenkaer-Hansen et al., 2004) 
results in increased alpha power in parieto-occipital cortex. Alpha 
power in parieto-occipital cortex is also greater during internal 
cognitive tasks such as mental arithmetic (Ray and Cole, 1985; Palva 
et al., 2005) and imagery (Ray and Cole, 1985; Hari et al., 1997; 
Cooper et al., 2006, 2003), and during short-term and working 
memory retention (Jensen et al., 2002; Busch and Herrmann, 2003; 
Sauseng et al., 2005a). In a recent study, alpha power was found to 
be greater while participants were focused on an internal counting 
task (Braboszcz and Delorme, 2011). Conversely, when attention is 
redirected to visual input, alpha power is attenuated. For example, 
alpha power decreases in response to a warning cue that the appear-
ance of a task-related stimulus is imminent (Klimesch et al., 1998), 
and is reduced following errors relative to correct trials in the Stroop 
task (Carp and Compton, 2009) and in digit discrimination tasks 
(Mazaheri et al., 2009). Since many models of cognitive control 
propose that detection of an error is a sign that task approach needs 
to be improved (Holroyd and Coles, 2002; Ridderinkhof et al., 2004; 
Yeung et al., 2004), this finding implies that after a lapse in atten-
tion, participants refocus on the task at hand.

These observations of elevated levels of alpha activity in visual 
cortex in association with disengagement from visual input have 
recently led researchers to investigate whether visual awareness 
is negatively correlated with spontaneous alpha power. However, 
whereas there have been many demonstrations of alpha power 
changes due to directed attention in a variety of paradigms, as 
discussed above, effects of alpha power on visual awareness are 
seemingly more difficult to obtain. Some authors have reported 
such an association in simple threshold contrast detection tasks 
with precisely controlled stimulus conditions, with greater pres-
timulus alpha preceding trials in which a target was not detected 
than trials in which a target was detected (Ergenoglu et al., 2004; 
van Dijk et al., 2008; Busch et al., 2009); during a visual stimulus 
duration monitoring task (O’Connell et al., 2009), alpha power was 
found to steadily increase starting up to 20 s before a task error 

occurred. Others, however, with similar paradigms have found no 
such association (e.g., Thut et al., 2006). Therefore it seems that 
whereas the link between alpha power in parieto-occipital cortex 
and directed attention is strong, subsequent effects on visual aware-
ness are less consistently observed.

To summarize, prestimulus alpha power is a good candidate for 
use as an index of attentional state on a trial-by-trial basis since 
it has repeatedly been demonstrated to reflect the spatial locus of 
visual attention and the extent to which attention is focused on 
visual input. In this study, we sought to investigate the relationship 
between alpha power and participants’ subjective ratings of their 
attentional state.

There is a growing literature demonstrating that participants’ 
introspective judgments of attentional state are reliable and mean-
ingful. Typically, such judgments are recorded via direct question-
ing at random intervals. The type of measure used has varied from 
a simple binary response in which participants indicate whether 
they were focused on the task or not immediately preceding the 
question (e.g., Smallwood et al., 2004, 2008; Mason et al., 2007; 
Christoff et al., 2009; Forster and Lavie, 2009; Kam et al., 2011), 
to asking participants to comment on what they were thinking 
about just prior to the question (for a review see Smallwood and 
Schooler, 2006). It has been proposed that during periods in which 
participants report that they are not focused on the task, attention 
has switched to thoughts unrelated to the task, i.e., mind-wandering 
(Smallwood and Schooler, 2006). This interpretation is supported 
by studies that asked participants to report what they were thinking 
about rather than simply report whether they were focused on the 
task or not (Teasdale et al., 1993, 1995).

During periods of reportedly low attentional state, sensory 
awareness of the external world may be reduced (Smallwood and 
Schooler, 2006). For example, in a task in which a response must 
be withheld upon presentation of a target digit, errors are more 
likely preceding reports of being unfocused on the task, assessed 
via probes occurring at random intervals (Smallwood et al., 2004, 
2008; McVay and Kane, 2009). Furthermore, in EEG studies, early 
event-related potential (ERP) components related to perception 
(the P1 for visual stimuli and the N1 for auditory stimuli) have been 
shown to be attenuated in trials preceding reports of being unfo-
cused on the task (Kam et al., 2011), as have later decision-related 
components, such as the P300, in response to targets (Smallwood 
et al., 2008). Episodes of low attentional state have also been associ-
ated with increases in neural activity in the default mode network 
as measured with fMRI (Mason et al., 2007; Christoff et al., 2009), 
and such neural changes in this network have in turn been associ-
ated with task errors (Eichele et al., 2008; Christoff et al., 2009).

One aspect of attentional state that has not yet been investigated 
is its temporal properties, i.e., how frequently do fluctuations in 
attentional state occur? Typically, attentional state probes are inter-
spersed at random intervals of 30–90 s and all trials occurring 
during the 15 s prior to each mind probe are assigned with the 
subsequent response (e.g., Smallwood et al., 2008), as a compro-
mise between the temporal resolution of reported attentional state 
and trial economy. Given that studies of this kind have found an 
association between subjective reports of attentional state and task 
performance (Smallwood et al., 2004, 2008; McVay and Kane, 2009), 
we might assume that fluctuations of attentional state occur with 
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cycle durations in the order of at least tens of seconds. In support 
of this notion, a recent study (Monto et al., 2008) has demonstrated 
that somatosensory detection performance is correlated with the 
phase of infraslow fluctuations (0.1–0.01 Hz, i.e., 10–100 s cycles) 
of EEG. Furthermore, power in all frequency bands was similarly 
correlated, suggesting that the infraslow fluctuations reflect the 
excitability dynamics of cortical networks. Both of these findings 
could be interpreted as reflecting slow variations in attentional state.

Here, we attempt to bring together the research into EEG alpha 
activity and attention, and studies of subjective attentional state, 
by exploring the robustness of the relationship between spontane-
ous prestimulus EEG alpha activity and participants’ introspective 
ratings of attentional state on a continuous scale, with a focus on 
trial-by-trial variability. If these measures both relate to attentional 
state, they should be negatively correlated. However, it is an open 
question as to whether they would be associated in this way. On 
the one hand they operate on disparate levels: Parieto-occipital 
alpha power has been suggested to reflect the excitability of visual 
cortex (e.g., Klimesch et al., 2007), implying that it reflects relatively 
low-level physiological factors, whereas reporting on one’s own 
mind-state is clearly a high-level process. On the other hand, both 
have been shown to be associated with hallmark attentional effects, 
as reviewed above. We also anticipated that high attentional state 
ratings and low prestimulus alpha power would be associated with 
better detection performance – as the results of previous studies’ 
that we have reviewed above would suggest. To test these predic-
tions, and to explore the timescales over which these measures co-
varied during the course of the experiment, we correlated the time 
series of attentional state ratings, prestimulus alpha power, and task 
performance after smoothing them with increasingly large sliding 
windows. Finally, we considered that attentional state ratings might 
be positively associated with the amplitude of ERPs, for example, 
early perceptual components (e.g., the N1 and P1) in response to 
stimulus onset warning cues, steady-state visually evoked potentials 
(SSVEPs) generated by the RSVP stream, and post-stimulus P300 
amplitude in response to detected targets.

We also asked participants to rate the confidence of their 
 perceptual decision. We predicted that, like attentional state rat-
ings, this measure would correlate positively with detection per-
formance and perhaps P300 amplitude, but we did not expect it 
to be associated with prestimulus alpha power. We also anticipated 
that confidence ratings could potentially be somewhat positively 
correlated with attentional state ratings, because a high attentional 
state could improve perceptual representation of the target lead-
ing to higher decision confidence, and conversely, that decision 
confidence might retroactively bias judgments of attentional state.

This study is part of a wider project looking at the use of EEG 
to improve image triage efficiency in an operational context (e.g., 
Gerson et al., 2006; Mathan et al., 2006, 2008; Mathan, 2008; Parra 
et al., 2008; Poolman et al., 2008). As such, the task we employ here 
is intended to be an experimental analog of the work performed 
by intelligence analysts searching satellite imagery. Previous work 
on this project has shown that efficiency is improved if images are 
subdivided into smaller images and presented in an RSVP stream 
(Gerson et al., 2006; Mathan et al., 2006). Hence, our task was 
a simple detection task with complex stimuli: An RSVP stream 
of noise images lasting 1 s during which a target geometric pat-
tern was sometimes presented, embedded in the noise of one of 
the images (see Figure 1 for a schematic illustration of the trial 
procedure). The stimuli we used were synthetic to allow precise 
control over stimulus visibility, but were designed to mimic satellite 
imagery used by other groups in the project. At the end of each 
trial participants reported whether they had seen the target or not, 
and rated both their confidence of this decision and their atten-
tional state with respect to the task during that trial. To minimize 
the time taken to collect responses, and to provide participants 
with an intuitive response method, all three of these judgments 
were reported via a single click of a mouse within a large square 
(see Figure 1 for an illustration). The vertical axis of the square 
reflected their attentional state, and the horizontal axis reflected 
both their target present or absent response and their confidence 
of this decision: Clicks within the right half of the square  indicated 

Figure 1 | Trial procedure and stimuli. (A) A schematic illustration of the sequence of events in each trial. (B) Example target image. (C) Example non-target image.
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you see the target?”, “How confident are you of that?”, and “How 
focused were you?” in black at the top of the screen, the number of 
the current trial and block, as well as the number of trials per block 
and total number of blocks, in blue at the bottom of the screen. 
The words “Sure Present” appeared on the right hand side of the 
square, “Sure Absent” on the left, “More Focused” above, and “Less 
Focused” below, in black. Participants were instructed to click once 
with a mouse within the square to indicate their response to all three 
task questions. The vertical axis of the square reflected their atten-
tional state, whereas the horizontal axis reflected both their target 
present or absent response and their confidence of this decision: 
Clicks within the right half of the square indicated target present and 
clicks within the left half indicated target absent; distance from the 
vertical midline to either edge of the square indicated confidence. 
The square was 201 by 201 pixels so attentional state ratings were 
measured on a 201-point scale and confidence was measured on a 
101-point scale (since confidence increased from 0 up to 100 for 
target present responses and decreased from 0 to −100 for target 
absent responses). Participants were asked to rate their attentional 
state with respect to the current trial only in terms of the extent to 
which they were focused on performing the detection task. They 
were asked to incorporate their levels of vigilance and distraction 
(whether from internal sources, i.e., mind-wandering, or external 
sources, e.g., sounds outside the testing room) into this one response.

EEG rEcordInG and procEssInG
A Neuroscan Synamps2 system (10 GΩ input impedance; 29.8 nV 
resolution) was used to record EEG data from 32 Ag/AgCl elec-
trodes mounted in an elastic cap at locations FP1, FPZ, FP2, F7, 
F3, FZ, F4, F8, FT7, FC3, FCZ, FC4, FT8, T7, C3, CZ, C4, T8, TP7, 
CP3, CPZ, CP4, TP8, P7, P3, PZ, P4, P8, POZ, O1, OZ, and O2. An 
additional six external electrodes were attached to the left and right 
mastoids, of which the left acted as a reference, the outer canthi 
of the left and right eyes, and above and below the right eye to 
measure electro-oculograms (EOGs). All electrode impedances were 
kept below 50 kΩ. EEG data were recorded at a sampling rate of 
1000 Hz and were high-pass filtered online above 0.1 Hz. Data were 
downsampled off-line at 100 Hz, then low-pass filtered at 48 Hz, 
and subsequently epoched from 1.5 s before RSVP onset to 1 s after 
offset. For the alpha power analyses, the continuous data were addi-
tionally high-pass filtered at 0.5 Hz to reduce noise before the epochs 
were extracted. EEG epochs were baseline-corrected by subtracting 
the average of the data points between 1.1 and 1 s before RSVP 
onset. Eye blink correction was conducted using an independent 
components analysis approach via the EEGLab toolbox for Matlab 
(Delorme and Makeig, 2004). All EEG processing was conducted 
with custom-written scripts using native Matlab commands and 
commands from the EEGLab toolbox. Filtering was conducted with 
the “eegfilt” command from the EEGLab toolbox, which utilizes a 
two-way least-squares FIR filter. The order of the filter was equal to 
the sampling rate (100 Hz) divided by the lower edge of the band, 
rounded down and multiplied by three, with a minimum value of 15.

analysIs
Our analysis was intended to uncover neural correlates of detec-
tion performance and continuous ratings of subjective attentional 
state and decision confidence. We therefore compared ERPs and 

target present and clicks within the left half indicated target absent; 
distance from the vertical midline to either edge of the square indi-
cated confidence. Participants’ EEG in 32 channels was recorded 
throughout the experiment.

MatErIals and MEthods
partIcIpants
Twelve participants were recruited at the University of Oxford and 
were paid for their participation. One participant was excluded and 
replaced due to consistent reporting of target present responses 
as high attentional state and target absent responses as low atten-
tional state with very little other variability. The age range of those 
included was 18–29 years (M = 22.33 years, SD = 4.36 years), and 
there were five males. All of the participants had normal or cor-
rected-to-normal vision. The research was conducted in accordance 
with the American Psychological Association’s standards for ethical 
treatment of participants and with the approval of the University 
of Oxford’s institutional review board.

stIMulI and procEdurE
The experiments were created and run with the Psychophysics 
Toolbox version 3 (Brainard, 1997) in Matlab 2009b (The 
Mathworks, Inc., 2009) on a Windows PC attached to a 20′′ moni-
tor at a resolution of 1024 × 768 and a refresh rate of 60 Hz. The 
participants’ task was to monitor an RSVP stream of images for the 
presence of a target image. The sequence of events on each trial is 
illustrated schematically in Figure 1.

In each trial a set of 10 images was presented serially over the 
course of 1 s (i.e., at 10 Hz). Each image was centered at fixation, 
subtended 18.5° by 18.5° of visual angle at a viewing distance of 
57 cm, and was presented for 50 ms, followed by a blank gray 
screen for another 50 ms. The images were gray-scale white noise 
patterns that were randomly selected from a pre-generated set of 
60 used for all participants. In target images, a set of six concen-
tric circle patterns (each subtending 0.4° radius and consisting of 
two concentric circles) arranged in a randomly oriented hexagon 
of 3.3° radius, was embedded in the background noise. Targets 
were presented in 50% of trials, and their position in the RSVP 
stream was counterbalanced, although they were never presented 
in the first or last two positions. The contrast of the target pattern 
was determined for each participant during a brief pre-experi-
mental session consisting of three blocks of 24 trials, in which a 
staircase procedure (QUEST from the Psychophysics Toolbox 3, 
Brainard, 1997) was used to titrate detection rate at 75%. This 
pre- experimental session also served as a practice session for the 
participants. Feedback was provided at the end of each trial during 
the first practice block only. The experimental session consisted 
of three blocks of 312 trials each.

The RSVP image stream was preceded by a red fixation point of 
0.1° radius at the center of the gray screen for a period of 2 s that was 
interrupted after 1 s by the presentation of the words “Get Ready!” in 
black, centered at fixation, for 0.3 s. The letters of the words subtended 
0.6° by 0.7°. After the offset of these words the screen remained blank, 
except for the red fixation point, for 700 ms before the RSVP stream 
began. It was followed by a response screen (see Figure 1) consisting 
of a white square (8.0° by 8.0°) with a black border subdivided into 
four quadrants by a faint gray line, with the response questions, “Did 
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method was to average over trials within a sliding window. At the 
beginnings and ends of the time series, the number of available 
trials was used instead of the specified sliding window size. Since 
smoothing also resulted in edge effects, we discarded an additional 
36 trials at the start and end of each time series, leaving 720 trials. 
We then repeated the smooth and correlate procedure, leaving the 
previously smoothed time series unsmoothed and smoothing the 
other time series.

Due to the novelty of our approach, we repeated the analysis on 
simulated time series data to verify that it could reveal correlated 
fluctuations in pairs of time series and would not generate spurious 
correlations. Thus, the simulated time series could be uncorrelated 
or could be correlated over fast timescales, slow timescales, or both 
fast and slow timescales. Of interest was the effectiveness with which 
the smoothing analysis, applied exactly as it was to our empirical 
EEG data, would identify the presence or absence of these correla-
tions in the time series data. Specifically, we generated four sets 
of simulated time series: The first set contained no oscillations; 
the second consisted of sine waves of 1–9 cycles per experiment 
(i.e., slow oscillations); the third, sine waves of 46–90 cycles per 
experiment (i.e., fast oscillations); the fourth, sine waves of 1–9 
and 46–90 cycles per experiment (i.e., both slow and fast oscilla-
tions). We subsequently inverted the values of each signal to form 
a complementary signal that was perfectly negatively correlated 
with the first. We then added independently generated white noise 
to each simulated time series, and finally performed our smoothed 
time series correlation analysis on 12 time series pairs (to match 
the number of participants).

We subsequently used a single-trial classification analysis to 
appraise the robustness of the association between attentional 
state ratings and prestimulus alpha power. Specifically, we classi-
fied upper vs. lower attentional state rating quartiles on the basis 
of prestimulus alpha power. We used a logistic regression classifier 
(Parra et al., 2002) that identifies the spatial distribution of scalp 
EEG activity in a given time window that maximally distinguishes 
two conditions to deliver a scalar estimate of component amplitude 
on each trial. The derived estimates are robust (i.e., have high signal-
to-noise) because the discriminating components act as a spatial 
filter that estimates component amplitude as a spatially weighted 
average across electrodes for each trial, in much the same way that 
conventional ERP analysis averages across trials to reduce noise 
(Parra et al., 2002).

For the classification analyses, alpha amplitude was quantified 
as Fourier spectral power in a 4-Hz band centered on each partici-
pant’s modal alpha frequency (typically 10 Hz). We used the 1 s 
of EEG data between the onset of the words “Get Ready!” and the 
onset of the of the RSVP stream to compute a Fourier spectrum 
for each trial. Since we had downsampled the data to 100 Hz, an 
array of five values – one for each integer frequency within the 4-Hz 
band – was obtained per electrode, per trial. The classifier identified 
an optimal weighting of electrodes for each of these five frequen-
cies as a predictor of upper vs. lower attentional state quartile. We 
averaged the classifier output for the five frequencies to obtain a 
scalar value for each trial from 0 to 1, which can be conceptualized 
as the estimated probability that attentional state rating was in the 
upper quartile on that trial. By comparing these values with the 
objective truth label of the trial (i.e., 0 = lower attentional state 

prestimulus alpha power as a function of each type of rating, and 
correlated increasingly smoothed time series of attentional state 
ratings, alpha power, and task performance to investigate the times-
cales over which they co-varied. Finally, we used single-trial clas-
sification to appraise the robustness of the association between 
attentional state ratings and prestimulus alpha power. Details of 
these analyses are given in the following sections.

To quantify the P300 for each trial, we re-epoched the EEG 
data time-locked to target image onset, and baseline-corrected by 
subtracting the average of data points between 0.1 s before and 
after target image onset. We then low-pass filtered the EEG epochs 
below 8 Hz to remove the strong 10 Hz SSVEP signal generated 
by the RSVP stream, averaged them across central, parietal, and 
occipital midline electrodes CZ, CPZ, PZ, POZ, and OZ, and took 
the maximum voltage between 350 and 450 ms post-target image 
onset as the amplitude of the P300 for each trial.

To quantify prestimulus alpha power for each trial, we first 
band-pass filtered the EEG epochs from parieto-occipital chan-
nels P7, P3, PZ, P4, P8, POZ, O1, OZ, and O2, using a 4-Hz band 
centered on each participant’s modal alpha frequency (typically 
10 Hz, Klimesch et al., 2007). We subsequently computed the enve-
lope of the amplitude-modulated signal via the Hilbert transform 
(“hilbert” function in Matlab), which discards phase information 
and reveals oscillatory power fluctuations over time, and averaged 
this signal within the 1-s time period between the onset of the words 
“Get Ready!” and the onset of the RSVP stream. Hence, data from 
the first 0.5 s and last 2 s of the epochs were discarded, avoiding 
contamination from edge effects after filtering. We then divided 
by the average Fourier spectrum power for all frequencies except 
those in the alpha band, from the same time interval, to normal-
ize alpha power to that of the rest of the EEG frequency spectrum. 
We performed this step because we were concerned that a simple 
measure of alpha power might be unduly affected by changes in 
broadband EEG power (i.e., recording noise) during the session, 
which might mask the activity of interest. By dividing alpha power 
by the average broadband power from the same time interval, we 
eliminate this source of extraneous variance in our alpha quantifi-
cations. Without this step the results were slightly less clear in some 
participants, but the overall pattern was not materially affected. 
Therefore while the normalization procedure does have an effect, 
it only served to reduce noise.

The aim of the timescales analyses was to investigate the pair-
wise associations between prestimulus alpha power, attentional 
state ratings and task performance (trial accuracy), at different 
timescales within the experimental session. Our novel approach 
was to hold the trial-by-trial time series of one variable constant 
and increasingly smooth the corresponding time series of the 
other variable, calculating Pearson’s Product Moment Correlation 
Coefficient after each increase in the sliding window size. Prior to 
smoothing, we high-pass filtered the time series of each variable 
at two cycles per experimental session and subsequently discarded 
the first and last 72 trials to avoid contamination from edge effects. 
The purpose of this pre-processing step was to remove the gradual 
downward drift that dominated the time series of attentional state 
ratings of 4 of the 12 participants, while having minimal effects 
for the other eight participants. Hence, the analysis focused on 
fluctuations within the experimental session. Our smoothing 
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and confidence ratings. Having observed an overall  relationship 
between these measures, our next analyses focus on the timescales 
of variation of attentional state ratings, prestimulus EEG alpha 
power, and task performance. Finally, to assess the robustness of 
EEG alpha power as a measure of attentional state, we investigate 
whether this measure can be used to predict participants’ subjec-
tive attentional state ratings as they vary from trial-to-trial using 
multivariate classification.

task pErforMancE and attEntIonal statE and confIdEncE 
ratInG dIstrIbutIons
Target contrast corresponding to a detection rate of 75% was 
determined for each participant with a staircase procedure dur-
ing a pre-experimental session. The mean contrast value was 0.15 
(SD = 0.02). The mean detection rate across participants was 71% 
(SD = 8%) and the mean false alarm rate (target present responses 
when no target was presented) was 9% (SD = 5%). Mean d′ was 
1.98 (SD = 0.49).

Figure 2A shows the locations within the response square of 
all clicks by all participants for target present trials (in black) and 
target absent trials (in red), and the grand average distributions 
of attentional state and confidence ratings for target present and 
absent trials separately (also in black and red). Since clicks within 
the right half of the square denoted target present responses and 
clicks within the left half denoted target absent responses, black 
dots on the right indicate trials in which a target was presented and 
detected (hits), whereas those on the left indicate trials in which a 
target was presented but not detected (misses). Correspondingly, 

rating quartile and 1 = upper), we computed the Az score (the 
area under the receiver operating characteristic curve, Stanislaw 
and Todorov, 1999) for each participant.

We employed a 2-fold cross validation approach, such that we 
trained the classifier on half of the data and tested it on the other 
half, then repeated this procedure after switching training and vali-
dation data. We employed a random-fold assignment procedure, in 
which data samples are randomly assigned to training and valida-
tion sets, rather than a sequential-fold assignment procedure, in 
which data from each class are split into training and validation sets 
based on their temporal order. Whereas sequential folds provide 
a better indication of cross-session generalization, the advantage 
of random folds is that non-stationary aspects of the EEG sig-
nal are factored out and the invariant correlates of the conditions 
being classified become more prominent. Another advantage of a 
random-fold assignment procedure is that it introduces a source 
of variability into the computation, such that classifications can be 
repeated a number of times and Az score confidence intervals can 
be computed. We repeated all classifications 1000 times and give 
the mean and 95% confidence interval for individual participants’ 
Az scores.

rEsults
We first present analyses of the continuous trial-by-trial ratings of 
attentional state and perceptual decision confidence, and their rela-
tion to task performance. We then relate these measures to key EEG 
indices of attention and task performance: ERPs and ongoing pres-
timulus alpha power as a function of quantile-split attentional state 

Figure 2 | Behavioral results from the visual detection task. (A) The locations of 
all responses (mouse clicks) from all participants. Responses in target trials are 
shown as black dots; responses in non-target trials are shown as red dots. The 
frequency distributions of attentional state ratings for target trials (black line) and 
non-target trials (red line) are shown on the left hand side, and the frequency 
distributions of decision confidence ratings are shown below. (B,C) Grand average 

percentages of hits and false alarms as a function of attentional state rating decile and 
confidence rating decile, respectively. Error bars show the SE of the mean across 
participants. (D) The normalized time series of attentional state ratings (red line) and 
detection task accuracy (black line) for one participant. (e) The normalized time series 
of attentional state ratings (red line) and detection task accuracy (black line) for one 
participant after smoothing each time series with a sliding window size of 101 trials.
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increases, F(1, 99) = 63.43, MSE = 5203.05, p < 0.001, ηp
2 0 39= . . 

There was also a significant linear trend for d′, F(1, 99) = 53.42, 
MSE = 9.29, p < 0.001, ηp

2 0 35= . .
As noted above, we observed a retroactive bias to rate attentional 

state as higher in target present trials. To rule out the possibility that 
this bias produced an artifactual association between attentional 
state ratings and task performance, we repeated the analysis using 
the rating from the following trial, thus eliminating any bias arising 
from the presence or absence of a target on the current trial. The 
association persisted in hit rates, F(9, 99) = 2.21, MSE = 152.65, 
p = 0.027, ηp

2 0 17= . , as did the linear trend, F(1, 99) = 9.53, 
MSE = 657.92, p = 0.003, ηp

2 0 09= . . Additionally, we repeated the 
analysis after excluding any participant for whom the distributions 
of attentional state ratings for target present and absent trials did 
not overlap (N = 7). Again, the association remained for hit rates, 
F(9, 36) = 4.74, MSE = 471.80, p < 0.001, ηp

2 0 54= . , as did the linear 
trend, F(1, 36) = 31.52, MSE = 3138.03, p < 0.001, ηp

2 0 47= . . Effect 
sizes for both the ANOVA and the test of trend increased rather 
than decreased after removing participants who exhibited a retro-
active bias, so if anything the association between attentional state 
ratings and task performance was weakened by these participants 
rather than enhanced.

These analyses demonstrate that subjective attentional state rat-
ings were meaningful: Detection performance was superior during 
periods of higher reported attentional state.

task pErforMancE and confIdEncE ratInGs
To investigate the association between confidence ratings and task 
performance, we performed a corresponding analysis to that above: 
We binned trials on the basis of confidence rating decile, then per-
formed one-way ANOVAs on hit rate, false alarm rate and d′ by 
bin. Note that our confidence scale increases from 0 up to 100 for 
target present responses and decreases from 0 to −100 for target 
absent responses, hence we took the absolute value of confidence 
ratings for this analysis. Grand average hit rate and false alarm 
rate as a function of confidence rating bin are shown in Figure 2C. 
Higher confidence ratings were associated with better perform-
ance in terms of false alarm rate, F(9, 99) = 34.99, MSE = 3409.16, 
p < 0.001, ηp

2 0 76= . , and d′, F(9, 99) = 14.76, MSE = 4.69, p < 0.001, 
ηp

2 0 57= . ,  but not hit rate, F(9, 99) = 1.76, MSE = 532.91, p = 0.086. 
A clear linear trend is evident with false alarm rate decreasing as 
confidence rating increases and a test of linear trend revealed this 
to be significant, F(1, 99) = 189.19, MSE = 18,435.18, p < 0.001, 
ηp

2 0 66= . . There was also a significant linear trend for d′, F(1, 
99) = 104.70, MSE = 33.24, p < 0.001, ηp

2 0 51= . . Hence, higher 
confidence ratings were associated with better detection perform-
ance, as expected; however, it is surprising that the effect was not 
found for hit rate. This finding seems to be related to the bimodal-
ity seen in the distribution of hit trial confidence ratings, in that a 
large proportion of hits were rated as very low confidence. It could 
reflect a strong tendency to guess target present rather than absent, 
or alternatively indicates implicit target detection.

task pErforMancE and attEntIonal statE ratInGs tIME sErIEs
One of the main aims of this study was to look at fluctuations of 
attentional state over the course of the experiment. As an exam-
ple, Figure 2D presents the normalized time series of attentional 

red dots on the right indicate trials in which no target was  presented 
but one was reported (false alarms), and those on the left indicate 
trials in which it was correctly reported that no target had been 
presented (correct rejections). An association between attentional 
state and confidence rating can be observed for both target present 
and absent responses: A dense diagonal cloud of dots is evident 
from the center to the top right corner for target present responses 
(black dots) and from the center to the top left corner for target 
absent responses (red dots), indicating that participants were more 
confident about their judgments of both target presence and target 
absence on trials in which they felt they had paid greater attention 
to the task.

The grand average distribution of confidence ratings (lower 
panel of Figure 2A) for target present trials (black line) shows that 
confidence ratings on hit trials were bimodally distributed with a 
peak at the maximum confidence rating (100), and another close 
to the minimum confidence rating (0). Confidence ratings on miss 
trials were more distributed, with no peak at the maximum (−100), 
but a small one at the minimum confidence rating (0). Hence, when 
confidence was low, participants tended to opt for target present 
rather than absent. In addition, these low confidence target present 
responses were very frequently correct since there is no correspond-
ing peak in the distribution of confidence ratings for target absent 
trials (red line). Instead, this distribution is biased toward higher 
confidence ratings, so there seems to have been a tendency to rate 
correct rejections as high confidence. False alarms on the other 
hand were very rarely rated as high confidence and tend to cluster 
close to 0, suggesting that they were guesses.

The grand average distributions of attentional state ratings 
(Figure 2A, left panel) are negatively skewed for both target present 
and absent trials (black and red lines, respectively), indicating that 
participants tended to rate their attentional state as high rather 
than low, with modes of 150 (out of 200) for target present trials, 
and 118 (out of 200) for target absent trials. The mean attentional 
state rating for target present trials was 130.71 (SD = 20.46) and for 
target absent trials was 126.36 (SD = 19.95), a small but significant 
reduction, F(1, 11) = 17.01, MSE = 113.75, p = 0.002, ηp

2 0 61= . . 
This result reveals a slight but consistent bias in attentional state 
ratings, since whether a target was presented in a trial or not was 
randomly determined and could not be related to fluctuations in 
attentional state. We interpret this effect as a small retroactive bias 
of attentional state ratings in hit trials: Noticing a target may lead 
to increased alertness and hence a higher attentional state rating, or 
might lead participants to assume their attention must have been 
high given that they detected a target.

task pErforMancE and attEntIonal statE ratInGs
To investigate the relationship between attentional state ratings and 
task performance, we binned trials by attentional state rating and 
subsequently performed one-way ANOVAs on hit rate, false alarm 
rate and d′ (Stanislaw and Todorov, 1999) by bin. Higher attentional 
state ratings were associated with better performance in terms of 
hit rate, F(9, 99) = 8.65, MSE = 709.47, p < 0.001, ηp

2 0 44= . , and d′, 
F(9, 99) = 6.84, MSE = 1.19, p < 0.001, ηp

2 0 38= . , but not false alarm 
rate, F < 1. Grand average hit rate and false alarm rate as a function 
of attentional state rating bin are shown in Figure 2B. A clear linear 
trend is evident with hit rate increasing as attentional state rating 
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larger in trials with higher attentional state ratings, F(3, 33) = 7.82, 
MSE = 24.02, p < 0.001, ηp

2 0 42= . ,  and in trials with higher confi-
dence ratings, F(3, 33) = 25.95, MSE = 43.64, p < 0.001, ηp

2 0 70= . . 
Both effects followed a linear trend: For attentional state ratings, 
F(1, 33) = 20.57, MSE = 63.20, p < 0.001, ηp

2 0 38= . , and for confi-
dence ratings, F(1, 33) = 75.83, MSE = 127.53, p < 0.001, ηp

2 0 70= . . 
These effects were not driven by differential hit rates because only 
hit trials were included in the analyses.

EEG alpha powEr and attEntIonal statE and confIdEncE 
ratInGs
To assess changes in alpha power as a function of attentional state 
and confidence rating, we band-pass filtered EEG epochs at alpha 
frequencies (see Materials and Methods for details), and subse-
quently computed the envelope of the amplitude-modulated signal, 
thereby discarding phase information and revealing fluctuations 
in oscillatory power over time. Figure 4 shows the grand average 
amplitude-modulated signal as a function of attentional state rating 
quartile (Figure 4A) and confidence rating quartile (Figure 4B), 
time-locked to the onset of the words “Get Ready!”. Alpha power 
can be seen to steadily increase after the initial response to the 
words, and peaks at the start of the SSVEP in response to the RSVP 
stream. Subsequently, alpha power declines sharply up to 0.4 s after 
RSVP offset.

Inspection of Figure 4A reveals that alpha power was lower 
throughout the epoch in trials rated as high attentional state, as 
predicted. There was no association of alpha power and confi-
dence rating, except during the second half of the RSVP stream and 
beyond, perhaps as a result of greater P300 amplitudes in trials with 
decisions rated as higher confidence. The relationships between 

state ratings and detection task accuracy for one participant, and 
Figure 2E presents the same time series after smoothing by aver-
aging with a sliding window size of 101 trials. There is a positive 
correlation between attentional state rating and detection accuracy 
for this participant. We will return to this issue later with a timescale 
analysis for all participants on attentional state rating, prestimulus 
alpha power, and detection performance.

EvEnt-rElatEd potEntIals and attEntIonal statE and 
confIdEncE ratInGs
Figure 3A presents grand averaged ERPs at central and posterior 
midline scalp electrodes as a function of attentional state rating 
quartile. Figure 3B presents grand averaged ERPs as a function 
of confidence rating quartile for hit trials only, with miss trials 
represented by an additional line. The waveforms are time-locked 
to the onset of the words “Get Ready!” that signified that the RSVP 
stream would begin in 1 s.

A clear P1–N1 complex followed by an N400 is visible in 
response to the presentation of the words “Get Ready!”, and a 
SSVEP is generated by the RSVP stream (onset at 1 s). We might 
have expected these responses to be of greater amplitude in higher 
rated attentional state trials; however, this was not the case – ERP 
and SSVEP amplitudes varied little, if at all, as a function of atten-
tional state rating. The P300 in response to targets is evident in the 
latter half of the SSVEP for the two upper quartiles of attentional 
state and confidence ratings. For a clearer view, Figure 3 presents 
grand averaged ERPs time-locked to target onset, for hit trials only 
as a function of attentional state rating quartile (Figure 3C), and 
confidence rating quartile (Figure 3D), with miss trials presented 
in a separate line. P300 amplitude in hit trials was significantly 

Figure 3 | event-related potentials during preparation and stimulus 
presentation. (A,B) Grand average ERPs time-locked to the onset of the words 
“Get Ready!” by attentional state rating quartile and confidence rating quartile, 
respectively. (C,D) Grand average ERPs time-locked to target onset by 

attentional state rating quartile and confidence rating quartile, respectively. In 
(B–D), miss trials are shown separately as a blue line. For (C,D) EEG epochs 
were low-pass filtered at 8 Hz. Scalp plot in (A) shows the locations of the 
electrodes included in the analyses in (A–D).
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For comparison, we performed a  corresponding analysis of the 
relationship between prestimulus alpha power and task perform-
ance (detection task accuracy). The grand average power spectra 
of the time series of attentional state ratings, prestimulus alpha 
power, and task accuracy are shown in Figures 5B–D, respectively, 
for reference.

Figures 5E,F present the resulting grand average correlations 
between alpha power and attentional state ratings (black lines), and 
between alpha power and detection task accuracy (blue lines). The 
time series of attentional state ratings and alpha power were nega-
tively correlated, replicating the basic relationship described above. 
Crucially, this association increased in strength when we smoothed 
either the time series of attentional state ratings (Figure 5E) or 
alpha power (Figure 5F), with the peak correlation occurring at 
a sliding window size of 75 trials (approximately 7 min) in both 
analyses. The correlations between alpha power and task perform-
ance were much weaker.

We tested the correlations for significance with a series of two-
tailed paired-samples t-tests between individual participants’ r 
values and zero, one for each sliding window size, controlling for 
multiple comparisons via the Benjamini and Hochberg (1995) 
procedure, which optimally balances statistical power and the 
control of false discovery rate for ERP analyses (Lage-Castellanos 
et al., 2010). Significant correlations are shown in Figure 5 in red. 
Whereas none of the correlations between task performance and 
alpha power were significant, the correlations between attentional 
state rating and alpha power were significantly different from 
zero between sliding window sizes of 3 and 133 trials, inclusive, 
in both analyses.

prestimulus alpha power and attentional state and confidence 
 ratings can be clearly seen in Figures 4C,D, respectively, in which 
grand average normalized prestimulus alpha power is plotted as a 
function of attentional state and confidence rating decile. Higher 
prestimulus alpha power was associated with lower attentional state 
ratings, F(9, 99) = 4.27, MSE = 0.000549, p < 0.001, ηp

2 0 28= . ,  with a 
significant linear trend, F(1, 99) = 32.57, MSE = 0.00419, p < 0.001, 
ηp

2 0 25= . ,  but was not reliably associated with confidence rating, 
F(9, 99) = 1.25, MSE = 0.000103, p = 0.273.

This basic analysis illustrates clearly the relationship between 
attentional state ratings and prestimulus alpha power that we 
anticipated: Trials in which attentional state was rated as high 
featured lower prestimulus alpha power. Combined with the 
finding that attentional state rating was associated with detec-
tion performance, this result suggests that both measures reflect 
attentional state.

prEstIMulus EEG alpha powEr, attEntIonal statE ratInG, and 
task pErforMancE tIMEscalEs
The above analyses reveal a strong relationship between attentional 
state rating and prestimulus alpha power. To assess whether the 
strength of this association varies across different timescales, we 
performed a series of correlations between individual participants’ 
time series of attentional state ratings and normalized prestimulus 
alpha power, after smoothing the time series of attentional state 
ratings with increasingly large sliding windows. We then repeated 
this procedure, leaving the time series of attentional state ratings 
unsmoothed and instead smoothing the time series of prestimulus 
alpha power. This analysis is illustrated in a flow chart in Figure 5A. 
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Figure 4 | Alpha power during preparation and stimulus presentation. 
(A,B) Grand average amplitude-modulated EEG signal after band-pass filtering at 
alpha frequencies, time-locked to the onset of the words “Get Ready!”, by attentional 
state rating quartile and confidence rating quartile, respectively. In (B), miss trials are 

shown separately as a blue line. (C,D) Grand average normalized prestimulus alpha 
power as a function of attentional state rating decile and confidence rating decile, 
respectively. Error bars show the SE of the mean across participants. Scalp plot in  
(A) shows the locations of the electrodes included in the analyses in (A–D).
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except one, with fluctuations in attentional state ratings (red lines) 
varying in the opposite direction to fluctuations in alpha power 
(black lines).

Overall, this analysis of the timescales of covariation between 
attentional state ratings and prestimulus alpha power reveals that 
the association between the two measures was even stronger at 
longer timescales: The negative correlation between the two meas-
ures peaked when we smoothed either of the time series with a 
sliding window size of approximately 7 min worth of trials.

sInGlE-trIal classIfIcatIon of attEntIonal statE ratInG by 
prEstIMulus EEG alpha powEr
To explore the reliability of the association between attentional 
state ratings and prestimulus EEG alpha power on single trials, we 
conducted single-trial logistic regression classification of upper 
vs. lower subjective attentional state rating quartile on the basis 
of prestimulus EEG alpha power for each participant individually. 
Fourier spectral power values within a 4-Hz band centered on each 
participant’s modal alpha frequency (typically 10 Hz), across 32 
electrodes, were used as the input features with which the classifier 
estimated attentional state rating quartile.

To explore classification performance at longer timescales, we 
smoothed the time series of attentional state ratings with increasingly 
large sliding windows, and repeated our classification procedure after 
each increase in sliding window size. Figure 8A presents grand average 
classification performance (Az score) as a function of the sliding win-
dow size. The performance of the classifier improved dramatically as we 
increased the extent of smoothing. The point of inflection on the curve 
occurs at a sliding window size of  approximately 80 trials, indicating 
where further smoothing ceases to improve classification performance.

At first glance, the results of this analysis indicate that  attentional 
state ratings and alpha power co-vary maximally over periods of 
minutes. However, increasing smoothing window size may be con-
founded with increasing signal-to-noise ratio (because trial-varying 
noise should increasingly average to zero with increasing smooth-
ing). To investigate the extent of this issue, and to illustrate further 
the properties of our novel smoothing analysis, we repeated the 
analysis on four sets of simulated data. We simulated time series 
of attentional state ratings and alpha power that were negatively 
correlated at short timescales, long timescales, both short and long 
timescales, or at neither timescale. The results, shown in Figure 6, 
indicate that the analysis was effective in identifying whichever 
correlations were present in the simulated time series, with peaks 
apparent at corresponding smoothing window sizes, and did not 
create artifactual correlations where none were present. These sim-
ple simulations demonstrate that our smoothed time series correla-
tion analysis was effective in revealing the timescales of covariation 
between attentional state ratings and prestimulus alpha power. This 
point is further supported by the fact that there were no significant 
correlations in the alpha power and task performance analysis. It 
should be noted, however, that it is still theoretically possible that 
the associations at short timescales were stronger than our analysis 
suggests, if there had been increased noise at these timescales.

The peak negative correlation between the time series of atten-
tional state ratings and alpha power occurred at a sliding window 
size of 75 trials (approximately 7 min). Figure 7 plots the time series 
of attentional state ratings and alpha power both smoothed with 
a sliding window size of 75 trials for each participant individually, 
together with the correlation coefficient (r) between these time 
series. Strong negative correlations are evident for all participants 
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illustrating the smoothing analysis. (B–D) Grand average Fourier power spectra 
of the trial-by-trial time series of attentional state ratings, prestimulus EEG alpha 
power, and detection task accuracy, respectively. The SE of the mean is shown 
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attentional state ratings and prestimulus EEG alpha power are shown in black. 
The correlations between the time series of detection task accuracy and 
prestimulus EEG alpha power are shown in blue. Significant correlations are 
highlighted in red. Thin lines show the SE of the mean. In (e), smoothing is 
applied to the time series of attentional state ratings and detection task 
accuracy; in (F), smoothing is applied to the time series of prestimulus EEG 
alpha power.
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Figure 6 | Smoothed time series correlation analysis performed on 
simulated time series. (A) Uncorrelated time series. (B–D) Time series 
negatively correlated at long timescales, short timescales, and both long and 
short timescales, respectively. Thin lines show the SE of the mean across the 
12 pairs of simulated time series.
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Figure 7 | individual participants’ smoothed time series of attentional 
state ratings and prestimulus eeg alpha power. Normalized time series 
smoothed with a sliding window size of 75 trials are shown for each participant 

individually (P1–P12). The correlation coefficient (r) between the two time series 
for each participant is shown at the top of each plot. Significant correlations are 
indicated by a star. Triple starred correlations are significant at p < 0.001.

Figure 8B presents the average Az score and 95% confidence 
interval over 1000 repetitions with unsmoothed attentional state 
ratings (in black) and with attentional state ratings smoothed with 
a sliding window size of 75 trials (in red), for each participant, 
ordered from the left by descending classification performance with 
smoothed data. As a bootstrap test of significance, we repeated the 
classification procedure a further 1000 times for each participant, 
shuffling attentional state rating trial labels each time. The result-
ing average Az score and 95% confidence intervals are shown in 
Figure 8B (in gray). Eight of the 12 participants’ average Az scores 
for unsmoothed attentional state ratings were greater than their 
bootstrap significance values (the upper end of the 95% confidence 
interval for Az scores from classification with shuffled attentional 
state rating trial labels), meaning that classification performance 
without smoothing was significantly better than chance for those 
participants. For the smoothed attentional state ratings, all 12 par-
ticipants’ average Az scores were greater than their bootstrap sig-
nificance values, and nine of them had average Az scores greater 
than the upper end of the 95% confidence interval for Az scores 
from classification with unsmoothed attentional state ratings. The 
three participants whose classification performance did not improve 
with smoothing, however, may have already been at ceiling – their 
average Az scores with unsmoothed attentional state ratings were 
already above 0.85. Smoothing attentional state ratings therefore 
improved classification performance significantly for all participants 
with average Az scores below 0.85.
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 discrete scale via probes occurring at random intervals (e.g., Smallwood 
et al., 2004, 2008; McVay and Kane, 2009). We queried participants’ 
attentional state on a continuous scale and after every trial, and yet 
ratings were strongly associated with performance, hence our study 
demonstrates that attentional state can be indexed efficiently on a con-
tinuous scale and in individual trials. These aspects of our design are 
advantageous because they capture more of the variability in attentional 
state, both of the construct itself and of its temporal characteristics.

One disadvantage of our design, however, is that in the interests 
of speed, we did not ask participants to report what they were think-
ing about when they rated their attentional state, as some previous 
studies have done (Teasdale et al., 1993, 1995). We therefore do not 
know whether reports of low attentional state were accompanied 
by task-unrelated thoughts (i.e., mind-wandering) or would be 
better characterized as periods of low vigilance. This issue could 
be addressed in a future study.

Studies of subjective attentional state have typically employed 
tasks that are optimized to find an association between task errors 
and reports of low attentional state, such as response inhibition 
tasks, in which a response that is required for most trials must 
be withheld on infrequently occurring target trials (Smallwood 
et al., 2004, 2008; McVay and Kane, 2009). Since our task required a 
response to both targets and non-targets, and targets were presented 
frequently (in 50% of trials), we extend previous demonstrations 
that subjective judgments of attentional state are associated with 
task performance (Smallwood et al., 2004, 2008; McVay and Kane, 
2009) to a standard type of perceptual decision task. Hence, our 
results lend wider support to the proposition that sensory awareness 
of the external world is reduced during periods of low attentional 
state (Smallwood and Schooler, 2006).

attEntIonal statE ratInGs wErE not assocIatEd wIth Erp or 
ssvEp aMplItudE
From the proposal that sensory perception is attenuated during 
periods of low attentional state (Smallwood and Schooler, 2006), 
we might have expected to find that EEG responses related to the 
perception of visual events in our task – such as the ERP in response 

In summary, trial-by-trial variations in prestimulus EEG alpha 
power reflected subjective attentional state for most participants, 
and smoothing attentional state ratings with a sliding window 
size of approximately 7 min improved classification performance 
considerably.

dIscussIon
In this study, participants’ subjective ratings of attentional state and 
perceptual decision confidence were collected on continuous scales 
at the end of each trial of an RSVP target detection task while record-
ing EEG. We found that attentional state and confidence ratings 
were both strongly positively associated with task performance and 
P300 amplitude, and that attentional state ratings were also associ-
ated negatively with spontaneous prestimulus EEG alpha activity. 
Furthermore, we could reliably classify single trials as upper or lower 
quartile reported attentional state on the basis of prestimulus EEG 
alpha power for most participants. We also investigated at what 
timescale these associations were strongest, and found that smooth-
ing with a sliding window size of around 7 min worth of trials 
yielded the maximum correlation values. In addition, classification 
performance improved when we smoothed attentional state ratings 
to the same extent beforehand. Our results suggest that participants’ 
subjective ratings of their attentional state are informative in behav-
ioral terms and reflect the excitability of visual cortex.

attEntIonal statE ratInGs prEdIctEd pErforMancE
Higher attentional state ratings were associated with better task per-
formance. This association persisted – in fact, became stronger – when 
participants with a bias for reporting attentional state as higher on tar-
get present trials were excluded from the analysis, and persisted when 
we repeated the analysis using the attentional state rating from the next 
trial. This finding supports the proposal that perceptual awareness of 
external events is attenuated during periods of low attentional state 
(Smallwood and Schooler, 2006).

Previous studies have demonstrated that perceptual task errors 
are more likely preceding reports of being unfocused on the task, 
in paradigms in which subjective attentional state was assessed on a 
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Figure 8 | Single-trial classification of attentional state rating on the 
basis of prestimulus eeg alpha power. (A) Grand average (thick line) and SE 
(thin lines) Az score as a function of the degree of smoothing (sliding window 
size) to the time series of attentional state ratings. (B) Average Az scores and 

95% confidence intervals over 1000 repetitions for each participant, for 
attentional state ratings unsmoothed (in black), smoothed with a sliding 
window size of 75 trials (in red), and with shuffled attentional state rating trial 
labels (in gray).
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that attentional state ratings were positively associated with task 
performance, and secondly in neurophysiological terms by the find-
ing that attentional state ratings were negatively associated on a 
trial-by-trial basis with spontaneous prestimulus parieto-occipital 
EEG alpha power. It has been widely reported that alpha power in 
these regions of cortex tracks the spatial focus of visual attention 
(e.g., Worden et al., 2000; Sauseng et al., 2005b), and there is some 
evidence that overall parieto-occipital alpha power is indicative of 
disengagement with external visual input, since it increases when 
attention is focused on other modalities (Foxe et al., 1998; Fu et al., 
2001; Linkenkaer-Hansen et al., 2004), or during internal cognitive 
tasks (e.g., Ray and Cole, 1985; Cooper et al., 2003, 2006; Sauseng 
et al., 2005a), and decreases when attention is redirected toward 
visual input (Klimesch et al., 1998) or is refocused following visual 
task errors (Carp and Compton, 2009; Mazaheri et al., 2009). We 
have now demonstrated that parieto-occipital alpha power reflects 
attentional state. Importantly, our results imply that alpha power 
changes related to attentional state are accessible to consciousness.

We found that the association between attentional state ratings 
and prestimulus EEG alpha power increased in strength when we 
smoothed either or both of them in time, with the peak negative 
correlation occurring at a sliding window size of approximately 
7 min worth of trials. In addition, the performance of our clas-
sifier reached an asymptote when attentional state ratings were 
smoothed to the same extent. Although participants did report 
fluctuations in attentional state at shorter timescales than this – 
indeed, with significant variability from trial to trial – these faster 
fluctuations were not as strongly associated with prestimulus alpha 
power in our analysis. This finding does not definitively indicate 
that fluctuations at shorter timescales were more weakly associ-
ated, however, because these faster fluctuations could have been 
subject to increased noise, thereby curtailing the ability of our 
analysis to reveal them. Nevertheless, smoothing did more than 
merely boost the signal-to-noise characteristics of the data: The 
correlation between attentional state ratings and alpha power did 
not continue to improve with larger sliding windows, in fact, it 
returned to baseline well before the maximum sliding window size 
was reached. Furthermore, we did not see any significant correla-
tions in the timescale analysis of alpha power and task performance.

Previous EEG alpha and attention studies, as well as inves-
tigations of subjective attentional state, have not systematically 
analyzed the timescales of variability, but previous research has 
shown that behavioral performance (e.g., Verplanck et al., 1952; 
Gilden et al., 1995, see Gilden, 2001, for a review) and neural 
activity (e.g., Linkenkaer-Hansen et al., 2001; Leopold et al., 2003; 
Nikulin and Brismar, 2005) both exhibit 1/f frequency spectra. 
This type of distribution implies that the largest fluctuations in 
behavioral and neural responses over extended periods are at the 
longer timescales, i.e., minutes rather than seconds. Hence, our 
finding that attentional state ratings and prestimulus alpha power 
co-vary strongly when smoothed with a sliding window size of 
several minutes’ worth of trials is in agreement with this literature. 
In addition, many studies investigating periodicities in reaction 
times and error rates in detection tasks have reported cycle times 
in the range of 2–10 min (e.g., Wertheimer, 1953; Elliott, 1960; 
Makeig and Inlow, 1993; Conte et al., 1995; Smith et al., 2003; 
Arruda et al., 2009; Aue et al., 2009). In particular, Monto et al. 

to the words “Get Ready!”, or the SSVEP generated by the RSVP 
stream – would be reduced in trials in which attentional state had 
been rated as low. Previous studies have produced discrepant results 
in this regard. Kam et al. (2011) reported a smaller P1 in response to 
visual stimuli in trials preceding reports of low task focus, whereas 
Smallwood et al. (2008) found no such effects in a similar paradigm, 
and O’Connell et al. (2009) also reported no such effects preced-
ing stimulus duration judgment errors in a study showing steady 
increases in parieto-occipital alpha power in the 20 s leading up 
to errors. Kam et al. (2011) suggest that these two studies, both of 
which featured visual task stimuli presented foveally, failed to find 
variations in visually evoked EEG responses because the effect is 
limited to peripherally presented stimuli and does not occur, or 
is far weaker, for foveally presented stimuli, as has been suggested 
to be generally true of attentional effects on foveated stimuli (e.g., 
Handy and Khoe, 2005). Our RSVP stream images, although larger 
in retinal representation than the fovea, were centered at fixation, 
and target patterns were not much larger than foveal area, which 
might explain our lack of such an effect.

attEntIonal statE ratInGs and confIdEncE ratInGs prEdIctEd 
p300 aMplItudE
P300 amplitude in hit trials was strongly associated with both 
perceptual decision confidence rating and attentional state rating. 
Binary subjective judgments of attentional state recorded at random 
intervals have previously been shown to be associated with P300 
amplitude (Smallwood et al., 2008), as has the allocation of spa-
tial attention (e.g., Duncan-Johnson and Donchin, 1977; Johnson, 
1993), and stimulus intensity (Roth et al., 1984; Covington and 
Polich, 1996). The effects of attentional state and spatial attention 
might therefore operate via a common mechanism: The enhance-
ment of perceptual representations of task stimuli.

P300 amplitude was also predicted by confidence rating. If we 
assume that confidence ratings are primarily determined by target 
visibility (in our task images the background noise generated vari-
ance in target visibility), then this result could reflect the influence 
of stimulus intensity on P300 amplitude as has been reported previ-
ously (Roth et al., 1984; Covington and Polich, 1996). On the other 
hand, since neural representations are themselves noisy, it could 
alternatively suggest that P300 amplitude reflects the perceptual 
evidence available for a decision, with variability in attention and 
confidence reflecting the variability in perceptual representation 
of the target.

In combination with the fact that we found no differences in 
perceptual EEG responses as a function of attentional state rating, 
these strong associations of perceptual confidence and attentional 
state ratings with P300 amplitude suggest that the effects of atten-
tional state occur at the decision level rather than the perceptual 
level, and hence further along the neural processing stream.

prEstIMulus EEG alpha powEr prEdIctEd attEntIonal statE 
ratInG
We propose that participants’ subjective attentional state ratings 
reflect both vigilance and the balance of attentional focus between 
external task-relevant information (in our case visual information) 
and internal task-unrelated thoughts (i.e., mind-wandering). This 
assertion is supported firstly in behavioral terms by the finding 
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alpha power, thereby attenuating any effect of alpha power on 
task performance. However, because attentional state ratings 
were associated with detection accuracy as well as prestimulus 
alpha power, this explanation implies that detection accuracy 
and prestimulus alpha power are associated with distinct por-
tions of trial-to-trial variance in attentional state ratings. This 
idea could be addressed in a future study using a visual detection 
paradigm optimized to find an association between prestimulus 
alpha power and detection accuracy (e.g., Busch et al., 2009), 
in which attentional state ratings are collected on every trial, 
as we did. Such a study might find that attentional state ratings 
correlate with detection performance at shorter timescales than 
they do with alpha power, supporting the notion that attentional 
state is multi-faceted, featuring dissociable relationships with 
behavioral and neural measures.

conclusIon
We have demonstrated a strong association between subjective 
ratings of attentional state and prestimulus EEG alpha power. 
This association implies that the level of alpha activity in parieto-
occipital cortex not only reflects cortical excitability (e.g., Klimesch 
et al., 2007), but is also indicative of attentional state with respect 
to a visual task. Furthermore, it suggests that fluctuations of alpha 
activity are accessible to consciousness. We propose that partici-
pants’ subjective attentional state ratings reflect both vigilance and 
the balance of attentional focus between external task-relevant 
information and internal task-unrelated thoughts (i.e., mind-
wandering). Because these ratings were associated with objective 
measures of both behavior and neural activity, we suggest that they 
are a simple and effective means of estimating task engagement. 
As such, they could provide valuable information in operational 
settings in which monitoring users’ attentional state might permit 
the optimization of task parameters such as stimulus presentation 
rate or the weight assigned to their decisions as their attentional 
state waxes and wanes.
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(2008) have demonstrated that somatosensory detection perform-
ance and power in all frequency bands are correlated with the phase 
of infraslow fluctuations (0.1–0.01 Hz, i.e., 10–100 s cycles) of EEG, 
a finding that could be interpreted as reflecting slow variations in 
attentional state. Collectively, these findings suggest that changes 
in attentional state over time are not solely characterized by sim-
ple monotonic declines, since fluctuations occur over periods of 
minutes. Our study provides a link between this literature and 
research into subjective attentional state, spontaneous EEG alpha, 
and attention. Our findings are also informative with respect to 
online monitoring of user attention in contexts in which the users’ 
attentional state could be a critical determinant of task perform-
ance. In particular, our results suggest that measures of attentional 
state might be optimally assessed with a frequency in the region of 
minutes, and that periods of low attentional state can be relatively 
long lasting.

prEstIMulus EEG alpha powEr was not prEdIctIvE of dEtEctIon 
pErforMancE
Previous studies featuring simple visual detection tasks have dem-
onstrated that prestimulus alpha power is greater preceding failures 
to detect the target than successes (Ergenoglu et al., 2004; van Dijk 
et al., 2008; Busch et al., 2009). We found no such association in 
our data, which is surprising given the pairwise associations we 
found between prestimulus alpha power and attentional state rat-
ings, and between attentional state ratings and detection accuracy. 
However, previous studies featured paradigms that were optimized 
for detecting associations between alpha power and visual aware-
ness by precisely controlling stimulus conditions, such that target 
stimuli were identical from trial-to-trial. In contrast, our design was 
motivated by the desire to enable the extrapolation of our results to 
real-world tasks, for example, the detection of landmarks in satellite 
photographs (e.g., Poolman et al., 2008). In particular, our target 
stimuli were intended to vary in visibility considerably due to being 
embedded in white noise. Hence, an effect of prestimulus EEG alpha 
power on detection accuracy may have simply been lost in the inher-
ent noise of EEG recordings coupled with the noise in the visibility 
of our target stimuli. Indeed, several other previous studies featur-
ing much more controlled stimuli, akin to those aforementioned, 
have also failed to find an association between prestimulus alpha 
power and detection accuracy (e.g., Thut et al., 2006).

One other feature of our paradigm is potentially relevant 
in this context: Targets were never presented in the first two 
images of the RSVP stream, so there was always a delay of at 
least 200 ms between the start of the RSVP stream and target 
presentation. It is possible that this delay gave participants time 
to re-engage with the task following prestimulus periods of high 
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