
visual processing can motivate and help distinguishing feedforward, 
feedback, and top-down influences during specific visual tasks. In 
turn, computational models that account for reaction times, and 
the time course of neural activity during visual tasks, can offer 
mechanistic explanations for internal cortical processes such as 
activity accumulation, attentional effects, and information transfer.

Here, we review some of our recent models based on spiking 
neural networks (SNN) that describe neuronal correlates of several 
visual tasks at multiple timescales. These models are all biologically 
plausible, reproduce a broad range of experimental observations, 
and predict others. They help to understand the neural dynamics 
underlying visual processing, and in particular visual processing 
times. More specifically, feedforward models can account for the 
phenomenal speed of object recognition (see Fast Feedforward 
Processing, Latency Coding, and STDP). This type of rapid pro-
cessing presumably depends on the ability of the visual system 
to learn how to recognize familiar visual primitives in an unsu-
pervised manner. Spike timing-dependent plasticity (STDP) may 
play a key role here. Feedforward processing is usually sufficient 

IntroductIon
Our visual system is continuously challenged with various types 
of tasks, such as recognizing other people or objects, searching 
for a friend in a crowd, or determining the direction and speed of 
other cars while driving. To solve these different tasks, it has been 
hypothesized that visual information arriving in the primary visual 
area (V1) of the cortex is further processed via two specialized 
pathways: first, the ventral stream associated with forms and colors 
mostly involved in “what” tasks like object recognition, and, second, 
the dorsal stream which is mostly processing “where” information 
and motions. In general, however, the visual areas form a com-
plex network, and the two main processing pathways are strongly 
interconnected. It is therefore hardly possible to derive anatomi-
cally the neural dynamics – that is, neural activity evolution over 
time – underlying visual processing. Nevertheless, different visual 
tasks such as recognition, search, and motion detection, not only 
vary with respect to “what” has to be processed, they also differ in 
“how fast” and “how accurate or detailed” the respective perception 
can (or must) be accomplished. The diverse temporal dynamics of 
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to extract the glimpse of a visual scene in 100–200 ms. Recurrent 
connectivity, however, allows accumulating evidence over longer 
timescales (several hundreds of milliseconds) whenever a finer vis-
ual discrimination is needed (see Slower Visual Decision Making). 
Such recurrent connections, in combination with bottom-up and 
top-down connections between brain areas, are also crucial to 
mediate attentional mechanisms through biased-competition (see 
Top-Down Attention), and can account for both “pop out” and 
serial modes in visual search. Attention not only up-modulates 
the firing rates of the neurons encoding the attended features, 
but also enhances their synchrony, enabling faster reaction times, 
dynamic information routing, and phase-of-firing coding (PoFC; 
see Oscillations Format Visual Processing). The phase patterns may 
be decoded thanks to STDP. Finally, we evoke important unsolved 
questions and future directions in Section “Unsolved Questions 
and Future Directions.”

Fast FeedForward processIng, latency codIng,  
and stdp
Vision can be extremely fast. There is now considerable behavioral 
and electrophysiological evidence showing that the primate visual 
system can achieve high-level object recognition in just 80–100 ms 
after stimulus onset (see Thorpe’s review in this Special Topic). 
This phenomenal speed imposes severe constraints on the under-
lying neural processes. Given that about 10 neuronal layers are 
involved in that sort of processing, the time window available for 
each neuron to perform its computation is only of about 10 ms. 
As the firing rates in the visual system are barely above 100 Hz, 
such a small window will consequently contain at most one spike 
(Thorpe and Imbert, 1989). A classical rate coding scheme, where 
individual neurons encode information in their mean firing rate, is 
thus ruled out. Instead, the information has to be encoded by which 
of the afferents were recruited, and possibly additionally by the 
relative recruiting times. This scheme is referred to as “rank order 
coding” (Thorpe and Gautrais, 1998). Note that if computation 
is restricted to one spike per neuron, the use of feedback loops is 
also ruled out. This implies that the first spike wave after stimulus 
onset probably does much more than conventionally assumed 
(VanRullen and Thorpe, 2002). Simulations have confirmed that 
it is indeed possible to perform fast and robust object recognition 
even in cluttered natural images, using only one spike per neuron, 
and feedforward connectivity (VanRullen et al., 1998; Delorme 
and Thorpe, 2001; Masquelier and Thorpe, 2007; Weidenbacher 
and Neumann, 2008).

In this section, we focus on how STDP may shape this kind of 
processing. STDP is a physiological mechanism of activity-driven 
synaptic regulation, where an excitatory synapse is reinforced when 
it receives a spike before a postsynaptic one is emitted (long-term 
potentiation, LTP). In the opposite case, its strength is weakened 
(long-term depression, LTD), when the postsynaptic spike precedes 
the presynaptic one. STDP has been observed both in vivo and 
in vitro in many species (from insects to mammals) and in many 
brain areas, including the visual cortex (see Caporale and Dan, 2008 
for a review). Note that STDP is in agreement with Hebb’s (1949) 
postulate because it reinforces the connections with those presyn-
aptic neurons that fired slightly before the postsynaptic neuron, 
which are the ones that “took part in firing it.”

What happens if such a rule is at work in a hierarchical neuronal 
network crossed by waves of spikes generated by visual stimuli? In 
Masquelier and Thorpe (2007), we assessed this question using a 
model inspired by HMAX (HMAX stands for “Hierarchical Model 
And X” – where X is a highly non-linear maXimum operation; 
Riesenhuber and Poggio, 1999; Serre et al., 2007). In an attempt 
to model the increasing complexity and invariance observed along 
the ventral pathway, we used a four-layer hierarchy (S1–C1–S2–
C2) in which simple cells (S) gained their selectivity from a linear 
sum operation, while complex cells (C) gained invariance from a 
non-linear max pooling operation (see Figure 1). However, our 
network operates in the temporal domain: when presented with 
an image, the first layer’s S1 cells, emulating V1 simple cells, detect 
edges with four preferred orientations, and the more strongly 
a cell is activated, the earlier it fires a first spike. There is evi-
dence for this so-called “intensity-to-latency conversion” in V1, 
where response latency decreases with stimulus contrast (Gawne 
et al., 1996; Albrecht et al., 2002), and also with the proximity 
between the stimulus orientation and the cell’s preferred orienta-
tion (Celebrini et al., 1993). These S1 spikes are then propagated 
asynchronously through the subsequent layers, where STDP takes 
place. Interestingly, within this time-to-first-spike coding frame-
work, the maximum operation of complex cells simply consists of 

Figure 1 | Overview of the five layer feed forward spiking neural 
network used in Masquelier and Thorpe, 2007. As in HMAX (Riesenhuber 
and Poggio, 1999; Serre et al., 2007), we alternate simple cells that gain 
selectivity through a sum operation, and complex cells that gain shift and scale 
invariance through a max operation (which in our framework simply consists 
of propagating the first received spike). Cells are organized in retinotopic maps 
until the S2 layer (inclusive). S1 cells detect edges. C1-maps subsample 
S1-maps by taking the maximum response over a square neighborhood. S2 
cells are selective to intermediate complexity visual features, defined as a 
combination of oriented edges (here, we symbolically represented an eye 
detector and a mouth detector). There is one S1–C1–S2 pathway for each 
processing scale (not represented). Then C2 cells take the maximum 
response of S2 cells over all positions and scales, and are thus shift- and 
scale-invariant. Finally, a classification is done based on the C2 cells’ 
responses (here we symbolically represented a face/non-face classifier). In the 
brain, equivalents of S1 cells may be in V1, S2 cells in V1–V2, S2 cells in V4–
PIT, C2 cells in AIT, and the final classifier in PFC. Here STDP shapes the 
C1-to-S2 connectivity. Figure 2 shows an example of resulting selectivities 
after exposing the network to face images. Figure modified from Masquelier 
and Thorpe (2007).
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One important limitation in our study is that we used a noise-
free deterministic model, while real neuronal responses are known 
to be variable. Future work will assess its robustness to neuronal 
noise. One can distinguish two kinds of response variability, or 
lack thereof: reliability and precision (Tiesinga et al., 2008). When 
a neuron fires approximately the same number of spikes on each 
trial, it is said to be reliable, whereas, when the spikes occur almost at 
the same time across trials, it is said to be precise. We have recently 
demonstrated that STDP-based pattern learning needs a precision 
of 10–20 ms, when in fact it is relatively insensitive to a lack of reli-
ability, providing the input patterns involves a sufficient number 
of afferents (Gilson et al., unpublished observation). It would be 
interesting to quantify this number for the kind of rapid visual 
processing exposed in this section.

Finally, it is worth mentioning that STDP-based unsupervised 
learning is not restricted to natural image statistics. In fact, any 
arbitrary spike pattern that consistently repeats in the input can 
be learned (Masquelier et al., 2008, 2009a).

slower vIsual decIsIon makIng
As we have seen in the previous section, feedforward processing of 
the first spike wave can be sufficient to rapidly extract the glimpse 
of a visual scene. Being so reactive is obviously advantageous in 
numerous emergency situations, such as obstacle/projectile avoid-
ance or prey/predator/friend identification. But when reactivity 
is less crucial, integrating the visual information over time will 
generally improve perception, especially when visual evidence is 
noisy, moving, and ambiguous.

A psychophysical paradigm, designed to study the time course 
of slow perceptual decision making, is the random-dot motion 
(RDM) discrimination task (Roitman and Shadlen, 2002; Palmer 
et al., 2005; Churchland et al., 2008). Subjects performing this 
task have to decide on the net direction of motion in a patch of 
randomly moving dots. The quantity of the sensory evidence and 
thus, the task difficulty, is controlled by the amount of coherent 
motion. In the free response version, as soon as the subjects have 
gathered enough evidence to make a choice, they usually indicate 
their decision by a saccade to a target located in the corresponding 
direction. Reaction times in the RDM task are typically long, in the 
order of several 100 ms, with faster responses to more coherent 

propagating the first spike  emitted by a given group of afferents 
(Rousselet et al., 2003). This can be achieved efficiently by one 
spiking neuron with low threshold that has synaptic connections 
from all neurons in the group [such “low threshold” relay cells are 
found in both the lateral geniculate nucleus (LGN), Rathbun et al., 
2010 and the cortex, Swadlow and Gusev, 2002].

When we exposed the network to natural images, we observed 
that the neurons equipped with STDP gradually became selective 
to prototypical patterns that were both salient, and consistently 
present in the images. During the convergence process, synapses 
compete with each other (Song et al., 2000), and the winning syn-
apses are those through which the earliest spikes arrive (on average; 
Song et al., 2000; Guyonneau et al., 2005). Interestingly, these earli-
est spikes, which correspond to the most salient regions of an image, 
are typically the most informative (VanRullen and Thorpe, 2001). 
Furthermore, the resulting effect of this “early input selection” is to 
make the postsynaptic neuron respond more quickly (Song et al., 
2000; Gerstner and Kistler, 2002; Guyonneau et al., 2005).

Figure 2 shows an example, in which we exposed the network to 
face images, and where the STDP neurons indeed became selective 
to face features. Note that we used unsegmented images, but the 
background was not learned since backgrounds are too different 
from one image to another for the STDP process to converge. It is 
important to note that up to this point, the learning was fully unsu-
pervised. No external teacher’s signal or previous knowledge was 
given to the model. For example, in Figure 2, the system obviously 
had no idea it was going to see faces. The features were only learned 
due to statistical regularities in the training dataset. However, the 
output of the STDP neurons can be fed into a supervised classifier, 
leading to robust object categorization, even with few (∼10) STDP-
learned features (Masquelier and Thorpe, 2007).

It is well known that the visual system is plastic and can learn fre-
quently encountered visual features or feature contingencies (Jiang 
and Chun, 2001). The model predicts that frequently occurring 
features are not only more likely to be learned, but will also be 
processed and recognized faster than unfamiliar ones (recall that 
postsynaptic latencies decrease with training). Consistent with this, 
psychophysical experiments show that familiar categories such as 
faces are processed faster (Crouzet et al., 2010), and that processing 
times can be speeded up with experience (Masquelier et al., 2008).

0 presentations 50 presentations 100 presentations 150 presentations 500 presentations

Figure 2 | Preferred stimulus reconstructions of three C2 cells after 0, 50, 
150, and 500 presentations. At the top of each frame, the input image is 
shown with red, green, or blue squares, indicating the receptive fields of the 
cells that fired (if any). At the bottom, we reconstructed the preferred stimuli of 
the three cells: the left cell gradually becomes selective to foreheads, the middle 

one to noses and left eyes, and the right one to a global view of a face. Above 
each reconstruction, the number of postsynaptic spikes emitted is shown with 
the corresponding color. Figure modified from Masquelier and Thorpe (2006). 
See also the videos available online at: http://dx.doi.org/10.1371/journal.
pcbi.0030031
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motions. A decision criterion is needed to determine how much 
evidence is “enough” to terminate the accumulation process, and 
to initiate the corresponding saccade. In theory, there are several 
possible decision criteria, such as relative or absolute thresholds 
(or “bounds”). Neurophysiological evidence from different corti-
cal areas so far suggests a fixed firing rate threshold independent 
of reaction times (see below; Roitman and Shadlen, 2002; Schall 
et al., 2002; Churchland et al., 2008).

To identify possible neural correlates of this accumulation-to-
bound concept, the psychophysical RDM task was combined with 
simultaneous recordings of decision-related activity from several 
brain areas along the dorsal visual stream [middle temporal (MT) 
and lateral intra-parietal (LIP) area, prefrontal cortex (PFC), and 
the superior colliculus (SC)]. All of them form part of the cogni-
tive link between visual sensation and saccadic movement (reviewed 
in Schall, 2003; Smith and Ratcliff, 2004; Opris and Bruce, 2005). 
Particularly single neuron activity in area LIP of behaving monkeys 
has been found to increase gradually during motion viewing, depend-
ent on task difficulty and according to choice behavior (Shadlen and 
Newsome, 2001; Roitman and Shadlen, 2002), while upstream of 
LIP in area MT neurons fire monotonically as a function of motion 
coherence (Britten et al., 1993). Area MT might thus provide the 
sensory evidence that is passed on to LIP for integration. Besides, 
the recorded LIP activity suggests a fixed firing rate threshold, as it 
reaches a uniform level, independent of response time or difficulty 
(about 40–80 ms prior to the saccade). Apart from these 40–80 ms 
for motor preparation, the rather long latency between signal onset 
and the onset of build-up activity in LIP (∼190 ms) has to be sub-
tracted from the measured reaction times to arrive at an estimate of 
the pure decision time, i.e., the actual time during which evidence is 
accumulated (Roitman and Shadlen, 2002; Churchland et al., 2008).

Decision-related activity build-up was also found downstream of 
LIP, in the dorsolateral PFC (Kim and Shadlen, 1999) and SC (Horwitz 
and Newsome, 1999). Interestingly, all neurons that exhibit ramp-
ing activity characteristically show persistent neural firing in delayed 
memory or decision tasks (Gnadt and Andersen, 1988; Shadlen and 
Newsome, 2001). This observation has inspired the application of a 
biophysically based model of working memory (Brunel and Wang, 
2001) on decision making (Wang, 2002). In the model, strong recur-
rent connections generate attractor states, which facilitate sustained 
spiking activity in excitatory subpopulations of the neural network 
(Figure 3A, S1 and S2), while global inhibitory feedback leads to 
competition between these subgroups, and thus enables categori-
cal decision making. In the following, the basic network shown in 
Figure 3A serves as a building block to model particular brain regions 
that participate in the processing of competitive features. The spik-
ing neuron models of visual-attention mechanisms and information 
transfer, which are described in the subsequent sections, involve mul-
tiple cortical areas, and hence consist of several of these basic decision 
units. Here, in the case of the RDM task, the network can be viewed as 
a representation of a local microcircuit in area LIP, where one neural 
subpopulation is selective for each of the possible motion directions 
(see Albantakis and Deco, 2009 for multiple choices).

Decision formation corresponds to the transition from the spon-
taneous state of the network (where all neurons fire at low firing rates) 
to a decision state [where one selective population (the “ winner”) 

A

D

B

C

Figure 3 | Attractor network of slow perceptual decision making. (A) 
Schematic representation of the network, which consists of excitatory and 
inhibitory spiking neurons, with full synaptic connectivity. All neurons 
receive external inputs as (poissonian) spike trains characterized by their 
rate. The excitatory neurons are organized in three pools: the non-specific 
neurons (NS) and the two selective pools (S1, S2) that receive the inputs 
encoding each stimulus (with rate νin). An additional bias (νbias) can be 
applied to one of the two selective pools. All neurons also receive an input 
(νext) that simulates the spontaneous activity in the surrounding cerebral 
cortex. (B,C) Single trial (colored traces) and mean firing rate evolution 
(black) of the selective pools for different inputs. Mean traces are the 
average over 20 trials for 0% coherence (νbias = 0). (B) In the case of high 
inputs, the transition from the spontaneous state to the decision state is 
evidence-driven and slow even for single trials. (C) For low inputs, the 
switch is induced by noise fluctuations, and rather sharp in a single trial. Yet, 
the mean activity builds up slowly. (D) Stable (solid lines) and unstable 
(dotted lines) attractor states, dependent on the external sensory input 
obtained from a mean-field approximation of the network (Brunel and 
Wang, 2001). The gray area depicts the evidence-driven regime, where the 
spontaneous state is no longer stable. Increasing the external inputs to 
both selective populations increases reaction time and decreases accuracy. 
Thus, a speed–accuracy trade-off might be implemented through the inputs 
to the neural populations (see text). Left of the first bifurcation, transitions 
are induced by noise. (B–D) Simulations were performed with a synaptic 
strength of 1.68 within selective populations; all other parameters were 
taken from Wang (2002).
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are high (Albantakis and Deco, 2011). Specifically, changes of mind 
in the model became more frequent, the closer the system was to the 
second bifurcation, where the symmetric state returns to be stable.

Another implication of the non-linearity inherent to the attrac-
tor model is the violation of the so-called time-shift invariance: 
evidence occurring earlier during the accumulation process will 
have a greater effect on the decision outcome than later evidence, 
which happens only when the transient is already converging 
toward one of the decision attractors (Wong et al., 2007). This 
prediction was indeed observed in a RDM experiment, where brief 
pulses of motion added to the random-dot stimulus affected the 
final choice more at earlier onset times (Huk and Shadlen, 2005). 
To produce this effect with a linear accumulator model, additional 
time-dependent features like collapsing decision bounds or an 
urgency signal need to be superimposed on the conceptual model.

In general, most models of perceptual decision making so far 
focused exclusively on sensory evidence accumulation. In that sense, 
the non-linear attractor model is a notable exception, as it is further 
able to account for other modalities of decision making neurons, 
like persistent activity and their responses to visual target signals 
(Wong and Huk, 2008). Nevertheless, not much is yet known about 
the physiological mechanisms of the various internal states, which 
can play a significant role in the decision making process, such as 
speed–accuracy trade-off, urgency, reward expectation, or attention.

top-down attentIon
Another situation where pure fast feedforward processing of spik-
ing information is insufficient to perform the required computa-
tion, arises when a task demands the evaluation of a crowded and/
or complex visual scene. In this case, the visual system is unable 
to simultaneously evaluate the immense amount of information 
conveyed in a complex scene just by the initial fast feedforward 
sweep of information transfer. Precisely to cope with this problem, 
attentional mechanisms are required to account for the selection of 
relevant scene information. In addition to the local recurrent con-
nections treated in the previous section, intercortical recurrent con-
nections between different brain areas shape the focus of attention.

BIased-competItIon mechanIsms can account For the 
attentIonal spotlIght
Attentional mechanisms optimize the processing of bottom-up 
relevant aspects of the sensory signal by adding top-down influ-
ences. These top-down signals bias the system to concentrate on 
only a small proportion of the incoming information relevant for 
the behavioral task under consideration. Top-down and bottom-up 
processing result from intercortical connections between the dif-
ferent brain areas. Indeed, one quarter of all possible connections 
between areas is realized in the human brain, most of which being of 
recurrent nature (Salin and Bullier, 1995). Thus, partial representa-
tions held in different cortical areas might be integrated by mutual 
cross communication, mediated by the inter-area neuronal fibers. 
The role of recurrent processing is central to modern perspec-
tives on hierarchical inference in the brain. Modern accounts (e.g., 
predictive coding) see the brain as actively constructing predic-
tions of its sensorium that are mediated by top-down connections, 
and tested against sensory evidence to provide a  prediction error 

fires at high rates (Figures 3B,C)]. If the connection strengths are 
fixed, the input strength determines whether particular attractor 
states are stable or not (Figure 3D). For sufficient external inputs, 
the spontaneous state becomes unstable (>10 Hz in Figure 3D), 
and the system “relaxes” into one of the two possible decision states 
driven by sensory evidence. The transition time increases the closer 
the system is to this bifurcation point. In addition to the attractor 
configuration, the network’s long synaptic time-constant, gener-
ated by a high NMDA to AMPA receptor ratio, is crucial for a slow 
transition and for the model’s ability to accumulate inputs.

Note that, although individual spiking neurons are simulated, 
the decision outcome is determined by the pooled activity of the 
selective neural populations, consistent with a rate-code, and not by 
individual spikes, as opposed to the feedforward network for object 
recognition described in Section “Fast Feedforward Processing, 
Latency Coding, and STDP.” Also, in contrast to the feedforward 
model, the decision making model is inherently stochastic, as every 
neuron in the network receives its own individual background 
inputs in the form of Poisson spike trains. As there are a finite 
number of neurons in the network, the resulting output spike rate 
of each neural population also fluctuates in time around the noise-
free value, or, equivalently, the firing rate obtained for an infinite 
number of neurons. The neural noise plays an important role in the 
model’s decision making. First, it is responsible for the probabil-
istic outcome of the decision process when faced with ambiguous 
evidence for both alternatives (as in Figures 3B,C). Moreover, we 
showed that in the case of low sensory input, where the spontane-
ous state is still stable (left to the bifurcation), fluctuations due to 
the network’s finite size noise can cause transitions to the decision 
state (Martí et al., 2008). Without noise (corresponding to an infi-
nite amount of neurons), the network would stay indefinitely in 
the spontaneous state for small external inputs. If the number of 
neurons in the network is small, fluctuations that are large enough 
to induce a transition to the decision state are more probable. These 
noise-driven decisions exhibit rather sharp switches in activity on 
single trials with long, exponentially distributed decision times. 
Nevertheless, averaging across trials with different decision times in 
the noise-driven condition results in a gradual build-up of activity 
(Figure 3C), consistent with the experimentally observed neural 
firing rates, which are trial-averaged single neuron activity.

As mentioned above in the evidence-driven regime, the transi-
tion times of the model depend on the common external input to 
the selective populations, with faster transients and lower accuracy 
for higher sensory inputs. Even if both selective populations receive 
the same input (no bias), the average (chance level) decision time 
will thus be shorter if this common input is higher (Figure 3D). 
This model characteristic arises through the non-linearity of the 
attractor landscape, and offers an interesting alternative mecha-
nism to control the speed–accuracy trade-off (Roxin and Ledberg, 
2008), apart from adapting the decision threshold, as suggested by 
conceptual models of decision making (Ratcliff and Smith, 2004; 
Palmer et al., 2005). In this context, we recently showed that the 
attractor model is capable of reproducing changes of mind that 
emerged through speed–pressure in a slightly altered RDM task 
(Resulaj et al., 2009), if the decision threshold is set low and, in 
addition, the external inputs applied to both selective populations 
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A cortical architecture that implements the principles of visual-
attention described above is shown in Figure 4 (see Deco and Rolls, 
2005a,b) for more details). The figure shows how the dorsal “where” 
visual stream (reaching the posterior parietal cortex, PP) and the 
ventral “what” visual stream (via V4 to the inferior temporal cortex, 
IT) interact through early visual cortical areas (such as V1 and 
V2) to account for many aspects of visual-attention. The system is 
composed of six modules [V1 (the primary visual cortex), V2–V4, 
IT, PP, ventral PFC v46, and dorsal PFC d46], reciprocally connected 
according to anatomical data. This multi-area neurodynamical 
model implements the principle of biased-competition (presented 
above) at the local and global brain area level. Information from 
the retina reaches V1 via the LGN. The attentional top-down signal 
biasing the intra- and intercortical competition is assumed to come 
from PFC area 46 (modules d46 and v46). In particular, feedback 
connections from area v46 with the IT module could specify the 
target object in a visual search task. The feedback connections from 
area d46 with the PP module generate the bias to a targeted spatial 
location in an object recognition task given a spatial attentional cue. 
Each brain area consists of mutually coupled neuronal populations, 

(Spratling, 2008; Friston and Kiebel, 2009; Hesselmann et al., 2010). 
This error is then propagated through the system, and accumulated 
to optimize representations of the causes of sensory input. This 
view is based upon Helmholtzian ideas, and regards the brain as 
testing hypotheses about the causes of sensations. In this spirit, 
perception could be handled as an inverse inference problem, 
whose goal is to estimate the factors that have generated the par-
ticular percept. Indeed, this can be formalized in the framework of 
Bayesian Decision Theory (Friston and Kiebel, 2009; Hesselmann 
et al., 2010).

Further neurophysiological evidence gives rise to the assump-
tion that each cortical area is capable of representing a set of 
alternative hypotheses encoded in the activities of different cell 
assemblies [similar to the selective populations (S1, S2) in the 
decision making network (Figure 3A)]. Representations of dif-
ferent conflicting hypotheses inside each area compete with each 
other for activity and representation (Desimone and Duncan, 
1995). However, each area represents only a part of the environ-
ment and/or internal state. In order to achieve a coherent global 
representation, different cortical areas bias each other’s internal 
representations by communicating their current states to other 
areas through inter-area connections. They favor thereby certain 
sets of local hypotheses over others. For example, different objects 
present in the visual field could compete for representation in one 
brain area (Wolfe, 1994). This competition might be resolved by 
a bias given to one of them from another area, as obtained from 
this other area’s local view-encoding. For example, it could favor 
the behaviorally relevant location in the visual field, and thus the 
object corresponding to that location to be represented in the 
first area (Rolls and Deco, 2002, 2010). Each brain area might 
thus act like the decision network described in Figure 3A, with 
multiple competing alternatives. By recurrently biasing each oth-
er’s competitive internal dynamics, the global neocortical system 
dynamically achieves a global representation in which each area’s 
state is maximally consistent with those of the other areas. This 
view has been referred to as the “biased-competition” hypothesis 
(Desimone and Duncan, 1995).

In parallel to this competition-centered view, a cooperation-
centered picture of brain operation has been formulated, where 
global representations find their neuronal correlate in assemblies 
of co-activated neurons (Hebb, 1949). Co-activation of neurons 
induces stronger mutual synaptic connections between themselves, 
which leads to assembly formation. Reverberatory communica-
tion between assembly members then results in persistent neuronal 
activation, and gives rise to a representation extended in time, as 
described in Section “Slower Visual Decision Making” for visual 
decision making. The concept of neuronal assemblies was later 
formalized in the framework of statistical physics (Hopfield, 1982; 
Amit and Brunel, 1997; Brunel and Wang, 2001), where assemblies 
of co-activated neurons form attractors in the phase space of the 
recurrent neuronal dynamics (patterns of co-activation can rep-
resent fixed points from which the dynamical system evolves). In 
summary, the formalism of attractor dynamics, including biased 
competition and cooperation, offers a unifying principle for the 
“slow” recurrent integration and segregation of information in 
multi-area neurocognitive modeling of brain functions (Deco and 
Rolls, 2005a,b; Deco et al., 2009; Mavritsaki et al., 2011).

Figure 4 | System-level architecture of a model of the cortical 
mechanisms of visual-attention and memory. The system is essentially 
composed of six modules which model the two known main visual pathways 
of the primate visual cortex. Forward connections are indicated by solid lines; 
back-projections (which could implement top-down processing) by dashed 
lines, and recurrent connections within an area by dotted lines. s, Superficial 
pyramidal cells; d, deep pyramidal cells. Figure modified from Deco and Rolls 
(2005a).
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related to how easily the dynamical system can perform the con-
straint satisfaction for the different conditions (see also Heinke 
and Backhaus, 2011).

oscIllatIons Format vIsual processIng
As we have seen above, communication between higher and lower 
level brain areas is crucial to direct attention in visual search or 
complex visual scenes. Information transfer mediated by local and 
intercortical recurrent connections is generally associated with 
oscillatory activity. Particularly in the visual system,  oscillatory 

whose dynamics are described by conductance-based synaptic and 
spiking neuronal models. The equations describing the detailed 
neuronal dynamics can be further reduced using mean-field tech-
niques. The mean-field approximation consists of replacing the 
temporally averaged discharge rate of a neuron with the instanta-
neous ensemble average of the activity of the neuronal population 
(see Rolls and Deco, 2010). The dynamical evolution of activity at 
the level of a cortical area can be simulated in the framework of the 
present model by integrating the population activity in a given area 
over space and time. An explicit spiking neuron simulation of two 
coupled brain regions (V2 and V4) engaged in biased-competition, 
with each population acting according to the network shown in 
Figure 3A, is described in (Deco and Rolls, 2005b), and revealed 
further insights into the non-linear interactions between bottom-
up and attentional top-down effects.

attentIon In vIsual search
One source of evidence for attentional mechanisms in visual pro-
cessing comes from psychophysical experiments using visual search 
tasks. This was proposed by Treisman and Gelade (1980); see also 
(Pashler, 1998) for other types of experiments evidencing attention. 
There, subjects examine a display containing randomly positioned 
items in order to detect a previously defined target. All other items 
in the display, which are different from the target, play the role of 
distractors. The main phenomenology can be understood from 
the dependence of the measured reaction time as a function of the 
number of items in the display. There are two main types of search-
ing displays, namely: feature search or “pop out,” and conjunction 
or serial search. In a feature search task, the target differs from the 
distractors in a single feature, (e.g., only in its color). In this case, 
search times are independent of the number of distractors. In a 
conjunction search task, the target is defined by a conjunction of 
features, and each distractor shares at least one of those features 
with the target. The conjunction search experiments show that 
search time increases linearly with the number of distractors, imply-
ing a serial process.

The computation of a visual search works as follows. An external 
top-down bias from prefrontal area v46 to the IT module drives the 
competition in IT in favor of the population encoding the target 
object. Then, the intermodular back-projected attentional modu-
lation IT–V4–V1 enhances the activity of the populations in V4 
and V1, which encode the component features of the target. Only 
the locations in V1 matching the back-projected target features 
are up-regulated. The enhanced firing of the neuronal popula-
tions encoding the particular location of the target in V1 lead to 
increased activity in the spatially mapped forward pathway from V1 
to V2–V4 to PP. This results in an increased firing in the PP module 
in the location that corresponds to the target. Consequently, these 
cascades of biased-competitions compute the location of the target, 
and are made explicit by the enhanced firing activity of neuronal 
populations at the location of the target in the spatially organized 
PP module. (Deco and Lee, 2004) showed that the properties of 
feature and conjunction search are both reproduced by this atten-
tional architecture, as shown in Figure 5.

The implication of these computational results is that, while the 
network searches the visual field in parallel, there are differences 
in the latencies of the neural responses in the different conditions, 

A B

C

E

D

Figure 5 | Serial and parallel search emerge from the same mechanism. 
(A,B) Parallel and serial search stimuli, respectively. (C,D) Difference in the 
activation at the target location relative to the distractor locations as time 
evolves. The time required for this signal to cross threshold is assumed to be 
related to the time required by humans to find the target. The time required to 
find the E in X’s is constant while the time required to find the E in F’s 
increases linearly with the number of F’s. (e) The visual search experiment is 
repeated for other stimuli with a large number of distractors. Finding the L in 
X’s requires constant time (parallel), while finding the L in T’s increases linearly 
with the number of T’s (serial). DM, dorsal stream module. Figure modified 
from Deco and Lee (2004).
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phase between the pools, one can virtually activate or deactivate the 
communication link between the pools. This is known as the “com-
munication through coherence” (CTC) hypothesis (Fries, 2005). 
Direct physiological evidence for it is found in cat and monkey 
visual systems (Womelsdorf et al., 2007). In humans, the fact that a 
near-threshold visual stimulus can be perceived or not, depending 
on the phase of ongoing EEG oscillations at stimulus onset (Busch 
et al., 2009; Mathewson et al., 2009), is consistent with CTC.

Recently, we quantified the effect of phase shifting on the com-
munication between two oscillating neuronal pools (Figure 7A) 
using transfer entropy (TE; Buehlmann and Deco, 2010). TE is an 
information theoretical measure that quantifies the statistical coher-
ence between systems, and is able to distinguish between shared and 
transported information (Schreiber, 2000). In accordance with the 
experiments, we found that (i) there is an optimal phase relation at 
which TE is highest between the two groups of neurons (Figure 7B), 
that (ii) TE increases as a function of the gamma power (Figure 7C), 
and (iii) the speed of information transfer increases as a function of 
the gamma power, measured from the time required to reach 50% 
of the TE after stimulus onset (Figure 7D). Taken together, these 
findings support the CTC hypothesis and, as rhythmic neuronal 
synchronization makes information transport more efficient and 
flexible, they suggest that it has an important functional role.

phase-oF-FIrIng codIng, and stdp-Based decodIng
Communication through coherence suggests that there is an optimal 
time window for a neuron pool A to send spikes to another pool B, 
so that they have a significant impact on B. But how can information 
be encoded in those spikes? Recent experiments have established that 
information can be encoded in the spike phases with respect to a 
background oscillation in the local field potential (LFP) – a phenom-
enon referred to as PoFC. Evidence for such coding has been seen in 
the visual system, in particular in V1 (König et al., 1995; Fries et al., 
2001a; Montemurro et al., 2008; Vinck et al., 2010) and V4 (Lee et al., 
2005). These firing phase preferences could result from combining 

activity has been widely reported experimentally, especially in the 
gamma frequency range. Yet, whether oscillations have a major 
functional role or, instead, would only be a by-product of neuronal 
information processing, is still debated. In this section, we argue 
that some of our recent modeling studies suggest at least three main 
functions for oscillatory activity:

oscIllatIons and attentIon
The biased-competition theory claims that the neuronal 
response – in terms of firing rate – to simultaneously presented 
stimuli is a weighted average of the response to isolated stimuli, 
and that attention biases the weights in favor of the attended stim-
ulus (Desimone and Duncan, 1995). Thus, a neuron’s firing rate 
increases when its preferred stimulus is attended, but decreases 
when the non-preferred one is attended. More recently, it has been 
shown that attention has also an effect on synchrony: selective 
attention to a visual stimulus specifically enhances the gamma-
band synchronization among neurons in monkey’s extrastriate 
visual cortex driven by that stimulus (Fries et al., 2001b, 2008; 
Bichot et al., 2005; Taylor et al., 2005; Womelsdorf et al., 2006). 
In humans, several EEG and MEG studies have found similar 
effects (Jensen et al., 2007; Tallon-Baudry, 2009). Although rate 
and gamma synchrony modulations occur simultaneously, it is 
not clear if and how they are mechanistically related.

To investigate this issue, we recently extended the analysis of 
the above-mentioned model (Deco and Rolls, 2005b), in which 
biased-competition is implemented in a network of excitatory 
and inhibitory spiking neurons (as in Figure 3A), and attention 
is modeled as an additional input to the neurons encoding the 
attended stimulus. We looked at the effect of this input on both 
firing rates and gamma synchronization (Buehlmann and Deco, 
2008). In order to allow oscillations; we increased the ratio of excita-
tory synaptic conductivities g

AMPA
/g

NMDA
. Indeed, when the shorter 

AMPA latencies dominate over the long-lasting NMDA ones, the 
latency of the excitatory components is smaller than the one of 
the inhibitory GABA components, resulting in the generation of 
oscillations (Brunel and Wang, 2003).

In accordance with the experiments, a stimulus generates cor-
related neural activity in the gamma frequency band, and its power 
is stronger for the neurons encoding the attended stimulus than 
for the neurons encoding the unattended stimulus. As the g

AMPA
/

g
NMDA

 conductance ratio increases, the attentional rate modula-
tion decreases monotonically but the gamma modulation first 
increases up to a maximum and then decreases (Figure 6). These 
results imply that rate and gamma modulations can occur inde-
pendently of each other, and are therefore not concomitant effects. 
Furthermore, gamma modulations are desirable because they were 
found to decrease the reaction times, in line with experimentation 
in monkeys (Womelsdorf et al., 2006). This suggests an optimal 
g

AMPA
/g

NMDA
 conductance ratio.

communIcatIon through coherence
Another desirable effect of rhythmic synchronization is that it allows 
the flexible routing of information between neuron pools. Consider 
two pools, A and B, oscillating at the same frequency. A projects on 
B, but A’s spikes will significantly influence B if, and only if, they 
arrive during a critical period of excitability. Thus, by shifting the 

Figure 6 | in attention, rate and gamma modulations are not 
concomitant effects. Rate modulation (solid curve) and gamma modulation 
(dashed curve) as a function of the excitatory synaptic conductance ratio 
gAMPA/gNMDA. Increasing this ratio increases rhythmic gamma-band power 
(dotted curve), decreases the rate modulation monotonically while gamma 
modulation has a peak. Either of the two modulations can be dominant, 
depending on the gamma power. Figure modified from (Deco et al., 2011).
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Figure 8 | Analog-to-phase conversion. Excitatory afferents 1…n are shown 
on the left. They receive static input currents I1…In. (plotted on the left) and a 
common oscillatory drive i(t), which leads to a current-to-phase conversion: the 
stronger the current, the earlier the afferent fires during the oscillation cycle. All 
the afferents are connected through plastic synapses with weights w1…wn, to 
one downstream neuron equipped with STDP. This neuron will gradually 
become selective to the spike wave corresponding to the repeating current 
pattern (see Figure 9). Figure is modified from Deco et al. (2011).

an oscillatory drive with a stimulus-dependent current that would 
produce the variations in preferred phases (Hopfield, 1995). This 
mechanism is supported by direct physiological evidence in vitro 
(Schaefer et al., 2006; McLelland and Paulsen, 2009). However, it 
remains unknown if such a firing activity can be decoded, that is if 
downstream neurons can respond selectively to patterns of phases 
in their inputs, and if this behavior can be learned.

We have shown recently that STDP can solve the problem 
efficiently (Masquelier et al., 2009b). Specifically, a single neuron 
equipped with STDP (Figure 8) can robustly detect a hidden pat-
tern repeating at random intervals, which involves only a subset 
of its afferents, and is automatically encoded in their firing phases 
(Figure 9). The oscillatory drive improves the spike time precision 
by decreasing their sensitivity to initial conditions, and avoiding 
jitter accumulation, so that they depend mainly on the current input 
values (Brette and Guigon, 2003; Hasenstaub et al., 2005; Schaefer 
et al., 2006; Markowitz et al., 2008). The ability of STDP to detect 
repeating spike patterns had been noted before in continuous activ-
ity (Masquelier et al., 2008, 2009a), but it turns out that oscillations 
greatly facilitate learning, which is possible even when only a small 
fraction of the afferents (∼10%) exhibits PoFC. A benchmark with 
more conventional rate-based codes demonstrated the superiority 
of oscillations and PoFC for both STDP-based learning and speed 
of decoding, which only takes one oscillatory cycle.

The oscillatory drive formats the spike times into waves 
(Figure 9A) that are similar to the first spike waves after visual 
stimulus onset described in Section “Fast Feedforward Processing, 
Latency Coding, and STDP.” It is thus not so surprising that neu-
rons equipped with STDP can also detect and learn repeating pat-
terns in the spike waves caused by the oscillatory drive. This new 
oscillation-based scheme, however, can account for continuous 
vision, when no external time reference such as a stimulus onset is 
available. The scheme is particularly appealing for the processing 
of static, or slowly changing visual stimuli, which, without oscilla-
tions, would not generate precisely timed spikes (eye movements 
may be an alternative, see Continuous Vision). Consistent with our 

proposal, a growing body of experimental evidence in animals and 
humans demonstrates that successful long-term memory encoding 
correlates with increased oscillatory activity across a broad range 
of frequencies (from theta to gamma), in particular in the visual 
modality (Jensen et al., 2007; Klimesch et al., 2008; Tallon-Baudry, 
2009). Interestingly, beyond mere oscillation power, what seems to 
be a prerequisite for successful visual memory formation is that 
single units should be phase-locked to the oscillation (Rutishauser 
et al., 2010) – a result consistent with our model.

unsolved questIons and Future dIrectIons
contInuous vIsIon
In Section “Fast Feedforward Processing, Latency Coding, and 
STDP,” we focused on the transient activity generated when a stimu-
lus suddenly appears at a given time from the dark, a paradigm 

A B C D

Figure 7 | increasing network gamma frequency band power leads to 
mean transfer entropy (Te) increase and time for information transfer 
decrease. (A) Schematic representation of the network, which consists of two 
parts: in each part, there are excitatory (S, NS) and inhibitory (I) spiking neuron 
pools, which are interconnected. The connectivity is full. The selective pool (S) 
receives the external input (νin) and has strong recurrent connections. The two 
parts of the network are connected via the selective pools by both feedforward 
and feedback connections. All neurons also get an input (νext) that simulates the 
spontaneous activity in the surrounding cerebral cortex. (B) TE as a function of 
phase shifts and directionality. TE is highest for a 0 phase shift and gets lower 

the more it differs from it. The solid line represents TE from neuronal pool 1 to 
pool 2 (forward), the dashed line from pool 2 to pool 1 (backward). Forward TE is 
clearly stronger than backward TE. (C) When the conductance ratio gAMPA/gNMDA 
increases, both gamma power (dashed line) and TE (solid line) increase. (D) Rise 
times of TE as a function of the conductance ratio. Information starts flowing 
after stimulus onset when, consequently, TE starts rising. The plot shows the 
time required to reach 50% of the average TE. TE clearly rises faster for higher 
gamma-band power. In both graphics, error bars indicate 95% confidence 
intervals; averaged over 100 trials. Figure modified from (Buehlmann and 
Deco, 2010).
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(RSVP) and visual masking. The timescales involved in natural 
continuous vision processing are fast (∼10 ms; Butts et al., 2007), 
and individual neurons’ firing rates are not well defined at such a 
fine temporal resolution. Spiking neuron models should be pre-
ferred. STDP, which is able to detect consistently repeating spike 
patterns even in continuous activity (Masquelier et al., 2008, 2009a), 
probably plays a key role in continuous vision as well. Last but 
not least, continuous vision involves feedback loops, which should 
thus be included in those models. These should generate – among 
other things – self-sustained oscillations (Gray and Singer, 1989), 
and their desirable consequences reviewed in Section “Oscillations 
Format Visual Processing.”

hardware ImplementatIons
As we have seen in this review, encoding and processing informa-
tion with spike patterns is an efficient strategy which is probably 
extensively used in the visual system. Software simulation of these 
mechanisms is time consuming though, which can reduce their 
relevance for technology. Silicon hardware implementations, how-
ever, could be several orders of magnitude faster than the biological 
hardware (which is incredibly slow: neurons cannot fire more than 
a few hundred spikes per second, and those impulses propagate on 
axons between neurons with a velocity of 1–2 m/s). This means that 
an artificial vision system based on biological algorithms imple-
mented on silicon hardware could, in principle, clearly outperform 
animals including humans.

One appealing technology to implement spike-based process-
ing is the so-called address event representation (AER), where 
the spikes are carried as addresses of sending or receiving neu-
rons on a digital bus. Time “represents itself ” as the asynchro-
nous occurrence of the event. AER was first proposed in 1991 by 

extensively studied in the lab but rather unnatural. A more natural 
situation is that an image is formed on the retina at t = t

0
 after a body 

or head movement, a saccade, or a micro-saccade (all of these are 
referred to as “movement” below). In that case, the “intensity-to-
latency conversion” hypothesis we made is questionable for several 
reasons, in particular in the retina. First, the input current to a 
retinal ganglion cell (RGC) is a spatiotemporally filtered version 
of the luminance signal, as opposed to a spatially filtered version 
[among other things the surround signal is delayed (Enroth-Cugell 
et al., 1983; Cai et al., 1997)], and this spatiotemporal filtering does 
not stop during the movements. This means that the RGC input 
currents at t = t

0,
 and slightly after, depend not only on the cur-

rent image, but also on what happened during the movement, and 
possibly even before. Furthermore, these currents are integrated 
and converted into spikes. This introduces another dependence 
on history (the same input current does not lead to the same spike 
latencies, depending on when the last spike was emitted). For all 
these reasons, the times-to-first-spikes with respect to t

0
 are prob-

ably poor encoders of the current image. However, because the 
history of neighboring cells is likely to be similar, it seems reason-
able to assume that this history will typically have a similar effect 
on their spike times, and thus a weak effect on their relative spike 
times – but this should be confirmed by simulations. Consistent 
with this idea, relative latencies are found to be more reliable than 
absolute ones in the retina (Gollisch and Meister, 2008).

We feel it is time to build models able to deal not only with 
“stimulus onset paradigms,” as the ones reviewed in Section “Fast 
Feedforward Processing, Latency Coding, and STDP,” but also with 
continuous vision, including body, head, and eye movements and 
moving stimuli. Such models could also simulate, unlike the current 
ones, the experimental protocols of rapid serial visual presentation 

A

B

Figure 9 | Downstream neuron’s input and response after learning (A) input 
spike trains. Spikes come in waves because of the oscillatory drive. Gray 
rectangles designate the periods where the pattern is presented, and the afferents 
that are involved in it (bottom half here). Three insets [horizontal grid size = 1 rad (in 
phase) = 20 ms] zoom on adequate periods to illustrate that the spike phases of 

the afferents involved in the pattern are the same (except for the noise) for different 
pattern presentations, which is not true for other afferents (top half). It is this 
repeating “spike wave” that STDP detects and learns. (B) Postsynaptic membrane 
potential as a function of time: it oscillates, but reaches the threshold if and only if 
the pattern is presented. Figure is modified from Deco et al. (2011).
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2006). Hence, it might not be too surprising that none of the models 
could be excluded based only on the fits to the behavioral data. 
However, they differ substantially in their neurophysiological pre-
dictions on how the integrator states should evolve over time (see 
Table 2 in Ditterich, 2010). Invasive neural recordings from mon-
keys performing the same task will hopefully soon settle the dispute. 
Moreover, feedforward and feedback inhibition respectively suggest 
either negative or positive correlation between the integrator units, 
which might be tested with multi-electrode recordings.

Finally, for equal coherences in all three motion directions, 
(Niwa and Ditterich, 2008) measured faster mean reaction times 
for higher coherence levels, consistent with the predictions from 
the non-linear recurrent attractor network for increasing exter-
nal inputs to all selective populations (see Slower Visual Decision 
Making). While models with feedforward inhibition require a scal-
ing of the variance of the sensory signals in order to account for this 
effect, conceptual models with feedback inhibition could explain 
the result just with a change of the mean input (Ditterich, 2010). 
In that context, the predictions of the biophysically based attractor 
model on reaction times and changes of mind could also be tested 
more rigorously in a change of mind RDM experiment with two 
directionally opposite motion components (see Albantakis and 
Deco, 2011).

conclusIon
With this review we aimed to outline, within the frame of SNNs, 
the various ways in which different processing timescales imply and 
connect to different neural dynamics in the visual system. For object 
recognition, the high processing speed excludes extensive crosstalk 
between neural populations, and feedforward connectivity seems 
sufficient to explain experimental observations. However, recurrent 
connections are crucial for any non-linear operation, such as data 
integration or shaping the focus of attention, in tasks where higher 
level processing is beneficial in spite of consequently longer reaction 
times. Moreover, oscillatory activity might act as a higher-order 
mechanism for routing and encoding the exchanged information. 
Depending on which particular task the visual system is currently 
engaged in, the amount of information that is transmitted back 
and forth within and between the relevant brain areas thus varies 
substantially. Nonetheless, not only the amount of information 
exchanged between neural populations is task-dependent, the way 
the information is encoded also differs for the different process-
ing modes. In fact, with the four modes of temporal processing, 
we have presented four distinct ways of how information might 
spread through the visual pathways: during object recognition for 
the fast feedforward sweep of activity along the ventral pathway, 
which consists of only one or a few spikes at each processing level, 
“rank order coding” (Thorpe and Gautrais, 1998) allows to convey 
information despite the low number of spikes, which excludes the 
classic rate coding scheme. Rate coding does still play the dominant 
role in visual discrimination tasks, where information is accumu-
lated in decision-related brain areas along the dorsal visual stream. 
If the interplay between top-down and bottom-up signaling con-
tributes to solving task-specific challenges to the visual system 
(such as directing attention or visual search), information may be 
routed via oscillatory activity, as described in the CTC theory (Fries, 
2005). Finally, background oscillations in the LFP could serve as an 

Mead’s Lab at the California Institute of Technology (Sivilotti, 
1991), and has been used since then by a wide community of 
hardware engineers. Furthermore, the recently discovered memris-
tive nanoscale devices (Strukov et al., 2008) provide an appealing 
implementation of the STDP functionality (Linares-Barranco and 
Serrano-Gotarredona, 2009).

Together with Linares’ group, we are building hardware self-
learning models of the visual cortex, which combine both AER 
and memristor technologies. In a first attempt to simulate the 
early visual system, we used a simple set up combining an AER 
artificial retina (Lichtsteiner et al., 2007) and a SNN mimick-
ing V1 (the LGN was ignored). The artificial retina sensed the 
external world in a continuous (frame-free) manner, and gener-
ated spikes that were asynchronously propagated, as they flowed 
in, until they reach the V1 SNN. In this network, neurons were 
equipped with memristor-based STDP (for now simulated). This 
enabled them to gradually become orientation selective, as the 
system was exposed to natural stimuli (Zamarreño-Ramos et al., 
2011). These results are still preliminary, but very encouraging. 
We speculate that this line of research will yield revolutionary 
results in the next decade.

dIstInguIshIng decIsIon makIng model approaches
Models on the accumulation of noisy evidence, as for instance 
during continuous motion viewing, come in a huge variety of fla-
vors, which may be very difficult to distinguish on the basis of just 
behavioral data or even mean firing rates. Finding new analyti-
cal methods and intelligently designed experiments to distinguish 
the different approaches is thus a major future challenge in the 
field of perceptual decision making. Several recent studies have 
acknowledged this objective with a particular emphasis on multiple 
alternatives (Ditterich, 2010; Leite and Ratcliff, 2010; Purcell et al., 
2010; Churchland et al., 2011).

Analyzing higher-order statistical properties (i.e., a variance and 
within-trial correlation measure) of neurophysiological data from 
a two- and four-alternative RDM task, (Churchland et al., 2011) 
could help distinguish between models categorized by their differ-
ent sources of variability. Models with just one source of variability 
[either with a randomly varying slope but no within-trial noise 
(Carpenter and Williams, 1995), or a fixed slope with a random dis-
tribution of firing rates at each time-step (Cisek et al., 2009)] failed 
to account for the higher-order measures, although they agreed 
with behavior and mean firing rates. On the other hand, all dif-
ferent implementations of a stochastic accumulation to threshold, 
the drift–diffusion model (Ratcliff and Rouder, 1998) – a model 
based on probabilistic population codes (Beck et al., 2008) – and a 
recurrent attractor model (Wong et al., 2007) – a reduction of the 
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