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Previous research has shown that by the time of birth, the neonate brain responds specially
to the native language when compared to acoustically similar non-language stimuli. In the
current study, we use near-infrared spectroscopy to ask how prenatal language experience
might shape the brain response to language in newborn infants.To do so, we examine the
neural response of neonates when listening to familiar versus unfamiliar language, as well
as to non language stimuli. Twenty monolingual English-exposed neonates aged 0–3 days
were tested. Each infant heard low-pass filtered sentences of forward English (familiar
language), forward Tagalog (unfamiliar language), and backward English and Tagalog (non-
language). During exposure, neural activation was measured across 12 channels on each
hemisphere. Our results indicate a bilateral effect of language familiarity on neonates’
brain response to language. Differential brain activation was seen when neonates listened
to forward Tagalog (unfamiliar language) as compared to other types of language stimuli.
We interpret these results as evidence that the prenatal experience with the native lan-
guage gained in utero influences how the newborn brain responds to language across
brain regions sensitive to speech processing.
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INTRODUCTION
It is well known that the adult brain is specialized in its response to
native language (Perani et al., 1996; Dehaene et al., 1997). Recent
evidence has suggested that the human brain is tuned to lan-
guage from the earliest stages of development. Only a few days
after birth, neonates respond differently to language than to non-
linguistic sounds. Very young infants demonstrate a preference for
listening to speech over non-speech (Vouloumanos and Werker,
2007), and are capable of discriminating languages from different
rhythmical classes (Mehler et al., 1988; Nazzi et al., 1998; Ramus
et al., 2000). However, what is unknown from past research is
the extent to which early prenatal experience with language may
play a role in determining the organization of neonates’ neural
tuning for language. In particular, no one has yet investigated
whether the experience that neonates have with the native lan-
guage while in utero influences the pattern and location of brain
activity to familiar versus unfamiliar language. In the current study,
we use near-infrared spectroscopy (NIRS) to take the first steps in
exploring this question.

Research to date examining the neonate brain response to lan-
guage versus non-language has shown that brain responses to
familiar language are both stronger and more specialized when
compared to the response to non-language (Dehaene-Lambertz
et al., 2002, 2010; Pena et al., 2003). Using behavioral meth-
ods, a left hemisphere advantage for language has been inferred
through dichotic listening to individual syllables as measured by
high-amplitude sucking in newborns (Bertoncini et al., 1989),
as well as through mouth asymmetries during babbling in 5 to

12-month-olds (Holowka and Petitto, 2002). In neuroimaging
research, optical imaging studies with newborns have shown a
greater left hemisphere response to audio recordings of forward
versus backward speech (Pena et al., 2003), as well as evidence
that the left hemisphere plays an important role in processing
repetition structures in language (e.g., ABB versus ABC sylla-
ble sequences; Gervain et al., 2008). Similarly, fMRI studies with
infants 2–3 months of age indicate differential responses in the
left hemisphere to continuous forward versus backward speech
(Dehaene-Lambertz et al., 2002), and to speech versus music
(Dehaene-Lambertz et al., 2010). These functional studies are sup-
ported by structural MRI analyses indicating asymmetries at birth
in the left hemisphere language areas of the brain (Dubois et al.,
2010). All of the above studies, however, have focused on young
infants’ neural response to familiar language, leaving open the
question of how much responses may have been driven by language
experience.

At birth, neonates are experiencing extra-uterine language for
the first time. However, in utero they have had the opportunity to
learn about at least some of the properties of language. The periph-
eral auditory system is mature by 26 weeks gestation (Eisenberg,
1976), and the properties of the womb are such that the major-
ity of low-frequency sounds (less than 300 Hz) are transmitted
to the fetal inner ear (Gerhardt et al., 1992). The low-frequency
components of language that are transmitted through the uterus
include pitch, some aspects of rhythm, and some phonetic infor-
mation (Querleu et al., 1988; Lecaneut and Granier-Deferre, 1993).
Moreover, the fetus has access to the mother’s speech via bone
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conduction (Petitjean, 1989). There is evidence that the fetus can
hear and remember language sounds even before birth. Fetuses
respond to and discriminate speech sounds (Lecanuet et al., 1987;
Zimmer et al., 1993; Kisilevsky et al., 2003). Moreover, new-
born infants show a preference for their mother’s voice at birth
(DeCasper and Fifer, 1980) and show behavioral recognition of
language samples of children’s stories heard only during the preg-
nancy (DeCasper and Spence, 1986). Finally, and of particular
interest to our work, newborn infants born to monolingual moth-
ers prefer to listen to their native language over an unfamiliar
language from a different rhythmical class (Mehler et al., 1988;
Moon et al., 1993). These studies suggest that infants may have
learned about the properties of the native language while still in
the womb.

In a recent extension of the work showing a preference for the
native language at birth, Byers-Heinlein et al. (2010) investigated
how prenatal bilingual experience influences language preference
at birth. Infants from 0 to 5 days of age born to either mono-
lingual English or bilingual English–Tagalog mothers were tested
in a high-amplitude sucking procedure. Infants were played sen-
tences in both English (a stress-timed language) and Tagalog (a
Filipino language that is syllable-timed). Sentences from both lan-
guages were low-pass filtered (to a 400-Hz cut-off), to maintain the
rhythmical information of each language while eliminating most
surface segmental cues that may be different across languages.
Byers-Heinlein et al. (2010) found that while all infants could dis-
criminate English and Tagalog, the monolingual-exposed infants
showed a preference for only English and the bilingual-exposed
infants had a similar preference for both English and Tagalog.
These results provide strong evidence that language preference
at birth is influenced by the language heard in utero, even when
infants have had prenatal experience with multiple languages.
The neural correlates of this behavioral preference for familiar
language(s) at birth are however, unknown.

A recent neuroimaging study of infants’ processing of speech
and non-speech has provided some support for the hypothesis
that language experience may impact early neural specialization
for processing some aspects of language (Minagawa-Kawai et al.,
2011). Using NIRS, 4-month-old Japanese infants’ brain response
was assessed while listening to a familiar language (Japanese), to an
unfamiliar language (English), and to different non-speech sounds
(emotional voices, monkey calls, and scrambled speech). Greater
left hemisphere activation was reported for both familiar and unfa-
miliar language when compared to the non-speech conditions.
Critically, activation was also significantly greater to the familiar
language when compared to the unfamiliar language. This latter
finding implies that by 4 months of age, the young brain responds
differently to familiar versus unfamiliar language and is thus influ-
enced by language experience. However, the infants studied by
Minagawa-Kawai et al. (2011) were 4 months of age – meaning that
these infants have dramatically more experience with their native
language than newborn infants. It is unknown whether infants
with only a few hours of post-natal experience will show a similar
difference in neural activation to a familiar versus an unfamiliar
language.

In contrast to the above studies demonstrating the impact of
language experience on newborn infants’ language processing,

other areas of research have uncovered aspects of language percep-
tion that appear unaffected by specific language experience early
in development. For example, neonates’ rhythm-based language
discrimination has been shown to be based on language-general
abilities. Phonologists have traditionally classified the world’s lan-
guages into three main rhythmic categories: stress-timed (e.g.,
English, Dutch), syllable-timed (e.g., Spanish, French), and mora-
timed (e.g., Japanese). This distinction is critically important to
language learning as rhythmicity is associated with word order
in a language (Nespor et al., 2008), rendering it one of the
most potentially informative perceptual cues for bootstrapping
language acquisition. Recent cross-linguistic investigations have
more finely quantified the distinction between rhythmical classes,
finding that languages fall into rhythmical class on the basis of
two parameters: percent vowel duration within a sequence and
the standard deviation of the duration of consonantal intervals
(Ramus et al., 1999; see also Grabe and Low, 2002 for a different
measurement scheme).

In a long series of studies, it has been demonstrated that young
infants are able to discriminate languages from different rhyth-
mical classes (Mehler et al., 1988; Nazzi et al., 1998; Ramus et al.,
2000). This ability does not depend on familiarity with one or
both of the languages being tested. Infants with prenatal experi-
ence with a single language can discriminate the native language
from a rhythmically dissimilar unfamiliar language (Mehler et al.,
1988),as well as discriminate two unfamiliar rhythmically different
languages (Nazzi et al., 1998). Further, infants with prenatal bilin-
gual exposure are able to discriminate their two native languages
when those languages are from different rhythmical classes, even
though both languages are familiar (Byers-Heinlein et al., 2010).
These findings show that rhythm-based language discrimination
in newborns is not based on experience with the native language,
but instead on initial universal biases. It therefore may be the case
that the early neural response to language in neonates also reflects
similar language-universal processing.

CURRENT STUDY
The goal of the present study was to test whether neonates’ early
brain specialization for language is driven exclusively by a univer-
sal preparation for language, or whether there is influence from
prenatal language experience. To test these competing hypotheses,
we measured the patterns and location of neonates’ brain response
to a familiar (the primary language heard in utero) versus an unfa-
miliar language. Building on previous research, we compared the
pattern and location of neural responses to forward speech versus
backward speech in both a familiar and an unfamiliar language.
We tested newborn infants, an age group that has not previously
been tested for the influence of listening experience on neural
organization.

We employed NIRS to measure neural activity in neonates when
listening to familiar and unfamiliar language. Participants in the
current study were born to monolingual English-speaking moth-
ers, and each infant was tested in four language conditions. In
two forward-language conditions, neonates were played sentences
of adult-directed English and Tagalog. In two backward-language
control conditions, infants were played the same English and Taga-
log sentences reversed. Backward speech has often been used
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in neuroimaging studies exploring the brain response to lan-
guage versus no-language, including both studies with adults
(Perani et al., 1996; Carreiras et al., 2005) and infants (Dehaene-
Lambertz et al., 2002; Pena et al., 2003). Backward-language is
believed to be a useful non-linguistic control because it matches
the forward-language in both intensity and pitch, but is distinctly
non-linguistic, as humans are unable to produce some of the sound
sequences created (such as backward aspirated stops), because
words in backward speech do not have a proper syllable form,
and because the prosodic structure of sentences is disturbed.
As a consequence, infants fail to discriminate a pair of reversed
languages despite succeeding in differentiating the same pair of
forward-played languages (Mehler et al., 1988). This suggests that
backward spoken language does not carry the same linguistic
relevance as forward speech (Mehler et al., 1988; Ramus et al.,
2000).

The language stimuli used in the current study were the iden-
tical low-pass filtered sentences used in the previously described
behavioral study investigating language preference and discrim-
ination in neonates conducted by Byers-Heinlein et al. (2010).
Low-pass filtered speech has been used by many cross-linguistic
preference and discrimination studies (Mehler et al., 1988; Nazzi
et al., 1998; Byers-Heinlein et al., 2010), as the filtering is believed to
eliminate surface acoustic and phonetic cue differences between
languages that may lead to irrelevant preferences. The filtering
allows much of the rhythmical structure of the language to remain
intact, and infants’ ability to use rhythmical information to dis-
criminate between languages is thought to remain the same across
unfiltered and filtered language (Mehler et al., 1988). Filtered
speech was used in the present study as it likely mimics the
properties of language perceived in utero (Lecaneut and Granier-
Deferre, 1993). As such, we expected that the neonate response
to filtered speech should reflect how initial prenatal experience
might shape the neural response to speech. It should be noted,
however, that while there is considerable behavioral work on lan-
guage preference and discrimination using filtered speech, ours
is the first study to use filtered speech in a neural imaging study
addressing these questions. Given that some of the features of
speech important to neural localization may be removed in filter-
ing the stimulus (i.e., the fast phonetic change dynamics; Zatorre
and Belin, 2001; Poeppel, 2003; Zatorre and Gandour, 2007),
we anticipated that the neural response to filtered speech might
differ from patterns of results found previously with unfiltered
speech.

MATERIALS AND METHODS
PARTICIPANTS
Twenty full-term, healthy neonates (ranging in age from 0 to
3 days, mean age = 1.6 days) born to English-speaking mothers
were included in the analyses. All mothers reported speaking at
least 90% English during their pregnancy, and no Tagalog (19
mothers reported speaking 100% English, and one mother 90%
English and 10% Romanian). An additional 10 infants were tested,
but were excluded due to the infant becoming awake or fussy and
failing to complete the procedure (5), equipment failure (2), insuf-
ficient analyzable data (2), or parental interference (1). All infants
were tested while asleep or during a quiet state of wakefulness. All

parents of infants gave informed consent prior to beginning the
experiment.

STIMULUS MATERIALS
The language samples used in the current study we taken from
those used by Byers-Heinlein et al. (2010). Stimuli consisted of
six English sentences and six Tagalog sentences recorded by native
speakers of each language and spoken in an adult-directed man-
ner. All sentences were matched in pitch, duration, and number
of syllables, and were produced by adult native language speakers.
Sentences were low-pass filtered to 400 Hz, to remove surface seg-
mental cues while maintaining rhythmical structure and prosody.
Backward-language sentences were formed by reversing the Eng-
lish and Tagalog sentences using Praat (Boersma and Weenink,
2011). Sentence lengths in English ranged from 3.28 to 4.09 s, with
a mean of 3.55 s. Sentence lengths in Tagalog ranged from 3.07 to
4.19 s, with a mean of 3.61 s.

Each infant was tested in all four language conditions: forward
English, forward Tagalog, backward English, and backward Taga-
log. The conditions were randomly ordered across infants and
presented consecutively. The blocked design was chosen as it has
been used by many infant NIRS studies (e.g., Pena et al., 2003; for
a review see Gervain et al., 2011). Each condition lasted 5.6 min.
Within each condition, stimuli were organized within seven blocks
that each lasted 18–20 s. Each block consisted of five sentences.
There were six sentences in total for each language, and for each
block five different sentences were randomly selected. Within a
block, the five sentences were separated by brief pauses of variable
length (0.5–1.5 s), following Gervain et al. (2008). Blocks were sep-
arated from each other by 25–35 s of silence. The total testing time
for each infant was 22.4 min. The block design used is presented
in Figure 1.

PROCEDURE
Neonates were tested in a local maternity hospital, while asleep or
at rest in a bassinet. Testing occurred in a silent, private experi-
mental room. A Hitachi ETG-4000 NIRS machine with a source
detector separation of 3 cm and two continuous wavelengths of
695 and 830 nm was used to record the NIRS signal, using a sam-
pling rate of 10 Hz. For further technical details regarding the
machine, see Gervain et al. (2011).

Two chevron-shaped probes were used, each consisting of nine
1 mm optical fibers. Of these nine fibers, five were emitters and
four detectors. As such, there were 12 recording channels in each
probe. One probe set was placed over the perisylvian area of the
neonate’s scalp of the left hemisphere, with the second probe set
over the symmetrical area of the right hemisphere. The chevron
shape of the probes was situated to nestle above the infant’s ears
(see Figure 2 for image of the probes, and probes placed on infant;
see Figure 3 for probe configuration). A stretchy cap was used to
keep the probes in place. The NIRS machine used a laser power of
0.75 mW.

A MacBook laptop or a Mac Mini desktop computer running
Psyscope × (Build 36) controlled the experiment, playing the lan-
guage stimuli and sending markers to the NIRS machine. The
language stimuli were played through two speakers approximately
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FIGURE 1 |The block design used in the current study. Each infant was exposed to all four language conditions (FW, BW English; FW, BW Tagalog). Within
each language condition, infants heard seven language blocks of five sentences. Each sentence was 3–4 s in length.

FIGURE 2 | (A) Picture of chevron-shaped probes used. (B) Picture of a neonate with probes placed upon the head.

1.5 m from the infants’ head. The intensity of the stimuli was set
to 70–75 dB.

DATA ANALYSIS
Analyses were initially conducted on oxyHb and deoxyHb in a time
window between 0 and 35 s after stimulus onset to capture the full
time course of the hemodynamic response in each block (Gervain
et al., 2008). Data were averaged across blocks within the same
condition. Data were band-pass filtered between 0.01 and 0.7 Hz,
as to remove low-frequency noise (i.e., slow drifts in Hb concentra-
tions) as well as high frequency noise (i.e., heartbeat). Movement

artifacts were removed by isolating blocks in which a change in
concentration greater than 0.1 mmol × mm over a period of 0.2 s,
i.e., two samples, occurred, and rejecting the block. On average,
3.69 blocks were retained for data analysis in the English FW, 3.17
in the English BW, 3.46 in the Tagalog FW, and 3.61 in the Tagalog
BW condition. For all retained blocks, a baseline was established by
linearly fitting the 5-s preceding the onset of the block and the 5-s
beginning 15 s after the end of the block. This timeline is used to
allow the hemodynamic response function that occurs in response
to the experimental stimuli to return to the original steady state
(Pena et al., 2003; Gervain et al., 2008).
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FIGURE 3 | Configuration of probe sets overlaid on a schematic infant

head. Red circles indicate emitter fibers, while blue circles indicate detectors.
Separation in all emitter–detector channels was 3 cm. The probes were placed
on the participants’ heads using surface landmarks, such as the ears or the

vertex. Channels 1–12 were placed over the left hemisphere, while channels
13–24 were placed over the right. Probes were placed so that the
bottom-most channels (11, 12 in LH; 23, 24 in RH) ideally nestled above the
infant’s ear.

The region of interest (ROI) was defined following Pena et al.
(2003). Channels 7–12 and 19–24 were chosen as the ROI in each
hemisphere. These ROIs correspond to the lower ROIs in Pena
et al. (2003), which is the area where significant activation was
found in that study. These ROIs comprise the temporal (auditory
processing) brain areas, where one can expect to find the strongest
speech-related response.

RESULTS
The grand average results of the experiment are presented in
Figures 4 and 5. The figures show the averages of oxyHb and
deoxyHb concentration change in all blocks for each condition
across all infants. A table of the oxyHb results is presented in
Figure 6. We conducted a repeated measures analysis of variance
(ANOVA) within the target ROI (lower channels, as used by Pena
et al., 2003) with factors Language (English/Tagalog) × Direction
(BW/FW) × Hemisphere (LH/RH) separately for oxyHb and
deoxyHb, similar to Pena et al.’s (2003) analysis. The ANOVA
for oxyHb yielded a significant main effect for Direction
[F(1,19) = 5.342, p = 0.032], as BW speech gave rise to a
larger response than FW speech. The interaction between Lan-
guage × Direction was marginally significant [F(1,19) = 3.882,
p = 0.064], as FW Tagalog gave rise to a decrease in oxyHb
(inverted response), whereas FW and BW English as well as BW
Tagalog resulted in an increase in oxyHb (canonical response; sig-
nificant and marginal Bonferroni post hoc tests: FW Tagalog versus
BW Tagalog p = 0.002; FW Tagalog versus FW English p = 0.054;
FW Tagalog versus BW English p = 0.077; Figure 7). A similar
ANOVA with deoxyHb yielded no significant results.

DISCUSSION
Our findings demonstrate that the neural processing of language
is influenced by language experience even by the first few days
of life. When newborn infants listened to English (familiar) and
Tagalog (unfamiliar) language stimuli, we observed a difference

in brain response. When processing forward-played sentences of
English, neonates showed an increase in overall oxygenated hemo-
globin across both hemispheres. In contrast, when infants listened
to sentences of unfamiliar forward Tagalog, we observed a decrease
in oxygenated hemoglobin. No language familiarity effects were
found in the brain response to backward speech, as neonates had a
similar neural response to backward English and backward Taga-
log. While we observed different patterns of brain activation to
forward English versus forward Tagalog, we did not find a con-
sistent difference in the localization of brain activity between
language conditions. For both English and Tagalog, similar pat-
terns of activation were found in the temporal regions across the
left and right hemispheres. Our results therefore suggest that pre-
natal language experience does shape how the brain responds to
familiar and unfamiliar language. These results echo behavioral
findings using the same stimuli (Byers-Heinlein et al., 2010), where
neonates were shown to both prefer and discriminate a familiar
language from an unfamiliar language. However, at least with the
filtered language stimuli used in our study, we find no evidence that
the neonate brain uses distinct brain regions to process different
languages.

Our data also produced several unexpected findings. First, the
lack of any observed hemisphere differences in neonates’ response
to familiar or unfamiliar language contrasts with previous stud-
ies showing left hemisphere dominance for language processing
in young infants in the area of the planum temporale (Dehaene-
Lambertz et al., 2002; Pena et al., 2003). This is surprising given
the left lateralization of neonate brain response to language found
by Pena et al. (2003) which used very similar methodology to
our study. We propose two hypotheses to explain the difference
in hemispheric findings between the current study and Pena et al.
(2003). One possibility is that the subtle differences in procedure
led to the differential findings. While we attempted to place the
probes in similar temporal areas to Pena et al. (2003) it is impos-
sible to know if the placement was completely comparable across
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FIGURE 4 | Grand average results of the experiment. Numbers and
location of channels correspond to the placement shown in Figure 3. (A) The
oxyHb and deoxyHb response to the English FW and BW conditions. (B) The
oxyHb and deoxyHb response to the Tagalog FW and BW conditions. The
arrows indicate significant changes in concentrations in channel-by-channel
t -tests (p < 0.05, uncorrected) as compared to a zero baseline: the red

upward arrow indicates significant increase in oxyHb (canonical response),
the red downward significant decrease in oxyHb (inverted response), the blue
asterisk a significant decrease in deoxyHb (canonical response). After
correction for multiple comparisons, using the False Discovery Rate as
defined by Benjamini and Hochberg (1995), none of these comparisons
reached significance. The channel-wise results are therefore only suggestive.

studies. It may be that slightly different brain regions are being
measured, and that our study did not pick up on areas that are
lateralized to language at birth (such as the planum temporale).

However, we believe that the difference in lateralization in our
study and by Pena et al. (2003) is more likely based on the stimuli
used. While the current study used low-pass filtered samples of
speech, Pena et al. (2003) used unfiltered speech. When low-pass
filtering speech to 400 Hz, much of the segmental information,
such as consonant formant transitions, is removed, while most of
the prosodic information is retained. We believe that this alter-
ation of the speech stimuli may cause neural activation that is
more bilateral rather than left hemisphere dominant. Several lines
of research have demonstrated that different aspects of speech
are processed in different brain areas (Zatorre and Belin, 2001;
Poeppel, 2003; Zatorre and Gandour, 2007). While rapid changes
in speech (such as formant transitions in consonants) result in a
left hemisphere bias in processing, slower changes in speech (such
as prosody) result in a right hemisphere bias. This sensitivity in

brain processing has recently been evidenced in very young infants,
including neonates (Homae et al., 2006; Telkemeyer et al., 2009;
Minagawa-Kawai et al., 2011). We therefore suggest that filtered
speech, as compared to unfiltered speech, would likely empha-
size slower prosodic changes and de-emphasize faster consonant
formant transitions in the speech, therefore resulting in bilateral
activation. However, further research is needed to investigate this
hypothesis, by directly comparing the neural response to filtered
versus unfiltered speech.

A second unexpected finding in the current study was the
lack of a differential brain response to forward and backward
English. This finding also contrasts with the results from Pena
et al. (2003) where greater left hemisphere activation was found
for forward versus backward native language stimuli. Again, we
propose that this result may be affected by the nature of the
filtered speech used. As noted above, reversed speech is made
non-linguistic in nature due to two factors: First, many of the con-
sonants in backward speech cannot be produced by the human
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FIGURE 5 | Averaged oxy- and deoxyHb response for each condition, across hemisphere and channel.

FIGURE 6 | Mean oxyHb activation for the target ROI across language,

direction, and hemisphere.

vocal tract. Second, the prosodic structure of speech is disturbed
when reversed. While the filtering likely reduces the first cue to
unnaturalness, the second cue still remains in filtered backward
speech. One possible post hoc explanation for our pattern of results
is that as the filtering does maintain rhythm, neonates may be
able to detect a familiar rhythmical structure in both the for-
ward and backward English, leading to similar neural processing
of both types of English language stimuli. In contrast, the rhythm
of Tagalog is unfamiliar in both forward and backward forms,
meaning that no familiarity might lead to similar processing of
both Tagalog conditions. As infants might not be able to detect
that FW and BW Tagalog are the normal and reversed versions
of the same stimuli or come from the same language, there is no
reason to expect a similar response to these two conditions. How-
ever, this hypothetical possibility requires further refinement and
testing.

FIGURE 7 |The Language by Direction interaction in oxyHb activation

obtained in the experiment. Error bars represent SE of the mean.

Thirdly, the statistical analyses revealed a negative oxyHb
response to forward Tagalog. This hemodynamic response shape
to forward Tagalog requires further investigation. However, what is
important to note is that the size and shape of the brain response to
forward Tagalog is clearly different from the shape of the response
we obtained in the English conditions, further underscoring the
difference between the processing of the native and a non-native
language.

Regardless of the basis of the differential brain response to Eng-
lish and Tagalog, our main finding remains that neonates showed
a dissimilar pattern how the brain responds to familiar versus
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familiar language. We cannot make definitive claims as to the exact
nature of this processing difference on the basis of the results from
the current study. Nonetheless, the results do highlight this as an
area prime for future research.

Our results raise several additional questions for future study.
How much prenatal language experience is sufficient to shape the
neural response to language? Do premature infants show an equiv-
alent different response to familiar and unfamiliar languages as
found in the current study with full-term infants? Furthermore,
if infants are raised post-natally in surroundings where prenatal
and post-natal language experience differs, how might the initial
brain response to language shift during development? How much
post-natal experience with an unfamiliar language is needed to

alter neural activation? Finally, our evidence that prenatal language
experience impacts neonates’ initial neural response to language
raises the question of whether and how this early neural activation
might impact later language processing and learning of familiar
versus unfamiliar language.

CONCLUSION
In the current study, we provide the first exploration of whether
the newborn infant’s neural processing of language is influenced
by early language experience. We find a clear difference in how the
neonate brain responds to familiar versus unfamiliar language.
These results indicate that even prior to birth, the human brain is
tuning to the language environment.
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