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In electroencephalography, the classical event-related potential model often proves to be
a limited method to study complex brain dynamics. For this reason, spectral techniques
adapted from signal processing such as event-related spectral perturbation (ERSP) — and
its variant event-related synchronization and event-related desynchronization — have been
used over the past 20 years. They represent average spectral changes in response to
a stimulus. These spectral methods do not have strong consensus for comparing pre-
and post-stimulus activity. When computing ERSPR pre-stimulus baseline removal is usu-
ally performed after averaging the spectral estimate of multiple trials. Correcting the
baseline of each single-trial prior to averaging spectral estimates is an alternative base-
line correction method. However, we show that this method leads to positively skewed
post-stimulus ERSP values. We eventually present new single-trial-based ERSP baseline
correction methods that perform trial normalization or centering prior to applying classical
baseline correction methods. We show that single-trial correction methods minimize the
contribution of artifactual data trials with high-amplitude spectral estimates and are robust
to outliers when performing statistical inference testing. We then characterize these meth-
ods in terms of their time—frequency responses and behavior compared to classical ERSP

methods.
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INTRODUCTION
Electroencephalography and magnetoencephalography methods
have become standard tools to study brain mechanisms. Different
approaches have been used to unveil brain electrical activity in rela-
tion to sensory, motor, or cognitive events using electrical potential
variations recorded either at the scalp level or from intra-cranial
electrodes. The study of changes of the ongoing electroencephalo-
gram (EEG) in response to stimulation started with event-related
potentials (ERP) techniques, which relies on measuring the ampli-
tude and latency of post-stimulus peaks in stimulus-locked EEG
trial averages. The standard ERP model relies on the hypothe-
sis that ERPs consist of stereotyped patterns of stimulus-locked
electrical activity, superimposed onto an independent stationary
stochastic EEG processes (Basar and Dumermuth, 1982; Luck,
2005; Nunez and Srinivasan,2006). In the ERP model, every single-
trial contains a noisy version of the grand average ERP, and, when
averaging trials, “stationary” or “non-time-locked” background
EEG elements of the signal cancel out.

The standard ERP model has been intensely debated for the past
10 years. In some rare cases, the standard ERP model may hold in
particular for early pre-perceptual activity such as somatosensory
evoked potentials with latencies as short as 20 ms (N20 wave; Yao
and Dewald, 2005; Kennett et al., 2011). However, in most cases,
including the well-known P300 ERP peak, scalp ERPs arise as a
complex superposition of ongoing EEG activity in single-trials
(Delorme et al., 2007). Most ERP peaks have been shown to result

from a reorganization of the phase of ongoing EEG oscillations
(Tallon-Baudry et al., 1996; Delorme et al., 2002; Makeig et al.,
2002). Thus the phase or latency of the ERP peak in single-trials is
not constant but may depend on the ongoing EEG activity (Makeig
et al., 2004). Since the ERP by itself cannot unravel complex EEG
dynamics, it became necessary to develop new techniques.

In the 1960s, while some researchers were starting to use ERPs,
some other pioneer researchers were using pure-frequency based
techniques to assess spontaneous EEG oscillatory changes under
various conditions. Scientists compared the EEG spectrum of sub-
jects with their eyes opened or their eyes closed, and observed
an increased 10-Hz alpha power in the eyes-closed condition
(Legewie et al., 1969). This approach focused on the frequency
domain exclusively while the ERP approach focused only on the
time domain. In the last 20 years, evolution of computational capa-
bilities brought up the possibility of developing new methods
to visualize, quantify, and characterize stimulus-induced complex
brain dynamic simultaneously in the time and frequency domains.
These new tools allow disentangling ongoing brain activity from
stimulus-evoked activity.

These new post-stimulus spectral estimation methods were
called event-related desynchronization (ERD; Pfurtscheller
and Aranibar, 1977), event-related synchronization (ERSyn;
Pturtscheller, 1992), and event-related spectral perturbation
(ERSP; Makeig, 1993; Makeig et al., 2004) which regroups both
ERSyn and ERD. The concept of ERD, ERSyn, and ERSP consists
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in averaging the power spectrum of short sliding time windows
in multiple stimulus-locked data trials. ERSP results are usually
visualized in 2-D time—frequency images where the pixels” color
represent power variations at different time—frequency points.

Using ERSP is however not as simple as using ERP since there
are a large number of variants. For example, it is possible to com-
pute power using either fast Fourier transform (FFT) or Wavelet
transforms (Delorme and Makeig, 2004). Wavelets also have dif-
ferent variants. Although most authors use Morlet wavelets (Schiff
etal., 1994; Tallon-Baudry et al., 1997; Herrmann et al., 1999; Adeli
et al., 2003; Lemm et al., 2004), EEG has been studied with other
type of wavelets such as Daubechies or Meyer wavelets (Bertrand
et al., 1994; Kim et al., 2008; Asaduzzaman et al., 2010). In addi-
tion, it is also possible to compute ERSPs using the multi-taper
method (Mitra and Pesaran, 1999) or band-passed Hilbert trans-
forms (Clochon et al., 1996). Fortunately, all of these spectral
methods tend to return similar results (Le Van Quyen et al., 2001;
Bruns, 2004) so we will focus on using simple sliding-window FFT
decompositions in this report.

In addition to using different spectral methods, ERSP variants
may also use different baseline correction methods. When pro-
cessing intra-cranial electrodes, researchers often avoid computing
baselines and analyze raw time-varying spectral power variations
(Tallon-Baudry et al., 2001). This is possible because intra-cranial
EEG data is less subject to noise than scalp EEG recordings and
event-related spectral variations may be visible without any fur-
ther processing. However, when using scalp channels, it is often
necessary to subtract baseline activity in each frequency band
from the post-stimulus period. Intra-cranial EEG, scalp EEG, or
Magneto-encephalography (MEG) raw spectral images are dom-
inated by low frequencies (Freeman et al., 2000; Slotnick et al.,
2002) which can mask the activity at higher frequencies. More-
over, even within a given frequency band, post-stimulus power
changes relative to the pre-stimulus baseline period are often sub-
tle and may be difficult to observe (Figure 1). Thus it becomes
necessary to compute spectral changes relative to baseline. Since
most of EEG spectral analysis aims to quantify the effect of a stim-
ulus on the ongoing EEG spectrum, the most intuitive approach
to isolate event-related changes is to subtract the trial-averaged
pre-stimulus spectral activity from post-stimulus activity in each
frequency band. Eventually, baseline correction may also be useful
when performing statistical inference where post-stimulus activity
is compared to baseline activity.

There are mainly two methods to perform baseline correc-
tion. These two methods rely on different assumptions about the
EEG signal. The first method assumes an additive model where
stimulus-induced power at specific frequencies adds onto existing
power at these frequencies. The second alternative model consists
in using a divisive baseline, which assumes an EEG gain model
where the occurrence of a stimulus proportionally increases or
decreases the amplitude of existing oscillatory EEG activity. Both
models are widely used and, for the first time, we are compar-
ing them in terms of their time—frequency response and behavior
when performing statistical inference testing.

Finally, a new idea we are introducing here deals with trial-
based baseline correction methods. The classical baseline approach
involves first computing time—frequency decompositions for each
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FIGURE 1 | Raw event-related spectrum (absolute log-ERS) on the left
versus baseline corrected ERSP (log-ERSP) on the right for scalp EEG
data trials. Electrode Iz from the “animal” dataset of subject “CLM" (see
Materials and Methods) was used to compute FFT-based ERS and ERSP
ERS was computed using Eq. 1 and log-ERSP was computed using the
classical baseline correction divisive method described in Eq. 6 (see
Materials and Methods). Although post-stimulus power decrease at about
7 Hz is clearly visible on the ERSP image, it is more difficult to see in the
ERS image where large low-frequency changes stretch the color scale
limits. This shows the usefulness of removing the pre-stimulus baseline for
scalp EEG data.

trial, then computing a trial average, and as a last step removing
the pre-stimulus baseline. However, as we show in this report, this
method proves to be quite sensitive to noisy data trials. By contrast,
it is also possible to perform different types of correction in single-
trials prior to averaging time—frequency estimates. In this report,
we compare new trial-based baseline correction approaches to
classical baseline correction methods. We will demonstrate how
our trial-based correction methods tend to make ERSP less sen-
sitive to the presence of a limited number of trials with excessive
ambient or physiological noise.

MATERIALS AND METHODS

We will first describe the two different models used to com-
pute ERSP for both the classical baseline correction approach
and the single-trial baseline correction approach. We will then
detail the two statistical methods implemented to compute signif-
icance. Finally, we will explain the procedure used to study ERSP
robustness to noisy trials.

ERSP MODELS

Two main methods for ERSP pre-stimulus baseline correction may
be distinguished. We first present these two approaches, which
for simplicity we have termed the ERSP “gain model” and the
ERSP “additive model”. We describe how ERSPs are calculated for
each of these models and then show how they can be adapted for
single-trial baseline correction.

Event-related spectrum

The event-related spectrum (ERS) consists in computing the data
power spectrum for sliding time windows centered at time ¢ in
each trial and then computing the average across trials. The mean
ERS for frequency fand time point ¢ is defined as

ERS(f,t) = %Zm (f. 1) (1)
k=1
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where # is the total number of trials, and Fy( f;¢) is the spectral
estimate at frequency fand time point ¢ for trial k. In the rest of
this report, we assume that Fi( f;t) is computed using FFT after
applying a Hanning window to remove window border effects.
However, formula (1) is still valid if Fi( f;t) represents a wavelet or
a Hilbert transform. Formula (1) would have to be modified for
multi-taper decompositions (Mitra and Pesaran, 1999).

Classical baseline approaches

Classical baseline normalization — additive model. The first
method to remove baseline activity presented here is based on an
additive ERSP model, which assumes that stimulus-induced spec-
tral activity adds linearly to existing pre-stimulus spectral activity.
This approach was first introduced by Tallon-Baudry et al. (1996,
1999) and is now one of the standard approaches for computing
ERSPs.

To compute this ERSP, the ERS trial average is normalized for
each frequency band. In the baseline period — classically defined as
the period preceding the stimulus — the average and standard devi-
ation (SD) of power are first computed at each frequency. Then, the
average baseline power is subtracted from all time windows at each
frequency, and the resulting baseline-centered values are divided
by the SD. For each time—frequency point of the time—frequency
decomposition, the calculation of the ERSP can be formalized as
follows:

2

mWAﬁﬂ:<HSUﬁ—MMﬁ>

op(f)

where pp( f) is the mean spectral estimate for all baseline points
at frequency f

ks = S SR (1)) 3)

k=1teB

where B is the ensemble of time points in the baseline period and
m is the cardinal of B or the total number of time points in the
baseline period. op( f) is the spectral estimate SD for all baseline
points at frequency fand is defined as:

S ([ (£~ )] ()
k=1 t'€eB

op(f) =

The unit for ERSP, values computed in Eq. 2 is z-score or SD of
the baseline. A close variant to this approach is the mean baseline
removal approach, which consists in simply removing the mean
baseline value at each frequency. Because of the way significance
is computed (see Statistical Methods to Assess Significance), we
would not observe any difference between ERSP, and the mean
baseline removal approach in terms of region of significance. It
will therefore not be included in this report.

Dividing by baseline value — gain model. The gain model is
detailed in Delorme and Makeig (2004) and is the default model
in the popular EEGLAB software. In this model, for each frequency
band, ERS power at each time—frequency point is divided by the

average spectral power in the pre-stimulus baseline period at the
same frequency. Two measures may be derived from this model,
an absolute ERSP measure and a log-transformed ERSP measure.
The absolute ERSP measure is computed as follows:

ERS(f, 1)

s (/) )

ERSPy(f, 1) =

where pwp(f) is the mean spectral estimate defined in Eq. 3.
The unit for ERSPy, is percentage of baseline activity. The
log-transformed measure is derived by taking the log value of
ERSPy:

ERSPioe(f, 1) = 10log, o (ERSPo(f, 1)) (6)

The logarithmic scale of the last measure offers two advantages
compared to the methods described previously. First, it has been
shown by alarge body of statistical signal processing literature that,
for skewed signals such as EEG, the distribution of the logarithm
of the signal is more normal than the distribution of the original
signal. Therefore parametric inference testing is often more valid
when applied to log-transformed power values — although in the
case of the EEGLAB software, which we are using in this report,
most statistics rely on surrogate methods which are not sensitive
to the data probability distribution. The second advantage of loga-
rithmic scales is that they allow visualizing a wider range of power
variations, whereas for the absolute scales, power changes at low
frequencies may mask power changes at high frequencies.

By definition, the unit of ERSP},, is Decibel (dB). Both mea-
sures ERSPy, and ERSP|og are commonly used in the literature
(Fuentemilla et al., 2006; Delorme et al., 2007; Meltzer et al., 2008).

Single-trial baseline correction

In the previous section we outlined different types of ERSP cal-
culations applied to the ERS trial average. In this section, we are
introducing methods to compute single-trial baseline correction.
For each of the two ERSP models, namely the “additive model”
and the “gain model,” the single-trial version of calculation is
formalized below.

Single-trial baseline normalization — additive model. Instead
of computing baseline normalization after trial averaging, base-
line normalization is computed for each trial using the following
equations:

|Ee (f,0)F = wp(fo b

Plf(f>t)= O’/B(f,k)

(7)

1 n
ERSPrs.(f,0) = — > P{(f,1) ®)
k=1

where W' (f, k) is the mean baseline spectral estimate for trial k
at frequency fand is defined as

1
Wp(H k= — 3[R (1) )

t'eB
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o’ (f, k) is the spectral estimate SD for the baseline period of trial
k at frequency fand is defined as

1 2
os(fl = [——= 3 (I () —w3(f.0) (10)

t'eB

Dividing single-trials by their baseline value — gain model. In
the case of the gain model, we first divide each time—frequency
point value by the average spectral power in the pre-stimulus base-
line period at the same frequency. It is only after each trial has
been baseline corrected that we compute the trial average. This is
summarized in the following formal equations:

. Fu(f, 0]

PO(f, 1) = [Fes, 0 11

v (f>1) R (11)
1<

ERSPro-9(f,1) = — > PL(f51) (12)

k=1

where W'p (f, k) is the mean baseline spectral estimate for trial k
at frequency fdescribed in Eq. 9.
The log-transformed ERSP version is computed by taking the
logarithm of ERSPTg — o,
ERSPrg_og(f, 1) = 10log, (ERSP15_95) (13)
Note that it would also be possible to compute the log of each
trial and then average the results — which would be equivalent
to computing the product of the time—frequency estimates across
trials and then performing a log-transformation as:

log,,(a) +log,,(b) = log,y(a - b)

1 — 0 1 L
= > 10logyg (P*(f, 1) = - 10log; (H PL(S t)>

k=1 k=1

However, calculating the product of single-trial spectral estimates
might not be biological plausible. Moreover, it also leads to regular-
ization issues. When the mean baseline power at a given frequency
is too close to 0, the term defined in (11) would tend toward
infinite. As a consequence, after log-transformation, the power
of some trials could dominate the ERSP. This last approach has
therefore not been considered in this report.

Classical pre-stimulus baseline after full-epoch length single-
trial correction. There is no need to perform classical baseline
correction after single-trial baseline correction since, after single-
trial pre-stimulus baseline correction, averaging values across trials
preserves the baseline value. For instance, the baseline value for
each trial is already centered at 0 for the ERSPp_ , measure —
after averaging trials the average baseline value remains 0. Simi-
larly the average baseline value is 1 in ERSP1p — ¢, and remains 1
after averaging trials.

This is important when computing statistics since the NULL
hypothesis is based on trial-average baseline values: the general
NULL hypothesis states that post-stimulus values do not dif-
fer from baseline values. Having a centered baseline is especially

important for the “Bootstrap random polarity inversion” statis-
tical method (see Statistical Methods to Assess Significance) that
randomly inverts baseline corrected single-trial spectral estimate
polarity at each time—frequency point.

In the results section, we show that single-trial baseline correc-
tion methods are biased. As a consequence we developed methods
that normalize single-trials or centers them at 1 prior to apply-
ing standard baseline correction methods. We call these methods
full-epoch length single-trial corrections, which, as we will see
in the Section “Results,” proved to be powerful techniques. Full-
epoch length single-trial correction is equivalent to computing
ERSPTE — 7, ERSPTE — 94, or ERSPTR _ g and consider the full-trial
length for the “baseline” period instead of the pre-stimulus base-
line. Note that the term “baseline” is not appropriate any longer
in this case and is simply used to outline the calculation method.
After computing ERSP trial averages, the average pre-stimulus val-
ues (actual pre-stimulus baseline) may differ from 0 (ERSPtp — ,
ERSPTp _ |og) Or from 1 (ERSPtp —¢). It is therefore important to
recompute the classical trial average pre-stimulus baseline prior
to computing statistics. This is formalized in the following para-
graph: it consists in first performing full-epoch length single-trial
correction, and then performing classical pre-stimulus baseline
corrections on the resulting ERSP trial averages.

ERSPgy 1B — ;- is obtained by replacing raw spectral estimates
IF(£,t)1? in Eqs 1-4 by full-epoch length single-trial baseline
corrected spectral estimates P;(f,#). Similarly, ERSPgy 1B — 9 i
obtained by replacing raw spectral estimates |Fg( £;t)|* in Egs 1, 3,
5, and 6 by full-epoch length single-trial baseline corrected spec-
tral estimates PZA’ (£t) and ERSPEy T8 — 1og is obtained by taking
the log of ERSPgy) 15 — 9, multiplied by 10.

STATISTICAL METHODS TO ASSESS SIGNIFICANCE

We used two different statistical techniques to assess significance
of ERSP results: one method is based on permutation of baseline
period values at each frequency and another method is based on
bootstrapping single-trial ERSP polarity at each time—frequency
point. Note that after each procedure, the false discovery rate
(FDR) procedure (Benjamini and Hochberg, 1995) was applied
to correct for multiple comparisons and compensate for the fact
that a statistical test was performed at each time—frequency point.

Baseline permutation

In this method, we considered the collection of single-trials and
computed the surrogate distribution at each frequency by per-
muting baseline values across both time and trials. We therefore
obtained one surrogate distribution per frequency and then tested
if original ERSP values point lied in the 2.5 or 97.5% tail of the
surrogate distribution at a given frequency. If it did, the specific
time—frequency point was considered significant at p < 0.05. Note
that in practice the position of the non-shuffled time—frequency
estimate in the surrogate distribution allows computing the exact
p-value, which can then be corrected for multiple comparisons
using the FDR procedure. We used a total of 2000 permutations
at each frequency to assess significance. The same method was
used in Delorme et al. (2007) and is implemented in the EEGLAB
software.
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Single-trial power estimates need to be baseline corrected
prior to applying this statistical procedure. However, for classi-
cal baseline correction methods (ERSP,, ERSPy,, and ERSP)g),
this method returns equivalent results if the statistical procedure
is performed before or after baseline correction.

Bootstrap random polarity inversion

In this method, we randomly inverted the polarity of single-trial
time—frequency power estimate after baseline correction. Ran-
domly inverting the polarity means that on average only half
of the values have their polarity inverted — although for each
repetition, a different set of values is inverted. This statistical pro-
cedure is performed independently at each frequency point and
is also applied to time—frequency point lying within the baseline
period.

Itisimportant to perform baseline correction on each trial prior
to applying the statistical procedure since the polarity inversion of
single-trial values depend on this baseline value.

For this statistical procedure, a surrogate distribution is com-
puted at each time—frequency point —in contrast to each frequency
for the statistical procedure described in Section “Baseline Per-
mutation.” If the original ERSP value at a given time—frequency
point lies in the 2.5 or 97.5% tail of the surrogate distribution
for this time—frequency point, the value is considered significant
at p <0.05. As for the previous statistical procedure, in prac-
tice the position of the original ERSP time—frequency estimate
in the bootstrap distribution allows computing the exact p-value,
which can then be corrected for multiple comparisons using the
FDR procedure. We used a total of 2000 bootstrap random polar-
ity inversion to assess significance at each time—frequency point.
As this statistical procedure had not been implemented in any
software to our knowledge, we developed custom Matlab scripts
for it.

DATASETS USED FOR ANALYSIS AND ASSESSING ROBUSTNESS TO
NOISY TRIALS

First, both classical and trial-based ERSP methods will be applied
to artificial EEG data to demonstrate their fundamental proper-
ties. In a second step aiming to address the robustness of different
ERSP methods, we introduced noisy data trials in a resting-state
EEG dataset in which artificial spectral perturbations were added
to background EEG activity. Finally we applied the methods to
an actual EEG dataset taken from an animal/non-animal catego-
rization task and analyzed the influence of noisy trials on ERSP
results.

Artificial EEG data trials

The first dataset used to study robustness of ERSP to noisy
trials is an artificial dataset. It was created by mixing real
EEG data recorded from a single subject and artificial spectral
perturbations.

Electroencephalogram data was acquired using a Biosemi
ActiveTwo system of 64 scalp electrodes placed according to the
10-20 system. The EEG signal was digitized at 2048 Hz with 24-bit
A/D conversion, then down-sampled to 256 Hz. The data was then
high-pass filtered at 0.5 Hz using a FIR filter and converted to aver-
aged reference. Paroxysmal activity as well as periods containing

electrical artifacts were removed by visual inspection of the raw
continuous data.

Since the subject was not performing any task and no stimuli
were presented, the continuous data should not contain any time-
locked spectral activity. However, in order to simulate an evoked
spectral response, mock events were first inserted in the raw con-
tinuous data every 3 s. Then, data epochs ranging from —1000 to
2000 ms relative to mock events were extracted for electrode Fpl1,
resulting in 58 non-overlapping 3000 ms segments. In each epoch,
baseline was considered as the period starting 1000 ms before the
mock event and ending at the mock event onset. Spectral pertur-
bations were then modeled as an increase followed by a decrease in
power in the 20 to 26 Hz frequency band. We artificially increased
power for a finite time period from 300 ms to 799 ms after mock
events, and reduced power from 1399 ms to 1599 ms.

To introduce spectral perturbations, first the time window to
be perturbed was selected. Then a FFT was used on each EEG data
trial for this time window. FFT coefficients corresponding to fre-
quencies from 20 to 26 Hz were modified by adding or subtracting
a fixed scalar (equal to 300). We finally computed an inverse FFT
transform (using Matlab ifft function) to generate a perturbed
time series that we used to replace the EEG data in each data trial
in the selected time window.

Actual EEG data from animal/non-animal categorization task

The second set of EEG data came from an event-related EEG
experimental paradigm (Delorme et al., 2004). In this paradigm,
photographs containing animal or distractors were briefly flashed
to experimental subjects on a computer screen. The task of the sub-
jects was to press a button whenever they saw an animal. Fourteen
subjects were recorded performing this task. The data was recorded
at 1000 Hz using a Neuroscan 32-channel system with electrodes
placed according to the 10-20 system. Here, we used a pruned
version of the data, where the data was down-sampled at 256 Hz
and 3 s data epochs were extracted for each stimulus — from —1 to
+2 s after each stimulus. Epochs were baseline corrected using pre-
stimulus period — from —1 s to the stimulus onset —and bad epochs
were removed by visual inspection. These datasets are publically
available on the Internet in the form of an EEGLAB STUDY at
http://sccn.ucsd.edu/~arno/fam2data/publicly_available_ EEG_
data.html. When performing statistical analysis for Figures 5-9,
we have only considered the 14 datasets containing animal stimuli
— one dataset per subject. Figures 1-4 and 10 were generated with
the dataset containing animal stimuli of subject “CLM.”

Procedure to model noisy trials and assess robustness of ERSP
model

To estimate the robustness of different ERSP models to noise, for
both the artificial and the real EEG data described above, we added
noise to a given percentage of data trials. To model noise in single-
trials, an independent Gaussian noise with SD of five times the SD
of the EEG data — computed over all time points and all data trials
— was added to a random set of trials (in Figure 5, we varied this
coefficient from 1 to 5). The number of perturbed trials ranged
from 0 to the maximum number of available trials in the EEG
dataset: 58 for the artificial EEG data and 126 for “CLM” dataset.
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(electrode Iz of subject “CLM" — see Materials and Methods) and for
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FIGURE 3 | Comparison of different baseline approaches. This figure shows spectral power at 5.8 Hz in single-trials using the classical pre-stimulus baseline
ERSP, method (A), the single-trial pre-stimulus baseline ERSPr;_, method (B), and the single-trial full-epoch length correction ERSPg, 1 _, method (C). The thick
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FIGURE 4 | Confusion matrix, sensitivity, specificity, and d’ results of the
ERSP classical method and the ERSP using single-trial correction. (A)
True Positives (TP), False Positives (FP) and False Negatives (FN) significant
results for the ERSP,; and ERSPe15_10s. The single-trial-based method
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FIGURE 7 | Percentage of significant pixels in ERSP time-frequency
decompositions of real EEG data with different percentages of
noisy trials. Noisy trials are added to data trials of electrode Iz from
subject “CLM" (see Materials and Methods). Two different statistical
methods are tested: the baseline permutation method on the left
column, and the bootstrap random polarity inversion method on the
right column (see Materials and Methods). The first row represents
data for time-frequency decompositions computed using z-score
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(ERSP, and ERSP¢,15_.). The second row represents data for
time-frequency decompositions computed using percentage of
baseline (ERSP,, and ERSP,1z_). Classical ERSP baseline correction
methods are represented in red and single-trial correction methods are
represented in blue. Shaded areas represent SD which is estimated by
adding noise to different random sets (n=10) of trials. Single-trial
correction methods always outperform classical baseline methods
when the number of noisy trials increases.

In order to evaluate the accuracy of the two different base-
line correction methods, we first used the artificial EEG dataset
containing the controlled spectral perturbation and computed
confusion matrices for each ERSP method and for each percentage
of noisy trials. We considered True Positives (TP, i.e., significant
time—frequency estimates — or pixel in the ERSP image — included
in the spectral perturbation area), False Positives (FP, i.e., signifi-
cant time—frequency estimates outside of the spectral perturbation
area), False Negatives (FN, i.e., non-significant time—frequency
estimates inside the perturbation area) and True Negatives (TN,
i.e., non-significant time—frequency estimates outside of the per-
turbation area). TP, FP, FN, and TN were expressed in percentage
of the maximum number of time—frequency estimates in each
category. Thus TP = 100% indicates that all time—frequency esti-
mates in the perturbation area are significant, FN =100 — TP
indicates the percentage of time—frequency estimates within the
perturbation which are not significant. Similarly, the maximum
FP is reached when all the time—frequency estimates outside of the
spectral perturbation area are significant. These measures allow
evaluating the quality of each ERSP method through different
metrics basically defined by signal detection theory and used in
evaluation of classifiers or subject performances in categorization
tasks (Green and Swets, 1974; Fawcett, 2006). We computed sen-
sitivity, i.e., the ability to detect TP, which corresponds to TP Rate;
and specificity, i.e., the ability to detect TN, which corresponds to
TN Rate. Both metrics can be formalized as follows:

TP
Sensitivity = True Positive Rate = ———
(TP + FN)
Iy . TN
Specificity = True Negative Rate = ————
(FP + TN)

In addition, we computed the d’ sensitivity index for each
percentage of noisy trials introduced in the signal. d’ is defined
as

d’ = Z(True Positive Rate) — Z(False Positive Rate)

Z(p),p€[0,1] being the inverse of the cumulative Gaussian
distribution, and

Fp

False Positive Rate = ———— =
(FP 4+ TN)

1 — True Negative Rate

RESULTS

Figure 2 shows that when computing single-trial baseline, post-
baseline spectral estimates tend to be biased toward positive
values. This effect occurs because spectral estimates are skewed
toward positive values. This is true for ERSPtg 1,4 (Figure 2),
ERSP1R_ o, and ERSPrp_, (not shown). Therefore performing
single-trial baseline correction is sensitive to post-stimulus out-
liers and large positive post-baseline values are dominating the
ERSP. One hypothesis is that pre-stimulus outliers affect the post-
stimulus results as if the pre-stimulus data were stable, then the
results would not be so sensitive to how the baseline subtrac-
tion is handled. However, the fact that this bias is observed with
Gaussian noise disproves this hypothesis. The bias is a result
of non-stationary of both the EEG signal and the computation
method (Figure 3).

Figure 3 shows the apparent superiority of full-epoch length
single-trial correction. For the classical baseline methods, outliers
with large power values are clearly visible (Figure 3A). The mid-
dle panel (Figure 3B) shows the single-trial pre-stimulus baseline
approach where data is well normalized in the baseline period.
However in the post-stimulus period positive outliers are clearly
visible and bias the average spectral estimate toward positive val-
ues. This is the same effect we were observing in the bottom row of
Figure 2. In the last panel (Figure 3C), we use the single-trials full-
epoch length correction method (see Materials and Methods), and
observe that all single-trial corrected spectral estimates are within
the same range of z-score values. In the rest of this manuscript, we
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FIGURE 8 | Average percentage of overlap of significant regions
between all pairs of ERSP method for 14 subjects. The method for
computing percentage of overlap is indicated in the text. (A) Bar chart of
the percentage of overlap between the significant regions of ERSP using
classical baseline correction and ERSP using single-trial correction. Error
bars show the SE of the mean. (B) Overlap of ERSP significant regions for
the baseline permutation statistical method. (C) Overlap of significant
regions for the bootstrap random polarity inversion statistical method.

focus on comparing classical ERSP methods versus ERSP methods
based on single-trial full-epoch length correction methods.

We then compared the performance of classical ERSP meth-
ods versus single-trial full-epoch length correction methods on
artificial data using the baseline permutation statistical meth-
ods (Figure 4). Figure 4A shows results for ERSPj,, and
ERSPry11 B — 10g- We chose these two ERSP methods because they
exhibited the best visual contrast (Figure 6). However, using other
ERSP methods return similar results. We can clearly see that
TP are less sensitive to noisy trials for the single-trial method
(ERSPEu TB — 1og) and that FN increase at a slower rate when noisy
trials are added. The rate of FP is globally higher for the single-
trial-based correction method than for the classical one, except
when the percentage of noisy trials is lower than 8%. The boot-
strap random polarity inversion method for significant testing
returned qualitatively similar results.
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FIGURE 9 | Density of ERSP,, and ERSP;,,15_¢ significant pixels across
subjects and their overlap. ERSPs were computed for electrode Iz of 14
subjects and significant pixels were computed using the baseline
permutation method (see Materials and Methods). ERSP “density”
represents the percentage of significant subject at each time—frequency
point from 0 to 100% (all 14 subjects). ERSP., density of significant pixels is
represented in green, ERSPg, 159, density in red, and the overlap between
ERSP., and ERSP:y1s_4 densities is shown in yellow. Density is coded by
color saturation level, higher densities are shown with higher saturation
level.

Figure 4C shows d’ values for the ERSP|og and ERSPryji T8 — log
methods. d’ quickly drops to 0 for the classical baseline method
when as little as 2% of noisy trials are introduced, whereas the d’
for our single-trial correction method remains above 1.5 with up
to 60% of noisy trials.

Table 1 indicates the specificity and sensitivity of the clas-
sical baseline correction and single-trial correction ERSP, and
ERSPo;/ERSP,; methods for the two types of statistical infer-
ence methods when 8.6% of trials are noisy. Significance levels
between classical correction and single-trial correction meth-
ods are computed using a bootstrap procedure as described
in Section “Baseline Permutation.” Irrespective of the ERSP
method used, sensitivity is significantly higher by 70-80% for
single-trial correction methods compared to classical correc-
tion methods for both baseline permutation statistical method
and bootstrap random polarity inversion. Specificity is 2-3%
higher for classical correction methods compared to single-
trial correction methods although the difference is not always
significant.

It may be argued that low sensitivity to noisy trials of the classi-
cal ERSP method depends on the level of the noise introduced. We
thus used the same two ERSP methods on noisy trials with differ-
ent amplitudes of noise. As described in the Section “Materials and
Methods,” noisy trials are obtained by introducing Gaussian noise
with a SD equal to the SD of the EEG multiplied by a coefficient.
We used different coefficient values ranging from 1 to 5. For each
coefficient value, 10 iterations were computed and the mean TP,
FP, EN were calculated. Results are presented on Figure 5, which
shows that for all values of coefficient greater than 1, the ERSP
method using single-trial correction clearly outperforms the clas-
sical ERSP method with a higher TP rate of significant values and
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subjects. The top row shows the mean percentage of overlap between
significant regions of the ERSPy, (classical baseline correction) and the
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the two ERSP methods at each frequency. (B) Average overlap between the
two ERSP methods at each time point. (C,D). Average percentage of
significant pixels at each frequency (C) and at each time point (D). For the four
curves, significant regions where computed using the bootstrap random
polarity inversion method. Shaded areas show the SE of the mean.

Table 1 | Sensitivity and specificity of the classical baseline correction and single-trial correction ERSP, and ERSPy,/ERSP o4 methods for the

two types of statistical methods when 8.6% of trials are noisy.

Statistical method

Baseline permutation

Bootstrap random polarity inversion

Classical Single-trial t-Test results Classical Single-trial t-Test results
correction correction correction correction
ERSP, Sensitivity  0.087+0.11 0.77+0.039 p<0.001, t(18)=-18.1 0.037+0.033  0.82+0.036 p<0.001, t(18) =474
Specificity  0.96 £0.02 0.94+0.0087 p=0.056, t(18)=2.37  0.91+0.022 0.894+0.0063 p=0.035, t(18) =2.41
ERSPy,/ERSPog  Sensitivity  0.083+0.11 0.81+0.029 p<0.001, t(18)=—-19.8 0.088+0.036  0.84+0.036 p <0.001, t(18) = —471
Specificity 0.9640.02 0.93+0.012 p=0.006, £(18)=3.70  0.91+0.022 0.88+0.0085 p<0.001, t(18) =4.04

For each method, the mean and the SD of the specificity and sensitivity measures are indicated.

a comparable rate of FN responses. This performance improves as
the coefficient increases.

Figure 6 illustrates the different ERSP approaches described in
the Section “Materials and Methods” computed on one subject
(see Materials and Methods): it shows ERSPs for both the clas-
sical baseline solutions (top row) and the single-trial full-epoch
length corrections followed by classical baseline correction (bot-
tom row). All methods show similar ERSP images with interesting

nuances. Region 1 circled in Figure 6 shows a significant feature
at high frequency that appears only when classical baseline correc-
tion methods are used. Since it is not present for the single-trial
baseline correction, this region most likely represents activity from
a few noisy data trials. After visual inspection of the raw data, 6
of the 126 data trials proved to contain high frequency noise.
Upon removal of these data trials, region 1 is not any more sig-
nificant and visible in classical method results. In addition, region
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1 did not prove to be significant in any of the other 13 subjects
of the same study. Region 2 shows a 500% power increase rel-
ative to baseline for the ERSPy, method. The region is slightly
smaller for the ERSP methods based on single-trial correction
than for the classical ERSP methods. We tested the hypothesis
that single-trial methods were more sensitive to noise by replac-
ing good trials by noisy ones as described in Section “Procedure
to Model Noisy Trials and Assess Robustness of ERSP Model”
and computed the ERSPjog and ERSPgyy 1B — 10g for every num-
ber of noisy trials introduced in the signal. We observed that
Region 2 was still significant and had the same extent for both
classical and single-trial-based ERSP methods when 80% of noisy
trials was introduced. Region 3 indicates a post-stimulus power
decrease centered at about 13 Hz and spanning over the 10 to 15-
Hz frequency band for the ERSP, method. For the ERSPy, and
the ERSPo, methods, a similar power decrease spans over the 6
to 15-Hz frequency band and is strongest at 6 Hz. This suggests
that the variance across trials at 13 Hz is small compared to lower
frequencies, which would explain why the power decrease at this
frequency is larger in the ERSP, method than in the ERSPy, and
the ERSP)o; methods. For all single-trial correction solutions, one
additional significant region appears (region 4). This region cor-
responds to an early post-stimulus power increase in the 5 to 7-Hz
frequency band. Note that the positive peak in the last panel of
Figure 3 at about 200 ms corresponds to region 4 in Figure 6. To
test if significance in this region was driven by noise, we applied
a band-pass filter to single-trials between 5 and 7 Hz and showed
that the filtered signal exceeded the SE of the average signal in the
200 to 400-ms time region. The presence of this additional region,
although anecdotal, argues in favor of using single-trial baseline
methods, which renders visible finer grained spectral changes.
Note that the subject selected for Figure 6 was chosen for didac-
tic purposes. When spectral activity is more homogenous across
trials, the six types of ERSP are more similar.

In Figure 6, the extent of significant regions is different for the
various ERSP approaches. We attempted to determine if regions of
significance differed across ERSP methods. We performed ERSP
decomposition for each of the 14 subjects of an animal/non-
animal categorization study (see Materials and Methods), com-
puted the percentage of significant pixels in the ERSP image, and
applied a paired 2-way ANOVA on the mean percentage of sig-
nificant pixels using two factors ERSP type (% or z-score) and
baseline correction method (classical versus single-trial). Only
the ERSPy,, ERSP,, ERSPr,11 1B — % and ERSPgyj T — , methods
were considered since the ERSPj,; and ERSPry T — 1oy methods
are mere log-transformation of the ERSPy, and ERSPgyj B — o

methods which do not modify the number of significant pixels.
We also tried two methods for assessing significance: baseline per-
mutation and bootstrap random polarity inversion (see Materials
and Methods).

Table 2 summarizes the mean over 14 subjects of the number
of significant pixels for different ERSP methods. For the base-
line permutation statistical method, the percentage of significant
pixels was higher for the ERSP classical baseline methods than
for the ERSP single-trial correction methods [F(1,13) =12.504,
p=0.004]. We also observed an effect of the ERSP method
[F(1,13) =20.681, p < 0.001], where the ERSPgyj T — ; method
returned less significant pixels than the ERSPgy) 1 — o, method.
For the bootstrap random polarity inversion statistical method,
we also observed a significant effect of the baseline correction
method [F(1,13) =5.132, p =0.04] but in the opposite direction,
the percentage of significant pixels being higher for single-trial
correction methods. Bootstrap random polarity inversion sta-
tistics returned significant effect for ERSP methods in the same
direction as the baseline permutation statistics [F(1,13) = 8.243,
p=0.01], where the ERSPg, 15 — ; method returned less signifi-
cant pixels than the ERSPyj Tp — ¢, method. In sum, ERSP using
baseline normalization tends to return less significant pixels than
ERSP using percentages of baseline. Classical baseline and single-
trial correction methods also differed significantly although the
method returning more significant pixel was contingent on the
statistical method used to assess significance.

In Figure 7, we test the hypothesis that full-epoch length single-
trial baseline approaches are less sensitive to outlier trials in real
EEG. To test this hypothesis, we first added noisy trials to real EEG
(see Materials and Methods) and estimated the number of sig-
nificant time—frequency points (pixels) for different ERSP time—
frequency decomposition. We also used two independent methods
to estimate significance: either the baseline permutation method
or the bootstrap random polarity inversion method (see Materials
and Methods). Figure 7 shows a comparison of classical baseline
correction and single-trial correction for z-score ERSP methods
(respectively ERSP, and ERSPpj 15— ;) and percentage of base-
line ERSP methods (respectively ERSPy, and ERSPgyj 1B — o). It
shows that if the percentage of noisy trials is greater than 2, the
single-trial method gives more significant pixels than the classical
method, although this difference decreases monotonically as the
number of trials increases. Note that the percentage of significant
pixels is not a true measure of sensitivity as the ones presented in
Figure 4. However, given that we do not have access to the TP pixel
measure, it is not possible to compute the more rigorous measures
we used for artificial data.

Table 2 | Mean percentage of significant time—frequency points (pixels) for different ERSP methods for electrode Iz.

Baseline permutation

Bootstrap random polarity inversion

Classical correction

Single-trial correction

Classical correction Single-trial correction

ERSP,
ERSPo,/ERSP og

174178
17679

144+6.6
156.4+6.7

19.7+£5.7
19.7+£5.7

20.2+5.1
20.9+5.0

The mean of 14 subjects with SD is indicated for each condition.
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In order to further characterize the similarities of the ERSPs’
regions of significance, we computed the percentage of overlap
between the significant regions of all pairs of ERSP methods for
electrode Iz of 14 subjects (see Materials and Methods). A percent-
age of overlap between two ERSP methods was computed for each
subject by taking the ratio between the intersection of significant
regions and the union of these regions. This percentage of overlap
was then averaged across subjects:

n

1 |A N B|s x 100
Moverlap(Aa B) = W Z W

where A is the first ERSP method and B is the second one. |AN B
is the number of pixels in the intersection of significant regions
computed by ERSP methods A and B for subject s; |A U B, is the
number of pixels in the union of significant regions computed by
ERSP methods A and B for subject s; # is the number of subjects.

Figure 8 summarizes overlaps of regions of significance bet-
ween the different ERSP methods. The two procedures used to
assess statistical significance produced similar results. The overlap
between the ERSP classical baseline methods and the ERSP full-
epoch length single-trial correction methods was only about 60—
70% (Figure 8A). The overlap between classical baseline methods
was about 90% and the overlap between full-epoch length single-
trial correction methods was also about 90% (Figures 8B,C). Clas-
sical baseline correction methods have more overlap than single-
trial correction methods for both statistical procedures [paired
t-test for baseline permutation #(13) = 12.028, p < 0.001, paired
t-test for bootstrap random polarity inversion, #(13)=9.174,
p <0.001]. Note that since the statistics should be equivalent
for both ERSPg, and ERSP)og (respectively ERSPpyB 9 and
ERSPruiTB —1og)> the differences observed between these two
methods are due to random sampling in the bootstrap and permu-
tation methods. Comparing Figure 8B and Figure 8C, we finally
observe that the baseline permutation statistical procedure leads to
higher overlap between ERSP methods than the bootstrap random
polarity inversion procedure [paired ¢-test for classical baseline
ERSP correction methods #(13) = —10.515, p < 0.001; paired ¢-
test for single-trial correction ERSP methods, ¢(13) = —3.068,
p<0.001].

At each time—frequency point, Figure 9 shows the percentage
of significant subjects for both the ERSPy, and the ERSPgyj T — o
methods as well as the overlap between them. This innovative
representation allows displaying the similarities (i.e., overlap, rep-
resented in yellow) and contrast between the two ERSP methods
(in red and green). We observe that even if some regions exhibit
a strong overlap especially at low frequencies (in bright yellow),
some other areas are more specific to one or the other of the two
ERSP methods (in bright red or bright green).

Figure 10 shows the overlap of significant pixels across time
and frequency for the ERSPy, (classical baseline correction) and
ERSPEy TB — o (single-trial correction) methods as well as the per-
centage of significant pixels for each frequency and time point.
Results for the ERSP, and the ERSPgyj 15 _ , methods are similar
(not shown). Figure 10A shows that for the data analyzed here, the
overlap tends to be higher at low frequencies than at higher fre-
quencies. Figures 10B,D show the density of significant pixels and
overlap across time between the two ERSP methods and indicate

that for this dataset the overlap is highest in the 200 to 1000-ms
time region.

Figure 11 focuses on the baseline time region for the two statis-
tical methods used to compute significance and for different ERSP
methods. It shows that significance during the baseline is lowest
for the ERSP, and the ERSPpy Tp — , methods using the baseline
permutation statistical method. This argues in favor of using these
ERSP methods and the baseline permutation statistical test when
it is important to minimize the number of significant values in the
baseline period.

DISCUSSION

We have presented different ERSP methods, three based on clas-
sical baseline correction methods and three implementing single-
trial correction methods. We showed the superiority of the single-
trial correction methods on both artificial data and real data since
these methods were less sensitive to noise compared to classi-
cal baseline correction methods. We also compared the number
of significant time—frequency estimates and region of signifi-
cance between all of these ERSP methods. For the data analyzed
here, the overlap was strongest at low frequencies in the 200 to
1000 ms post-stimulus period. Moreover, the overlap between
region of significance within classical baseline correction meth-
ods and within single-trial correction methods was always above
90%. This contrasts to 60-70% of overlap between the classi-
cal and the single-trial-based baseline correction methods and
argues for a fundamental difference between these two types of
approaches.

For single-trial correction methods, use of the entire time inter-
val — including pre- and post-stimulus time intervals — may appear
unconventional with respect to event-related approaches. How-
ever, processing that combines pre- and post-stimulus activity is
a common procedure in EEG signal processing, as for example
when performing filtering. Filtering is used in most EEG soft-
ware. For example, performing high-pass FIR filtering at 0.5 Hz
on continuous EEG data at 128 Hz usually requires a filter order
or length of about 768. The convolution window thus comprises
6's and might contain several stimuli: post-stimulus activity may
affect pre-stimulus activity (and vice-versa), and we have observed
this fact experimentally. Thus, our single-trial correction proce-
dures combining pre- and post-stimulus activity fits well with the
current EEG signal processing framework.

The main difference between the classical ERSP baseline cor-
rection methods and single-trial correction methods is that the
single-trial correction approach is less sensitive to the presence
of noisy trials. When adding noisy trials to the data, the number
of significant pixels decreased exponentially for classical baseline
correction methods. However, it decreased linearly for single-trial
correction methods. This result is especially important because
spectral transformations may amplify small trial noises. Even
though EEG data might not appear noisy, power computed by
taking the square of FFT amplitude tends to skew power distribu-
tion toward high positive values as shown in Figure 2. Therefore,
using ERSP measures robust to outlier trials is important and this
is why we have introduced such measures here. Other ERSP mea-
sures may also be appropriate where, for example, median ERSP
values could be used instead of the mean ERSP value, and this is a
potential direction for future research.
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FIGURE 11 | Mean percentage of significant pixels during the baseline shown on the right column. Two different ERSP methods are compared:
period for ERSP,, ERSP¢,;1s_., ERSPy, and ERSP¢z_+ using the two ERSP, displayed in the upper row, and ERSP., displayed in the lower row.
statistical methods. ERSPs were all computed on electrode 1z and averaged Classical baseline correction methods are represented in red and single-trial
over 14 subjects. The bootstrap random polarity inversion statistical method is  correction methods are represented in blue. Shaded areas represent SE of
shown on the left column and the baseline permutation statistical method is the mean.

We have shown that the difference in terms of region of sig-
nificance between classical baseline correction and single-trial
correction methods is due to the high sensitivity of ERSP classical
baseline correction to single-trial noise. This result strongly argues
in favor of using single-trial correction methods when computing
ERSP. Of all the methods presented in this report, we recommend
using the ERSPgy 15—, in conjunction with the baseline per-
mutation statistical method for inference testing. ERSPgy 15— »
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