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Many different cortical areas are thought to be involved in the process of selecting motor
responses, from the inferior frontal gyrus, to the lateral and medial parts of the premotor
cortex. The objective of the present study was to examine the neural underpinnings of
motor response selection in a set of overt language production tasks.To this aim, we com-
pared a sentence repetition task (externally constrained selection task) with a sentence
generation task (volitional selection task) in a group of healthy adults. In general, the results
clarify the contribution of the pre-SMA, cingulate areas, PMv, and pars triangularis to the
process of selecting motor responses in the context of sentence production, and shed light
on the manner in which this network is modulated by selection mode. Further, the present
study suggests that response selection in sentence production engages neural resources
similar to those engaged in the production of isolated words and oral motor gestures.

Keywords: premotor cortex, supplementary motor area, response competition, sentence generation, spoken

language, fMRI

INTRODUCTION
How are our innermost thoughts converted into an articulated ver-
bal message? The neural mechanisms that underlie this fascinating
conversion include the selection of words to express an intended
meaning, and the selection and sequencing of motor programs to
realize them. Motor response selection in the context of spoken
language production can be broadly construed as the process by
which a set of lexical units forming a message is transformed into
a sequence of motor programs; it is a complex process that links
cognitive, linguistic, and sensorimotor systems.

Despite the importance of motor response selection, attempts
to incorporate this process into contemporary biological models
of language remain scarce (but see for example Crosson et al.,
2001). Most models of speech and/or language (e.g., Levelt, 1999;
Hickok and Poeppel, 2004; Indefrey and Levelt, 2004; Riecker
et al., 2005; Guenther et al., 2006) postulate a lexical selection
stage, which is a non-motor, language-specific process that can,
with some difficulty, be integrated into a broader action execution
framework. However, these models postulate that competition for
selection occurs only at lexical stage, and thus never incorporate
motor response selection. Although cascaded models of spoken
language production (e.g., Morsella and Miozzo, 2002), do not
postulate a motor selection stage per se, they do assume that lexi-
cal competition spreads to phonological representations, thereby
supporting the idea that competition occurs at different levels of
representation.

Notwithstanding the lack of a theoretical framework for
response selection in spoken language production, several recent
studies suggest a role for frontal premotor regions in this process.
For example, results of a recent electroencephalographic (EEG)
study comparing volitional and externally cued word selection
demonstrate modulation of medial frontal activity, suggesting a

role for these areas to response selection (Tremblay et al., 2008).
Consistent with this finding, several fMRI studies have shown
that manipulating response selection during overt or covert sin-
gle word production modulates large brain networks including
the pre-SMA (Brodmann’s area 6 m; supplementary motor cor-
tex; SMA), but also the adjacent cingulate motor area (CMA),
the inferior fontal gyrus, and the ventral premotor (PM) cortex
(Thompson-Schill et al., 1997, 1998; Crosson et al., 2001; Zhang
et al., 2004; Alario et al., 2006; Tremblay and Gracco, 2006, 2010;
Nagel et al., 2008). One important finding is that the pre-SMA
appears to be involved not only in selecting single words (Alario
et al., 2006; Tremblay and Gracco, 2006) but also in selecting non-
communicative oral motor gestures (Tremblay and Gracco, 2010).
Further support for a role for this region is provided by results of a
repetitive TMS study (Tremblay and Gracco, 2009), which showed
that pre-SMA is essential for volitional motor response selection,
but not for stimulus-based selection, and that this pattern is similar
for selecting words and non-communicative oral motor gestures.
Further evidence for a role for pre-SMA in motor response selec-
tion was shown by Braun et al. (2001), who found that production
of self-organized sequences of lip, jaw, and tongue movements, as
well as the production of language, are both associated with acti-
vation in pre-SMA. Taken together, these results suggest that the
pre-SMA may be playing a central role in selecting motor response
during spoken language production.

It could be argued that pre-SMA activation in these studies is
related to other linguistic or cognitive processes associated with
the production of spoken language. However, there is some evi-
dence to suggest that this is not the case. First, in some of these
studies, non-linguistic actions, such as oral gestures (Braun et al.,
2001; Tremblay and Gracco, 2010) and hand actions (Tremblay
et al., 2008) were compared to word production tasks and similar
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patterns of neural activity were found across domains (linguistic,
non-linguistic). Furthermore, in the realm of motor control per se,
several neuroimaging studies have examined the process of select-
ing motor responses and shown that the magnitude of activation
in pre-SMA increases commensurate with demands on response
selection. For instance, activation in pre-SMA is enhanced when
participants are free to choose a motor response from among sev-
eral alternatives (i.e.,“volitional”selection) compared to when they
are required to execute a specific, stimulus-driven, motor response
(e.g., Deiber et al., 1996; Van Oostende et al., 1997; Hadland et al.,
2001; Ullsperger and Von Cramon, 2001; Weeks et al., 2001; Lau
et al., 2004, 2006). Despite along-standing tendency to conceptual-
ize language as “unique” or “special,” that is, as being independent
from other behaviors, it is becoming increasingly accepted that
language relies on largely distributed (that is, presumably non-
language-specific) neural networks, though the degree and nature
of the overlap between language and other functional systems
needs to be further characterized. At the behavioral level, sev-
eral experiments have demonstrated a connection between speech
and hand gestures (Gentilucci et al., 2001; Gentilucci, 2003), and
between language and oral motor gestures (Alcock et al., 2000;
Alcock, 2006). In this context, the finding of similar neural cir-
cuits engaged in motor response selection across domains is not
surprising.

Taken together, these findings are consistent, at least in part,
with a hypothesis that is referred to as the “medio-lateral gradi-
ent of control” hypothesis, according to which the more an action
requires internal (volitional) control, the more the involvement
of medial premotor areas (which corresponds to the medial por-
tion of Brodmann area 6). In contrast, externally (stimulus) driven
actions tend to rely on lateral (rather than medial) premotor areas
(Goldberg, 1985). Traditionally, the medial portion of Brodmann
area 6 was considered to be a single area, the supplementary motor
area (Penfield and Welch, 1951; Woolsey et al., 1952). However, it
is now widely accepted that this large cortical area divides into at
least two distinct areas approximately at the level of the anterior
commissure (see for example Rizzolatti et al., 1998; and Luppino
and Rizzolatti, 2000, for reviews), with the SMA-proper forming
the caudal part of the region, posterior to the VAC line, and the
pre-SMA forming the anterior part. The pre-SMA has a connectiv-
ity pattern that is ideal for linking cognitive and motor processes, a
sine qua non-for the implementation of motor response selection,
with important projections from the prefrontal cortex, particularly
the dorsolateral prefrontal cortex (Luppino et al., 1993; Lu et al.,
1994; Wang et al., 2005), and connections with several premotor
areas such as the SMA-proper and the lateral PM (Luppino and
Rizzolatti, 2000), for controlling motor output. In addition to the
pre-SMA, the lateral premotor cortex has also been discussed in the
context of response selection, particularly in relation to stimulus-
based hand movement selection (Goldberg, 1985; Mushiake et al.,
1991; Deiber et al., 1996; Dirnberger et al., 1998), though evidence
of distinct pathways for volitional and stimulus-based selection
remains scarce.

In sum, a review of the current literature suggests an important
contribution of the pre-SMA, along with potential contribution
of the adjacent CMA, the inferior frontal gyrus (IFG), and the
ventral PM, in selecting motor programs for single words, single

oral non-communicative gestures, and finger movements. One
important question that follows from these findings is whether
the pattern of results in isolated single word processing bears any
resemblance to the pattern associated with production of phrases,
sentences, and discourse that characterize naturalistic spoken lan-
guage. Given a heavy reliance on selection, and the accelerated
pace at which selection occurs – considering that adult speakers
may produce as many as 14 phonemes per second, i.e., up to six
to nine syllables per second (e.g., Kent, 2000) – it is reasonable
to ask whether selection in this setting relies on the same neural
mechanisms as in isolated single word production. The objective
of the present study was to test the generalizability of previous
results by examining the neural underpinnings of motor response
selection in a set of sentence production tasks. To this aim, we
compared a sentence repetition task with a sentence generation
task in a group of 21 healthy adults. Based on the literature, we
predicted a stronger involvement of pre-SMA and possibly ven-
tral PM (PMv) in sentence generation than sentence repetition,
reflecting the increased requirements for selection during genera-
tion. We also expected regions involved in response selection to be
active in both production modes, as both require selection.

MATERIALS AND METHODS
PARTICIPANTS
Twenty-one healthy right-handed (Oldfield, 1971) native speakers
of English (mean 25 ± 4.4; 10 males), with a mean of 15.4 years of
education participated in the fMRI experiment. All participants
had normal hearing sensitivity, as measured by normal pure-tone
thresholds and normal speech recognition scores (92.3% accu-
racy on the Northwestern University auditory test number 6). The
Institutional Review Board for the Division of Biological Sciences
at The University of Chicago approved the study.

BEHAVIORAL TASKS
To evaluate spontaneous production of words under restricted
search conditions, a category fluency task was administered to par-
ticipants prior to the fMRI session. Participants were instructed to
produce as many animal and vegetable words as possible in 1 min
(in two separate trials). To examine participants’ verbal compre-
hension skills, an auditory memory span task was administered to
participants (an auditory version of the reading span task devel-
oped by Daneman and Carpenter, 1980). Participants’ responses
were recorded and stored to disk for offline analysis. A research
assistant naive to the purpose of the study transcribed all the
responses.

EXPERIMENTAL PROCEDURES
Participants underwent five different tasks while in the scan-
ner (1) passive observation of object pictures, (2) passive sen-
tence listening, (3) listening and repeating sentences, (4) gener-
ating sentences from object pictures, and (5) passive observation
of short action movies. The comparison of the language tasks
and the non-language tasks has been reported elsewhere (Trem-
blay and Small, 2011). Each condition was acquired in separate
runs, and alternated with “rest” epochs during which the par-
ticipants were asked to relax. For each condition, the order of
the conditions and number of rest trials was optimized using
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OPTseq2 (http://surfer.nmr.mgh.harvard.edu/optseq/). Stimuli
were presented using Presentation Software (Neurobehavioral
Systems).

The tasks of interest for this study were the two sentence
production tasks (sentence repetition and sentence generation).
During sentence repetition, participants heard a set of 80 sen-
tences (40 action, 40 object sentences) interleaved with 30 rest
trials; their task was to repeat the sentence. Both stimulus presen-
tation and response occurred while the gradients were switched
off for a 4.5-s of silence (“sparse sampling”). At the beginning
of the silent interval, a Go cue was presented, instructing partici-
pants to start repeating the sentence. Participants’ responses were
recorded and stored to disk for offline analysis. In sentence gener-
ation, participants were asked to generate 80 sentences (40 action,
40 object) from a set of 40 object pictures interleaved with 28
rest trials. The pictures were simple black-and-white line draw-
ings representing common man-made objects selected from the
International Picture Norming Project corpus from the Center for
Research in Language at the University of California San Diego
(Bates et al., 2003; Szekely et al., 2003). In each experimental trial,
a picture was presented for 1 s and was followed, after 500 ms, by
a visual cue (“go”) instructing participants to start generating the
sentence. As noted, all speaking occurred while the MR gradients
were switched off.

In addition to these two sentence production tasks, we included
two passive tasks, sentence listening and picture observation, as
controls for sentence repetition and sentence generation, respec-
tively. During sentence listening 80 short sentences (0.9–1.3 s)
interleaved with 30 rest trials were presented to participants.
Half of these sentences described manual object-directed actions
and the other half described visual properties of the same set of
objects. The sentence stimuli were presented while the gradients
were switched off which ensured ease of auditory processing for
participants. During picture observation, a set of 40 simple black-
and-white line drawings was presented one per trial for 1 s and
interleaved with 37 rest trials (crosshair fixation). Participants were
instructed simply to attend to the pictures.

IMAGE ACQUISITION AND ANALYSIS
Image acquisition
The data were acquired on a 3 T General Electric (Milwaukee,
WI) Signa HDx imager with EXCITE. Participants wore MR com-
patible headphones and goggles (NordicNeuroLab Audio/Visual
system). 34 axial slices (3.125 mm × 3.125 mm × 3.6 mm, no
gap, FOV = 256 mm × 256 mm, matrix = 64 × 64) were acquired
in 1.5 s using a multislice EPI sequence with parallel imag-
ing (ASSET = 2; TE = 26 ms; FOV = 20 cm; 64 × 64 matrix; Flip
angle: 73). To eliminate movement artifacts associated with speak-
ing, and to ensure that participants could hear the auditory stimuli,
a sparse image acquisition technique was used during all the lan-
guage tasks. A silent period (1.5 s for listening, 4.5 s for repetition
and generation) was interleaved between each volume acquisi-
tion. Trials containing errors1 (corresponding to 1.2% of the trials
in sentence repetition and 13.5% in sentence generation) were

1Errors included misses, as well as incomplete and/or ungrammatical sentences,
and, in sentence repetition, inaccurate repetition.

excluded from the analysis of the behavioral and fMRI data. High-
resolution T1-weighted volumes were acquired for anatomical
localization.

Timeseries analyses
The timeseries were spatially registered, motion-corrected (within
and across runs), de-spiked and converted to percentage of sig-
nal change using AFNI (Cox, 1996). A linear least squares model
was used to establish a fit to each time point of the hemodynamic
response function for each of these conditions. There were sepa-
rate regressors for each of the experimental conditions. Additional
regressors were the mean, linear, and quadratic trend components,
as well as the six motion parameters (x, y, z, roll, pitch, yaw). We
modeled the entire trial duration (i.e., 6 s), which included stimu-
lus presentation and speech production. Event-related signals were
calculated by linear interpolation, beginning at stimulus onset,
and continuing for 12 s, using AFNI’s tent function (i.e., a piece-
wise linear spline model). The fit was examined at two different
time lags (0–6 s, and 6–12 s) to identify the time point showing the
strongest hemodynamic response in our regions of interest (ROI).
All subsequent analyses focused on the beta values from the first
6 s post-stimulus onset time lag.

Participants’ anatomical scan was aligned to the registered EPI
timeseries (Saad et al., 2009). FreeSurfer (Dale et al., 1999; Fis-
chl et al., 1999) was used to create surface representations of
each participant’s anatomy. Once these surfaces were created, they
were exported into SUMA (Saad et al., 2004), which was used
to project the functional data resulting from the first-level analy-
sis onto two-dimensional surfaces. Prior to running the group
analyses, we applied a 6-mm smoothing kernel to increase the
signal-to-noise ratio. Smoothing data on the surface instead of the
volume ensures that smoothing avoids inclusion of white matter
data, and it prevents averaging data across sulci and gyri (Argall
et al., 2006). The group analyses were performed using SUMA on
the smoothed beta values. First, we examined the main effect of
each condition (repetition, generation) compared to their respec-
tive baselines (sentence listening, picture observation). We then
examined the difference between sentence generation and sen-
tence repetition. These standard subtraction-type analyses were
complemented by a “conjunction” analysis (Nichols et al., 2005) to
uncover brain regions commonly active across the speaking tasks.
In particular, we identified a task-independent speech production
network by computing the intersection (or conjunction) of brain
activity for repetition ∩ generation. The conjunction analysis only
includes regions that survived correction for multiple comparisons
in both repetition and generation. For each analysis, a permutation
approach (Nichols and Holmes, 2002) was used to identify signifi-
cant clusters of activated vertices, with an individual vertex thresh-
old of p < 0.005, corrected for multiple comparisons to achieve a
family-wise error (FWE) rate of p < 0.05 (clusters ≥ 168 vertices).

Anatomical region of interest analysis
In addition to the whole brain analyses, further analyses were con-
ducted on two sets (frontal lateral and fronto-medial) of anatom-
ical ROI selected a priori. The lateral ROIs included the rostral
and caudal portions of PMv (rostral PMv: precentral sulcus; cau-
dal PMv: precentral gyrus), and the pars opercularis and pars
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triangularis of the IFG. The medial ROIs included the pre-SMA
and SMA-proper, as well as the rostral and caudal parts of the cin-
gulate gyrus. Each of the ROIs was identified on the individual’s
cortical surface representation using an automated parcellation
scheme as implemented in FreeSurfer (Fischl et al., 2002, 2004;
Desikan et al., 2006). This procedure uses a probabilistic labeling
algorithm that incorporates the anatomical conventions of Duver-
noy (1991), and thus is based on macroanatomical landmarks, not
on cytoarchitectonic maps, and therefore represents an approxi-
mation to the actual motor and premotor areas. Such anatomical
approach is very robust as it takes into account individual par-
ticipant’s anatomy; moreover, it avoids the common problem of
selection bias in fMRI research, whereby only those voxels exhibit-
ing a particular pattern are chosen for further analyses (for a
discussion of this issue, see for example Vul and Kanwisher, 2009):
here, all the voxels in each pre-determined region is selected for
analysis.

The ROIs were defined as follows: (1) Rostral PMv: this region
was operationalized as the ventral part of the precentral sulcus,
defined as the part of the sulcus below the junction of the inferior
frontal sulcus with the precentral sulcus. The resulting rostral PMv
was bounded rostrally by pars opercularis, caudally by the precen-
tral gyrus, and dorsally by the dorsal PM. (2) Caudal PMv: this
region was defined as the part of the precentral gyrus below the
junction of the inferior frontal sulcus with the precentral gyrus.
The resulting caudal PMv was bounded rostrally by the rostral
PMv, caudally by the central sulcus, and dorsally by the dorsal PM.
(3) Pars triangularis was defined as the gyrus immediately ante-
rior to pars opercularis; bounded caudally by pars opercularis, and
rostrally by pars orbitalis, not including the inferior frontal sulcus.
(4) Pars opercularis was defined as the part of the IFG immediately
anterior to the precentral gyrus, bounded caudally by the precen-
tral sulcus, and rostrally by pars triangularis, and not including the
inferior frontal sulcus. (5) Pre-SMA was defined as the portion of
the medial superior frontal gyrus that is anterior to the VAC line,
which is a (virtual) vertical line passing through the anterior com-
missure, and posterior to a virtual line passing through the genu
of the corpus callosum. The ventral boundary of the pre-SMA is
the cingulate sulcus. (6) SMA-proper was defined as the portion
of the medial superior frontal gyrus posterior to the VAC line, and
anterior to the medial precentral gyrus. (7) The rostral cingulate
region was defined as the part of the cingulate gyrus anterior to
the VAC line, and posterior to a virtual line passing through the
genu of the corpus callosum. (8) The caudal cingulate was defined
as the portion of the cingulate gyrus posterior to the VAC line, and
anterior to the medial precentral gyrus.

The mean percentage of BOLD signal change was extracted
for each ROI and each condition. We then calculated two differ-
ence scores to isolate the effects specific to producing language,
over and above perception of the stimuli: (1) repetition (sentence
repetition – sentence listening), and (2) generation (sentence gen-
eration – picture observation). These scores were entered in a
three-way ANOVA with repeated measurement on Task (Repeat,
Generate), Hemisphere (Left, Right), and ROI. We conducted this
analysis separately for each ROI group (lateral, medial). We used
FDR corrected two-tailed comparisons to examine whether the
activation magnitude in each ROI was significantly different from

zero (positively or negatively) for repetition and generation. When
a region showed significant activation in either of the tasks, we also
performed an FDR corrected two-tailed pairwise comparison to
examine a potential task effect.

In addition to these analyses, we also examined the relation
between regional activation and behavior. Specifically, we corre-
lated the mean activation in each ROI during sentence generation
and a set of five behavioral measures: (i) accuracy during the sen-
tence generation task (percentage of correct sentences produced);
(ii) number of words produced; (iii) number of syllables generated;
(iv) category fluency score (total number of words produced for
animal and vegetable fluency combined); and (v) verbal working
memory score (reading span; total word recalled per participant).
We postulated that these last two measures would be highly related
to performance on the sentence generation task, because, like the
sentence generation task, they involve word search and response
selection. Using partial correlations (with participants as a covari-
ate of no interest), we investigated potential linear relationships
between the magnitude of brain signal in each of our ROIs and
these measures.

ONLINE BEHAVIORAL DATA ANALYSES
Participants’ responses during the fMRI session were recorded
online using LabVIEW (National Instruments, Austin, TX, USA)
and stored to disk. The responses for two participants could not
be stored due to technical difficulty. A research assistant naive
to the purpose of the study transcribed the responses for the 19
remaining participants. For each sentence, we verified accuracy
(whether or not it conformed to task instructions) and grammat-
icality (whether the sentence was correctly formed). In addition,
we calculated the number of syllables and words for each sentence.
Finally, we calculated the number of departures from the primed
sentence structure.

Trials containing errors were removed from the analysis of the
behavioral and fMRI data.

RESULTS
ONLINE BEHAVIORAL DATA
Complete details on the analysis of the behavioral data have been
reported elsewhere (Tremblay and Small, 2011). Of particular
importance, the sentence repetition and sentence generation tasks
did not differ from each another on any of the online measures
(number of words, number of syllables, accuracy).

Moreover, as was expected, without having been instructed to
do so, participants spontaneously imitated the structure they had
been exposed to (primed) during the sentence generation and
sentence listening tasks, as anticipated based on known “structural
persistence”in sentence production (Bock, 1986). The primed sen-
tence structures were simple sentences containing a subject and a
predicate. Half the sentences consisted of a noun subject and a
simple predicate such as “The drawer is open” or “The scissors
are sharp” (the object-related sentences). The other half of the
sentences consisted of the first person pronoun (“I”) followed by
a predicate, such as “I drag the suitcase” (the action-related sen-
tences). All action sentences used the present tense. Results show
that participants employed the primed sentence structures in the
majority of the trials, with “novel” sentence structures occurring
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in only 156 (of 1200 total) trials, representing fewer than 13% of
all uttered sentences. Most of these novel structures were simple
modifications of the primed structure, such as a change from the
present to the past tense (representing 49% of all novel structures),
deletion of the pronoun (representing 9% of all novel structures),
or deletion of the determiner (representing 8% of all novel struc-
tures). The details of the deviations from the primed syntactic
structure are reported in Table 1.

NEUROIMAGING DATA
Whole brain analyses
Figure 1 reveals the brain areas jointly activated for sentence repe-
tition and sentence generation, after removal of baseline activation
(sentence listening and picture observation, respectively). These
areas included the precentral gyrus and central sulcus bilaterally,
as well as the transverse temporal gyrus and sulcus bilaterally. An
exhaustive list of all regions is presented in Table 2.

Figure 2A shows task-related activation during sentence rep-
etition, after removing the effect of sentence listening. As can be
seen in the Figure, activation was largely bilateral and included
clusters of activated nodes along the precentral gyrus and cen-
tral sulcus covering both the ventral primary motor cortex and
the PMv, as well as clusters of activation in the medial frontal
area, the bilateral transverse temporal gyrus, and the planum tem-
porale bilaterally. Figure 2B shows task-related activation during
sentence generation, after removing the effect of picture observa-
tion. Activation was distributed across a large network of bilateral
brain areas, including primary and secondary visual areas, the
precentral gyrus and central sulcus covering both the ventral pri-
mary motor cortex and the ventral premotor cortex, in the medial
frontal area, in the bilateral transverse temporal gyrus and bilat-
eral planum temporale, and the left IFG. Compared to sentence
repetition, in which activation was equally distributed across both
hemispheres, activation in sentence generation was stronger on
the left than on the right hemisphere. An exhaustive list of all task-
related activation for the basic contrasts (repetition – listening and
generation – picture observation) is presented in Table 3. Direct

comparison of the repetition and generation tasks is shown in
Figure 3. This contrast revealed activation in the left pre-SMA, as
well as activation in the left IFG and in the primary visual cortex
bilaterally. These results are detailed in Table 4.

ROI analyses
Medial ROIs. The three-way omnibus ANOVA (task,hemisphere,
ROI) for the medial regions (pre-SMA, SMA-proper, rostral and
caudal cingulate gyrus) revealed a significant main effect of ROI
[F (3,60) = 13.19, p = 0.000001], as well as a significant main effect
of hemisphere [F (1,19) = 14.45, p = 0.001], but no main effect
of task (Repeat, Generate). There were several significant two-
way interactions: ROI by hemisphere [F (3,60) = 3.66, p = 0.018],
ROI by task [F (3,60) = 5.948, p = 0.001], and hemisphere by task
[F (1,19) = 18.883, p = 0.000348]. The three-way interaction just
failed to reach significance [F (1,19) = 2.434, p = 0.074]. Interest-
ingly, only the pre-SMA exhibited an overall positive pattern of
activation; the SMA-proper, rostral and caudal cingulate regions
exhibited overall activity that was either significantly decreased
from baseline or that was not different from zero.

To further examine these results, we tested the activation
level in each of the ROIs against zero using a set of FDR cor-
rected pairwise comparisons. These comparisons revealed that
overall the left pre-SMA was significantly more active than all
other medial regions. Activations in the caudal cingulate gyri
and SMA-proper bilaterally were not significantly different from
zero in either production task. Activation in the rostral cingu-
late gyrus was lower than zero (relative deactivation) for the
generation task, in both the left [t (20) = −2.11, p = 0.048] and
the right hemisphere [t (20) = −2.12, p = 0.047], though it did
not survive an FDR correction. In the left pre-SMA, activa-
tion was significantly greater than zero for sentence repetition
[t (20) = 3.36, p = 0.003] and sentence generation [t (20) = 2.74,
p = 0.012]. In the right pre-SMA, activation was greater than
zero only for sentence repetition [t (20) = 2.55, p = 0.02], but not
for sentence generation [t (20) = 1.26, p = 0.22]. The left pre-SMA
was the only medial region for which sentence generation was

Table 1 | Departures from primed sentence structure.

Type of structural

change

Sentence

type

Total number

of occurrences

Mean number of

occurrences per sub-

ject

Percentage of all

novel structures

Verbchoicea Object 43 2.69 0.28

Objectb Object 10 0.63 0.06

Determiner deletionc Object 12 0.75 0.08

Pronoun deletiond Action 14 0.88 0.09

Verb tensee Action 77 4.81 0.49

Total N/A 156 1.95 1.00

a =Verb choicerefers to a change in verb used in the object sentences.The primed verbs are “is” and “are” (“The book is think”). A common departure to this pattern

is to use the verb has instead of the verb is, as in “The paper has lines.”

b = Object refers to a change in the focus of the sentence, from describing an attribute of an object to naming an object, such as in “ There’s a radio” (Subject5).

c = Determiner deletion refers to the dropping of the determiner in the object sentences, such as in “Tweezers are small” (Subject 17). d = Pronoun deletion refers

to dropping the pronoun “I” in the action sentences such as in “Open the box” (Subject 9). e =Verb tense refers to switching from the present to the past tense in

the action sentences such as in “I measured this piece of paper” (Subject 14).
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associated with significant stronger activation than sentence rep-
etition [t (20) = 2.54, p = 0.02]. These results are illustrated in
Figure 4.

Lateral ROIs. For the lateral ROIs (pars opercularis and trian-
gularis, rostral and caudal PMv), the three-way omnibus ANOVA
(task, hemisphere, ROI) revealed a significant main effect of ROI
[F (3,60) = 3.19, p = 0.03], as well as a significant main effect of
hemisphere [F (1,20) = 19.28, p ≤ 0.001], but no main effect of
task. The ROI by hemisphere two-way interaction was signifi-
cant [F (3,60) = 3.053, p = 0.035], as were the hemisphere by task

FIGURE 1 | Group-level (N = 20) conjunction map (sentence repetition

∩ sentence generation). FWE-corrected joint activation is shown on the
group average smoothed white matter folded surface.

two-way interaction [F (1,20) = 15.82, p = 0.001] and the three-way
ROI by task by hemisphere interaction [F (3,60) = 2.97, p = 0.039].
In contrast to the medial ROIs, none of the lateral ROIs exhibited
relative deactivation. To further examine the activation patterns
in the lateral frontal ROIs, we tested the activation level in each
of the ROIs against zero using a set of FDR corrected pairwise
comparisons. These analyses revealed strong activation in the left
pars opercularis for both repetition [t (20) = 4.936, p = 0.0001]
and generation [t (20) = 3.55, p = 0.002]; activation in the right
pars opercularis was not significant in either condition. Activation
in the left pars triangularis was only significantly different from
zero during generation [t (20) = 3.67, p = 0.0015], and in the right
pars triangularis, it was not significant in either condition. The
rostral PMv was significantly active for repetition [t (20) = 3.211,
p = 0.004] and generation [t (20) = 5.14, p = 0.00005] on the left
but not the right hemisphere, while the caudal PMv showed bilat-
erally significant activation for both repetition [left: t (20) = 6.16,
p = 0.00001; right: t (20) = 5.67, p = 0.00002] and generation [left:
t (20) = 5.59, p = 0.00002; right: t (20) = 3.18, p = 0.005]. There was
a tendency for all the left lateral ROIs to show a task effect (genera-
tion > repetition), but this effect only survived an FDR correction
in the left rostral PMv [t (20) = 4.74, p = 0.0001] and in the left cau-
dal PMv [t (20) = 3.67, p = 0.002]. None of the right lateral ROIs
showed a task effect. These results are illustrated on Figure 5.

Brain–behavior correlations
In addition to examining the activation patterns in the ROIs,
we also examined the relationship between activation magnitude
during the sentence generation task and a set of five behavioral
measures (accuracy during the sentence generation task, num-
ber of words produced, number of syllables produced, category

Table 2 | Family-wise error -corrected group-level (N = 20), cortical surface results for intersection of sentence generation and sentence

repetition.

Anatomical description Hemi x y z Cluster size

in nodes

Ventral precentral sulcus, extending into the precentral gyrus, central sulcus, and postcentral

gyrus

Left 47 15 23 4818

Caudal calcarine fissure, extending laterally into the occipital pole and inferior occipital gyrus −7 −92 5 1403

Transverse temporal gyrus and sulcus, extending caudally into the planum temporale −43 −41 20 1369

Medial frontal gyrus (pre-SMA, SMA-proper) −11 −4 69 1301

Body of the calcarine sulcus −12 −68 2 343

Inferior temporal sulcus −43 −77 −5 462

Intra-occipital sulcus −29 −60 45 357

Ventral central sulcus, extending rostrally into the precentral gyrus, precentral sulcus, and

caudally into the postcentral gyrus

Right 63 −7 27 3218

Caudal calcarine fissure, extending laterally into the occipital pole and inferior occipital gyrus 12 −101 12 1349

Body of the calcarine sulcus 4 −76 16 303

Transverse temporal gyrus and sulcus 49 −25 7 468

Medial frontal gyrus (pre-SMA, SMA-proper) 8 14 58 463

Caudal fusiform gyrus and inferior occipital sulcus 17 −94 −10 253

Inferior occipital gyrus 30 −95 −10 341

All coordinates are in Talairach space and represent the centroid surface node for each of the cluster (minimum cluster size: 168 contiguous surface nodes, each

significant at p < 0.005).
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FIGURE 2 | (A) Shows FWE-corrected group-level (N = 20) task-related
activation during sentence repetition, after removing the effect of sentence
listening. (B) Shows FWE-corrected group-level (N = 20) task-related
activation during sentence generation, after removing the effect of picture
observation. Activation is shown on the group average smoothed white
matter folded surface.

fluency, and verbal working memory). In the animal fluency task,
participants generated an average of 25.3 (±6.09 SD; range: 15–
37) words. In the vegetable fluency task, they generated on average
14.4 (±14.4 SD; range: 8–23) words. We used the total number of
words generated as our measure of fluency. In the auditory span
task,participants were able to recall a mean of 53/100 words (±10.4
SD; range: 33–67). The average number of words produced in the
sentence generation task was 4.49 (±0.55 SD; range: 4–7); the
average number of syllables was 5.62 (±0.65 SD; range: 4–8). The
results of the correlation analyses are detailed in Table 5. Partici-
pants’ verbal working memory, as measured by the auditory span
task, did not correlate with activation during sentence generation
in any of the ROIs. One interesting finding is that activation in
the left or right pre-SMA did not correlate with any of the online
or offline language measures. In PMv (rostral and caudal) and
IFG (pars triangularis and opercularis), activation was negatively
correlated with the number of words produced; that is, the more
words produced, the less activation was found in these regions.

DISCUSSION
The objective of the present study was to test the generalizability
of previous results related to the neural basis of motor response
selection by examining the neural underpinnings of this process
during a sentence production task, focusing on premotor areas
of the cerebral cortex. As discussed in the Introduction, previous
studies of hand and finger response selection suggest the exis-
tence of a response buffer in which candidate motor programs are
co-activated and compete for selection during response planning

(e.g., Deiber et al., 1996; Van Oostende et al., 1997; Hadland et al.,
2001; Ullsperger and Von Cramon, 2001; Weeks et al., 2001; Lau
et al., 2004, 2006). In addition, previous imaging studies (Braun
et al., 2001; Tremblay et al., 2008; Tremblay and Gracco, 2010) pro-
vide some evidence that this motor response selection mechanism
may also be involved during speech production. In the current
study we wanted to examine whether such a mechanism could
play a role in the production of connected speech. Indeed, most
of the research reported in the literature focuses on single word
production. However, it is unclear if single word production is
an adequate proxy for more complex forms of language, which
involve the production of connected speech. To address the ques-
tion of response selection in a more natural production context,
we compared sentence repetition with sentence generation in a
group of healthy adults. Sentence generation requires selection of
a set of words to express meaning, and the selection of motor pro-
grams to realize them, and thus relies heavily on response selection
mechanisms; sentence repetition, in contrast, relies less heavily on
selection because it involves producing a set of pre-defined words.

While sentence generation, in addition to requiring semantic
processing, also requires syntactic processing, the demands on the
syntactic system are limited in our study by the fact that partici-
pants had just listened to over 150 sentences with similar syntactic
structure prior to sentence generation. We used this design to
take advantage of structural persistence (Bock, 1986, 1990, see
Pickering and Branigan, 1999, for a review), the priming phenom-
enon in which people tend to use syntactic constructions they
have most recently encountered. Indeed, this part of our design
was successful: the sentences participants generated were largely
identical to those they had heard, thus controlling for the syn-
tactic complexity of the repetition and generation tasks. Hence,
while both sentence generation and sentence repetition required
selection of motor programs, the generation task included a com-
petition/selection component minimized during sentence repeti-
tion. Our hypothesis was that competing words are associated with
competing motor programs. Thus, in this context, we expected
regions involved in motor response selection to be modulated
(generation > repetition), but, critically, we also expected such
regions to be active in both sentence production tasks since both
require selection and sequencing of motor programs. Based on the
literature, we expected to find such pattern in the pre-SMA and
possibly ventral premotor cortex (PMv).

TASK-RELATED ACTIVATION AND DEACTIVATION IN MEDIAL CORTICAL
AREAS
Our findings demonstrate that a region of the left medial wall,
the pre-SMA, was active in both sentence repetition and sentence
generation, and showed a unique and significant task-related mod-
ulation, suggesting a role in response selection at the sentence level,
and henceforth extending previous results at the single word level.
Interestingly, this effect was restricted to the left pre-SMA and did
not extend into the right pre-SMA, suggesting a degree of func-
tional specialization of the left pre-SMA. This pattern of activation
is consistent with previous reports of a selection mode effect in
the left but not the right pre-SMA (Tremblay and Gracco, 2010).
It is also consistent with results of a study in which participants
were required to generate sentences aloud from incomplete stimuli
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Table 3 | Family-wise error-corrected group-level (N = 20), cortical surface results for the contrast of (A) Sentence Repetition against Sentence

listening, and (B) Sentence generation against picture observation.

Anatomical description Hemi Max t -value p x y z num

A. SENTENCE REPETITION (SENTENCE LISTENING REMOVED)

Ventral central sulcus, extending rostrally into the precentral gyrus,

precentral sulcus, and pars orbitalis of the inferior frontal gyrus. The

cluster also covers the ventral postcentral gyrus

Left 10.986 0.000000001 −42 −8 32 6649

Caudal calcarine sulcus, lingual gyrus, caudal fusiform gyrus, extending

laterally into the superior, middle, and inferior occipital gyri

8.116 0.0000001 −16 −94 −7 3770

Transverse temporal gyrus and sulcus, extending caudally into the

planum temporale

8.668 0.00000003 −38 −37 20 3725

Medial frontal gyrus (pre-SMA, SMA-proper). 6.745 0.0000015 −5 2 65 1646

Dorsal central sulcus 5.467 0.0000237 −14 −31 60 661

Body of the calcarine sulcus 4.472 0.0002335 −12 −72 10 343

Superior parietal lobule extending downward into the intra-occipital

sulcus

4.648 0.0001551 −23 −60 48 562

Intraparietal sulcus 3.836 0.0010321 −27 −53 45 176

Caudal calcarine sulcus, caudal fusiform gyrus, extending laterally into

the superior, middle, and inferior occipital gyri

Right 8.781 0.00000003 17 −98 −3 4686

Ventral central sulcus, extending rostrally into the precentral gyrus,

precentral sulcus, and caudally into the ventral postcentral gyrus

10.281 0.000000002 60 −7 22 4428

Transverse temporal gyrus and sulcus, extending caudally into the

planum temporale

5.728 0.0000132 43 −23 9 3962

Medial frontal gyrus (pre-SMA, SMA-proper). 9.283 0.00000001 6 4 63 964

Dorsal central sulcus 4.789 0.0001118 19 −29 69 815

Body of the calcarine sulcus 4.911 0.0000844 22 −69 4 303

Posterior superior temporal sulcus and gyrus 5.053 0.0000609 57 −32 6 377

Dorsal precentral sulcus 4.721 0.0001309 29 2 46 309

Posterior edge of the middle temporal sulcus 5.455 0.0000244 43 −75 −1 201

Inferior frontal gyrus pars orbitalis 4.455 0.0002430 46 31 −14 274

Superior temporal sulcus extending into the superior temporal gyrus 4.203 0.0004376 60 −17 −1 226

Parahippocampal gyrus 4.101 0.0005555 34 −16 −24 187

B. SENTENCE GENERATION (PICTURE OBSERVATION REMOVED)

Calcarine fissure (caudal and body), lingual gyrus, cuneus, middle

occipital gyrus, fusiform gyrus, collateral sulcus, inferior temporal sulcus,

extending laterally and dorsally into the occipital gyrus

Left 4.246 0.0003958 −31 −91 −5 8949

Ventral central sulcus, extending caudally into the postcentral gyrus, and

rostrally into the precentral gyrus, precentral sulcus, inferior frontal

gyrus, including both pars opercularis and triangularis

4.756 0.0001207 −48 −12 30 9531

Intra-occipital sulcus, intraparietal sulcus 4.085 0.0005767 −30 −69 38 3643

Medial frontal gyrus (pre-SMA, SMA-proper) 4.428 0.0002588 −5 1 64 2313

Transverse temporal gyrus and sulcus, extending caudally into the

planum temporale

4.185 0.0004564 −33 −35 15 1516

Inferior frontal gyrus pars orbitale, extending caudally into the orbital

gyrus

3.505 0.0022292 −40 34 1 728

Posterior STS 3.722 0.0013464 −56 −46 4 616

Posterior planum temporale 3.775 0.0011899 −57 −46 24 234

Mid superior temporal gyrus 3.795 0.0011357 −63 −26 6 221

Calcarine fissure (caudal, body, and rostral), lingual gyrus, cuneus,

middle occipital gyrus, fusiform gyrus, collateral sulcus, extending

laterally and dorsally into the occipital pole and onto the occipital gyrus

Right 4.274 0.0341345 33 −91 −2 6577

Ventral central sulcus, extending caudally into the postcentral gyrus, and

rostrally into the precentral gyrus

5.871 0.0000096 52 −2 26 4005

Transverse temporal gyrus and sulcus 3.738 0.0012972 59 −13 1 1041

(Continued)
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Table 3 | Continued

Anatomical description Hemi Max t -value p x y z num

Posterior superior temporal sulcus 3.861 0.0009735 49 −35 7 889

Medial frontal gyrus (pre-SMA, SMA-proper) 3.851 0.0009965 6 8 60 541

Collateral sulcus 3.708 0.0013911 13 −89 −9 334

Posterior inferior temporal gyrus 3.751 0.0012584 45 −62 −11 636

Intraparietal sulcus 3.557 0.0019761 19 −62 55 378

Occipital gyri 3.512 0.0021933 15 −86 41 359

All coordinates are inTalairach space and represent the peak surface node for each of the cluster (minimum cluster size: 168 contiguous surface nodes, each significant

at p < 0.005).

FIGURE 3 | Family-wise error-corrected group-level (N = 20) task

difference (generation > repetition). Activation is shown on the group
average smoothed white matter folded surface.

(“the child throws the ball” from “throw child ball”). The com-
parison of this task, which places a high demand on selection and
sequencing mechanisms,with a sentence-reading task,which is less
taxing, revealed activation in the left pre-SMA (Haller et al., 2005).
It could be argued that activation in pre-SMA is related to seman-
tic processing, though this would be surprising given the known
involvement of this region in tasks requiring volitional selection
without semantic processing. For instance, Tremblay and Gracco
(2010) recently showed that when participants freely choose a
word or a non-speech oral motor gesture from a pool of poten-
tial responses, activation in left pre-SMA is stronger than when
they produce a word or a non-speech oral motor gesture based on
specific instructions. In this task, semantic processing is minimal,
and importantly, in the free selection condition, selection is not
based on semantics. Moreover, the fact that activation in pre-SMA
does not correlate with any of our language measures supports
the claim that activation in the pre-SMA is not tied specifically to
language, but rather to a domain-general process. In keeping with
previous findings, the present results thus suggest that the left pre-
SMA is involved in selecting a response in the context of sentence
production. Further, it appears that despite increased complexity,
response selection in the context of sentence production engages

similar mechanisms to response selection for isolated words and
oro-facial gestures.

In addition to task-related activation in the pre-SMA, we also
found task-related deactivation in the rostral cingulate gyrus dur-
ing sentence generation that was not present during sentence
repetition. The rostral cingulate area is known to be part of a
putative default mode network (DMN), which was first identified
through a meta-analysis of positron emission tomography stud-
ies (Shulman et al., 1997). In addition to the anterior cingulate,
the DMN also includes the medial frontal cortex, the posterior
cingulate cortex, precuneus, inferior parietal cortex, and the amyg-
dala/hippocampus. It is now recognized that parts of the DMN are
differentially engaged depending on task (e.g., Hasson et al., 2009;
Newton et al., 2011), and it is postulated that these deactivations
are the consequence of either increased or reduced task-related
effort (Lin et al., 2011). In a recent study, it was shown that a cor-
tical region including both rostral cingulate region and anterior
medial frontal cortex was deactivated during a working memory
task, and further, that deactivation in this region was positively
correlated with working memory performance (Hampson et al.,
2006), suggesting increased working memory demands for the
sentence generation condition relative to the sentence repetition
condition.

LATERAL PREMOTOR AREAS IN MOTOR RESPONSE SELECTION
In the present study, we examined three anatomically distinct parts
of the lateral premotor area: the pars opercularis of the IFG, the
rostral PMv corresponding to the ventral precentral sulcus, and
the caudal PMv, corresponding to the ventral precentral gyrus.
In the left hemisphere all three areas were significantly active in
both sentence repetition and sentence generation, while in the
right hemisphere, only the caudal PMv was significantly active
(for both tasks). The left rostral and caudal parts of PMv both
exhibited a significant task-related modulation, extending previ-
ous findings of a modulation of PMv activation during single word
selection under different selection modes (Tremblay and Gracco,
2010). While this pattern of activation suggests a role in response
selection, the finding that activation magnitude in both regions
is negatively correlated with number of words produced during
the sentence generation tasks seems counterintuitive. Indeed, if
a linear relationship exists between these two factors, one would
predict that the more words are produced (hence the more motor
programs compete for selection), the more activation there should
be in a region involved in response selection; this pattern was not
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Table 4 | Family-wise error-corrected group-level (N = 20), cortical surface results for the contrast of Sentence generation against Sentence

repetition.

Anatomical description Hemi Max

t -value

p x y z Cluster size

in nodes

Transverse temporal gyrus and sulcus Left 8.308 0.00000 −49 −23 2 5457

Ventral precentral gyrus and central sulcus, extending caudally into the

postcentral gyrus

6.711 0.00000 −46 −6 47 2142

Body of the calcarine fissure and cuneus 5.186 0.00004 −7 −82 12 1359

Inferior frontal gyrus, including both pars opercularis and triangularis 6.097 0.00001 −40 29 24 1503

Medial frontal gyrus (pre-SMA) 6.089 0.00001 −8 7 60 696

Collateral sulcus 5.494 0.00002 −42 −47 −14 286

Caudal cuneus and calcarine sulcus 5.265 0.00004 −9 −103 10 189

Parietal operculum 4.448 0.00025 −55 −16 19 241

Precentral sulcus 6.107 0.00001 −36 1 38 229

Calcarine sulcus (rostral and body), extending dorsally into the cuneus, and

ventrally into the lingual gyrus

Right 6.088 0.00001 28 −60 8 2131

Posterior superior temporal sulcus 6.509 0.00000 53 −33 6 1982

Ventral precentral gyrus and central sulcus, extending caudally into the

postcentral gyrus

5.112 0.00005 51 −3 26 1577

Transverse temporal gyrus and sulcus 7.678 0.00000 58 −8 −1 1265

Cingulate sulcus 4.526 0.00021 13 18 36 289

All coordinates are inTalairach space and represent the peak surface node for each of the cluster (minimum cluster size: 168 contiguous surface nodes, each significant

at p < 0.005).

FIGURE 4 | Brain activity (expressed as a percentage of signal change)

for sentence repetition (SR) and sentence generation (SG), for the

medial frontal ROI group. LH = left hemisphere, RH = right hemisphere.
From left to right: caudal cingulate gyrus (left, right), rostral cingulate gyrus,

SMA-proper, and pre-SMA. Asterisks indicate significance level: double
asterisk indicate that the statistics survive an FDR correction (q = 0.05);
single asterisk indicate uncorrected significance. The error bars represent
the SE of the mean.

found. Additional studies are required to examine further the con-
tribution of the left PMv in response selection. Nevertheless, the
present results clearly demonstrate that no lateral premotor area is
more strongly involved in stimulus-driven actions than the medial
regions, which challenges the “medio-lateral gradient of control”
hypothesis of Goldberg (1985). In this seminal article, Goldberg
described two separate systems (medial and lateral) for the control
of voluntary actions. The medial system was organized around

the SMA/pre-SMA, sensitive to internal events, and operated in an
anticipatory mode, being primarily concerned with “volitional”
actions. In contrast, the lateral was organized around the lateral
premotor cortex sensitive to the external world, and operated in a
responsive, interactive manner rather than being focused on inter-
nal events. The present results do not support the idea of a dual
system for the control of actions. Instead, we suggest that motor
response selection (whether it is volitional or stimulus-driven) is
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Table 5 | Brain/behavior correlations.

ROI Hemi Accuracy Words Syllables Fluency Reading span

Rostral cingulate Left −0.05 −0.35 −0.31 −0.09 −0.03

Right −0.06 −0.22 −0.21 −0.04 0.00

Caudal cingulate Left −0.10 −0.32 −0.28 0.15 0.03

Right −0.10 −0.25 −0.21 0.15 −0.06

Pre-SMA Left 0.26 −0.23 −0.13 0.00 0.09

Right 0.18 −0.12 0.08 0.10 −0.01

SMA-proper Left −0.05 −0.21 −0.14 0.14 −0.21

Right −0.22 −0.07 −0.04 0.20 −0.16

Caudal PMv Left 0.24 −0.32 −0.26 −0.03 0.14

Right 0.03 −0.12 −0.05 0.18 0.09

Rostral PMv Left 0.26 −0.36 −0.29 0.06 0.14

Right 0.29 −0.31 −0.23 0.08 0.07

Opercularis Left 0.17 −0.38 −0.34 0.09 0.18

Right 0.23 −0.11 −0.03 0.30 −0.06

Triangularis Left 0.17 −0.33 −0.23 0.20 0.21

Right 0.14 −0.12 −0.05 0.40 0.11

Bold values indicate medium or large correlation coefficients.

FIGURE 5 | Brain activity (expressed as a percentage of signal change)

for sentence repetition (SR) and sentence generation (SG), for the

lateral frontal ROI group. LH = left hemisphere, RH = right hemisphere.
From left to right: IFG pars triangularis (left, right), IFG pars opercularis,

rostral PMv, and caudal PMv. Asterisks indicate significance level: double
asterisk indicate that the statistics survive an FDR correction (q = 0.05);
single asterisk indicate uncorrected significance. The error bars represent
the SE of the mean.

accomplished within a single system involving both the pre-SMA
and the rostral and caudal parts of PMv.

THE CASE OF PARS TRIANGULARIS
The role of Broca’s area in language has been a central theme
in language neuroscience since the nineteenth century. Multi-
ple functions have been proposed to account for the complex
and seemingly multifold contribution of this cortical area to
language, including domain-specific functions such as syntactic
processes (e.g., Grodzinsky and Friederici, 2006), and more general
functions such as action understanding (e.g., Fadiga et al., 2009)

and information integration (Hagoort, 2005). Of particular inter-
est in the context of the current framework is the hypothesis that
the anterior sector of Broca’s area, the pars triangularis, is involved
in a domain-general, response selection process (Thompson-Schill
et al., 1997, 1998; Robinson et al., 2005). In the present study, the
left pars triangularis was significantly active in sentence genera-
tion, a task that is contingent upon semantic processing, but not
in sentence repetition, a task with a limited reliance on semantic
processes. This finding challenges the hypothesis of a general role
for this area in response selection. As noted above, our hypoth-
esis was that regions involved in response selection should be
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modulated by selection mode (generation > repetition), but also,
we expected these regions to be active in both sentence production
tasks since both require selection and sequencing of motor pro-
grams. Admittedly, it is possible that selection mode (volitional,
externally constrained) does not affect response selection. If that
were the case, one would still expect a region involved in motor
response selection to be active both during sentence generation
and sentence repetition, a pattern that was not found in pars
triangularis.

One possible interpretation of these results is that the left
pars triangularis is involved in response selection by helping
resolve response competition, consistent with Thompson-Schill
et al. (1997, 1998) but only when competition occurs in the
linguistic/semantic domain. In line with this interpretation, pre-
vious results have shown that pars triangularis is not active for
selecting single word and single oral communicative gestures when
selection is not dependent upon semantic or linguistic processes
(Nagel et al., 2008; Tremblay and Gracco, 2010). Moreover, evi-
dence for a role of pars triangularis in semantic/linguistic process-
ing abounds (e.g., Poldrack et al., 1999; Wagner et al., 2001; Devlin
et al., 2003; Amunts et al., 2004; Costafreda et al., 2006). For exam-
ple, results of a combined fMRI/rTMS study show that the left
pars triangularis is involved in the process of making semantic
decisions about words presented visually, and further shows that
rTMS over the pars triangularis interferes with a semantic decision
task (Devlin et al., 2003), thereby demonstrating the importance of
this region for semantic processing. Taken together, these results
suggest that one way in which pars triangularis contributes to
language production is by helping resolve response competition
when competition occurs in the semantic domain. At a more gen-
eral level, the entirety of the IFG is likely to participate in a large
number of neural networks that act upon language input for a
variety of context-dependent purposes.

MOTOR VS. LEXICAL SELECTION IN SPOKEN LANGUAGE PRODUCTION
It could be argued that the patterns of response that were found in
the left pre-SMA and PMv (generation > repetition) in the present
study reflect lexical rather than motor response selection. Indeed,
from sentence repetition to sentence generation, the demands on
lexical selection processes increase because different lexical entries
compete for expressing a given meaning. However, another expla-
nation (that we favor) is that during spoken language production,
competition for selection occurs simultaneously at multiple levels
of representation (lexical, motor). Although inconsistent with ser-
ial cognitive models of spoken language production such as that
of Levelt (1999), such an interpretation is in line with cascaded
models of spoken language production, such as those of Peterson
and Savoy (1998) and Morsella and Miozzo (2002), both of which
postulate that activation spreads (cascades) from lexico-semantic
representations to phonological-motor representations during the
preparation for speech production, until a selection is made.

Neurobiological models also support the existence of multiple
simultaneous processes. Previous biological studies suggest that
lexical and motor competition/selection rely on (at least partially)
distinct neural circuits (pre-SMA and PMv for motor selection, left
middle temporal gyrus for lexical selection). For instance, based
on a comprehensive meta-analysis of the literature on spoken

language production, Indefrey and Levelt (2000) and Indefrey and
Levelt (2004) identified one region that appears to be critical for
lexical selection: the central portion of the left middle tempo-
ral gyrus. In contrast, selection of non-speech oro-facial actions
(which does not involve lexical selection) activates the pre-SMA
and PMv, but not the central portion of the left middle temporal
gyrus (Braun et al., 2001; Tremblay and Gracco, 2010). More-
over, studies on finger/hand response selection have shown that
motor response selection occurs at the level of the pre-SMA and
PMv (e.g., Deiber et al., 1996; Van Oostende et al., 1997; Had-
land et al., 2001; Ullsperger and Von Cramon, 2001; Weeks et al.,
2001; Lau et al., 2004, 2006). Finally, imaging studies in which
a primed picture-naming paradigm was used to elicit over ver-
bal responses support the claim of parallel processing through
anatomically segregated circuits (de Zubicaray et al., 2006). In this
study, semantically primed pictures were compared to unprimed
pictures and activation was found in regions involved in both
phonological retrieval and lexical–conceptual processing during
picture-naming, as well as in the pre-SMA, suggesting multiple
levels of competition during lexical access in spoken language pro-
duction. In sum, both cognitive models and neurobiological data
support the claim that selection occurs simultaneously at multiple
levels during spoken language production.

Admittedly, the current study was not specifically designed to
disentangle the possible levels of competition. It is therefore possi-
ble, although the evidence presented here suggests otherwise, that
the activation patterns found in pre-SMA and PMv reflect lexical
rather than motor competition. It is also possible, though unlikely,
that lexical and motor competition processes are not dissociable
anatomically. Additional studies are needed to characterize further
the neural underpinnings of competition and selection during
spoken language production, and to the extent possible, to disen-
tangle the simultaneous competition mechanisms and the neural
networks that implement them.

CONCLUSION
In general, results of the present study help clarify the contribution
of the pre-SMA, cingulate areas, PMv, and pars triangularis to the
process of selecting motor responses in the context of sentence pro-
duction. Further, the present results suggest that motor response
selection during sentence production engages neural resources
similar to those engaged in the selection of isolated words and
oral motor gestures, focusing on the left pre-SMA as well as the
left rostral and caudal parts of PMv.
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