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Scientific investigations on the nature of the self have so far focused on high-level mech-
anisms. Recent evidence, however, suggests that low-level bottom-up mechanisms of
multi-sensory integration play a fundamental role in encoding specific components of
bodily self-consciousness, such as self-location and first-person perspective (Blanke and
Metzinger, 2009). Self-location and first-person perspective are abnormal in neurological
patients suffering from out-of-body experiences (Blanke et al., 2004), and can be manipu-
lated experimentally in healthy subjects by imposing multi-sensory conflicts (Lenggenhager
et al., 2009). Activity of the temporo-parietal junction (TPJ) reflects experimentally induced
changes in self-location and first-person perspective (Ionta et al., 2011), and dysfunctions
inTPJ are causally associated with out-of-body experiences (Blanke et al., 2002). We argue
that TPJ is one of the key areas for multi-sensory integration of bodily self-consciousness,
that its levels of activity reflect the experience of the conscious “I” as embodied and
localized within bodily space, and that these mechanisms can be systematically investi-
gated using state of the art technologies such as robotics, virtual reality, and non-invasive
neuroimaging.
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BODILY SELF
Some of the most important brain systems of humans are dedi-
cated to the maintenance of the balance between the self and the
external environment, by processing and integrating many differ-
ent bodily sensory inputs (visual, auditory, vestibular, somatosen-
sory, motor, visceral, etc.), and providing an online representation
of the body in the world (Damasio, 1999; Gallagher, 2005; Jean-
nerod, 2006; Blanke and Metzinger, 2009). In this view, the body
representation in the brain is a complex crossroad where multi-
sensory information is compounded in order to build the basis
for bodily self-consciousness (Haggard et al., 2003; Jeannerod,
2007; Metzinger, 2008). Many behavioral studies over the last two
decades have used techniques imposing multi-sensory conflict as
a means to manipulate some components of self-consciousness.
For example, the “rubber hand illusion” paradigm showed that
by manipulating local aspects of body perception, it is possible
to induce an illusory sense of ownership of a fake hand (e.g.,
Botvinick and Cohen, 1998; Pavani et al., 2000; Ehrsson et al.,
2004; Tsakiris and Haggard, 2005; Tsakiris et al., 2007; Aimola
Davies et al., 2010). In particular, if participants observe a rub-
ber hand being stroked synchronously with their own (hidden)
hand, they tend to report self-attribution of the rubber hand, as
if it was their own hand. This illusory self-attribution is often
accompanied by a “proprioceptive drift” toward the location of
the rubber hand. Specifically, participants report a change in where
they feel their real hand to be located (review in Tsakiris, 2010).
Similarly, if a participant holds one palm against that of someone

else and simultaneously strokes the dorsal side of both her/his
own and the other’s index finger, an illusory feeling of numb-
ness for the other person’s finger can be perceived: the so-called
“numbness” illusion (Dieguez et al., 2009). Furthermore, it has
recently been shown that illusory self-attribution is not limited
to the hands, but extends to other body parts including the face
(Sforza et al., 2010). For example, the experience of having one’s
own face touched whilst simultaneously (the spatial and tempo-
ral sense) seeing the same action applied to the face of another,
elicits the so-called “enfacement” illusion: that is an illusory sense
of face ownership is induced and the other’s facial features are
incorporated into the participant’s face (Sforza et al., 2010). All
of these findings on illusory self-attribution support the idea
that low-level multi-sensory processes can influence bodily self-
consciousness. However, the self and bodily self-consciousness is
globally associated with the body, rather than with multiple dif-
ferent body parts (Lenggenhager et al., 2007; Metzinger, 2008;
Blanke and Metzinger, 2009). Recent behavioral studies showed
that, beyond local aspects of body perception and self-attribution
(rubber hand illusion, numbness illusion, face illusion), multi-
sensory conflicts can also be used to manipulate more global
aspects of body perception (Ehrsson, 2007; Lenggenhager et al.,
2007, 2009; Petkova and Ehrsson, 2008; Aspell et al., 2009, 2010).
These studies showed that it is possible to investigate more global
aspects of bodily self-consciousness and described several different
components thereof, such as self-location, first-person perspective,
and self-identification.
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ABNORMAL BODILY SELF-CONSCIOUSNESS
A central aspect of global bodily self-consciousness is the sense
of where the self is perceived to be located in space, or “self-
location.” This apparently obvious link between the self and the
body can be altered and experienced as being non-body cen-
tered. Patients suffering from out-of-body experiences (OBEs)
of neurological origin experience themselves as located outside
their own bodily boundaries (abnormal self-location), and report
looking at their real body from an elevated perspective in extrap-
ersonal space (abnormal first-person perspective; Irwin, 1985;
Blanke et al., 2004; Blanke and Mohr, 2005; De Ridder et al.,
2007). Investigations into the neural correlates of OBEs provide
insights on the multi-sensory nature of self-consciousness (Irwin,
1985; Brugger et al., 1997; Blanke et al., 2002, 2004; Brugger, 2002;
Blanke and Mohr, 2005). Clinical studies showed that OBEs are
linked to dysfunctions of the temporo-parietal junction (TPJ;
Blanke et al., 2004; Blanke and Mohr, 2005), but also frontal,
and parietal cortices (Lopez et al., 2010; Heydrich et al., 2011).
Furthermore, electrical stimulation of the TPJ induces OBE-like
experiences (Penfield, 1955; Blanke et al., 2002; De Ridder et al.,
2007), and the TPJ is activated during mental imagery of “dis-
embodied” self-location (Arzy et al., 2006; Blanke et al., 2010).
Based on these findings an association between TPJ dysfunction
and OBEs has been proposed (Blanke et al., 2002, 2004; Mail-
lard et al., 2004; Blanke and Mohr, 2005; Brandt et al., 2005; De
Ridder et al., 2007; see also Ionta et al., 2011). The TPJ is an excel-
lent candidate for integrating multi-sensory bodily information
(and self-consciousness), because it is involved in many self-related
processes, such as first-person perspective (Ruby and Decety, 2001;
Vogeley and Fink, 2003; Vogeley et al., 2004), self/other discrim-
ination (Farrer et al., 2003; Frith, 2005), theory-of-mind (ToM;
review in Frith and Frith, 2003), and self-regulation (Heather-
ton, 2011). Accordingly, a selective impairment in self-other tasks,
such as understanding others’ beliefs, has been reported in patients
with lesions of the TPJ (Samson et al., 2005). Together with other
brain regions, TPJ has also been considered as part of a brain
network involved in ToM, that is the ability to understand oth-
ers’ intentions, beliefs, and desires (review in Frith and Frith,
2003). In particular, the right TPJ is believed to play a crucial
role in the attribution of mental states (e.g., “she wants to be a
teacher”), and both left and right TPJ are recruited when partic-
ipants are asked to imagine the other’s mind (Saxe and Wexler,
2005). Furthermore, activity of the left TPJ seems to be selec-
tive for verbal descriptions of another person’s beliefs, while the
right TPJ seems to respond more selectively to non-verbal stim-
uli (Saxe and Kanwisher, 2003). In addition, the TPJ also plays
a central role in processing vestibular information, with a right
hemispheric predominance for otolithic inputs and a left hemi-
spheric predominance for inputs from semicircular canals (see
Lopez et al., 2008 for review). In monkeys, neurons in the TPJ dis-
charge during vestibular stimulation, during tactile stimulation of
face and trunk, and when a stimulus is in close proximity to the
body (Grusser et al., 1990; Duhamel et al., 1998; Bremmer et al.,
2002). It is likely that bi- and tri-modal neurons in the TPJ encode
the multi-sensory matching of vestibular, visual, and tactile infor-
mation for the full-body, similar to visuo-tactile bimodal neurons
in the premotor and intraparietal sulcus that are anchored to body

parts, including the hand (Iriki et al., 1996; Graziano et al., 2000;
Maravita and Iriki, 2004).

Jointly, the reviewed data on the role of the TPJ in self-location
and first-person perspective, as well as processes related to self-
other distinction and ToM, reveal that cognitive and multi-sensory
perceptual aspects of the self recruit at least partly overlapping
neural substrates. More work is necessary to investigate how both
crucial aspects of the self (conscious-perceptual, cognitive, as well
as conceptual mechanisms of the self) interrelate behaviorally and
neurally at the TPJ and beyond (Blanke and Metzinger, 2009).

FULL-BODY ILLUSIONS AND SELF-CONSCIOUSNESS
The nature of abnormal self-location and self-identification dur-
ing OBEs provides a unique opportunity to investigate self-
consciousness, but generalization of results is rendered difficult by
several methodological issues (e.g. sample size, lesion homogene-
ity, different etiologies, and/or phenomenology, and generalization
to the normal brain). In order to better control manipulations
of self-consciousness with standardized and repeatable experi-
mental protocols, several studies have recently induced OBE-like
illusions in large samples of healthy participants by presenting
ambiguous multi-sensory information. In particular, self-location,
first-person perspective, and self-identification have been experi-
mentally manipulated in healthy subjects using visuo-tactile con-
flicts (e.g., Ehrsson, 2007; Lenggenhager et al., 2007, 2009; Petkova
and Ehrsson, 2008; Aspell et al., 2009).

Pioneering studies by Lenggenhager et al. (2007) and Ehrs-
son (2007) induced changes in self-location and self-identification
using congruent and incongruent visuo-tactile multi-sensory
inputs. Their general approach was adapted and extended from the
original procedure of the rubber hand illusion (review in Tsakiris,
2010), with a particular emphasis on the synchrony between
visual and tactile information. In the setup used by Lenggenhager
et al. (2007), participants viewed their own back through a head-
mounted display (HMD) connected to a video-camera positioned
behind their body. In this way they could see their back from a
visuo-spatial third-person point of view, as if it was a virtual body.
Their own back was then touched with a wooden stick (tactile
stimulation) and the HMD showed the movement either with or
without a delay (synchronous/asynchronous visual stimulation).
Thus, the touch (tactile experience) perceived by participants was
either synchronous or asynchronous with respect to that viewed
on the visually presented body. The congruence between the
visual and the tactile stimulation determined changes in bod-
ily self-consciousness. In particular, subjective reports indicated
that when the visual and tactile stimulation were synchronous,
stronger self-identification with the virtual body and stronger
illusory touch were experienced (Lenggenhager et al., 2007). Fur-
thermore, behavioral measurements of self-location were acquired
by displacing the participants (blindfolded) from the position
where they were standing during the visuo-tactile stimulation,
and asking them to return to the initial position. Importantly, the
indicated positions shifted away from participants’ actual start-
ing location and toward that of the virtual body (Lenggenhager
et al., 2007) only after synchronous stimulation. Based on these
findings, the authors defined the complex of changes in bodily
self-consciousness including self-identification and illusory touch,
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as well as the self-location change toward the virtual body, as a
“full-body illusion.”

Ehrsson (2007) used a slightly different setup. Similar to the
previous study, participants sat on a chair and wore an HMD
connected to two cameras positioned behind their back, afford-
ing them with a third-person perspective in extrapersonal space.
Dissimilar to the previous study, though, the site of tactile stim-
ulation in this study was the chest, and another stick (identical
to the one used for the tactile stimulation) was moved up and
down in front of the cameras. The seen and the felt movement
were again either synchronous or asynchronous. After 2 min of
visuo-tactile multi-sensory stimulation, participants completed a
questionnaire. Results indicated that only after the synchronous
stroking did participants report the experience of “sitting behind
their back”and“looking at themselves from this location.”Control
questions did not show differences in responses across synchro-
nous and asynchronous conditions. Furthermore, physiological
measurements (skin conductance response) were higher during a
threat toward the virtual body after the synchronous stroking with
respect to the asynchronous stroking condition (Ehrsson, 2007).

In both experiments participants looked at their own body from
an external perspective, and only after synchronous stroking did
they report stronger self-identification with the virtual body (Ehrs-
son, 2007; Lenggenhager et al., 2007), and changes in self-location
biased toward the position of the virtual body (Lenggenhager
et al., 2007). The direct comparison between these two approaches
(back vs. chest-stroking, standing vs. sitting position, presence
vs. absence of view of the contact between the stick and virtual
body, etc.) has recently been provided (Lenggenhager et al., 2009).
In this study, the participants’ body position was held constant
whilst the experimenters measured three different components
of bodily self-consciousness: self-location, self-identification, and
first-person visuo-spatial perspective. To that end, participants
were placed in a prone position and wore an HMD connected
to a camera such that they could see their body from above. In one
condition participants received the tactile stimulation on their
chest and saw a moving stick in front of the camera (with the
virtual body in the background). In another condition they felt
the stroking on their back and saw the virtual body being touched
by the same stick. In both conditions the visual and the tactile
stimulations were either synchronous or asynchronous. Partici-
pants completed the usual questionnaires on self-identification.
Furthermore, self-location was measured by asking participants
to imagine dropping a ball from their “felt” location, and estimat-
ing the amount of time required by the ball to “hit the ground.”
The response times (RTs) of this “mental ball dropping” (MBD)
were recorded. Lenggenhager et al. (2009) showed that during the
back-stroking, self-identification and illusory touch (as indicated
by the questionnaires) were stronger after synchronous than asyn-
chronous visuo-tactile stimulation. During the chest-stroking,
self-identification and illusory touch were weaker during the syn-
chronous than the asynchronous visuo-tactile stimulation. Results
of the MBD indicated that RTs were shorter in the synchronous
back-stroking than in the comparable chest-stroking condition,
suggesting that the felt“height”was affected. Specifically, RT analy-
sis suggested that felt “height” was lower for the back-stroking
condition, thus further suggesting that self-location was biased

more toward the virtual body (below) during the back-stroking,
and more toward the camera (above) during the chest-stroking.

These data corroborated pioneering self-observations by G. M.
Stratton who described his own experiences in an similar experi-
mental setup. This classical setup allowed him to induce changes
in how he saw and felt his body. He reported changes in the
visual first-person perspective and self-location, when walking
with a portable device made of mirrors aligned in such a way
that the walker (Stratton himself) could see a projection of his
body below and in front of him (Stratton, 1899; see also Blanke
et al., 2008). The setup projected an online image of his body in his
anterior peripersonal space while he was walking in the country-
side of California. He reported progressively increasing changes in
self-location and self-identification over the time of exposure, fur-
ther associated with the feelings of “being out-of-body” (Stratton,
1899). Similarly, a comparable spatial conflict between the visual
information relative to the moving body and the multi-sensory
cues from the real body can be elicited by asking the partici-
pants to wear an HMD onto which their body filmed from an
elevated perspective is projected, so that they could see their body
while walking in the room (Mizumoto and Ishikawa, 2005). Using
this setup participants report to experience the self as located at
the position of the visual perspective and simultaneously at the
location of the visually presented body (Mizumoto and Ishikawa,
2005). Somewhat comparably in the experimental setup used by
Lenggenhager et al. (2009) and Ehrsson (2007) participants saw
their own body being stroked synchronously or asynchronously.
This induced changes in self-identification and self-location that
were further modulated by the synchrony between visual and
tactile stimulation. On that basis it has been proposed that self-
location and self-identification are strongly influenced by the
location of the seen touch, and that embodied self-location and
the first-person perspective can be transformed to a disembod-
ied or outside-body self-location and third-person perspective as
a function of how and where the visuo-tactile stimulation occurs
(Lenggenhager et al., 2009). We argue that experimental designs
based on visuo-tactile multi-sensory disintegration might lead to
alterations of the first-person perspective, and that this could be
further facilitated by a more extended use of virtual reality (Tarr
and Warren, 2002; Sanchez-Vives and Slater, 2005; Riva, 2007;
Slater et al., 2010), and perhaps through repeated and prolonged
exposure to such artificial bodily signals (Stratton, 1899).

The work on perturbation of visual field – prisms adaptation
(PA) – provided important insights into visuo-spatial processing
that may be related to the reviewed experiments (Striemer and
Danckert, 2010). According to the classic PA procedure devel-
oped by Richard Held and colleagues, participants are asked to
repeatedly perform goal-directed movements while wearing pris-
matic goggles (Held and Freedman, 1963; Redding and Wallace,
1997). Prismatic goggles allow researchers to induce variable opti-
cal deviations between the seen and the real target position. Thus,
the goal-directed reaching or pointing movements are shifted in
the direction of the visual deviation. These adaptations progres-
sively increase with practice and – when the prismatic goggles
are removed – this adaptation generally leads to an error in the
opposite direction (Held and Freedman, 1963). The PA proce-
dure affects the everyday correlation between motor signals and
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sensory feedback. The reviewed visuo-tactile procedures using
video and virtual reality techniques in order to manipulate bodily
self-consciousness, share several similarities with such adaptations
induced by prisms, and affect the everyday correlation between
tactile, visual, and vestibular signals. More systematic work is
needed to evaluate whether adaptations as those during prism
studies also occur during visuo-tactile stroking (this is for exam-
ple suggested by changes in self-location) and whether comparable
post-effects exist.

NEUROSCIENCE ROBOTICS AND THE NEURAL BASES OF
SELF-LOCATION AND FIRST-PERSON PERSPECTIVE
The different setups that investigated self-location and first-person
perspective by using video projections and visuo-tactile conflicts,
showed that it is possible to manipulate some sub-components
of bodily self-consciousness (Ehrsson, 2007; Lenggenhager et al.,
2007, 2009). However, the temporal and spatial correspondence
between the visual and the tactile stimulation in these setups was
always applied by the experimenter. As such, precise and repeatable
manipulations free from any possible experimenter bias were illu-
sive to achieve. It was therefore necessary to develop more reliable
methodological approaches and to precisely monitor and control
what the participants feel and see. Moreover, even though it has
been shown that self-location and first-person perspective could
be experimentally studied, the neural underpinnings have not been
investigated, probably due to the difficulty of applying the visuo-
tactile multi-sensory conflict in a well-controlled and repeatable
manner during brain imaging data acquisition. Robotic systems
and virtual reality are the ideal tools to realize such standard-
ized stimulation, and can therefore improve the control in such
experimental studies (Blanke and Gassert, 2009). The rapid evo-
lution of computer- and virtual-reality technology over the past
decades has provided researchers with novel tools to explore dif-
ferent modalities of human perception and cognitive function.
This has allowed researchers to revisit long-known phenomena
and sensory illusions in behavioral studies with well-controlled
and repeatable stimuli that can easily be manipulated in order to
introduce multi-sensory conflicts. These conditions can further be
manipulated to explore how humans integrate information from
different sensory modalities and how they react to perceptual con-
flicts (Ellis et al., 1999; Ernst and Banks, 2002; Bertelson et al.,
2003; Ernst and Bulthoff, 2004). Such environments have found
increasing applications in clinics, e.g., for phobia treatment and
neurorehabilitation (Jang et al., 2002; Holden, 2005).

In order to expand the variety of sensory modalities and include
haptic perception, researchers performed studies in mixed envi-
ronments, combining virtual reality with real objects. For example
Carlin et al. (1997) used tactile stimulation and virtual reality
to treat arachnophobia. More recently, robotic systems, in the
form of haptic displays, have been added to such environments,
taking advantage of their unique ability to precisely apply tac-
tile stimuli – both temporally and spatially – or render variable
dynamic environments for physical interaction under computer
control (Wolpert and Flanagan, 2010). Combined with virtual
reality, such systems offer the potential to systematically investi-
gate haptic perception and sensorimotor control with the ability to
precisely control and modulate factors such as intensity, location,

type, and congruency of stimuli. Flanagan and Wing (1997) used
a servo-controlled linear actuator to investigate if the central ner-
vous system (CNS) uses internal models to adjust grip force when
stabilizing hand-held loads during arm movements. Ernst and
Banks used a haptic interface and virtual reality to measure the
variance in visual and haptic percepts, and to explore how these
percepts are optimally integrated based on their reliability (Ernst
and Banks, 2002). While the previous developments have pro-
vided greater control over experimental conditions with reduced
variability in the presentation of stimuli, they have so far been
limited to behavioral studies, and the associated neural corre-
lates and mechanisms remained unexplored. More recent advances
combining virtual reality and/or robotics with non-invasive neu-
roimaging have therefore opened a whole new range of technology
and neuroscience-driven avenues to investigate sensory processing
and multi-sensory integration (Gassert et al., 2008a,b; Blanke and
Gassert, 2009; Annett and Bischof, 2010; Dueñas et al., 2011). The
first functional studies with robotic interfaces were carried out
over a decade ago with positron emission tomography (PET; Shad-
mehr and Holcomb, 1997; Krebs et al., 1998), and took advantage
of the fact that PET is not susceptible to electromagnetic interfer-
ence from conventional robotic systems. However, PET requires
injection of radioactive tracers, has low temporal resolution (in
the order of a minute for oxygen-based studies), and low spatial
resolution, making it difficult to differentiate between activation
in functionally different areas. The rapid spread and evolution
of functional magnetic resonance imaging (fMRI) over the past
years, providing whole brain coverage with high spatial and good
temporal resolution, have made this imaging method attractive for
neuroscience investigations.

The MR environment precludes the use of conventional robotic
devices with fMRI, both for safety and compatibility reasons.
However, despite these constraints, a study using fMRI, MR-
compatible robotics, and visuo-tactile multi-sensory conflict has
recently investigated the neural mechanisms of self-location and
first-person perspective (Ionta et al., 2011). A robotic device built
from MR-compatible materials, sensors, and actuators was embed-
ded in the MR-scanner bed. Participants lay on an ergonomic
mattress divided into two parts, holding a robotic stimulator in
the center, between the two mattresses. Based on Lenggenhager
et al. (2009), the robotic device moved a tactile stimulator along
a linear guide located below the back of the subject, driven by an
ultrasonic motor over a rack and pinion gear. A tactile stimula-
tion sphere was attached at the output over a flexible spring blade.
This ensured a constant pressure on the participants’ back and
allowed the tactile stimulus to be presented according to a precisely
repeatable movement profile. While feeling the tactile stimulation
on the back, participants watched videos through MR-compatible
video goggles placed in front of their eyes. The videos showed the
back of a human body in a prone position, filmed from an ele-
vated perspective, being stroked (visual stroking) synchronously
or asynchronously with respect to the tactile stroking performed
by the robotic device on the participants’ back. In a control con-
dition the human body was hidden, and participants could see
only the rod moving up and down in an empty room. By virtue of
this computer-controlled robotic device, the spatial and temporal
aspects of the visuo-tactile stimulation were precisely controlled
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during the fMRI sessions within and across participants. After
the visuo-tactile stimulation, self-location was estimated using
the MBD task (Lenggenhager et al., 2009). Furthermore, partici-
pants completed the questionnaire on self-identification (Ehrsson,
2007; Lenggenhager et al., 2007, 2009) adapted from the origi-
nal one used for the rubber hand illusion (Botvinick and Cohen,
1998). Confirming pilot testing it was found that some partic-
ipants felt as if they were looking up at the virtual body (con-
cordant with their real orientation) whilst others felt as if they
were looking down on their virtual body (even if they were fac-
ing upward). This finding indicated that two different directions
of first-person perspective were adopted by participants: those
forming the “up-group” had the impression of looking upward,
those in the “down-group” of looking downward at the virtual
body. Extending the difference in experienced direction of the
first-person perspective between both groups (as indicated by sub-
jective reports), behavioral results showed that RTs in the MBD
task were significantly different between the synchronous and the
asynchronous visuo-tactile stroking only when a human body was
observed (not during control conditions). Most importantly, the
direction of this effect was different for the two groups: in the
up-group self-location was higher during the synchronous condi-
tion (longer RTs in the MBD) with respect to the asynchronous
condition; in the down-group self-location was lower during the
synchronous condition (shorter RTs in the MBD) with respect
to the asynchronous condition. Moreover, independently of the
synchrony of stroking, participants from the up-group had faster
RTs than those in the down-group, suggesting further differences
in self-location between the two groups: subjects in the up-group
experienced lower height than those in the down-group. These
findings indicated that self-location as measured by the MBD was
altered in opposite directions in the two groups, depending on
the experienced direction of the first-person perspective (subjec-
tive reports). fMRI results showed that the activation patterns in
TPJ reflected changes in self-location and first-person perspec-
tive. In particular, in both groups the magnitude of the BOLD
response was lower in conditions with a higher self-location as
quantified by the MBD task, and conditions with a lower self-
location were associated with a higher BOLD response. Thus,
TPJ activity reflected synchrony-related changes in self-location
with respect to the position or level of self-location, and further
depended differently on the direction of the first-person perspec-
tive. Comparable changes in self-location and the direction of the
first-person perspective reported by patients with OBEs due to TPJ
damage (Ionta et al., 2011) also concur with these behavioral and
fMRI data, independent of any potential attention modulation
as shown by the effects of stroking synchrony and especially the
effect of first-person perspective. OBE patients classically report
an elevated perspective that is distant from the body and down-
looking (comparable with participants from the down-group).
The results obtained in healthy participants are therefore compat-
ible with clinical data in neurological patients with OBEs (Blanke
et al., 2004; De Ridder et al., 2007) and reveal that the temporo-
parietal cortex, especially in the right hemisphere, encodes these
aspects of bodily self-consciousness.

Finally, the (right lateralized) TPJ has been also considered
as part of the brain network involved in visuo-spatial attention

(review in Corbetta and Shulman, 2011). Interestingly, improve-
ments in visuo-spatial neglect, a pathological condition that typ-
ically affects the egocentric spatial relationship with visuo-spatial
perspective or extrapersonal space (Karnath, 1994; Farrell and
Robertson, 2000; Vogeley and Fink, 2003), are reported follow-
ing exposure to prisms (Rode et al., 2006), and further extend
to other sensory modalities such as touch (Maravita et al., 2003)
and hearing (Jacquin-Courtois et al., 2010). Based on these find-
ings, it has been proposed that PA may influence the activity of
some visuomotor structures included in the dorsal visual stream
and supposed to further mediate both motor and attentional
processes (Corbetta and Shulman, 2002; Milner and Goodale,
2006). This interpretation supports the influence that PA might
have on perceptual processes based on the interaction between
areas of the dorsal and ventral visual stream – superior tempo-
ral gyrus (STG) and inferior parietal lobe (Sarri et al., 2006).
Indeed visuo-spatial neglect has been linked to TPJ, including STG
(Karnath et al., 2001; Halligan et al., 2003), and neglect patients
with lesioned TPJ show deficits also in stimulus-driven reorient-
ing attention (Rengachary et al., 2011). Yet, the exact role of TPJ in
spatial attention is still controversial based on data in healthy sub-
jects showing that stimulus-driven attentional processes recruit
in addition to the right TPJ (Shulman et al., 2010) also insula,
and inferior and medial frontal gyri (Corbetta and Shulman,
2002). Conversely, it has been reported that TPJ activity may also
decrease in visual attention tasks (Shulman et al., 1997; Gusnard
and Raichle, 2001). On the other hand, the activation of TPJ dur-
ing egocentric visuo-spatial perspective changes (Maguire et al.,
1998; Vallar et al., 1999; Ruby and Decety, 2001), and during
social perception tasks (Narumoto et al., 2001; Winston et al.,
2002) is consistent with clinical and experimental data in self-
related processes (Blanke et al., 2004; Blanke and Arzy, 2005;
Blanke et al., 2005). In summary there seems to be a functional
overlap in the TPJ between processes related to attention and
bodily self-consciousness associated with bilateral recruitment in
experimental work in healthy subjects and right lateralized TPJ
recruitment in patient studies.

CONCLUSION AND PERSPECTIVES
Here we have reviewed behavioral (Ehrsson, 2007; Lenggen-
hager et al., 2007, 2009) brain imaging (Arzy et al., 2006;
Ionta et al., 2011) and clinical evidence (Brugger et al., 1997;
Blanke et al., 2004; Blanke and Mohr, 2005; De Ridder et al.,
2007) about three aspects of bodily self-consciousness: self-
location, first-person perspective, and self-identification. Clini-
cal findings showed that these three components are dissocia-
ble, suggesting that they rely on different neural bases. Behav-
ioral studies showed that such dissociation can be experimen-
tally induced also in healthy subjects via the imposition of
multi-sensory conflicts. Brain imaging evidence showed that,
as a multi-sensory body-related integration area, the TPJ is
involved in all these three aspects of bodily self-consciousness.
However, it is worth noting that also other areas includ-
ing the precuneus (Northoff and Bermpohl, 2004), as well
as the prefrontal (Gusnard et al., 2001; Ionta et al., 2010),
somatosensory (Ruby and Decety, 2001), and the vestibu-
lar cortex (Lopez et al., 2008) are expected to contribute to
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bodily self-consciousness. Furthermore, recent studies showed
the importance of proprioception (Palluel et al., 2011), acoustic
information (Aspell et al., 2010), and pain perception (Hansel
et al., 2011). Based on the reviewed findings, we conclude that
multi-sensory integration is a key brain mechanism for self-
consciousness. We suggest that future work should not only
investigate mechanisms of visuo-tactile integration, but also their

interaction with vestibular, proprioceptive, and cognitive motor
signals (i.e., Kannape et al., 2010). We finally suggest that only
by using a multi-disciplinary approach combining behavioral
and cognitive neuroscience, engineering, and virtual reality with
neuroimaging, will it become possible to unravel the detailed
mechanisms of bodily self-consciousness and other aspects of
self-consciousness.
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