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The leading models of human and animal learning rest on the assumption that individuals
tend to select the alternatives that led to the best recent outcomes. The current research
highlights three boundaries of this “recency” assumption. Analysis of the stock market
and simple laboratory experiments suggests that positively surprising obtained payoffs,
and negatively surprising forgone payoffs reduce the rate of repeating the previous choice.
In addition, all previous trails outcomes, except the latest outcome (most recent), have
similar effect on future choices. We show that these results, and other robust properties of
decisions from experience, can be captured with a simple addition to the leading models:
the assumption that surprise triggers change.
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Analyses of financial markets reveal that the volume of trade tends
to increase after sharp price increase, and also after sharp price
decline (Karpoff, 1988). Higher volume of trade implies that own-
ers are more likely to sell, and potential buyers are more likely
to buy. Thus, the data suggest a fourfold response pattern to
recent outcomes: Owners appear to exhibit negative recency after
obtained gains (behave as if they expect a price decrease after
a large price increase), but positive recency after a loss (expect
another decrease after a large decrease). Potential buyers appear to
exhibit the opposite pattern: positive recency after a large forgone
gain (expect another increase after a large gain that they missed),
and a negative recency after a forgone loss (expect a price increase
after a price decrease).

Previous studies of decisions from experience appear to reflect a
simpler effect of recent outcomes. Most studies document a robust
positive recency effect (Estes, 1976; Barron and Erev, 2003; Bar-
ron and Yechiam, 2009; Biele et al., 2009): People tend to select the
alternative that led to the best outcome in the previous trials1. This
pattern is consistent with the law of effect (Thorndike, 1898), brain
activity (Schultz, 1998), and is assumed by most learning models
(e.g., Bush and Mosteller, 1955; Rescorla and Wagner, 1972; Erev
and Roth, 1998; Fudenberg and Levine, 1998; Selten and Buchta,
1998; Camerer and Ho, 1999; Dayan and Niv, 2008; Marchiori and
Warglien, 2008; Erev and Haruvy, in press).

The natural explanation for this apparent inconsistency
between the stock market pattern and previous studies would be
that many factors affect the behavior in the stock market, and the
basic properties of human learning are only a small part of these
factors. This explanation is consistent with the leading models of
the stock market data. According to these models the effect of

1Several studies highlight interesting exceptions to this regularity. One example is
the evidence for negative recency in prediction tasks (Barron and Yechiam, 2009).
Ayton and Fischer (2004) show that negative recency is more likely to emerge in
expectations of sequences of natural events.

price change on the volume of trade is a product of an interac-
tion between asymmetric traders (e.g., different interests, different
knowledge etc.).

The current analysis focuses on a less natural explanation of
the inconsistency. It considers the possibility that the financial data
reflect an important behavioral regularity that was ignored by basic
learning research. Our interest in this possibility was triggered by
the recent demonstration that the insights obtained in basic learn-
ing research could be used to justify the prediction of the 2008
sub-prime crises in the financial markets (Taleb, 2007; Hertwig and
Erev, 2009).Yet, the goal here is different. Rather than trying to pre-
dict the behavior of the stock market, we try to build on the robust
stock market pattern in order to improve our understanding of
basic learning processes. The attempt to achieve this goal led us to
focus on the role of surprising outcomes. Specifically, we hypoth-
esize that “surprise-trigger-change”2. Our definition of surprise is
similar to the definition implied by the classical Rescorla–Wagner
model: Surprise is assumed to increase with the gap between the
expected and the observed outcomes. The surprise-trigger-change
hypothesis is consistent with the stock market data: Large price
changes are surprising, and for that reason they increase trade
(change implies trade).

In addition, the surprise-trigger-change hypothesis can explain
the fact that most learning studies document positive recency:
These studies focus on the main effect of the recent payoff over
the different outcomes, and do not examine this effect contingent
on the level of surprise3. Thus, their results are consistent with

2Previous studies of the effect of surprise (Mellers et al., 1997) show that surprising
outcomes are overweighted. The main additions of the current hypothesis are the
assertions that (1) surprising outcome have the same effect on the implicit decision
of whether to think again during learning, and that (2) without this overweighting
the common implicit decision is “not to think again.”
3One contributor to the tendency to focus on the main effect and ignore the level
of surprise is the fact that most basic learning studies focus on situations in which
the feedback was limited to the obtained payoffs (and the computation of the net
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a natural abstraction of the surprise-trigger-change hypothesis
that implies a positive recency effect in most cases, and allows
for the possibility of a negative recency effect after surprising
outcomes.

Another nice feature of the surprise-trigger-change hypothesis
involves its consistency with brain research. Analysis of the neural
activation in the dopaminergic system reveals correlation between
activation level and prediction error (Schultz, 1998). The current
hypothesis suggests that the detection of prediction error, implies
surprise, and increases the probability of a change.

The first part of the current paper tests the surprises-trigger-
change hypothesis in simple binary choice experiments. The analy-
sis continues with an exploration of the implications of the current
results to the modeling of learning.

EXPERIMENT 1: THE SURPRISE-TRIGGER-CHANGE
HYPOTHESIS
METHODS
Experiment 1 focuses on repeated play of the two problems pre-
sented in Table 1. The experiment used the “clicking paradigm”
described in Figure 1.

The participants were 48 Technion students. Each participant
faced each problem (“game”) in a block of 100 trials. The order
of the two problems was balanced over participants. The partici-
pants received a show-up fee of 30 Shekels (about $8) and could
win more, or lose part of this amount in the experiment. The exact
addition to the show-up fee was the outcome (in Shekels) in one
randomly selected trial.

The experiment was run on personal computers. The exper-
imental instructions (see left-hand side of Figure 1) were pre-
sented on printed sheet of paper and the participants could

effect of surprise is difficult), and/or situations that do not involve low probability
outcomes. Another contributor is the fact that the assumption that surprise triggers
change dramatically complicates parameter estimation with the leading statistical
methods.

read them at all times. As the instructions indicate, the par-
ticipants did not receive a description of the incentive struc-
ture. They were simply told that the experiment includes sev-
eral multi-trial games, and their task (in each trial, in each
game) is to select between the two keys. It was explained that
their choices will determine their trial’s payoff, and that they
will receive immediate feedback after each trial. In addition, the
instructions explain that the different games involve different pay-
offs, and that the subjects will be informed when a new game
starts.

Notice that both problems involve a choice between the sta-
tus quo (payoff of 0 with certainty), and a two-outcome risky
prospect. The more surprising (less likely) outcome is the best
outcome (+10) in Problem 1, and the worst outcome (−10) in
Problem 2.

RESULTS OF EXPERIMENT 1
The results (c.f. Table 1) reveal the fourfold pattern predicted by
the surprise-triggers-change hypothesis. In problem 1 (when the
high payoff, +10, is rare and surprising) the participants exhibited
positive recency after an S choice, but negative recency after an
R choice. The positive recency effect is reflected by a higher rate
of switches to R after high forgone payoff (23%) than after low
forgone payoff (6%). The negative recency effect is reflected by a
lower rate of repeated R choices after high obtained payoff (60%)
than after low obtained payoff (79%).

In problem 2 (when the low payoff, −10, is rare and sur-
prising) the participants exhibited negative recency after an S
choice, but positive recency after an R choice. The negative recency
effect is reflected by a lower rate of switches to R after high for-
gone payoff (21%) than after low forgone payoff (31%). The
positive recency effect is reflected by higher rate of repeated R
choices after high obtained payoff (84%) than after low obtained
payoff (69%).

Analysis of individual participants reveals that this pattern
is robust: 24 of the 36 participants that were faced with all

Table 1 |The two new problems studied in Experiment 1, and the main results.

Problem (N ) Recent events Experimental results The predictions of I–SAW

Recent

choice

Recent

payoff

from R

Contingent

R -rate

Implied

recency

effect

R -rate

over all

trials

Contingent

R -rate

Implied

recency

effect

R -rate

over all

trials

1 (48) S: 0 with certainty

R: (10, 0.1; −1)

S High: +10 0.23 + 0.29 0.25 + 0.41
Low: −1 0.06 0.11

R High: +10 0.60 – 0.81 –

Low: −1 0.79 0.82

2 (48) S: 0 with certainty

R: (1, 0.9; −10)

S High: +1 0.21 – 0.57 0.18 – 0.59
Low: −10 0.31 0.20

R High: +1 0.84 + 0.89 +
Low: −10 0.69 0.75

The contingent R-rates are the proportions of R choices as a function of the recent choice and the recent payoff from R. The implied recency effect is the sign of

the difference between the R-rates after high and low payoffs from R given the same recent choice. When the recent choice is S, the recent payoffs from R are the

recent “forgone payoffs,” and the contingent R-rate is the proportion of switches from S to R. When the recent choice is R, the recent payoffs from R are the recent

“obtained payoffs”, and the contingent R-rate is the proportion of repeated R choices. N is the number of subjects.
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eight “recent outcomes by recent choice” contingencies4 are bet-
ter described by the fourfold hypothesis than by the positive
recency hypothesis. This ratio (24/36) is significant larger than
half (p < 0.05 in a sign test).

The aggregate R-rates were only 29% in Problem 1 when
the expected value of R is positive, and 57% in Problem
2 when the expected value of Option R is negative. This
result is consistent with the assertion that decisions from

4The remaining 12 participants did not face one or more of the eight contingen-
cies. For example, 10 of them never experienced the payoff “+10” after selecting R
(because they tended to select S and/or were unlucky).

experience reflect underweighting of rare events (Barron and Erev,
2003).

Figure 2 presents the mean R-rates as a function of time. It
reveals robustness of the main results over time.

REANALYSIS OF PREVIOUS STUDIES
The surprise-trigger-change hypothesis implies an important
boundary for the fourfold recency pattern documented above.
It suggests that this pattern will not emerge when the possible
outcomes are equally likely; when the outcomes are equally likely,
they are equally surprising, and the probability of a change is
expected to be independent of the relative attractiveness of the

FIGURE 1 |The instructions, and the screens in a study that uses the

basic clicking paradigm. In the example the participant chose Right, won
1; and the forgone payoff was 0. The exact payoffs were determined by the
game’s payoff rule. Each of the games considered here focused on one of

the problems listed inTables 1, 2, or 3, and included 100 trials. Each key
was associated with one of the prospects. The assignment of prospects to
buttons and the order of the problems were randomly determined for each
participant.

FIGURE 2 |The mean choice rates (over the 48 participants) in five blocks

of 20 trials in Experiment 1. The left-hand graphs show the experimental
results, the right-hand graphs show the predictions of the model. The R curve

shows the aggregate R-rate (the mean choice rate of the risky option). The
other four curves show the R-rate as a function of the choice and the
outcome in the previous trial.
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recent payoff. In order to evaluate this prediction we reanalyzed
data from previous studies that used the current paradigm to
examine repeated choices between a safe prospect and a gam-
ble that yields two equally likely outcomes. Table 2 summarizes
the contingent choice proportions documented in the study of
six “50–50” problems. Problems 3 and 4 were studied in Haruvy
and Erev (2002) and Grosskopf et al. (2006). Problems 5–8 were
studied in Erev et al. (2008). The results are consistent with the
current hypothesis. A strong positive recency effect was docu-
mented in all six problems (Problems 3–8). On average, the rate
of risky choices is 58% after high payoff, and 38% after low
payoff.

THE VERY RECENT EFFECT
Additional analysis of the positive recency effect documented in
Problems 3–8 reveals that it is limited to the very recent outcome:
The choice rate of the alternative that led to the best payoff in
the most recent trial is 60%, and the choice rate of the alternative
that led to the best payoff in the trial before the most recent is
only 50% (the rate expected under the assumption of “no recency
effect”).

EXPERIMENT 2: A ROBUSTNESS TEST
METHODS
Experiment 2 was designed to evaluate the robustness of the cur-
rent results. It uses Experiment 1’s procedure with the exception
that each participant was presented with 12 different problems.
The participants were 28 Technion students. The 12 problems are
presented in Table 3. These problems were randomly selected
and studied in Erev et al. (2010a) under distinct information
conditions.

RESULTS OF EXPERIMENT 2
The results, summarized in Table 3, replicate the surprise-trigger-
change pattern documented in Experiment 1. Problems 9–15 in
which the high payoff occurs with small probability (0.1 or less) are
similar to Problem 1: The participants exhibited positive recency
after an S choice, but negative recency after an R choice. The pos-
itive recency effect is reflected by the observation that the mean
switch rate from S to R over these seven problems was higher
after the high forgone payoff (26%) than after low forgone payoff
(6%). The negative recency effect is reflected by the observation
that the mean rate of repeated R choice over these seven problems

Table 2 | Six 50–50 problems that were examined in previous research.

Problem (N ) Recent events Experimental results The predictions of I–SAW

Recent

choice

Recent

payoff

from R

Contingent

R -rate

Implied

recency

effect

R -rate

over all

trials

Contingent

R -rate

Implied

recency

effect

R -rate

over all

trials

3 (10) S: 10 with certainty

R: (21, 0.5; 1)

S High: +21 0.58 + 0.63 0.27 + 0.58
Low: +1 0.33 0.21

R High: +21 0.79 + 0.85 +
Low: +1 0.59 0.81

4 (10) S: −10 with certainty

R: (−1, 0.5; −21)

S High: −1 0.39 + 0.45 0.19 + 0.42
Low: −21 0.21 0.15

R High: −1 0.56 + 0.79 +
Low: −21 0.53 0.73

5 (45) S: 0 with certainty

R: (1000, 0.5; −1000)

S High: +1000 0.44 + 0.48 0.23 + 0.50
Low: −1000 0.24 0.17

R High: +1000 0.71 + 0.83 +
Low: −1000 0.55 0.77

6 (45) S: 1000 with certainty

R: (2000, 0.5; 0)

S High: +2000 0.35 + 0.40 0.23 + 0.50
Low: 0 0.15 0.17

R High: +2000 0.74 + 0.83 +
Low: 0 0.49 0.77

7 (45) S: 400 with certainty

R: (1400, 0.50; −600)

S High: +1400 0.40 + 0.45 0.23 + 0.50
Low: −600 0.17 0.17

R High: +1400 0.73 + 0.83 +
Low: −600 0.55 0.77

8 (45) S: 1400 with certainty

R: (2400, 0.5; 400)

S High: +2400 0.47 + 0.49 0.23 + 0.50
Low: +400 0.19 0.17

R High: +2400 0.79 + 0.83 +
Low: +400 0.52 0.77

Problems in 3 and 4 were studied by Haruvy and Erev (2002), Problems 5–8 were studied by Erev et al. (2008).The format of the table and the meaning of the variables

are the same as inTable 1.
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Table 3 |The 12 problems studied in Experiment 2.The format of the table and the meaning of the variables are the same as inTable 1.

Problem (N ) Recent events Experimental results The predictions of I–SAW

Recent

choice

Recent

payoff

from R

Contingent

R -rate

Implied

recency

effect

R -rate

over all

trials

Contingent

R -rate

Implied

recency

effect

R -rate

over all

trials

9 (28) S: 7 with certainty

R: (16.5, 0.01; 6.9)

S High: +16.5 0.40 + 0.45 0.34 + 0.47
Low: +6.9 0.04 0.07

R High: +16.5 0.94 – 0.82 –

Low: +6.9 0.95 0.91

10 (28) S: −9.4 with certainty

R: (−2, 0.05; −10.4)

S High: −2 0.15 + 0.26 0.18 + 0.30
Low: −10.4 0.06 0.08

R High: −2 0.70 – 0.69 –

Low: −10.4 0.80 0.80

11 (28) S: −4.1 with certainty

R: (1.3, 0.05; −4.3)

S High: +1.3 0.27 + 0.54 0.28 + 0.44
Low: −4.3 0.06 0.09

R High: +1.3 0.86 – 0.84 –

Low: −4.3 0.94 0.87

12 (28) S: −18.7 with certainty

R: (−7.1, 0.07; −19.6)

S High: −7.1 0.29 + 0.38 0.24 + 0.37
Low: −19.6 0.06 0.10

R High: −7.1 0.85 – 0.78 –

Low: −19.6 0.87 0.82

13 (28) S: −7.9 with certainty

R: (5, 0.08; −9.1)

S High: +5 0.20 + 0.31 0.23 + 0.37
Low: −19.6 0.06 0.10

R High: +5 0.86 + 0.78 –*

Low: −19.6 0.84 0.81

14 (28) S: −25.4 with certainty

R: (−8.9, 0.08; −26.3)

S High: −8.9 0.22 + 0.45 0.28 + 0.47
Low: −26.3 0.07 0.11

R High: −8.9 0.89 – 0.85 –

Low: −26.3 0.90 0.86

15 (28) S: 11.5 with certainty

R: (25.7, 0.1; 8.1)

S High: +25.7 0.29 + 0.30 0.18 + 0.31
Low: +8.1 0.07 0.09

R High: +25.7 0.81 + 0.72 –*

Low: +8.1 0.78 0.77

16 (28) S: −15.5 with certainty

R: (−8.8, 0.6; −19.5)

S High: −8.8 0.42 + 0.68 0.30 + 0.73
Low: −19.5 0.19 0.27

R High: −8.8 0.91 + 0.91 +
Low: −19.5 0.75 0.88

17 (28) S: 2.2 with certainty

R: (3, 0.93; −7.2)

S High: +3 0.13 – 0.47 0.19 – 0.64
Low: −7.2 0.15 0.23

R High: +3 0.85 + 0.90 +
Low: −7.2 0.68 0.77

18 (28) S: 25.2 with certainty

R: (26.5, 0.94; 8.3)

S High: +25.2 0.14 – 0.52 0.18 – 0.65
Low: +8.3 0.32 0.24

R High: +25.2 0.86 + 0.91 +
Low: +8.3 0.82 0.77

19 (28) S: 6.8 with certainty

R: (7.3, 0.96; −8.5)

S High: +7.3 0.08 – 0.50 0.13 – 0.57
Low: −8.5 0.23 0.18

R High: +7.3 0.92 + 0.91 +
Low: −8.5 0.77 0.72

20 (28) S: 11 with certainty

R (11.4, 0.97; 1.9)

S High: +11.4 0.09 – 0.57 0.15 – 0.64
Low: +1.9 0.19 0.25

R High: +11.4 0.94 + 0.92 +
Low: +1.9 0.71 0.77
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was lower after the high obtained payoff (84%) than after low
obtained payoff (87%).

Problems 17–20 in which the low payoffs occur with small
probability (0.1 or less) are similar to Problem 2: The participants
exhibited negative recency after an S choice, and positive recency
after an R choice. The negative recency effect is reflected by the
observation that the mean switch rate from S to R over these four
problems was lower after the high forgone payoff (11%) than after
low forgone payoff (22%). The positive recency effect is reflected
by the observation that the mean rate of repeated R choice over
these four problems was higher after the high obtained payoff
(89%) than after low obtained payoff (75%).

Finally, Problem 16 is which the high and low outcomes
occur with moderate probability is similar to Problems 3–8: The
participants exhibit positive recency after R and after S choices.

A QUANTITATIVE SUMMARY
In order to clarify the implications of the surprise-trigger-change
hypothesis we chose to quantify it within a simplified variant of
the explorative sampler model that provides the best predictions
of the results in the first Technion choice prediction competition
(Erev et al., 2010a). The model is described below.

THE INERTIA SAMPLING AND WEIGHTING MODEL5

The model distinguishes between three response modes: explo-
ration, exploitation, and inertia. Exploration implies random
choice. The probability of exploration, by individual i, is 1 in the
first trial, and εi (a trait of i) in all other trials.

During exploitation trials, individual i selects the alternative
with the highest estimated subjective value (ESV). The ESV of
alternative j at trial t > 1 is:

ESV
(
j , t

) = (I − wi) (S_Mean) + wi (G_Mean) (1)

where S_Mean (sample mean) is the average payoff from Alterna-
tive j in a small sample of μi similar previous experiences (trials),
G_Mean (grand mean) is the average payoff from j over all (t − 1)
previous trials, and μi and wi are traits. The assumed reliance on
small samples was introduced to capture the observed tendency to
underweight rare events (Barron and Erev, 2003). The similarity
based sampling rule was added to capture discrimination between
different states of nature (Gonzalez et al., 2003)6.

The μi draws are assumed to be independent (sampling with
replacement) and biased toward the most recent experience (Trial
t − 1). A bias occurs with probability ρi (a trait) and implies draw
of Trial t − 1. When a bias does not occur (probability 1 − ρi) all
previous trials are equally likely to be sampled7. The motivation
behind this assumption is the “very recent effect.”

5Computer programs (in SAS and Matlab) that derive the predictions of the
current model can be downloaded from http://sites.google.com/site/gpredcomp/
7-baseline-models.
6The current implementation of the model is simplified with the assumption that all
previous trials are equally similar. The simplification assumption has to be modified
to address learning in dynamic settings.
7This assumption implies that the sampling probability is independent of the
outcome (of the sampled experiences). The assumed independence implies under-
weighting of rare events, and distinguishes the current models from the “represen-
tativeness heuristic” that can lead to overweighting of rare (low base rate) events
(see Erev et al., 2008).

Inertia is added with the assumption that the individuals tend
to repeat their last choice. The exact probability of inertia at trial
t + 1 is assumed to decrease when the recent outcomes are sur-
prising. Specifically, if the exploration mode was not selected, the
probability of inertia is:

P (Inertia at t + 1) = π
Surprise(t )
i (2)

where 0 < πi < 1 is a trait that captures the tendency for inertia. As
in Rescorla and Wagner (1972) we assume that surprise increases
with the gap between the expected and the realized outcomes.
The exact value of the gap is computed under the assumption the
agents compare the realized outcomes to two estimates (or expec-
tations): One estimate is based on the most recent outcome, and
one is based on the mean payoff. Thus, the gap is the mean of four
differences:

Gap(t ) = 1

4

⎡

⎣
2∑

j=1

∣∣obtainedj(t − 1) − obtainedj(t )
∣∣

+
2∑

j=1

∣∣G_meanj(t ) − obtainedj(t )
∣∣

⎤

⎦ (3)

where Obtainedj(t ) is the payoff obtained from j at trial t, and
G_meanj(t ) is the average payoff obtained from j in the first t − 1
trials (the grand mean). The surprise at t is normalized by the
mean gap (in the first t − 1 trials):

Surprise(t ) = Gap(t )
/[

Mean_Gap(t ) + Gap(t )
]

(4)

The mean gap at t is a running average of the gap in the previous
trials [with Mean_Gap(1) = 0.00001]. Specifically,

Mean_Gap(t + 1) = Mean_Gap(t )(1 − 1/r) + Gap(t )(1/r) (5)

where r is the expected number of trials in the experiment (100 in
the current study).

Notice that the normalization (Eq. 4) is necessary to capture the
intuition that a multiplication of all the nominal payoffs by a pos-
itive constant will not increase surprise in the long term. In addi-
tion, normalization keeps the value of Surprise(t ) between 0 and
1, and the probability if inertia between πi [when Surprise(t ) = 1]
and 1 [when Surprise(t ) = 0].

An interesting justification for this gap-based abstraction
comes from the observation that dopamine neurons activation
increases with prediction error (Schultz, 1992, 1998; Montague
et al., 1996, 2004; Caplin and Dean, 2007). The current abstrac-
tion of surprise is a quantification of this observation; in the
current context, the present quantification outperforms all the
other quantifications that we have considered (the choice predic-
tion competition described below suggest that it is not easy to find
a better quantification).

The traits are assumed to be independently drawn from a uni-
form distribution between the minimal possible value (allowed by
the model) and a higher point. Thus, the estimation focused on
estimating the upper points (five free parameters). The estimation
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used a grid search procedure. Best fit implies the following trait
distribution: εi∼U[0,0.24], wi∼U[0,1], ρi∼U[0,0.12], πi∼U[0,1],
and μi = 1, 2, 3, or 4.

The right-hand columns in Tables 1–3 and Figure 2 present
the predictions of inertia sampling and weighting (I–SAW) with
these distributions. These exhibits reveal that I–SAW reproduces
the main behavioral tendencies. For example, I–SAW correctly
captures the direction (sign) of the recency effect in 38 of the 40
contingencies (20 games × 2 possible recent choices). The corre-
lation between the 20 observed and predicted mean choice rates is
0.85, and the correlation between the 80 observed and predicted
contingent choice rates is 0.94.

We believe that the most important contribution of I–SAW is
the demonstration that the surprise-trigger-change assumption is
sufficient to capture direction of the recency effect in the current
setting. It is not necessary to assume expectations concerning spe-
cific sequential dependencies (e.g., the expectation that +10 in
Problem 1 is more likely after −1); nor is it necessary to relax the
assumption that good outcomes increases the tendency to choose
the reinforced alternative again.

COMPARISON WITH THE EXPLORATIVE SAMPLER MODEL
Inertia sampling and weighting differs from the explorative sam-
pler model that motivates it in four ways; the changes include
two simplification assumptions, and two additions. The first sim-
plification involves the probability of exploration. The explorative
sampler assumes a continuous decrease in the probability of explo-

ration with time. Specifically, P(Exploret ) = ε
t−1

t+Tδ where T is
the expected length of the experiment, and δ is a free parame-
ter that captures the sensitivity to the length of the experiment.
This assumption is simplified in I–SAW with the assertion that
P(Exploret) = 1 if t = 1, and εi otherwise. The main motiva-
tion for the simplification is the current focus on learning with
complete feedback that reduces the importance of exploration
(the explorative sampler, in contrast, was designed to address
learning when the feedback in limited to the obtained payoff).
A second motivation is the observation that the simplification
assumption saves a parameter, and does not reduce the fit of the
current data.

A second simplification concerns with the recalled subjective
value of the objective outcomes. The explorative sampler allows
for the possibility of a non-linear function in the spirit of prospect
theory (Kahneman and Tversky, 1979) that implies diminish-
ing sensitivity. This assumption is simplified in I–SAW with the
implicit assumption that the recalled values are the objective pay-
offs. This simplification assumption saves a parameter, and does
not reduce the fit.

The main addition, introduced in I–SAW, is the surprise-
trigger-change assumption. In order to evaluate the significance
of this assumption we evaluated a simplified variant of I–SAW
that does not include this addition (the inertia trait, πi, is set to
zero). The results reveal that with this constraint, I–SAW predicts
positive recency in all 40 cases (and for that reason in capture the
direction of the recency effect in only 31 of the 40 cases). In addi-
tion, this constraint reduces the correlation between the observed
and predicted contingent R-rates from 0.94 to 0.77.

The second addition is the individual differences assumed
in I–SAW. This addition does not increase the number of free
parameters and was introduced to capture the consistent individ-
ual differences documented in recent learning studies (see Yechiam
et al., 2005). Elimination of this addition has limited effect on the
fit of the statistics discussed above.

POTENTIAL GENERALITY AND ALTERNATIVE MODELS
Recall that the current paper is based on the assertion that similar
learning processes drive behavior in simple laboratory experi-
ments and in the stock market. This assertion has directed our
choice of model. That is, I–SAW is meant to be more than an
ad hoc summary of the current results; it tries to summarize the
basic properties of decisions from experience, and should be able
to provide useful prediction of behavior in a wide set of situations.
In order to evaluate this optimistic “generality hypothesis” it is
constructive to consider the results of a recent choice prediction
competition that was organized by Erev et al. (2010b).

The competition was conducted after the completion of the
first draft of the current paper (which included the data and
the presentation of I–SAW), and focused on the prediction of
behavior in four-person two-alternative Market Entry games. In
each trial of these games, each player has to decide between
a safe option and risky entry to a market in which the pay-
off can decrease with the number of entrants. Notice that the
set of individual decision tasks considered above is a subset of
the class of market entry games (the subset in which the pay-
offs from risky choice do not decrease with the number of other
entrants).

The competition was based on two studies. Each study exam-
ined 40 games (randomly selected from the same population of
games). Each game was played for 50 trials with immediate feed-
back concerning the obtained and the forgone payoffs. After the
completion of the first study the organizers published the “intro-
duction to the competition paper” (Erev et al., 2010b). This paper
presents the results, and the best fit of these results with nine
baseline models. The baseline models included the most popular
models proposed to capture behavior in games (including: several
versions of reinforcement learning, Erev and Roth, 1998; stochas-
tic fictitious play, Fudenberg and Levine, 1998; EWA, Camerer
and Ho, 1999) and I–SAW. The analysis of the fit of these models
revealed a large advantage of I–SAW over the other models.

Immediately after the publication of the introduction paper,
and before running the second study, the competition organizers
challenged other researchers to participate in a competition that
focuses on the prediction of the results of the second study. The
call for participation in the competition was published in leading
Email lists in psychology of decision making, cognitive psychology,
behavioral economics, game theory, and reinforcement learning.
To participate in the competition the potential competitors had to
submit a model implemented in a computer program model that
reads the parameters of the games as input, and derives the results
as an output. The models were ranked based on their mean squared
error. The participants were allowed to use improved versions of
the baseline models.

Twenty-five teams participated in the competition. The sub-
mitted models included reinforcement learning, neural networks,
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ACT-R, and I–SAW like sampling models. The results reveal large
advantage of sampling models that assume reliance on small sam-
ples and the current surprise-triggers-change rule. Indeed, all
the 10 leading submissions belong to this class of models. The
winner of the competition (Chen et al., 2011) is a variant of I–
SAW that adds the assumption of bounded memory. The runner
up (Gonzalez et al., 2011) quantifies the same assumptions in a
refinement of the instance based learning model (Gonzalez et al.,
2003).

It is important to emphasize that the advantage of I–SAW
over the reinforcement learning models that were examined in
the competition does not question that value of the reinforce-
ment learning approach. Rather, this observation suggests that it
is not easy to outperform I–SAW with the natural extensions of
the popular reinforcement learning models. We hope that the pub-
lication of the competition and the current results will facilitate
the exploration of the assumptions that have to be added to basic
reinforcement learning models in order to capture decisions from
experience. It seems that these assumptions will include sensitiv-
ity to recent choices (see similar observation in Lau and Glimcher,
2005).

In summary, the results clarify potential of simple learning
models that assume reliance on small samples and surprise-
trigger-change. Models of this type can be used to provide useful
ex ante prediction in a wide set of situations. In addition, the com-
petition suggests that additional research is needed to improve our
understanding of the best quantification of these assumptions.

RELATIONSHIP TO MODELS OF PAVLOVIAN CONDITIONING
Comparison of I–SAW to the leading models of Pavlovian con-
ditioning (including Rescorla and Wagner, 1972; Pearce and
Hall, 1980) reveals one similarity, and one difference. The sim-
ilarity involves the quantification of surprise by the differ-
ence between the expected and obtained outcomes. The dif-
ference involves the implication of surprise. The Rescorla–
Wagner and similar models suggest that “surprise triggers learn-
ing,” and the current analysis suggests that “surprise triggers
change.” This difference, however, does not imply an inconsis-
tency: the Rescorla–Wagner model focuses on associative strength
and do not have clear predictions for choice behavior. Our
favorite interpretation of the effect of associative strength on
choice behavior is based on Rescorla and Solomon (1967)
two-process learning theory; this interpretation implies that
the associative strength determines the similarity function that
affects the sampling in I–SAW and similar models. We hope
to address this and alternative explanations of the relationship
between the current results and Pavlovian conditioning in future
research.

CONCLUSION
The main implications of the current results are related to two of
the main assumptions of basic learning research. The first assump-
tion states that learning processes are extremely general and robust.
They are common to different species (Shafir et al., 2008), under-
lay behavior in wide sets of situations (Skinner, 1938), and reflect
basic properties of the brain (Schultz, 1998). The current analysis
demonstrates the value this assumption. It shows that the apparent
inconsistency between the recency effects documented in finan-
cial data and in basic learning research does not imply distinct
behavioral tendencies. Examination of the sequential dependen-
cies reveals that the fourfold recency pattern, suggested by the
financial data, is a robust property of basic learning processes.

The second assumption involves the abstraction of the robust
properties of learning. Most leading models assume a general
positive recency effect. The current results highlight three bound-
aries of this effect. Two boundaries are the negative recency parts
of fourfold recency pattern: Positively surprising outcomes were
found to reduce the likelihood of repeated choice of the rein-
forcing prospect, and surprising unattractive forgone payoffs were
found to increase the tendency of a switch to the prospect that led
to the worst payoffs. A third boundary is suggested by the very
recent effect. The current results suggest that the most recent trial
has larger effect than previous experiences, but all previous expe-
riences have an approximately the same effect independently of
their recency.

The current analysis suggests that the distinct effects of recent
outcomes can be captured with simple models that share two main
assumptions: reliance on small samples of past experiences, and
surprise-triggers-change. I–SAW, the model proposed above, is
one abstraction of these assumptions. One explanation for the
success of I–SAW and similar models here and in the choice pre-
diction competition (Erev et al., 2010b), is related to the dynamic
features of natural environments. The positive recency assumption
is useful (likely to be selected by consequences) when the recent
outcomes are best predictors of the next outcomes. But positive
recency is not likely to be effective if the outcomes are determined
by a Markov process with small number of distinguishable states.
The reliance on the outcomes obtained in similar (and not nec-
essarily recent) experiences, and high sensitivity to surprises, can
be more effective in these settings. Thus, it is possible that the
success of sampling based models reflects the ecological impor-
tance of learning in environments with relatively small number of
distinguishable states.

ACKNOWLEDGMENTS
This research was supported by a grant from the Israel Science
Foundation.

REFERENCES
Ayton, P., and Fischer, I. (2004). The hot

hand fallacy and the gambler’s fal-
lacy: two faces of subjective random-
ness? Mem. Cognit. 32, 1369–1378.

Barron, G., and Erev, I. (2003). Small
feedback-based decisions and their
limited correspondence to descrip-
tion based decisions. J. Behav. Decis.
Mak. 16, 215–233.

Barron, G., and Yechiam, E. (2009).
The coexistence of over esti-
mation and underweighting of
rare events and the contingent
recency effect. Judgm. Decis. Mak. 4,
447–460.

Biele, G., Erev, I., and Ert, E. (2009).
Learning, risk attitude and hot stoves
in restless bandit problems. J. Math.
Psychol. 53, 155–167.

Bush, R. R., and Mosteller, F. (1955).
Stochastic Models for Learning. New
York: Wiley.

Camerer, C., and Ho, T. (1999). Expe-
rience weighted attraction learning
normal form games. Econometrica
67, 827–874.

Caplin, A., and Dean, M. (2007). The
neuroeconomic theory of learning.
Am. Econ. Rev. 97, 148–152.

Chen, W., Liu, S., Chen, C.-H., and
Lee, Y.-S. (2011). Bounded mem-
ory, inertia, sampling and weight-
ing model for market entry games.
Games 2, 187–199.

Dayan, P., and Niv, Y. (2008). Rein-
forcement learning: the good,
the bad and the ugly current
opinion in neurobiology. 18,
185–196.

Frontiers in Psychology | Cognitive Science February 2012 | Volume 3 | Article 24 | 8

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive


Nevo and Erev Surprise triggers change

Erev, I., Ert, E., and Yechiam, E. (2008).
Loss aversion, diminishing sensitiv-
ity, and the effect of experience on
repeated decisions. J. Behav. Decis.
Mak. 21, 575–597.

Erev, I., Ert, E., Roth, A. E., Haruvy,
E., Herzog, S., Hau, R., Hertwig, R.,
Stewart, T., West, R., and Lebiere, C.
(2010a). A choice prediction com-
petition, for choices from experience
and from description. J. Behav. Decis.
Mak. 23, 15–47.

Erev, I., Ert, E., and Roth, A. E. (2010b).
A choice prediction competition for
market entry games: an introduc-
tion. Games 1, 117–136.

Erev, I., and Haruvy, E. (in press).
“Learning and the economics of
small decisions,” in The Handbook
of Experimental Economics, eds J. H.
Kagel and A. E. Roth (Princeton
University Press).

Erev, I., and Roth, A. E. (1998). Predic-
tion how people play games: rein-
forcement learning in games with
unique strategy equilibrium. Am.
Econ. Rev. 88, 848–881.

Estes, W. K. (1976). The cognitive side
of probability learning. Psychol. Rev.
83, 37–64.

Fudenberg, D., and Levine, D. K. (1998).
The Theory of Learning in Games.
Cambridge, MA: MIT Press.

Gonzalez, C., Dutt, V., and Lejarraga,
T. (2011). A loser can be a win-
ner: comparison of two instance-
based learning models in a mar-
ket entry competition. Games 2,
136–162.

Gonzalez, C., Lerch, J. F., and Lebiere,
C. (2003). Instance-based learning
in dynamic decision making. Cogn.
Sci. 27, 591–635.

Grosskopf, B., Erev, I., and Yechiam,
E. (2006). Foregone with the
wind: indirect payoff informa-
tion and its implications for
choice. Int. J. Game Theory 34,
285–302.

Haruvy, E., and Erev, I. (2002). On
the application and interpretation
of learning models,” in Experimen-
tal Business Research, eds R. Zwick
and A. Rapoport (Boston: Kluwer
Academic Publishers), 285–300.

Hertwig, R., and Erev, I. (2009). The
description–experience gap in risky
choice. Trends Cogn. Sci. (Regul. Ed.)
13, 517–523.

Kahneman, D., and Tversky, A. (1979).
Prospect theory: an analysis of deci-
sion under risk. Econometrica 47,
263–291.

Karpoff, J. M. (1988). Costly short sales
and the correlation of returns with
volume. J. Financ. Res. 11, 173–188.

Lau, B., and Glimcher, P. W. (2005).
Dynamic response-by-response
models of matching behavior in
rhesus monkeys. J. Exp. Anal. Behav.
84, 555–579.

Marchiori, D., and Warglien, M. (2008).
Predicting human interactive learn-
ing by regret driven neural networks.
Science 319, 1111–1113.

Mellers, B., Schwartz, A., Ho, K., and
Ritov, I. (1997). Elation and dis-
appointment: emotional responses
to risky options. Psychol. Sci. 8,
423–429.

Montague, P. R., Dayan, P., and
Sejnowski, T. J. (1996). A frame-
work for mesencephalic dopamine
systems based on predictive
Hebbian learning. J. Neurosci. 16,
1936–1947.

Montague, P. R., Hyman, S. E., and
Cohen, J. D. (2004). Computational
roles for dopamine in behavioural
control. Nature 431, 760–767.

Pearce, J. M., and Hall, G. (1980). A
model for Pavlovian learning: vari-
ations in the effectiveness of condi-
tioned but not unconditioned stim-
uli. Psychol. Rev. 87, 532–552.

Rescorla, R. A., and Solomon, R. L.
(1967). Two-process learning the-
ory: relationships between Pavlov-
ian conditioning and instrumental
learning. Psychol. Rev. 74, 151–182.

Rescorla, R. A., and Wagner, A. R.
(1972). “A theory of Pavlovian con-
ditioning: variations in the effec-
tiveness of reinforcement and non-
reinforcement,” in Classical Con-
ditioning II: Current Research and
Theory, eds A. H. Black and W.
F. Prokasy (New York: Appleton-
Century-Crofts), 64–99.

Schultz, W. (1992). Activity of
dopamine neurons in the behav-
ing primate. Semin. Neurosci. 4,
129–138.

Schultz, W. (1998). Predictive reward
signal of dopamine neurons. J. Neu-
rophysiol. 80, 1–27.

Selten, R., and Buchta, J. (1998).“Exper-
imental sealed bid first price auc-
tions with directly observed bid
functions,” in Games and Human
Behaviour, eds D. Budescu, I.
Erev, and R. Zwick (Mahwah,
NJ: Lawrence Erlbaum Associates),
79–102.

Shafir, S., Reich, T., Tsur, E., Erev, I.,
and Lotem, A. (2008). Perceptual
accuracy and conflicting effects of
certainty on risk-taking behavior.
Nature 453, 917–920.

Skinner, B. F. (1938). The Behavior
of Organisms. Oxford: Appleton-
Century-Crofts.

Taleb, N. N. (2007). The Black Swan:
The Impact of the Highly Improbable.
New York: Random House.

Thorndike, E. L. (1898). Animal intel-
ligence: an experimental study of
the associative processes in animals.
Psychol. Rev. Monogr. Suppl. 2, 1–8.

Yechiam, E., Busemeyer, J. R., Stout, J.
C., and Bechara, A. (2005). Using
cognitive models to map relations
between neuropsychological disor-
ders and human decision making
deficits. Psychol. Sci. 16, 973–978.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 05 October 2011; paper pend-
ing published: 24 October 2011; accepted:
19 January 2012; published online: 21
February 2012.
Citation: Nevo I and Erev I (2012) On
surprise, change, and the effect of recent
outcomes. Front. Psychology 3:24. doi:
10.3389/fpsyg.2012.00024
This article was submitted to Frontiers in
Cognitive Science, a specialty of Frontiers
in Psychology.
Copyright © 2012 Nevo and Erev. This is
an open-access article distributed under
the terms of the Creative Commons Attri-
bution Non Commercial License, which
permits non-commercial use, distribu-
tion, and reproduction in other forums,
provided the original authors and source
are credited.

www.frontiersin.org February 2012 | Volume 3 | Article 24 | 9

http://dx.doi.org/10.3389/fpsyg.2012.00024
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive

	On surprise, change, and the effect of recent outcomes
	Experiment 1: The surprise-trigger-change hypothesis
	Methods
	Results of Experiment 1
	Reanalysis of previous studies
	The very recent effect

	Experiment 2: A robustness test
	Methods
	Results of Experiment 2
	A quantitative summary
	The Inertia Sampling and Weighting model5
	Comparison with the explorative sampler model
	Potential generality and alternative models
	Relationship to models of Pavlovian conditioning

	Conclusion
	Acknowledgments
	References


