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In this paper, we review the nature of illusions using the free-energy formulation of Bayesian
perception. We reiterate the notion that illusory percepts are, in fact, Bayes-optimal and
represent the most likely explanation for ambiguous sensory input. This point is illustrated
using perhaps the simplest of visual illusions; namely, the Cornsweet effect. By using
plausible prior beliefs about the spatial gradients of illuminance and reflectance in visual
scenes, we show that the Cornsweet effect emerges as a natural consequence of Bayes-
optimal perception. Furthermore, we were able to simulate the appearance of secondary
illusory percepts (Mach bands) as a function of stimulus contrast. The contrast-dependent
emergence of the Cornsweet effect and subsequent appearance of Mach bands were
simulated using a simple but plausible generative model. Because our generative model
was inverted using a neurobiologically plausible scheme, we could use the inversion as a
simulation of neuronal processing and implicit inference. Finally, we were able to verify the
qualitative and quantitative predictions of this Bayes-optimal simulation psychophysically,
using stimuli presented briefly to normal subjects at different contrast levels, in the context

of a fixed alternative forced choice paradigm.

Keywords: free-energy, perception, Bayesian inference, illusions, Cornsweet effect, perceptual priors

INTRODUCTION

Ilusions are often regarded as “failures” of perception; however,
Bayesian considerations often provide a principled explanation for
apparent failures of inference in terms of prior beliefs. This paper
is about the nature of illusions and their relationship to Bayes-
optimal perception. The main point made by this work is that
illusory percepts are optimal in the sense of explaining sensations
in terms of their most likely cause. In brief, illusions occur when the
experimenter generates stimuli in an implausible or unlikely way.
From the subject’s perspective, these stimuli are ambiguous and
could be explained by different underlying causes. This ambiguity
is resolved in a Bayesian setting, by choosing the most likely expla-
nation, given prior beliefs about the hidden causes of the percept.
This key point has been made by many authors (e.g., Purves et al.,
1999). Here, we develop it under biologically realistic simulations
of Bayes-optimal perception and try to make some quantitative
predictions about how subjects should make perceptual decisions.
We then try to establish the scheme’s validity by showing that these
predictions are largely verified by experimental data from normal
subjects viewing the same stimuli.

The example we have chosen is the Cornsweet illusion, which
has a long history, dating back to the days of Helmholtz (Mach,
1865; O’Brien, 1959; Craik, 1966; Cornsweet, 1970). This is partic-
ularly relevant given our formulation of the Bayesian brain is based
upon the idea that the brain is a Helmholtz or inference machine
(von Helmbholtz, 1866; Barlow, 1974; Dayan et al., 1995; Friston
etal., 2006). In other words, the brain is trying to infer the hidden
causes and states of the world generating sensory information,
using predictions based upon a generative model that includes
prior beliefs. We hoped to show that the Cornsweet effect can
be explained in a parsimonious way by some simple prior beliefs

about the way that visual information is generated at different
spatial and temporal scales.

THE CORNSWEET EFFECT AND THE NATURE OF ILLUSIONS
Figure 1 provides an illustration of the Cornsweet illusion. The
illusion is the false percept that the peripheral regions of a stimulus
have a different brightness, despite the fact they are physically iso-
luminant. This illusion is induced by a biphasic luminance “edge”
in the centre of the field of view (shown in the right hand col-
umn of Figure 1). The four rows of Figure 1 show the Cornsweet
effect increasing in magnitude as we increase the contrast of the
stimulus. Interestingly, at high levels of contrast, secondary illu-
sions — Mach bands (Mach, 1865; Lotto et al., 1999) — appear at
the para-central points of inflection of the true luminance profile.
It is this contrast-dependent emergence of the Cornsweet effect
and subsequent Mach bands that we wanted to simulate, under
the assumption that perception is Bayes-optimal.

The Bayesian aspect of perception becomes crucial when we
consider the nature of illusions. Bayesian theories of perception
describe how sensory data (that have a particular likelihood) are
combined with prior beliefs (a prior distribution) to create a per-
cept (a posterior distribution). One can regard illusory percepts
as those that are induced by ambiguous stimuli, which can be
caused in different ways — in other words, the probability of the
data given different causes or explanations is the same. When faced
with these stimuli, the prior distribution can be used to create a
unimodal posterior and an unambiguous percept. If the percept
or inference about the hidden causes of sensory information (the
posterior distribution) is different from the true causes used to
generate stimuli, the inference is said to be illusory or false. How-
ever, with illusory stimuli the mapping of hidden causes to their
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FIGURE 1 | The Cornsweet illusion and Mach bands. The Cornsweet
illusion is the false perception that the peripheral regions of a Cornsweet
stimulus have different reflectance values. The magnitude of the effect
increases as the contrast of the stimulus increases. At higher levels of
contrast, the secondary illusion — Mach bands — appear. The Mach bands
are situated at the point of inflection of the luminance gradient.

sensory consequences is ill-posed (degenerate or many to one),
such that a stimulus can have more than one cause. Thus, from
the point of view of the observer, there can be no “false” infer-
ence unless the true causes are known. The perceptual inference
can be optimal in a Bayesian sense, but is still illusory. However,
not all possible causes of sensory input will be equally likely, so
there will be an optimal inference in relation to prior beliefs about
their causes. Prior beliefs can be learnt or innate: priors that are
learnt depend upon experience while innate priors can be asso-
ciated with architectural features of the visual brain, such as the
complex arrangement of blobs, interblobs, and stripes in V1, that
may reflect priors on the statistical structure of visual information
selected by evolutionary pressure.

Prior beliefs are essential when resolving ambiguity or the ill-
posed nature of perceptual inverse problems. Put simply, there will
always be an optimal posterior estimate of what caused a sensation
that rests upon prior beliefs. The example in Figure 2 illustrates
this: The central panel shows an ambiguous stimulus (luminance
profile) that is formally similar to the sort of stimulus that induces
the Cornsweet illusion. However, this stimulus can be caused in
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FIGURE 2 | Contributions to luminance. Luminance values reaching the
retina are modeled as a multiplication of illuminance from light sources and
reflectance from the surfaces in the environment. The factorization of
luminance is thus an ill-posed problem. One toy example of this degeneracy
is shown here; the same stimulus can be produced by (at least) two
possible combinations of illuminance and reflectance. Prior beliefs about
the likelihood of these causes can be used to pick the most likely percept.

an infinite number of ways. We have shown two plausible causes
by assuming the stimulus is the product of (non-negative) illu-
minance and reflectance profiles. The lower two panels show the
“true” causes generating stimuli for the Cornsweet illusion. Here,
the stimulus has a reflectance profile that reproduces the Corn-
sweet stimulus and is illuminated with a uniform illuminant. An
alternative explanation for exactly the same stimulus is provided
in the upper two panels, in which two isoreflectant surfaces are
viewed under a smooth gradient of ambient illumination. In this
example, we have ensured that both the illuminant and reflectance
are non-negative by applying an exponential transform before
multiplying them to generate the stimulus.

The key point made by Figure 2 is that there are many pos-
sible gradients of illuminance and reflectance that can produce
the same pattern of sensory input (luminance). These differ-
ent explanations for a particular stimulus can only be distin-
guished by priors on the spatial and temporal characteristics of
the reflectance and illuminance. In this example, the ambiguity
about what caused the stimulus can be resolved if we believe,
a priori, that the visual world is composed of isoreflectant sur-
faces, as opposed to surfaces that (implausibly) get brighter or
darker nearer their edges or occlusions (as in the lower panels).
Under this prior assumption, an observer who infers the pres-
ence of spatially extensive isoreflectant surfaces, and explains the
edge at the centre with an illuminance gradient, would be infer-
ring its most likely cause. The Cornsweet “illusion” is thus only an
illusion because the experimenter has chosen an unlikely combi-
nation of illuminance and reflectance profiles. In what follows, we
will exploit priors on the spatial composition and generation of
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visual input to simulate the Cornsweet effect and the emergence
of Mach bands.

The Bayesian approach to visual perception has been exploited
in previous work (Yuille et al., 1991; Knill and Pouget, 2004).
In addition, several other visual illusions have been explained
using Bayesian principles, including motion illusions (Weiss et al.,
2002), the sound-induced flash illusion (Shams et al., 2005), and
the Chubb illusion (Lotto and Purves, 2001). Additionally, Purves
et al. (1999) demonstrated the Bayesian nature of the Cornsweet
illusion: when presented in a context implying an illuminance gra-
dient and reflectance step, the Cornsweet illusion is elicited more
easily.

In terms of the neuronal systems mediating the Cornsweet
illusion; some authors have implicated subcortical structures: for
example, Anderson et al. (2009) found that BOLD signal in the
lateral geniculate nuclei (LGN) best correlated with perception
of the Cornsweet illusion, although correlations were also seen
in visual cortex. Furthermore, the illusion could be abolished if
the stimulus was not presented binocularly, suggesting an origin
before V1. Mach bands similarly have been attributed to retinal
mechanisms (e.g., Ratliff, 1965); however, Lotto et al. (1999) have
suggested a high-level contextual explanation for their appearance.
Irrespective of the cortical or subcortical systems involved, we will
assume, in this paper that the same Bayesian principles operate
and, crucially, rest on a hierarchical generative model that neces-
sarily implicates distributed neuronal processing at the subcortical
and cortical levels.

OVERVIEW

This paper comprises three sections. The first describes a simple
generative model of visual input that entails prior beliefs about
how visual stimuli are generated and can be used to infer their
causes. This model is used in the second section to simulate
the perception of the Cornsweet illusion and contrast-dependent
emergence of Mach bands. In the third section, we test the pre-
dictions of the simulations using a psychophysics study of normal
subjects.

A GENERATIVE MODEL FOR THE CORNSWEET EFFECT

Our simulations are based upon the free-energy formulation of
Bayes-optimal perception. Put briefly, this is based upon the
notion that self-organizing agents minimize the average surprise
(entropy) of sensory inputs through minimizing a free-energy
bound on surprise. Here, surprise is just the improbability of
sampling some sensory information, in relation to a (generative)
model of how those sensations were produced. By adjusting the
free parameters of the model, the sensory information can be
explained or predicted and surprise minimized. Mathematically,
surprise is the (negative) log evidence for a model of the world
that comprises hidden variables (causes and states) that generate
sensory information. We have described in many previous publica-
tions how this principle leads to active inference and Bayes-optimal
perception (Friston et al., 2006; Friston, 2009; Feldman and Fris-
ton, 2010). Free-energy is a function of sensory samples and a
probabilistic representation of what caused those samples. This
representation can be cast in terms of the most likely or expected
states of the world, under a generative model of how they conspire

to produce sensory inputs. In brief, once we know the agent’s gen-
erative model, one can use the free-energy principle to predict its
behavior and perception. In the present context, our focus will
be on perception and the role of prior beliefs that are an inher-
ent part of the generative model. In what follows, we describe
the model and then use it to simulate perceptual inference and
electrophysiological responses.

THE GENERATIVE MODEL

The generative model we used is straightforward: sensory input
is the product of reflectance and illuminance, where illuminance
varies smoothly over space but can fluctuate with a high frequency
over time. Conversely, the reflectance profile of the visual world is
caused by isoreflectant fields or surfaces that fluctuate smoothly
in time. Crucially, the spatial scales over which these fluctua-
tions occur have a scale-free nature, of the sort found in natural
images (Burton and Moorhead, 1987; Field, 1987; Tolhurst et al.,
1992; Ruderman and Bialek, 1994; Ruderman, 1997). To ensure
positivity of the illuminant and reflectance we apply an expo-
nential transform to the two factors before multiplying them (as
in Figure 2). Equivalently, we can imagine the underlying causes
(reflectance and illuminance) as being composed additively in log-
space. This model is shown schematically in Figure 3, in terms
of hidden causes and states. Mathematically, this model can be
expressed as:

s=gxv)=expR-x+T1:v)+ o N

x=f(xv)=vp—x+ oy

Here, s(t) are sensory signals generated from hidden states
x(t) and causes, v(t) plus some random fluctuations w(¢). The
difference between hidden causes and states is that states evolve
dynamically, in response to perturbations by hidden causes —
these dynamics are described by the equation of motion in the
second equality above. Hidden causes v(t) = (v, vg) have been
divided into those causing changes in luminance and those causing
changes in hidden states that produce changes in reflectance. These
hidden variables control the amplitude of spatial basis functions
(R, I) encoding formal beliefs about the spatial scales of illumi-
nance and reflectance. For the illuminant (I) we use a low-order
discrete cosine transform, while for the reflectant (R) we use a
low-order discrete wavelet transform.

The particular wavelet transform used here is a Haar wavelet
set that has been thinned by removing high-order wavelets (with
high spatial frequency) from the periphery of the visual field: This
respects, roughly, the increasing size of classical receptive fields
with retinotopic eccentricity. For simplicity (and ease of report-
ing the results), we restrict the simulations to a one-dimensional
visual field. Because Haar wavelets afford local linear approxima-
tions to continuous reflectance profiles, the resulting reflectance
has to be a mixture of isoreflectant surfaces at different spatial
scales. To impose the scale-free aspect, we decrease the variance
or, equivalently, increase the precision of the reflectance wavelet
coefficients or hidden states in proportion to the order or spatial
scale of their wavelet. This is implemented by placing a prior on
the wavelet coefficients with the form p(x;) = N (0, e3k), where k
is the order of the wavelet. Neuronally, these basis functions could
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FIGURE 3 | The generative model: the generative model employed in this
paper models illuminance as a discrete cosine function and reflectance as a
Harr wavelet function with peripheral high frequency wavelets removed. In
addition, illumination is allowed to change quickly over time, whereas
reflectance varies more slowly. This is achieved by making the coefficients on
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the reflectance basis functions hidden states, which accumulate hidden
causes to generate changes in reflectance. Inversion of the model provides
conditional estimates of the hidden causes and states responsible for
sensory input as a function of time. See main text for an explanation of the
variables in this figure.

stand in for a filling-in process such as that described by Gross-
berg and Hong (2006). Conversely, the illuminant is modeled as
a mixture of smoothly varying cosine functions with a low spatial
frequency. This is easily motivated by the fact that most sources
of illumination are point sources, which results in smooth illu-
minance profiles. These were modeled here with the first three
components of a discrete cosine transform (see Figure 4 for a
graphical representation of the basis functions and how they are
used to generate a stimulus).

By construction, this generative model of visual signals sep-
arates the spatial scales or frequencies of the illuminance and
reflectance such that all the high frequency components are in
the reflectance profile, while the low frequency components are in
illuminance profile. Temporal persistence of reflectance is assured
because the reflectance coefficients x(#) € 911¢ * ! are hidden states
that accumulate hidden causes vg(t) € R1°* 1. This persistence
reflects the prior belief that surfaces move in a continuous fashion.
For simplicity, we mapped the hidden causes controlling illumi-
nance vi(t) e R3* ! directly to the stimulus (although thisisnotan
important feature of our model). This can be thought of as accom-
modating rapid changes in illuminance of the sort that might be
produced by a flickering candle.

Equation 1 defines our generative model in terms of the joint
probability over sensory information and the hidden variables
producing fluctuations in reflectance and illuminance. The fluc-
tuations in the hidden causes are assumed to be Gaussian with a
precision (inverse variance) of one, while the fluctuations in the

illuminant

reflectance

exp(lv,)

exp(Rx)xexp(Iv,)

FIGURE 4 | Two-dimension example. The top panels show 2-D examples
of luminance (left) and reflectance (right), created form the generative
model. The resulting stimulus is the product of the two (bottom panel).

motion of the hidden states are assumed to have a log-precision
of 12. Finally, we assume sensory fluctuations or noise with a
log-precision of six. In the next section, we will manipulate the
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log-precision of the sensory noise as a proxy for changing the
contrast of the stimulus.

Figure 4 shows a snapshot of the sort of visual signals this gen-
erative model produces. Here, we have used the outer product of
the discrete transforms above to generate a two-dimensional stim-
ulus. We are not pretending that this is a veridical model of the
real visual world. However, it is sufficient to explain the Cornsweet
illusion and related effects by incorporating simple and plausible
priors on the spatial scales over which illuminance and reflectance
change. In the next section, we use this generative model to sim-
ulate perceptual and physiological responses to a stimulus, under
the free-energy principle. This reduces to a Bayesian deconvolu-
tion of sensory input that tries to discover the most likely hidden
causes and states generating that input.

PERCEPTION AND PREDICTIVE CODING

This perceptual deconvolution can be regarded as the inversion of
a generative model that maps from hidden causes (variables in the
world) to sensory consequences. The inverse mapping corresponds

to inferring those variables by mapping back from the sensory
consequences to the hidden causes and states. This can be imple-
mented in a biologically plausible fashion using a generalized
gradient descent on variational free-energy F(5,1); which is a
function of (generalized) sensory states 5(t) = (s,s’,s”,...) and
the expected values () = (L, Iby) of hidden variables (see Fris-
ton, 2008 for details). In brief, this gradient descent corresponds
to a Bayesian filtering, in which expected states of the world are
continuously optimized using a prediction term and an update
term:

asT

I

18

Dii — 2 FG,i0) = Dii — ot @
i

Under the simplifying assumption that probabilities are repre-

sented as Gaussian densities, this can be regarded as a generalized

form of Kalman filtering, where the second (update or gradient)

term can be expressed as a mixture of prediction errors (see the

equations in Figure 5). This means that the generalized filtering
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FIGURE 5 | Hierarchical message-passing in the brain. The schematic
details a neuronal architecture that optimizes the conditional expectations of
hidden variables in hierarchical models of sensory input of the sort
illustrated in Figure 3. It shows the putative cells of origin of forward driving
connections that convey prediction error from a lower area to a higher area
(red arrows) and non-linear backward connections (black arrows) that
construct predictions (Mumford, 1992; Friston, 2008). These predictions try
to explain away (inhibit) prediction error in lower levels. In this scheme, the
sources of forward and backward connections are superficial and deep
pyramidal cells (triangles) respectively, where state-units are black and
errorunits are red. The equations represent a generalized gradient descent
on free-energy (see main text) using the generative model of the previous
figure. If we assume that synaptic activity encodes the conditional
expectation of states, then recognition can be formulated as a gradient
descent on free-energy. Under Gaussian assumptions, these recognition
dynamics can be expressed compactly in terms of precision weighted
prediction errors: £":/=s, x, v on the sensory input, motion of hidden

Perception and message passing
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states, and the hidden causes. The ensuing equations suggest two neuronal
populations that exchange messages; with state-units encoding conditional
predictions and error-units encoding prediction error. Under hierarchical
models, errorunits receive messages from the state-units in the same level
and the level above; whereas state-units are driven by errorunits in the
same level and the level below. These provide bottom-up messages that
drive conditional expectations w":/ = x, v toward better predictions to
explain away prediction error. These top-down predictions correspond to

g = g(™, 1) that are specified by the generative model. This scheme
suggests the only connections that link levels are forward connections
conveying prediction error to state-units and reciprocal backward
connections that mediate predictions. Note that the prediction errors that
are passed forward are weighted by their precisions: T1":/ = s, x, v.
Technically, this corresponds to generalized predictive coding because it is a
function of generalized variables, which are denoted by a (~), such that
every variable is represented in generalized coordinates of motion: for
example: X = (x, x’, x",...). See Friston (2008) for further details.
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in Eq. 2 to corresponds to a generalized form of predictive coding.
Predictive coding has become a popular metaphor for understand-
ing perceptual inference in the visual system. For example, Rao
and Ballard (1999) used predictive coding to provide a compelling
explanation for extraclassical receptive field effects in striate cortex.

Put simply, in these simulations we assume that neural activ-
ity corresponds to the brain’s representation of the most likely
values of the hidden causes and states (hidden variables) and
that these are continuously updated to minimize free-energy. The
ensuing scheme has been discussed in terms of recurrent message-
passing among different cell populations in hierarchical sensory
cortex: see Figure 5 and Mumford (1992). This scheme rests upon
the use of bottom-up prediction errors to optimize conditional
estimates of hidden variables. These estimates are then used to
produce top-down predictions that are compared with sensory
input to form a bottom-up prediction error. In this context, the
sum of squared prediction error can be regarded as free-energy.
The recursive message-passing used in these schemes tries to min-
imize prediction error, such that the predictions approximate the
true conditional or posterior estimates of the underlying hidden
causes. It is this message-passing that we will stimulate in the
next section and associate with neuronal responses, while using
what they represent to predict how real subjects would respond
behaviorally, in terms of their perceptual decisions or inference.

To simulate these responses we simply integrate or solve Eq. 2,
using the functions g(x, v) and f(x, v) specified by a generative
model in Eq. 1. These functions map hidden variables to sen-
sory input and encode prior beliefs about the dynamics of hidden
states. In short, by plugging the equations of our generative model
in Figure 3 into the predictive coding scheme of Figure 5, we can
simulate Bayes-optimal inference about the causes of sensations.
Crucially, we can then reconstitute the posterior or conditional
beliefs about these causes and associate these with percepts. In
particular, we can take any mixture of the hidden variables and
assess the posterior belief about that mixture. We will use this
to quantify the Cornsweet and Mach band percepts, in terms of
reflectance differences among different parts of the visual field.
Note that the predictive coding scheme in Figure 5 weights the
prediction errors by precision matrices. For example, the preci-
sion of sensory signals is 1) = I-exp(y). These precisions are
functions of log-precisions y that encode the expected amplitude
of random fluctuations.

SIMULATED RESPONSES

The simulated responses in Figure 6 were obtained by presenting
the Cornsweet stimulus under uniform illumination. Here, the
stimulus was presented transiently by modulating the illumination
with a Gaussian envelope over time (see image inset). The result-
ing predictions are shown in Figure 6A as solid lines, while the red
dotted lines correspond to the prediction error. These predictions
are based upon the inferred hidden states and causes shown on the
right and lower left respectively. The lines correspond to the poste-
rior expectations and the gray regions correspond to 90% Bayesian
confidence intervals. In terms of the underlying causes, the blue
curve in Figure 6B is an estimate of the (log) amplitude of uniform
illumination. This should have a roughly quadratic form (given
the Gaussian envelope), peaking at around bin 30, which indeed

Dynamics of perceptual inference
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FIGURE 6 | Predictions of the model. (C) Shows the estimates of the
hidden states (coefficients of the reflectance basis functions) over time.
The hidden state controlling the amplitude of the lowest-frequency basis
function, which corresponds to the Cornsweet percept, contributes
substantially to the overall perception of the stimulus (green line). The
estimates for the hidden causes are shown in (B). The gray areas are 90%
confidence intervals. (A) Shows predictions (solid lines) of sensory input
based on the estimated hidden causes and states and the resulting
prediction error (dotted red lines). The insert on the upper left shows the
time-dependent luminance profile used in this simulation. Please see main
text for further details.

it does. The remaining causes that deviate from zero (Figure 6C)
are the perturbations to the hidden states explaining or predicting
changes in reflectance. These drive increases or decreases in the
conditional expectations of the hidden states shown on the right.
The green line is the coefficient of the second-order basis function
splitting the visual field into an area of brightness on the left and
darkness on the right. It can be seen that at the point of maximum
illumination, there is an extremely high degree of confidence that
this hidden state is bigger than zero. This is the Cornsweet percept.

The corresponding percepts in sensory space are shown in
Figure 7 as a function of peristimulus time. The upper panels
show the implicit reflectance and illuminance profiles encoded
by the conditional expectations of hidden variables respectively.
After an exponential transform (and multiplication) these pro-
duce the sensory predictions shown on the lower left. By taking a
weighted mixture of the perceived reflectance in different regions
of the visual field (shown by the white circles) one can estimate the
conditional certainty about both the Cornsweet effect (differences
in perceived reflectance on different sides) and the appearance
of Mach bands (differences in perceived reflectance on the same
side). The weights used to evaluate these mixtures are denoted as
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FIGURE 7 | The model’s “perceptions.” The upper panels show the
predicted illuminance (left) and reflectance profiles (right), reconstructed
from the coefficients of the basis functions estimated from the model
inversion shown in the previous figure. An inferred reflectance profile
demonstrating the Cornsweet illusion is apparent, but at this level of
contrast, Mach bands have not yet appeared. Please see main text further
details.

W corn and W, for the Cornsweet and Mach band effects respec-
tively. The conditional expectation of these mixtures or effects
Wmac = Wmac-'®) and their confidence intervals are shown on
the lower right. At this level of visual contrast or precision (a
log-precision of six), the Cornsweet effect is clearly evident with
a high degree of certainty, while the confidence interval for the
Mach band effect always contains zero. In other words, at this con-
trast (sensory precision) there is a Cornsweet effect but no Mach
band effect. In the next section, we repeat the simulation above
and record the conditional expectations (and confidences) about
illusory effects at the point of maximum illumination for different
levels of contrast.

CONTRAST OR PRECISION-DEPENDENT ILLUSORY
PERCEPTS

Using the generative model and inversion scheme described above,
we repeated the simulations over different levels of sensory pre-
cision. This can be regarded as a manipulation of contrast in
the following sense: If we assume that the brain uses divisive
normalization (Weber, 1846; Fechner, 1860; Craik, 1938; Geisler
and Albrecht, 1992; Carandini and Heeger, 1994), the key change
in sensory information, following an increase in contrast, is an
increase in signal to noise; in other words, its precision increases
(see the appendix of Feldman and Friston, 2010 for details). We
use therefore a manipulation of the log-precision of sensory noise
to emulate changes in visual contrast. It should be noted that we
did not actually add sensory noise to the stimuli. The key quantity
here is the level of precision assumed by the agent which, in these

simulations, we changed explicitly. In more realistic simulations,
the log-precision would be itself optimized with respect to free-
energy (see Feldman and Friston, 2010 for an example of this in
the modeling of attention).

Figure 8 shows the results of perceptual inference under the
Bayesian scheme described above. The only thing that we changed
was the log-precision of the sensory input, from minus two (low)
through to intermediate levels and ending with a very high log-
precision of 16. The two graphs show the conditional expectation
and 90% confidence intervals for the Cornsweet effect (upper
panel) and Mach bands (lower panel) respectively, at the point
of maximum illumination. It can be seen in both instances that
under low levels of contrast (sensory precision) both effects are
very small and inferred with a large degree of uncertainty. How-
ever, as contrast increases, conditional uncertainty reduces and,
at a critical level, produces a confident inference that the effect is
greater than zero (or some small threshold). Crucially, the point
at which this happens for the Cornsweet effect is at a lower level of
contrast than for the Mach bands. In other words, the Cornsweet
illusion occurs first and then the Mach bands appear as contrast
continues to rise. The explanation for this is straightforward; the
Mach band illusion rests upon higher spatial frequencies in the
generative model, which have a higher prior precision (encoding
prior beliefs about the statistical — scale-free — structure of natural
visual scenes). This means that there needs to be precise sensory
evidence to change them from their prior expectation of zero. In
short, at high levels of contrast or sensory precision, more and
more fine detail in the posterior percept is recruited to provide
the optimum explanation for the stimulus. Interestingly, as the
contrast or sensory precision reaches very high levels, the veridical
reflectance and illuminant profiles are inferred and, quantitatively,
both the Cornsweet and mach band effects disappear. The three
images show exemplar percepts, at low, intermediate and high
levels of contrast respectively. The key difference in the spatial
banding that underlies the Cornsweet and Mach band effects is
evident in the difference between the intermediate and high levels
of contrast.

The key prediction of these simulations is that we would expect
subjects to categorize their percepts, following a brief exposure
to a Cornsweet stimulus, differently at different levels of contrast.
At low levels of contrast, we would expect them to categorize the
stimulus as uniformly flat. At intermediate levels of contrast, we
would expect them to categorize the stimulus as a Cornsweet per-
cept, with isoluminant and uniform differences in the right and
left hand parts of the visual field; while at higher levels of contrast
one would expect the Mach bands to dominate and the stimuli
would be categorized as possessing para-central bands. In princi-
ple, at very high levels of contrast, the subject should perceive the
veridical stimulus. However, whether this level of contrast can be
attained empirically is an open question. In the next section, we
test these hypotheses psychophysically. We conclude this section by
looking not at behavioral responses but at the neuronal responses
implicit in the simulations.

SIMULATING NEURONAL RESPONSES
Figure 9 shows the prediction errors at low, intermediate and high
levels of contrast. These are shown at the sensory level (upper row)
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FIGURE 8 | The effect of contrast. In the results presented here the
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profile is perceived and the illusory percepts fade. Crucially, the Mach bands
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appear at higher levels of contrast than the Cornsweet illusion. The inserts in
the lower panels show the inferred reflectance is at different levels of contrast
(indicated by the blue dots in the lower graph). The prediction errors
associated with the processing of stimuli at these three levels are shown in
the next figure. Please see main text for further details.

and at the higher levels of the hidden causes and states (lower row).
The key thing to note here is that as contrast increases and the
spatial detail of the posterior predictions increases, the sensory

prediction error falls. This is at the expense of inducing predic-
tion errors at the higher level, which increase in proportion to the
precision of sensory information. These higher prediction errors
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FIGURE 9 | Contrast and prediction error. As stimulus contrast increases,
prediction error is redistributed from sensory input to hidden variables. At
high levels of precision, sensory information induces prediction errors at
higher levels, which in turn explain away prediction error at the sensory
level. The higher level prediction errors at high precision reflect increasing
confidence that the reflectance is different from the prior expectation of
zero. Please see main text for further details.

are simply the difference between the posterior and prior expecta-
tions and reflect an increasing departure from a prior expectation
of zero as contrast (the log-precision of sensory noise) increases.
Although these results are interesting in themselves, they can also
be regarded as a simulation of event related potentials. The reason
that we can associate prediction error with observed electromag-
netic brain responses is that it is usually assumed that prediction
errors are encoded by the activity of superficial pyramidal cells (see
Figure 5). It is these cells that are thought to contribute primarily
to local field potentials and non-invasive EEG signals.

In the high-contrast condition, the prediction errors at the
lower level are suppressed by the prediction of the presence of
a Cornsweet stimulus. This sort of phenomenon has been demon-
strated using fMRI (Alink et al., 2010; den Ouden et al., 2010);
predictable stimuli cause less activation in stimulus-specific areas
than unpredictable stimuli. However, the process simulated here
is likely to produce more complicated neurophysiological corre-
lates because of the confounding effect of precision; increased
predictability (through increasing conditional confidence about
the stimulus) will also increase estimates of precision. Since we
believe that the prediction errors reported by superficial pyra-
midal cells are precision weighted, decreasing prediction error
in lower sensory areas may be masked by the increasing preci-
sion of those errors. We will return to this and related issues
in a subsequent paper looking at the neurophysiological corre-
lates of contrast-dependent illusory effects. Here, we focus on
psychophysical correlates:

A PSYCHOPHYSICAL TEST OF THEORETICAL PREDICTIONS
In this section, we report a psychophysics study of normal subjects
exposed to the same stimuli used in the simulations above. We
depart from the normal procedures for assessing illusions (which
usually involve matching intensity differences) by using a forced
choice paradigm. This is because we wanted to present stimuli
briefly, for several reasons: First, brief presentation avoids the con-
founding effects of saccadic eye movements. Second, it allows us
to prototype the paradigm for future use in electrophysiological
(event related potential) studies, which require transient stimuli
for trial averaging. Finally, a forced choice paradigm places con-
straints on the subject’s choices that map directly to the model
predictions. In what follows, we describe the paradigm and inter-
pret our results quantitatively, in relation to the predictions of the
simulations above.

SUBJECTS AND EXPERIMENTAL PARADIGM

We studied normal young subjects in accord with guidelines estab-
lished by the local ethical committee and after obtaining informed
consent. Eight participants (4 female) completed the Mach band
paradigm; 19 (12 female) completed the Cornsweet paradigm.

EXPERIMENT 1 (CORNSWEET PARADIGM)

The Cornsweet illusion was assessed using a two-interval forced
choice procedure. Subjects were presented with a (set contrast)
Cornsweet stimulus and real luminance step for 200 ms (a Gauss-
ian temporal envelope was not used), separated by an interval of
200 ms. One stimulus appeared to the left of fixation and one to
the right; this was randomized across trials, as was the order of
the stimuli. Subjects were asked to report the side on which the
stimulus with the greatest contrast had appeared (Figure 10).

Six blocks were completed, using Cornsweet stimuli with Weber
contrasts of 0.0073-0.734. A Quest procedure (Watson and Pelli,
1983) was used to select each step stimulus for comparison. The
mean of the psychometric function was taken as the point of
subjective equality between the Cornsweet stimulus and a real
luminance. There were 200 presentations per block.

EXPERIMENT 2 (MACH BAND PARADIGM)

The same method could not be used to identify the strength of the
Mach bands percept, as there is no non-illusory stimulus that can
be used for matching. Consequently, we used a two-alternative
forced choice paradigm: A single Cornsweet stimulus was dis-
played for 200 ms to the left or right of fixation and participants
were asked to report if the stimulus contained Mach bands or not.
Each participant completed six runs of 200 presentations at 10
Weber contrast levels from 0.0204 to 0.2038. The probability of
reporting a Mach band was assessed as the relative frequency of
reporting its presence over trials, within subject (Figure 10).

In both experiments, stimuli were displayed on an LCD mon-
itor under ambient room lighting. Subjects were seated 60 cm
away from the monitor, such that stimuli subtended an angle of
14.21° vertically and 6.10° horizontally, at 2.96°-7.06° eccentricity.
The luminance ramp of the Cornsweet stimulus profile occupied
2.42°. Only the lowest levels of contrast the monitor was able to
produce were employed; thus, luminance values were linearized
post hoc.
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RESULTS AND DISCUSSION

The results of the psychophysics experiments are shown in
Figure 11, as a function of empirical (Weber) contrast levels. These
results are expressed as the mean over all subjects and associated

Experiment 1 Experiment 2

200ms

200ms
200ms

1750 ms

1750 ms

FIGURE 10 | Time courses of trials. Experiment 1: before the start of each
trial, participants fixated a central cross. One Cornsweet and one real
luminance step stimulus appeared for 200 ms each, with a 200 ms interval
between them. The order of the stimuli, their orientation and the side on
which each appeared were randomized (although they were constrained to
appear on opposite sides within each trial). Participants then had 1750 ms
to report the side on which the stimulus with the greatest contrast had
appeared (using the arrow keys of the keyboard). Experiment 2: each trial
stared with fixation. A Cornsweet stimulus then appeared for 200 ms with a
random orientation to the left or right of fixation. Participants had 1750 ms
to report, with the “Y"” and “N" keys, if they perceived Mach bands.

SE. The reported Cornsweet effect (as indexed by the point of sub-
jective equality) peaked, on average over subjects, at a contrast of
about 0.0025. At higher levels of contrast, as in the simulations,
the effect fell quantitatively, plateauing at the highest contrast
used in Experiment 1. Conversely, the probability of reporting a
Mach band increased monotonically as a function of the empirical
contrast, reaching about 75% at a Weber contrast of about 0.15.
Qualitatively, these empirical results compare well with the the-
oretical predictions shown in Figure 9: that is, the subjective or
inferred Cornsweet effect emerged before the Mach bands, as con-
trast increases. We also see the characteristic “inverted U” depen-
dency of the Cornsweet effect on contrast levels. The empirical
profile is somewhat compromised by the small range of contrasts
employed, however, this range was sufficient to disclose an unam-
biguous peak. Clearly, it would be nice to relate these empirical
results quantitatively to the simulations shown in Figure 9. This
presents an interesting challenge because the psychophysical data
consist of reported levels of an effect and the probability of an
effect for the Cornsweet and Mach Band illusions respectively.
However, because our simulations provide a conditional or pos-
terior probability over the effects reported, we can simulate both
sorts of reports and see how well they explain the psychophysical
data. This quantitative analysis is now considered in more detail.

A FORMAL BEHAVIORAL ANALYSIS

The simulations provide conditional expectations (and precisions)
of both the Cornsweet and Mach band effects over a number of
simulated (Weber) contrast levels, as modeled with the precision
of sensory noise. This means that one can compute a psychome-
tric function of contrast ¢ that returns the behavioral predictions
of both illusions respectively; namely, the level of the illusion and
the probability of inferring a Mach band. To predict the reported

Empirical results
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FIGURE 11 | experimental results. This figure shows the results of the
empirical psychophysical study for the Cornsweet illusion (left panel) and
the Mach band illusion (Right panel). Both report the average effect over
subjects and the SE (bars). The Cornsweet illusion is measured in terms
of the subjective contrast level (quantified in terms of subjective
equivalence using psychometric functions). The Mach band illusion is
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quantified in terms of probability that the illusion is reported to be
present. Both results are shown as functions of empirical (Weber)
stimulus contrast levels. We have used the same range for both graphs
so that the dependency on contrast levels can be compared. The key
thing to note here is that the Cornsweet illusion peaks before the Mach
band illusion (vertical line).
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level of the Cornsweet illusion we can simply use the conditional
expectation com(c) scaled by some (unknown) coefficient ;. To
predict the probability of reporting the presence of Mach bands,
one can integrate the conditional probability distribution over the
Mach band effect above some (unknown) threshold B,. However,
to do this, we need to know the relationship between the simulated
and empirical contrasts:

As noted above, we used the log-precision of sensory noise
y to model log-contrast in accord with Weber’s law. This means
we can assume a linear relationship between the empirical log-
contrast and simulated log-precision. This induces two further
unknown coefficients — the slope and intercept (B3 and B4) that
parameterise the relationship between the simulated and empiri-
cal contrasts. Finally, we need to relate the conditional probability
of a suprathreshold Mach band effect to the probability of report-
ing its presence. Here, we assumed a simple, monotonic sigmoid
relationship, under the constraint that when the conditional prob-
ability was 50:50, the report probability was also 50:50. The precise
form of this mapping is provided in Figure 11 (left panel) and has a

single (unknown) slope coefficient f5. These relationships provide
amapping between the results of the simulations and the observed
responses averaged over subjects (under the assumptions of addi-
tive prediction errors). This is known as a response model and is
detailed schematically in Figure 11. The predictions are based on
the simulated responses in Figure 9, assuming a smooth psycho-
metric function of contrast that was modeled as a linear mixture of
cosine functions: X(y) = cos(myk) for k=1, ..., 6). The coeffi-
cients of this discrete cosine set were estimated with ordinary least
squares, using the responses of the model (Wcorn (V)> Wmac(Y)) over
different precision levels, at the time of maximum luminance.
Given the form of the relationships between the simulated
and empirical contrasts and between the report probability and
conditional probabilities for Mach bands, one can use the psy-
chophysical data to estimate the unknown coefficients of these
relationships: B; for=1,..., 5. The results of this computation-
ally informed response modeling are shown in the right panel of
Figure 12. The upper panels show the same data as in Figure 10
placed over the theoretical psychometric functions based on the

FIGURE 12 | Predicted and experimental results. Theoretical predictions
of the empirical results reported in the previous figure: These predictions are
based upon a response model that maps from the conditional expectations
and precisions in the simulations to the behavioural responses of subjects.
This mapping rests on some unknown parameters or coefficients B;:i=1,
..., b that control the relationship between the simulated y(c) and empirical
contrast levels ¢ used for stimuli and the relationship between the
probabilities of reporting a Mach band o(p..(c)) and the conditional
probability that it exceeds some threshold p,...(c) at contrast level c. These
relationships form the basis of a response model, whose equations are
provided in the left panel (for simplicity, we have omitted the expressions for
conditional variance of the Mach band contrast). Given empirical responses
for the mean Cornsweet effect M(c) and probability of reporting a Mach
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band P(c), the coefficients B; can be estimated under the assumption of
additive prediction errors €. The predicted responses following this
estimation are shown in the graphs on the right hand side. The upper panels
show the empirical data superimposed upon conditional predictions from
the model. The gray lines are the predicted psychometric functions, pem(C)
and o(pma.(€)). The red dots correspond to the predictions at levels of
contrast used in the simulations (as shown in Figure 9), while the black dots
correspond to the empirical responses: M(c) and P(c). The lower left panel
show the relationship between the empirical and simulated contrast levels
(as a semi-log plot of the empirical contrast against the log-precision of
sensory noise). The lower right panel shows the relationship between the
probability of reporting a Mach band is present and the underlying
conditional probability that it is above threshold.
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simulations of the previous section. These predictions are based
on the mapping from simulated to empirical contrast levels (lower
left) and the relationship between the probability of reporting a
Mach band and the conditional confidence that it is present (lower
right).

By construction, the relationship between the simulated and
empirical contrasts is linear when plotted on a log-log scale. The
slope of this plot suggests that the higher contrasts used in the sim-
ulations are, practically, not realizable in an empirical setting. This
is because as the simulated contrast increases the corresponding
empirical contrast increases much more quickly. The implication
of this is that the contrasts employed in the psychophysics study
correspond to the first few levels of the simulated contrasts. This
means that it may be difficult to demonstrate the theoretically pre-
dicted attenuation of the Cornsweet illusion at very high levels of
contrast.

The relationship between the report and conditional probabil-
ities suggests that subjects have a tendency to “all or nothing”
reporting; in the sense that a conditional confidence that the
probability of reporting a Mach band is slightly greater than the
conditional confidence it is above threshold. Conversely, subjects
appear to report the absence of Mach bands with a probabil-
ity that is slightly greater than the conditional probability it is
below threshold. The resulting psychometric predictions (in the
upper panels) show a remarkable agreement between the predicted
and observed probabilities of reporting a Mach band. The corre-
spondence between the predicted and empirical results for the
Cornsweet illusion are less convincing but show that both asymp-
tote to a peak level much more quickly than the probability of
reporting a Mach band.

In summary, this analysis suggests that there is a reasonable
quantitative agreement between the theoretical predictions and
empirical results. Furthermore, in practical terms, it appears that
the normal range of Weber contrasts that can be usefully employed
corresponds to a relatively low level of sensory precision in the

simulations. This means that it may be difficult to demonstrate the
“inverted U” behavior for the Cornsweet illusion seen in Figure 9.
This is because it may be difficult to present stimuli at the ultra
high levels of contrast required. Note that the empirical proba-
bility of reporting a Mach band does not decrease as a function
of contrast level. This is to be anticipated from the theoretical
predictions: increasing the contrast level increases the conditional
precision about the inferred level of the Mach band effect, which
means that the probability that is above threshold can still increase
even if the conditional expectation decreases (as in Figure 9).

CONCLUSION

This paper has reviewed the nature of illusions, in the context
of Bayes-optimal perception. We reiterate the notion that illusory
percepts are optimal in that they may represent the most likely
explanation for ambiguous sensory input. We have illustrated this
using the Cornsweet illusion. By using simple and plausible prior
expectations about the spatial deployment of illuminance and
reflectance, we have shown show that the Cornsweet effect emerges
as a natural consequence of Bayes-optimal perception. Further-
more, we were able to simulate a contrast-dependent emergence
of the Cornsweet effect and subsequent appearance of Mach bands
that was verified psychophysically using a forced choice paradigm.

SOFTWARE NOTE

The simulations and graphics presented in this paper can be
reproduced with the DEM toolbox distributed with the academic
freeware SPM from http://www.fil.ion.ucl.ac.uk/spm/. The anno-
tated files that implement the Cornsweet illusion simulations and
the more general routines used for model inversion are provided
as Matlab code.
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