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While multicollinearity may increase the difficulty of interpreting multiple regression (MR)
results, it should not cause undue problems for the knowledgeable researcher. In the
current paper, we argue that rather than using one technique to investigate regression
results, researchers should consider multiple indices to understand the contributions that
predictors make not only to a regression model, but to each other as well. Some of the
techniques to interpret MR effects include, but are not limited to, correlation coefficients,
beta weights, structure coefficients, all possible subsets regression, commonality coef-
ficients, dominance weights, and relative importance weights. This article will review a
set of techniques to interpret MR effects, identify the elements of the data on which the
methods focus, and identify statistical software to support such analyses.
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Multiple regression (MR) is used to analyze the variability of a
dependent or criterion variable using information provided by
independent or predictor variables (Pedhazur, 1997). It is an
important component of the general linear model (Zientek and
Thompson, 2009). In fact, MR subsumes many of the quantita-
tive methods that are commonly taught in education (Henson
et al., 2010) and psychology doctoral programs (Aiken et al., 2008)
and published in teacher education research (Zientek et al., 2008).
One often cited assumption for conducting MR is minimal corre-
lation among predictor variables (cf. Stevens, 2009). As Thompson
(2006) explained, “Collinearity (or multicollinearity) refers to the
extent to which the predictor variables have non-zero correlations
with each other” (p. 234). In practice, however, predictor variables
are often correlated with one another (i.e., multicollinear), which
may result in combined prediction of the dependent variable.

Multicollinearity can lead to increasing complexity in the
research results, thereby posing difficulty for researcher inter-
pretation. This complexity, and thus the common admonition
to avoid multicollinearity, results because the combined predic-
tion of the dependent variable can yield regression weights that
are poor reflections of variable relationships. Nimon et al. (2010)
noted that correlated predictor variables can “complicate result
interpretation. . . a fact that has led many to bemoan the presence
of multicollinearity among observed variables” (p. 707). Indeed,
Stevens (2009) suggested “Multicollinearity poses a real problem
for the researcher using multiple regression” (p. 74).

Nevertheless, Henson (2002) observed that multicollinearity
should not be seen as a problem if additional analytic information
is considered:

The bottom line is that multicollinearity is not a problem in
multiple regression, and therefore not in any other [general
linear model] analysis, if the researcher invokes structure

coefficients in addition to standardized weights. In fact,
in some multivariate analyses, multicollinearity is actually
encouraged, say, for example, when multi-operationalizing a
dependent variable with several similar measures. (p. 13)

Although multicollinearity is not a direct statistical assumption
of MR (cf. Osborne and Waters, 2002), it complicates interpreta-
tion as a function of its influence on the magnitude of regression
weights and the potential inflation of their standard error (SE),
thereby negatively influencing the statistical significance tests of
these coefficients. Unfortunately, many researchers rely heavily
on standardized (beta, β) or unstandardized (slope) regression
weights when interpreting MR results (Courville and Thompson,
2001; Zientek and Thompson, 2009). In the presence of mul-
ticollinear data, focusing solely on regression weights yields at
best limited information and, in some cases, erroneous interpre-
tation. However, it is not uncommon to see authors argue for the
importance of predictor variables to a regression model based on
the results of null hypothesis statistical significance tests of these
regression weights without consideration of the multiple com-
plex relationships between predictors and predictors with their
outcome.

PURPOSE
The purpose of the present article is to discuss and demonstrate
several methods that allow researchers to fully interpret and under-
stand the contributions that predictors play in forming regression
effects, even when confronted with collinear relationships among
the predictors. When faced with multicollinearity in MR (or other
general linear model analyses), researchers should be aware of and
judiciously employ various techniques available for interpretation.
These methods, when used correctly, allow researchers to reach
better and more comprehensive understandings of their data than
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would be attained if only regression weights were considered. The
methods examined here include inspection of zero-order corre-
lation coefficients, β weights, structure coefficients, commonality
coefficients, all possible subsets regression, dominance weights,
and relative importance weights (RIW). Taken together, the var-
ious methods will highlight the complex relationships between
predictors themselves, as well as between predictors and the depen-
dent variables. Analysis from these different standpoints allows
the researcher to fully investigate regression results and lessen the
impact of multicollinearity. We also concretely demonstrate each
method using data from a heuristic example and provide reference
information or direct syntax commands from a variety of statistical
software packages to help make the methods accessible to readers.

In some cases multicollinearity may be desirable and part of
a well-specified model, such as when multi-operationalizing a
construct with several similar instruments. In other cases, par-
ticularly with poorly specified models, multicollinearity may be
so high that there is unnecessary redundancy among predictors,
such as when including both subscale and total scale variables as
predictors in the same regression. When unnecessary redundancy
is present, researchers may reasonably consider deletion of one or
more predictors to reduce collinearity. When predictors are related
and theoretically meaningful as part of the analysis, the current
methods can help researchers parse the roles related predictors
play in predicting the dependent variable. Ultimately, however,
the degree of collinearity is a judgement call by the researcher, but
these methods allow researchers a broader picture of its impact.

PREDICTOR INTERPRETATION TOOLS
CORRELATION COEFFICIENTS
One method to evaluate a predictor’s contribution to the regres-
sion model is the use of correlation coefficients such as Pearson
r, which is the zero-order bivariate linear relationship between an
independent and dependent variable. Correlation coefficients are
sometimes used as validity coefficients in the context of construct
measurement relationships (Nunnally and Bernstein, 1994). One
advantage of r is that it is the fundamental metric common to all
types of correlational analyses in the general linear model (Hen-
son, 2002; Thompson, 2006; Zientek and Thompson, 2009). For
interpretation purposes,Pearson r is often squared (r2) to calculate
a variance-accounted-for effect size.

Although widely used and reported, r is somewhat limited in
its utility for explaining MR relationships in the presence of multi-
collinearity. Because r is a zero-order bivariate correlation, it does
not take into account any of the MR variable relationships except
that between a single predictor and the criterion variable. As such,
r is an inappropriate statistic for describing regression results as
it does not consider the complicated relationships between pre-
dictors themselves and predictors and criterion (Pedhazur, 1997;
Thompson, 2006). In addition, Pearson r is highly sample spe-
cific, meaning that r might change across individual studies even
when the population-based relationship between the predictor and
criterion variables remains constant (Pedhazur, 1997).

Only in the hypothetical (and unrealistic) situation when the
predictors are perfectly uncorrelated is r a reasonable represen-
tation of predictor contribution to the regression effect. This is
because the overall R2 is simply the sum of the squared correlations

between each predictor (X) and the outcome (Y ):

R2 = rY −X12 + rY −X22 + . . . + rY −Xk 2, or

R2 = (rY −X1) (rY −X1) + (rY −X2) (rY −X2) + . . .

+ (
rY −Xk

) (
rY −Xk

)
. (1)

This equation works only because the predictors explain differ-
ent and unique portions of the criterion variable variance. When
predictors are correlated and explain some of the same variance of
the criterion, the sum of the squared correlations would be greater
than 1.00, because r does not consider this multicollinearity.

BETA WEIGHTS
One answer to the issue of predictors explaining some of the same
variance of the criterion is standardized regression (β) weights.
Betas are regression weights that are applied to standardized (z)
predictor variable scores in the linear regression equation, and
they are commonly used for interpreting predictor contribution
to the regression effect (Courville and Thompson, 2001). Their
utility lies squarely with their function in the standardized regres-
sion equation, which speaks to how much credit each predictor
variable is receiving in the equation for predicting the dependent
variable, while holding all other independent variables constant.
As such, a β weight coefficient informs us as to how much change
(in standardized metric) in the criterion variable we might expect
with a one-unit change (in standardized metric) in the predictor
variable, again holding all other predictor variables constant (Ped-
hazur, 1997). This interpretation of a β weight suggests that its
computation must simultaneously take into account the predictor
variable’s relationship with the criterion as well as the predictor
variable’s relationships with all other predictors.

When predictors are correlated, the sum of the squared bivari-
ate correlations no longer yields the R2 effect size. Instead, βs can
be used to adjust the level of correlation credit a predictor gets in
creating the effect:

R2 = (β1) (rY −X1) + (β2) (rY −X2) + . . . + (βk)
(
rY −Xk

)
. (2)

This equation highlights the fact that β weights are not
direct measures of relationship between predictors and outcomes.
Instead, they simply reflect how much credit is being given to pre-
dictors in the regression equation in a particular context (Courville
and Thompson, 2001). The accuracy of β weights are theoreti-
cally dependent upon having a perfectly specified model, since
adding or removing predictor variables will inevitably change β

values. The problem is that the true model is rarely, if ever, known
(Pedhazur, 1997).

Sole interpretation of β weights is troublesome for several rea-
sons. To begin, because they must account for all relationships
among all of the variables, β weights are heavily affected by the
variances and covariances of the variables in question (Thompson,
2006). This sensitivity to covariance (i.e., multicollinear) rela-
tionships can result in very sample-specific weights which can
dramatically change with slight changes in covariance relation-
ships in future samples, thereby decreasing generalizability. For
example, β weights can even change in sign as new variables are
added or as old variables are deleted (Darlington, 1968).
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When predictors are multicollinear, variance in the criterion
that can be explained by multiple predictors is often not equally
divided among the predictors. A predictor might have a large cor-
relation with the outcome variable, but might have a near-zero
β weight because another predictor is receiving the credit for the
variance explained (Courville and Thompson, 2001). As such, β

weights are context-specific to a given specified model. Due to the
limitation of these standardized coefficients, some researchers have
argued for the interpretation of structure coefficients in addition
to β weights (e.g., Thompson and Borrello, 1985; Henson, 2002;
Thompson, 2006).

STRUCTURE COEFFICIENTS
Like correlation coefficients, structure coefficients are also sim-
ply bivariate Pearson rs, but they are not zero-order correlations
between two observed variables. Instead, a structure coefficient
is a correlation between an observed predictor variable and the
predicted criterion scores, often called “Yhat” (Ŷ ) scores (Hen-
son, 2002; Thompson, 2006). These Ŷ scores are the predicted
estimate of the outcome variable based on the synthesis of all
the predictors in regression equation; they are also the primary
focus of the analysis. The variance of these predicted scores repre-
sents the portion of the total variance of the criterion scores that
can be explained by the predictors. Because a structure coefficient
represents a correlation between a predictor and the Ŷ scores, a
squared structure coefficient informs us as to how much variance
the predictor can explain of the R2 effect observed (not of the total
dependent variable), and therefore provide a sense of how much
each predictor could contribute to the explanation of the entire
model (Thompson, 2006).

Structure coefficients add to the information provided by β

weights. Betas inform us as to the credit given to a predictor in the
regression equation, while structure coefficients inform us as to the
bivariate relationship between a predictor and the effect observed
without the influence of the other predictors in the model. As
such, structure coefficients are useful in the presence of multi-
collinearity. If the predictors are perfectly uncorrelated, the sum
of all squared structure coefficients will equal 1.00 because each
predictor will explain its own portion of the total effect (R2). When
there is shared explained variance of the outcome, this sum will
necessarily be larger than 1.00. Structure coefficients also allow us
to recognize the presence of suppressor predictor variables, such
as when a predictor has a large β weight but a disproportion-
ately small structure coefficient that is close to zero (Courville and
Thompson, 2001; Thompson, 2006; Nimon et al., 2010).

ALL POSSIBLE SUBSETS REGRESSION
All possible subsets regression helps researchers interpret regres-
sion effects by seeking a smaller or simpler solution that still has
a comparable R2 effect size. All possible subsets regression might
be referred to by an array of synonymous names in the literature,
including regression weights for submodels (Braun and Oswald,
2011), all possible regressions (Pedhazur, 1997), regression by
leaps and bounds (Pedhazur, 1997), and all possible combination
solution in regression (Madden and Bottenberg, 1963).

The concept of all possible subsets regression is a relatively
straightforward approach to explore for a regression equation

until the best combination of predictors is used in a single equa-
tion (Pedhazur, 1997). The exploration consists of examining the
variance explained by each predictor individually and then in all
possible combinations up to the complete set of predictors. The
best subset, or model, is selected based on judgments about the
largest R2 with the fewest number of variables relative to the full
model R2 with all predictors. All possible subsets regression is
the skeleton for commonality and dominance analysis (DA) to be
discussed later.

In many ways, the focus of this approach is on the total effect
rather than the particular contribution of variables that make up
that effect, and therefore the concept of multicollinearity is less
directly relevant here. Of course, if variables are redundant in the
variance they can explain, it may be possible to yield a similar effect
size with a smaller set of variables. A key strength of all possible
subsets regression is that no combination or subset of predictors
is left unexplored.

This strength, however, might also be considered the biggest
weakness, as the number of subsets requiring exploration is expo-
nential and can be found with 2k − 1, where k represents the
number of predictors. Interpretation might become untenable as
the number of predictor variables increases. Further, results from
an all possible subset model should be interpreted cautiously, and
only in an exploratory sense. Most importantly, researchers must
be aware that the model with the highest R2 might have achieved
such by chance (Nunnally and Bernstein, 1994).

COMMONALITY ANALYSIS
Multicollinearity is explicitly addressed with regression common-
ality analysis (CA). CA provides separate measures of unique
variance explained for each predictor in addition to measures
of shared variance for all combinations of predictors (Pedhazur,
1997). This method allows a predictor’s contribution to be related
to other predictor variables in the model, providing a clear picture
of the predictor’s role in the explanation by itself, as well as with
the other predictors (Rowell, 1991, 1996; Thompson, 2006; Zien-
tek and Thompson, 2006). The method yields all of the uniquely
and commonly explained parts of the criterion variable which
always sum to R2. Because CA identifies the unique contribution
that each predictor and all possible combinations of predictors
make to the regression effect, it is particularly helpful when sup-
pression or multicollinearity is present (Nimon, 2010; Zientek and
Thompson, 2010; Nimon and Reio, 2011). It is important to note,
however, that commonality coefficients (like other MR indices)
can change as variables are added or deleted from the model
because of fluctuations in multicollinear relationships. Further,
they cannot overcome model misspecification (Pedhazur, 1997;
Schneider, 2008).

DOMINANCE ANALYSIS
Dominance analysis was first introduced by Budescu (1993) and
yields weights that can be used to determine dominance, which
is a qualitative relationship defined by one predictor variable
dominating another in terms of variance explained based upon
pairwise variable sets (Budescu, 1993; Azen and Budescu, 2003).
Because dominance is roughly determined based on which pre-
dictors explain the most variance, even when other predictors
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explain some of the same variance, it tends to de-emphasize
redundant predictors when multicollinearity is present. DA cal-
culates weights on three levels (complete, conditional, and gen-
eral), within a given number of predictors (Azen and Budescu,
2003).

Dominance levels are hierarchical, with complete dominance
as the highest level. Complete dominance is inherently both con-
ditional and generally dominant. The reverse, however, is not
necessarily true; a generally dominant variable is not necessar-
ily conditionally or completely dominant. Complete dominance
occurs when a predictor has a greater dominance weight,or average
additional R2, in all possible pairwise (and combination) com-
parisons. However, complete dominance does not typically occur
in real data. Because predictor dominance can present itself in
more practical intensities, two lower levels of dominance were
introduced (Azen and Budescu, 2003).

The middle level of dominance, referred as conditional dom-
inance, is determined by examining the additional contribution
to R2 within specific number of predictors (k). A predictor might
conditionally dominate for k = 2 predictors, but not necessarily
k = 0 or 1. The conditional dominance weight is calculated by
taking the average R2 contribution by a variable for a specific
k. Once the conditional dominance weights are calculated, the
researcher can interpret the averages in pairwise fashion across all
k predictors.

The last and lowest level of dominance is general. General
dominance averages the overall additional contributions of R2.
In simple terms, the average weights from each k group (k = 0,
1, 2) for each predictor (X1, X2, and X3) are averaged for the
entire model. General dominance is relaxed compared to the com-
plete and conditional dominance weights to alleviate the number
of undetermined dominance in data analysis (Azen and Bude-
scu, 2003). General dominance weights provide similar results as
RIWs, proposed by Lindeman et al. (1980) and Johnson (2000,
2004). RIWs and DA are deemed the superior MR interpretation
techniques by some (Budescu and Azen, 2004), almost always pro-
ducing consistent results between methods (Lorenzo-Seva et al.,
2010). Finally, an important point to emphasize is that the sum of
the general dominance weights will equal the multiple R2 of the
model.

Several strengths are noteworthy with a full DA. First, dom-
inance weights provide information about the contribution of
predictor variables across all possible subsets of the model. In
addition, because comparisons can be made across all pairwise
comparisons in the model, DA is sensitive to patterns that might
be present in the data. Finally, complete DA can be a useful tool
for detection and interpretation of suppression cases (Azen and
Budescu, 2003).

Some weaknesses and limitations of DA exist, although some
of these weaknesses are not specific to DA. DA is not appropri-
ate in path analyses or to test a specific hierarchical model (Azen
and Budescu, 2003). DA is also not appropriate for mediation
and indirect effect models. Finally, as is true with all other meth-
ods of variable interpretation, model misspecification will lead
to erroneous interpretation of predictor dominance (Budescu,
1993). Calculations are also thought by some to be laborious as
the number of predictors increases (Johnson, 2000).

RELATIVE IMPORTANCE WEIGHTS
Relative importance weights can also be useful in the presence of
multicollinearity, although like DA, these weights tend to focus on
attributing general credit to primary predictors rather than detail-
ing the various parts of the dependent variable that are explained.
More specifically, RIWs are the proportionate contribution from
each predictor to R2, after correcting for the effects of the inter-
correlations among predictors (Lorenzo-Seva et al., 2010). This
method is recommended when the researcher is examining the
relative contribution each predictor variable makes to the depen-
dent variable rather than examining predictor ranking (Johnson,
2000, 2004) or having concern with specific unique and com-
monly explained portions of the outcome, as with CA. RIWs range
between 0 and 1, and their sum equals R2 (Lorenzo-Seva et al.,
2010). The weights most always match the values given by general
dominance weights, despite being derived in a different fashion.

Relative importance weights are computed in four major steps
(see full detail in Johnson, 2000; Lorenzo-Seva et al., 2010). Step
one transforms the original predictors (X) into orthogonal vari-
ables (Z ) to achieve the highest similarity of prediction compared
to the original predictors but with the condition that the trans-
formed predictors must be uncorrelated. This initial step is an
attempt to simplify prediction of the criterion by removing mul-
ticollinearity. Step two involves regressing the dependent variable
(Y ) onto the orthogonalized predictors (Z ), which yields the stan-
dardized weights for each Z. Because the Zs are uncorrelated, these
β weights will equal the bivariate correlations between Y and Z,
thus making equations (1) and (2) above the same. In a three
predictor model, for example, the result would be a 3 × 1 weight
matrix (β) which is equal to the correlation matrix between Y
and the Z s. Step three correlates the orthogonal predictors (Z )
with the original predictors (X) yielding a 3 × 3 matrix (R) in a
three predictor model. Finally, step four calculates the RIWs (ε) by
multiplying the squared ZX correlations (R) with the squared YZ
weights (β).

Relative importance weights are perhaps more efficiently com-
puted as compared to computation of DA weights which requires
all possible subsets regressions as building blocks (Johnson, 2004;
Lorenzo-Seva et al., 2010). RIWs and DA also yield almost identical
solutions, despite different definitions (Johnson, 2000; Lorenzo-
Seva et al., 2010). However, these weights do not allow for easy
identification of suppression in predictor variables.

HEURISTIC DEMONSTRATION
When multicollinearity is present among predictors, the above
methods can help illuminate variable relationships and inform
researcher interpretation. To make their use more accessible to
applied researchers, the following section demonstrates these
methods using a heuristic example based on the classic suppres-
sion correlation matrix from Azen and Budescu (2003), presented
in Table 1. Table 2 lists statistical software or secondary syntax
programs available to run the analyses across several commonly
used of software programs – blank spaces in the table reflect an
absence of a solution for that particular analysis and solution, and
should be seen as an opportunity for future development. Sections
“Excel For All Available Analyses, R Code For All Available Analy-
ses, SAS Code For All Available Analyses, and SPSS Code For All
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Analyses” provide instructions and syntax commands to run var-
ious analyses in Excel, R, SAS, and SPSS, respectively. In most
cases, the analyses can be run after simply inputting the correla-
tion matrix from Table 1 (n = 200 cases was used here). For SPSS
(see SPSS Code For All Analyses), some analyses require the gener-
ation of data (n = 200) using the syntax provided in the first part
of the appendix (International Business Machines Corp, 2010).
Once the data file is created, the generic variable labels (e.g., var1)
can be changed to match the labels for the correlation matrix (i.e.,
Y, X1, X2, and X3).

All of the results are a function of regressing Y on X1, X2, and
X3 via MR. Table 3 presents the summary results of this analysis,

Table 1 | Correlation matrix for classical suppression example (Azen

and Budescu, 2003).

Y X 1 X 2 X 3

Y 1.000

X 1 0.500 1.000

X 2 0.000 0.300 1.000

X 3 0.250 0.250 0.250 1.000

Reprinted with permission from Azen and Budescu (2003). Copyright 2003 by

Psychological Methods.

along with the various coefficients and weights examined here to
facilitate interpretation.

CORRELATION COEFFICIENTS
Examination of the correlations in Table 1 indicate that the cur-
rent data indeed have collinear predictors (X1, X2, and X3), and
therefore some of the explained variance of Y (R2 = 0.301) may
be attributable to more than one predictor. Of course, the bivari-
ate correlations tell us nothing directly about the nature of shared
explained variance. Here, the correlations between Y and X1, X2,
and X3 are 0.50, 0, and 0.25, respectively. The squared correlations
(r2) suggest that X1 is the strongest predictor of the outcome vari-
able, explaining 25% (r2 = 0.25) of the criterion variable variance
by itself. The zero correlation between Y and X2 suggests that there
is no relationship between these variables. However, as we will see
through other MR indices, interpreting the regression effect based
only on the examination of correlation coefficients would pro-
vide, at best, limited information about the regression model as it
ignores the relationships between predictors themselves.

BETA WEIGHTS
The β weights can be found in Table 3. They form the standard-
ized regression equation which yields predicted Y scores: Ŷ =
(0.517 ∗ X1)+ (−0.198 ∗ X2)+ (0.170 ∗ X3), where all predictors
are in standardized (Z ) form. The squared correlation between Y

Table 2 |Tools to support interpreting multiple regression.

Program Beta weights Structure

coefficients

All possible

subsets

Commonality

analysisc

Relative weights Dominance

analysis

Excel Base rs = ry.x1/R Braun and

Oswald (2011)a
Braun and Oswald (2011)a Braun and Oswald (2011)a

R Nimon and

Roberts (2009)

Nimon and

Roberts (2009)

Lumley (2009) Nimon et al.

(2008)

SAS Base base baseb Tonidandel et al. (2009)d Azen and Budescu (2003)b

SPSS Base Lorenzo-Seva

et al. (2010)

Nimon (2010) Nimon (2010) Lorenzo-Seva et al. (2010),

Lorenzo-Seva and Ferrando (2011),

LeBreton and Tonidandel (2008)

aUp to 9 predictors, bup to 10 predictors, cA FORTRAN IV computer program to accomplish commonality analysis was developed by Morris (1976). However, the

program was written for a mainframe computer and is now obsolete, dTheTonidandel et al. (2009) SAS solution computes relative weights with a bias correction, and

thus results do not mirror those in the current paper. As such, we have decided not to demonstrate the solution here. However, the macro can be downloaded online

(http://www1.davidson.edu/academic/psychology/Tonidandel/TonidandelProgramsMain.htm) and provides user-friendly instructions.

Table 3 | Multiple regression results.

Predictor β rs r2
s r R2 Uniquea Commona General dominance weightsb Relative importance weights

X 1 0.517 0.911 0.830 0.500 0.250 0.234 0.016 0.241 0.241

X 2 −0.198 0.000 0.000 0.000 0.000 0.034 −0.034 0.016 0.015

X 3 0.170 0.455 0.207 0.250 0.063 0.026 0.037 0.044 0.045

R2 = 0.301. The primary predictor suggested by a method is underlined. r is correlation between predictor and outcome variable.

rs = structure coefficient = r/R. r 2
s = r 2

/
R2. Unique = proportion of criterion variance explained uniquely by the predictor. Common = proportion of criterion variance

explained by the predictor that is also explained by one or more other predictors. Unique + Common = r2. Σ General dominance weights = Σ relative importance

weights = R2. aSeeTable 5 for full CA. bSeeTable 6 for full DA.
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and Ŷ equals the overall R2 and represents the amount of variance
of Y that can be explained by Ŷ , and therefore by the predictors
collectively. The β weights in this equation speak to the amount of
credit each predictor is receiving in the creation of Ŷ , and therefore
are interpreted by many as indicators of variable importance (cf.
Courville and Thompson, 2001; Zientek and Thompson, 2009).

In the current example, r2
Y ·Ŷ t

= R2 = 0.301, indicating that
about 30% of the criterion variance can be explained by the predic-
tors. The β weights reveal that X1 (β = 0.517) received more credit
in the regression equation, compared to both X2 (β = −0.198) and
X3 (β = 0.170). The careful reader might note that X2 received
considerable credit in the regression equation predicting Y even
though its correlation with Y was 0. This oxymoronic result will
be explained later as we examine additional MR indices. Further-
more, these results make clear that the βs are not direct measures
of relationship in this case since the β for X2 is negative even
though the zero-order correlation between the X2 and Y is posi-
tive. This difference in sign is a good first indicator of the presence
of multicollinear data.

STRUCTURE COEFFICIENTS
The structure coefficients are given in Table 3 as r s. These are sim-
ply the Pearson correlations between Ŷ and each predictor. When
squared, they yield the proportion of variance in the effect (or, of
the Ŷ scores) that can be accounted for by the predictor alone,
irrespective of collinearity with other predictors. For example, the
squared structure coefficient for X1 was 0.830 which means that
of the 30.1% (R2) effect, X1 can account for 83% of the explained
variance by itself. A little math would show that 83% of 30.1%
is 0.250, which matches the r2 in Table 3 as well. Therefore, the
interpretation of a (squared) structure coefficient is in relation
to the explained effect rather than to the dependent variable as a
whole.

Examination of the β weights and structure coefficients in the
current example suggests that X1 contributed most to the variance
explained with the largest absolute value for both the β weight and
structure coefficient (β = 0.517, rs = 0.911 or r2

s = 83.0%). The
other two predictors have somewhat comparable βs but quite dis-
similar structure coefficients. Predictor X3 can explain about 21%
of the obtained effect by itself (β = 0.170, rs = 0.455, r2

s = 20.7%),
but X2 shares no relationship with the Ŷ scores (β = −0.198, rs

and r2
s = 0).

On the surface it might seem a contradiction for X2 to explain
none of the effect but still be receiving credit in the regression
equation for creating the predicted scores. However, in this case
X2 is serving as a suppressor variable and helping the other pre-
dictor variables do a better job of predicting the criterion even
though X2 itself is unrelated to the outcome. A full discussion
of suppression is beyond the scope of this article1. However, the
current discussion makes apparent that the identification of sup-
pression would be unlikely if the researcher were to only examine
β weights when interpreting predictor contributions.

1Suppression is apparent when a predictor has a beta weight that is disproportion-
ately large (thus receiving predictive credit) relative to a low or near-zero structure
coefficient (thus indicating no relationship with the predicted scores). For a broader
discussion of suppression, see Pedhazur (1997) and Thompson (2006).

Because a structure coefficient speaks to the bivariate relation-
ship between a predictor and an observed effect, it is not directly
affected by multicollinearity among predictors. If two predic-
tors explain some of the same part of the Ŷ score variance, the
squared structure coefficients do not arbitrarily divide this vari-
ance explained among the predictors. Therefore, if two or more
predictors explain some of the same part of the criterion, the sum
the squared structure coefficients for all predictors will be greater
than 1.00 (Henson, 2002). In the current example, this sum is 1.037
(0.830 + 0 + 0.207), suggesting a small amount of multicollinear-
ity. Because X2 is unrelated to Y, the multicollinearity is entirely a
function of shared variance between X1 and X3.

ALL POSSIBLE SUBSETS REGRESSION
We can also examine how each of the predictors explain Y both
uniquely and in all possible combinations of predictors. With three
variables, seven subsets are possible (2k − 1 or 23 − 1). The R2

effects from each of these subsets are given in Table 4, which
includes the full model effect of 30.1% for all three predictors.
Predictors X1 and X2 explain roughly 27.5% of the variance in
the outcome. The difference between a three predictor versus this
two predictor model is a mere 2.6% (30.1−27.5), a relatively small
amount of variance explained. The researcher might choose to
drop X3, striving for parsimony in the regression model. A deci-
sion might also be made to drop X2 given its lack of prediction
of Y independently. However, careful examination of the results
speaks again to the suppression role of X2, which explains none
of Y directly but helps X1 and X3 explain more than they could
by themselves when X2 is added to the model. In the end, deci-
sions about variable contributions continue to be a function of
thoughtful researcher judgment and careful examination of exist-
ing theory. While all possible subsets regression is informative, this
method generally lacks the level of detail provided by both βs and
structure coefficients.

COMMONALITY ANALYSIS
Commonality analysis takes all possible subsets further and divides
all of the explained variance in the criterion into unique and
common (or shared) parts. Table 5 presents the commonality
coefficients, which represent the proportions of variance explained
in the dependent variable. The unique coefficient for X1 (0.234)
indicates that X1 uniquely explains 23.4% of the variance in the

Table 4 | All possible subsets regression.

Predictor set R2

X 1 0.250

X 2 0.000

X 3 0.063

X 1, X 2 0.275

X 1, X 3 0.267

X 2, X 3 0.067

X 1, X 2, X 3 0.301

Predictor contribution is determined by researcher judgment.The model with the

highest R2 value, but with the most ease of interpretation, is typically chosen.
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dependent variable. This amount of variance is more than any
other partition, representing 77.85% of the R2 effect (0.301). The
unique coefficient for X3 (0.026) is the smallest of the unique
effects and indicates that the regression model only improves
slightly with the addition of variable X3, which is the same inter-
pretation provided by the all possible subsets analysis. Note that
X2 uniquely accounts for 11.38% of the variance in the regression
effect. Again, this outcome is counterintuitive given that the corre-
lation between X2 and Y is zero. However, as the common effects
will show, X2 serves as a suppressor variable, yielding a unique
effect greater than its total contribution to the regression effect
and negative commonality coefficients.

The common effects represent the proportion of criterion
variable variance that can be jointly explained by two or more
predictors together. At this point the issue of multicollinearity is
explicitly addressed with an estimate of each part of the depen-
dent variable that can be explained by more than one predictor.
For example, X1 and X3 together explain 4.1% of the outcome,
which represents 13.45% of the total effect size.

It is also important to note the presence of negative com-
monality coefficients, which seem anomalous given that these
coefficients are supposed to represent variance explained. Negative
commonality coefficients are generally indicative of suppression
(cf. Capraro and Capraro, 2001). In this case, they indicate that X2
suppresses variance in X1 and X3 that is irrelevant to explaining
variance in the dependent variable, making the predictive power
of their unique contributions to the regression effect larger than
they would be if X2 was not in the model. In fact, if X2 were
not in the model, X1 and X3 would respectively only account
for 20.4% (0.234−0.030) and 1.6% (0.026−0.010) of unique vari-
ance in the dependent variable. The remaining common effects
indicate that, as noted above, multicollinearity between X1 and
X3 accounts for 13.45% of the regression effect and that there is
little variance in the dependent variable that is common across
all three predictor variables. Overall, CA can help to not only
identify the most parsimonious model, but also quantify the
location and amount of variance explained by suppression and
multicollinearity.

Table 5 | Commonality coefficients.

Predictor(s) X 1 X 2 X 3 Coefficient Percent

X 1 0.234 0.234 77.845

X 2 0.034 0.034 11.381

X 3 0.026 0.026 8.702

X 1, X 2 −0.030 −0.030 −0.030 −10.000

X 1, X 3 0.041 0.041 0.041 13.453

X 2, X 3 −0.010 −0.010 −0.010 −3.167

X 1, X 2, X 3 0.005 0.005 0.005 0.005 1.779

Total 0.250 0.000 0.063 0.301 100.000

Commonality coefficients identifying suppression underlined.

ΣXk Commonality coefficients equals r2 between predictor (k) and dependent

variable.

Σ Commonality coefficients equals Multiple R2 = 30.1%. Percent = coefficient/

multiple R2.

DOMINANCE WEIGHTS
Referring to Table 6, the conditional dominance weights for the
null or k = 0 subset reflects the r2 between the predictor and the
dependent variable. For the subset model where k = 2, note that
the additional contribution each variable makes to R2 is equal
to the unique effects identified from CA. In the case when k = 1,
DA provides new information to interpreting the regression effect.
For example, when X2 is added to a regression model with X1, DA
shows that the change (Δ) in R2 is 0.025.

The DA weights are typically used to determine if variables
have complete, conditional, or general dominance. When evalu-
ating for complete dominance, all pairwise comparisons must be
considered. Looking across all rows to compare the size of domi-
nance weights, we see that X1 consistently has a larger conditional
dominance weight. Because of this, it can be said that predictor
X1 completely dominates the other predictors. When considering
conditional dominance, however, only three rows must be consid-
ered: these are labeled null and k = 0, k = 1, and k = 2 rows. These
rows provide information about which predictor dominates when
there are 0, 1, and 2 additional predictors present. From this, we
see that X1 conditionally dominates in all model sizes with weights
of 0.250 (k = 0), 0.240 (k = 1), and 0.234 (k = 2). Finally, to eval-
uate for general dominance, only one row must be attended to.
This is the overall average row. General dominance weights are the
average conditional dominance weight (additional contribution of
R2) for each variable across situations. For example, X1 generally
dominates with a weight of 0.241 [i.e., (0.250 + 0.240 + 0.234)/3].
An important observation is the sum of the general dominance
weights (0.241 + 0.016 + 0.044) is also equal to 0.301, which is the
total model R2 for the MR analysis.

RELATIVE IMPORTANCE WEIGHTS
Relative importance weights were computed using the Lorenzo-
Seva et al. (2010) SPSS code using the correlation matrix pro-
vided in Table 1. Based on RIW (Johnson, 2001), X1 would

Table 6 | Full dominance analysis (Azen and Budescu, 2003).

Subset model R2
Y ·Xi

Additional contribution of:

X 1 X 2 X 3

Null and k = 0 average 0 0.250 0.000 0.063

X 1 0.250 0.025 0.017

X 2 0.000 0.275 0.067

X 3 0.063 0.204 0.004

k = 1 average 0.240 0.015 0.044a

X 1, X 2 0.275 0.026

X 1, X 3 0.267 0.034

X 2, X 3 0.067 0.234

k = 2 average 0.234 0.034 0.026

X 1, X 2, X 3 0.301

Overall average 0.241 0.016 0.044

X1 is completely dominant (underlined). Blank cells are not applicable. aSmall dif-

ferences are noted in the hundredths decimal place for X3 between Braun and

Oswald (2011) and Azen and Budescu (2003).
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be considered the most important variable (RIW = 0.241), fol-
lowed by X3 (RIW = 0.045) and X2 (RIW = 0.015). The RIWs
offer an additional representation of the individual effect of
each predictor while simultaneously considering the combina-
tion of predictors as well (Johnson, 2000). The sum of the
weights (0.241 + 0.045 + 0.015 = 0.301) is equal to R2. Predic-
tor X1 can be interpreted as the most important variable
relative to other predictors (Johnson, 2001). The interpreta-
tion is consistent with a full DA, because both the individ-
ual predictor contribution with the outcome variable (rX1·Y ),
and the potential multicollinearity (rX1·X2 and rX1·X3) with
other predictors are accounted for. While the RIWs may dif-
fer slightly compared to general dominance weights (e.g., 0.015
and 0.016, respectively, for X2), the conclusions are the con-
sistent with those from a full DA. This method rank orders
the variables with X1 as the most important, followed by X3
and X2. The suppression role of X2, however, is not identified
by this method, which helps explain its rank as third in this
process.

DISCUSSION
Predictor variables are more commonly correlated than not in
most practical situations, leaving researchers with the necessity to
addressing such multicollinearity when they interpret MR results.
Historically, views about the impact of multicollinearity on regres-
sion results have ranged from challenging to highly problematic.
At the extreme, avoidance of multicollinearity is sometimes even
considered a prerequisite assumption for conducting the analy-
sis. These perspectives notwithstanding, the current article has
presented a set of tools that can be employed to effectively inter-
pret the roles various predictors have in explaining variance in a
criterion variable.

To be sure, traditional reliance on standardized or unstandard-
ized weights will often lead to poor or inaccurate interpretations
when multicollinearity or suppression is present in the data. If
researchers choose to rely solely on the null hypothesis statistical
significance test of these weights, then the risk of interpretive error
is noteworthy. This is primarily because the weights are heavily
affected by multicollinearity, as are their SE which directly impact
the magnitude of the corresponding p values. It is this reality
that has led many to suggest great caution when predictors are
correlated.

Advances in the literature and supporting software technology
for their application have made the issue of multicollinearity much
less critical. Although predictor correlation can certainly com-
plicate interpretation, use of the methods discussed here allow
for a much broader and more accurate understanding of the
MR results regarding which predictors explain how much vari-
ance in the criterion, both uniquely and in unison with other
predictors.

In data situations with a small number of predictors or very low
levels of multicollinearity, the interpretation method used might
not be as important as results will most often be very similar.
However, when the data situation becomes more complicated (as
is often the case in real-world data, or when suppression exists as
exampled here), more care is needed to fully understand the nature
and role of predictors.

CAUSE AND EFFECT, THEORY, AND GENERALIZATION
Although current methods are helpful, it is very important that
researchers remain aware that MR is ultimately a correlational-
based analysis, as are all analyses in the general linear model.
Therefore, variable correlations should not be construed as evi-
dence for cause and effect relationships. The ability to claim cause
and effect are predominately issues of research design rather than
statistical analysis.

Researchers must also consider the critical role of theory when
trying to make sense of their data. Statistics are mere tools to
help understand data, and the issue of predictor importance in
any given model must invoke the consideration of the theoreti-
cal expectations about variable relationships. In different contexts
and theories, some relationships may be deemed more or less
relevant.

Finally, the pervasive impact of sampling error cannot be
ignored in any analytical approach. Sampling error limits the gen-
eralizability of our findings and can cause any of the methods
described here to be more unique to our particular sample than
to future samples or the population of interest. We should not
assume too easily that the predicted relationships we observe will
necessarily appear in future studies. Replication continues to be a
key hallmark of good science.

INTERPRETATION METHODS
The seven approaches discussed here can help researchers better
understand their MR models, but each has its own strengths and
limitations. In practice, these methods should be used to inform
each other to yield a better representation of the data. Below we
summarize the key utility provided by each approach.

Pearson r correlation coefficient
Pearson r is commonly employed in research. However, as illus-
trated in the heuristic example, r does not take into account
the multicollinearity between variables and they do not allow
detection of suppressor effects.

Beta weights and structure coefficients
Interpretations of both β weights and structure coefficients pro-
vide a complementary comparison of predictor contribution to the
regression equation and the variance explained in the effect. Beta
weights alone should not be utilized to determine the contribu-
tion predictor variables make to a model because a variable might
be denied predictive credit in the presence of multicollinearity.
Courville and Thompson, 2001; see also Henson, 2002) advo-
cated for the interpretation of (a) both β weights and structure
coefficients or (b) both β weights and correlation coefficients.
When taken together, β and structure coefficients can illuminate
the impact of multicollinearity, reflect more clearly the ability of
predictors to explain variance in the criterion, and identify sup-
pressor effects. However, they do not necessarily provide detailed
information about the nature of unique and commonly explained
variance, nor about the magnitude of the suppression.

All possible subsets regression
All possible subsets regression is exploratory and comes with
increasing interpretive difficulty as predictors are added to
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the model. Nevertheless, these variance portions serve as the
foundation for unique and common variance partitioning and
full DA.

Commonality analysis, dominance analysis, and relative importance
weights
Commonality analysis decomposes the regression effect into
unique and common components and is very useful for identify-
ing the magnitude and loci of multicollinearity and suppression.
DA explores predictor contribution in a variety of situations and
provides consistent conclusions with RIWs. Both general domi-
nance and RIWs provide alternative techniques to decomposing
the variance in the regression effect and have the desirable fea-
ture that there is only one coefficient per independent variable
to interpret. However, the existence of suppression is not read-
ily understood by examining general dominance weights or RIWs.

Nor do the indices yield information regarding the magnitude and
loci of multicollinearity.

CONCLUSION
The real world can be complex – and correlated. We hope the meth-
ods summarized here are useful for researchers using regression to
confront this multicollinear reality. For both multicollinearity and
suppression, multiple pieces of information should be consulted
to understand the results. As such, these data situations should
not be shunned, but simply handled with appropriate interpre-
tive frameworks. Nevertheless, the methods are not a panacea, and
require appropriate use and diligent interpretation. As correctly
stated by Wilkinson and the APA Task Force on Statistical Infer-
ence (1999),“Good theories and intelligent interpretation advance
a discipline more than rigid methodological orthodoxy. . . Statis-
tical methods should guide and discipline our thinking but should
not determine it” (p. 604).
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APPENDIX
EXCEL FOR ALL AVAILABLE ANALYSES
Note. Microsoft Excel version 2010 is demonstrated. The following will yield all possible subsets, relative importance weights, and
dominance analysis results.

Download the Braun and Oswald (2011) Excel file (ERA.xlsm) from
http://dl.dropbox.com/u/2480715/ERA.xlsm?dl = 1
Save the file to your desktop
Click Enable Editing, if prompted
Click Enable Macros, if prompted
Step 1: Click on New Analysis

Step 2: Enter the number of predictors and click OK

Step 3: Enter the correlation matrix as shown

Step 4: Click Prepare for Analyses to complete the matrix

Step 5: Click Run Analyses

Step 6: Review output in the Results worksheet
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R CODE FOR ALL AVAILABLE ANALYSES
Note. R Code for Versions 2.12.1 and 2.12.2 are demonstrated.

Open R
Click on Packages → Install package(s)
Select the one package from a user-selected CRAN mirror site (e.g., USA CA 1)

Repeat installation for all four packages
Click on Packages → Load for each package (for a total of four times)
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Step 1: Copy and paste the following code to Generate Data from Correlation Matrix
library(MASS)
library(corpcor)
covm<-c(1.00,0.5,0.00,0.25,

0.5, 1,0.3,0.25,
0.0,0.30, 1,0.25,
0.25,0.25,0.25, 1)

covm<-matrix(covm,4,4)
covm<-make.positive.definite(covm)
varlist<-c("DV", "IV1", "IV2", "IV3")
dimnames(covm)<-list(varlist,varlist)
data1<-mvrnorm(n=200,rep(0,4),covm,empirical=TRUE)
data1<-data.frame(data1)

Step 2: Copy and paste the following code to Produce Beta Weights, Structure Coefficients, and Commonality Coefficients
library(yhat)
lmOut<-lm(DV∼IV1+IV2+IV3,data1)
regrOut<-regr(lmOut)
regrOut$Beta_Weights
regrOut$Structure_Coefficients
regrOut$Commonality_Data

Step 3: All Possible Subset Analysis
library(leaps)
a<-regsubsets(data1[,(2:4)],data1[,1],method='exhaustive',nbest=7)
cbind(summary(a)$which,rsq = summary(a)$rsq)

SAS CODE FOR ALL AVAILABLE ANALYSES
Note. SAS Code is demonstrated in SAS Version 9.2.

Open SAS
Click on File → New Program

Step 1: Copy and paste the following code to Generate Data from Correlation Matrix
options pageno = min nodate formdlim = '-';
DATA corr (TYPE=CORR);
LENGTH _NAME_ $ 2;
INPUT _TYPE_$_NAME_$Y X1 X2 X3;
CARDS;
corr Y 1.00 .500 .000 .250
corr X1 .500 1.00 .300 .250
corr X2 .000 .300 1.00 .250
corr X3 .250 .250 .250 1.00
;

Step 2: Download a SAS macro from UCLA (n.d.) Statistics http://www.ats.ucla.edu/stat/sas/macros/corr2data.sas and save the file
as “Corr2Data.sas” to a working directory such as “My Documents”

Step 3: Copy and paste the code below.
%include 'C:\My Documents\corr2data.sas';
%corr2data(mycorr, corr, 200, FULL = 'T', corr = 'T') ;

Step 4: Copy and paste the code below to rename variables with the macro (referenced from http://www.ats.ucla.edu/stat/sas/code/
renaming_variables_dynamically.htm)

%macro rename1(oldvarlist, newvarlist);
%let k=1;
%let old = %scan(&oldvarlist, &k);
%let new = %scan(&newvarlist, &k);
%do %while(("&old" NE "") & ("&new" NE ""));
rename &old = &new;
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%let k=%eval(&k+1);
%let old=%scan(&oldvarlist, &k);
%let new=%scan(&newvarlist, &k);
%end;
%mend;

COMMENT set dataset;
data Azen;
set mycorr;
COMMENT set (old, new) variable names;
%rename1(col1 col2 col3 col4, Y X1 X2 X3);
run;

Step 5: Copy and paste the code below to Conduct Regression Analyses and Produce Beta Weights and Structure Coefficients.
proc reg data=azen;model Y =X1 X2 X3;
output r=resid p=pred;
run;

COMMENT structure coefficients;
proc corr; VAR pred X1 X2 X3;
run;

Step 6: Copy and paste the code below to conduct an All Possible Subset Analysis
proc rsquare; MODEL Y =X1 X2 X3;
run;

Step 7: Link to https://pantherfile.uwm.edu/azen/www/DAonly.txt (Azen and Budescu, 1993)

Step 8: Copy and paste the text below the line of asterisks (i.e., the code beginning at run; option nosource;).

Step 9: Save the SAS file as “dom.sas” to a working directory such as “My Documents.”

Step 8: Copy and paste the code below to conduct a full Dominance Analysis
%include 'C:\My Documents\dom.sas'; ∗∗∗ CHANGE TO PATH WHERE MACRO IS SAVED ∗∗∗;
%dom(p= 3);

SPSS CODE FOR ALL ANALYSES
Notes. SPSS Code demonstrated in Version 19.0. SPSS must be at least a graduate pack with syntax capabilities.

Reprint Courtesy of International Business Machines Corporation, ©(2010) International Business Machines Corporation. The
syntax was retrieved from https://www-304.ibm.com/support/docview.wss?uid = swg21480900.

Open SPSS
If a dialog box appears, click Cancel and open SPSS data window.
Click on File → New → Syntax

Step 1: Generate Data from Correlation Matrix. Be sure to specify a valid place to save the correlation matrix. Copy and paste
syntax below into the SPSS syntax editor.

matrix data variables=v1 to v4
/contents=corr.
begin data.
1.000
0.500 1.000
0.000 .300 1.000
0.250 .250 .250 1.000
end data.
save outfile="C:\My Documents\corrmat.sav"
/keep=v1 to v4.

Step 2: Generate raw data. Change #i from 200 to your desired N. Change x(4) and #j from 4 to the size of your correlation matrix,
if different. Double Check the filenames and locations.

new file.
input program.
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loop #i=1 to 200.
vector x(4).
loop #j=1 to 4.
compute x(#j)=rv.normal(0,1).
end loop.
end case.
end loop.
end file.
end input program.
execute.
factor var=x1 to x4
/criteria=factors(4)
/save=reg(all z).
matrix.
get z/var=z1 to z4.
get r/file='C:\My Documents\corrmat.sav'.
compute out=z*chol(r).
save out/outfile='C:\My Documents\AzenData.sav'.
end matrix.

Step 3: Retrieve file generated from the syntax above. Copy and paste the syntax below Highlight the syntax and run the selection

by clicking on the button.
get file='C:\My Documents\AzenData.sav'.

Step 4: Rename variables if desired. Replace “var1 to var10” with appropriate variable names. Copy and paste the syntax below and
run the selection by highlighting one line. Be sure to save changes.

rename variables(col1 col2 col3 col4=Y X1 X2 X3).

Step 5: Copy and paste the syntax into the syntax editor to confirm correlations are correct.
CORRELATIONS
/VARIABLES =Y X1 X2 X3
/PRINT = TWOTAIL NOSIG
/MISSING = PAIRWISE.

Step 6: Copy and paste the syntax into the syntax editor to Conduct Regression and Produce Beta Weights.
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA = PIN(0.05) POUT(0.10)
/NOORIGIN
/DEPENDENT Y
/METHOD = ENTER X1 X2 X3
/SAVE PRED.

Step 7: Copy and paste the syntax into the syntax editor to *Compute Structure Coefficients.
CORRELATIONS
/VARIABLES=X1 X2 X3 WITH PRE_1
/PRINT = TWOTAIL NOSIG
/MISSING = PAIRWISE.

Step 8: All Subset Analysis and Commonality analysis (step 8 to step 11). Before executing, download cc.sps (commonality
coefficients macro) from http://profnimon.com/CommonalityCoefficients.sps to working directory such as My Documents.

Step 9: Copy data file to working directory (e.g., C:\My Documents)

Step 10: Copy and paste syntax below in the SPSS syntax editor
CD "C:\My Documents".
INCLUDE FILE="CommonalityCoefficients.sps".
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!cc dep=Y
Db=AzenData.sav
Set=Azen
Ind=X1 X2 X3.

Step 11: Retrieve commonality results. Commonality files are written to AzenCommonalityMatrix.sav and AzenCCByVariable.sav.
APS files are written toAzenaps.sav.

Step 12: Relative Weights (Step 13 to Step 16).

Step 13: Before executing, download mimr_raw.sps and save to working directory from http://www.springerlink.com/content/
06112u8804155th6/supplementals/

Step 14: Open or activate the AzenData.sav dataset file, by clicking on it.

Step 15: If applicable, change the reliabilities of the predictor variables as indicated (4 in the given example).

Step 16: Highlight all the syntax and run; these steps will yield relative importance weights.

Frontiers in Psychology | Quantitative Psychology and Measurement March 2012 | Volume 3 | Article 44 | 16

http://www.springerlink.com/content/06112u8804155th6/supplementals/
http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive
http://www.springerlink.com/content/06112u8804155th6/supplementals/

	Tools to support interpreting multiple regression in the face of multicollinearity
	Purpose
	Predictor Interpretation Tools
	Correlation Coefficients
	Beta Weights
	Structure Coefficients
	All Possible Subsets Regression
	Commonality Analysis
	Dominance Analysis
	Relative Importance Weights

	Heuristic Demonstration
	Correlation Coefficients
	Beta Weights
	Structure Coefficients
	All Possible Subsets Regression
	Commonality Analysis
	Dominance Weights
	Relative Importance Weights

	Discussion
	Cause and Effect, Theory, and Generalization
	Interpretation Methods
	Pearson r correlation coefficient
	Beta weights and structure coefficients
	All possible subsets regression
	Commonality analysis, dominance analysis, and relative importance weights


	Conclusion
	References
	Appendix
	Excel for all available analyses
	R Code for all available analyses
	SAS Code for all available analyses
	SPSS Code for all analyses




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


