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In this paper we sketch a new framework for affect elicitation, which is based on pre-
vious evolutionary and connectionist modeling and experimental work from our group.
Affective monitoring is considered a local match–mismatch process within a module of the
neural network. Negative affect is raised instantly by mismatches, incongruency, disfluency,
novelty, incoherence, and dissonance, whereas positive affect follows from matches, con-
gruency, fluency, familiarity, coherence, and resonance, at least when an initial mismatch
can be solved quickly. Affective monitoring is considered an evolutionary-early conflict
and change detection process operating at the same level as, for instance, attentional
selection. It runs in parallel and imparts affective flavor to emotional behavior systems,
which involve evolutionary-prepared stimuli and action tendencies related to for instance
defensive, exploratory, attachment, or appetitive behavior. Positive affect is represented
in the networks by high-frequency oscillations, presumably in the gamma band. Nega-
tive affect corresponds to more incoherent lower-frequency oscillations, presumably in the
theta band. For affect to become conscious, large-scale synchronization of the oscillations
over the network and the construction of emotional experiences are required. These con-
structions involve perceptions of bodily states and action tendencies, but also appraisals
as well as efforts to regulate the emotion. Importantly, affective monitoring accompanies
every kind of information processing, but conscious emotions, which result from the later
integration of affect in a cognitive context, are much rarer events.
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INTRODUCTION
An organism with the ability to discern adaptive from maladaptive
conditions has a much higher chance of transmitting its genes than
an organism without this ability. Brains possessing the capacity to
distinguish these conditions, and to steer behavior in more adap-
tive directions, must therefore have developed early in evolution-
ary history. This fundamental ability has been linked by Johnston
(2003) to the most basic quality of emotions: positive and nega-
tive affect are generated by the nervous system “to those aspects of
the environment that were a consistent benefit or threat to gene
survival in ancestral environments” (p. 173). Johnston’s reason-
ing presupposes a neural mechanism for determining whether a
situation is advantageous for gene survival, which first translates
the organism’s environmental conditions into internal representa-
tions and then compares them to “desirable” states. We will argue
here that this affective monitoring provides a generic mechanism
for affect elicitation. In our simple connectionist implementation,
changes in level of competition within network modules are mon-
itored, resulting in low-frequency oscillations of neural activity in
the case of mismatch, and high-frequency oscillations in matching
conditions. Similar competitive network modules have formerly
been used to model competitive learning (Murre et al., 1992; Phaf,
1994) and attentional selection (Phaf et al., 1990; Duncan, 1996).
The analysis of these functions in terms of competition suggests
that organisms capable of attentional selection should also be able

to monitor processing affectively, and that affective processing
should not be limited to humans. The elementary nature of the
affective monitoring modules, moreover, implies that in its most
basic form affect constitutes a non-conscious process, which only
through more elaborate constructive processing may develop into
a conscious emotional experience (cf. Phaf and Wolters, 1997).

Affect, sometimes referred to as“core affect,” is often considered
an irreducible component of emotion that cannot be analyzed fur-
ther (e.g., Frijda, 1986; Ortony and Turner, 1990). This may stem
in part from the behaviorist tradition where reward and punish-
ment represent biologically given unconditioned stimuli that resist
any analysis in terms of internal processes. At the other side of the
spectrum, affect is uniquely associated with, perhaps the most
basic, conscious states (i.e., feelings) that according to some (e.g.,
Chalmers, 2004) are almost impossible to capture in a mechanis-
tic analysis. New simulations of the evolutionary development of
nervous systems and findings of interactions between affect and,
seemingly non-emotional,“cognition,”however, suggest that affect
can be analyzed in terms of non-emotional information process-
ing. In some experiments affective influences may even occur when
the affective nature is not recognized either in the independent or
in the dependent variable. The affective monitoring hypothesis
offers a mechanistic account of affect elicitation and postulates
that affect does not need to be conscious, or open to introspection
(see also Berridge, 2003; Berridge and Winkielman, 2003).
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Which stimuli signal adaptivity, or a lack of it, to the brain?
There is probably a small class of stimuli that through large parts of
evolutionary history were consistently related to adaptive benefits
or costs. For Johnston (2003) the existence of such evolutionary-
prepared stimuli seems inescapable: “If toxins tasted sweet, and
sugar evoked a bitter taste, then survival would be in jeopardy” (p.
175). Besides tastes and smells, also relatively intense (i.e., painful)
stimuli are probably evolutionary prepared (e.g., the startle reflex;
Lang, 1995). Whether more complex stimuli, such as snakes, spi-
ders, and emotion faces (e.g., Öhman, 1986) are also evolutionary
prepared still remains a matter of scientific debate (e.g., Blanchette,
2006). Little is known about which specific simple stimulus char-
acteristics would be able to drive affect directly (but seeVuilleumier
et al., 2003). In isolation, most stimuli are ambiguous with respect
to their evolutionary and affective value. We will argue here that
such evolutionary-prepared stimuli can directly activate behavior
programs (cf. Panksepp, 1998), and may only indirectly elicit affect
through the monitoring of activity in these programs.

Other even simpler processing characteristics that are not
stimulus specific have been available from the start of the evo-
lutionary development of neural networks. Affective monitoring
focuses on conflicts in processing and the subsequent resolution
of conflicts (i.e., change detection). The detection of both con-
flict, implemented by neural inhibition, and change, constituting
the first-order derivative of neural excitation, requires less com-
plicated neural machinery even than identifying a stimulus, which
proceeds through a progressive combination of stimulus features
(cf. Hubel and Wiesel, 1977). In the approximation and averaging
process performed by evolution, the quick resolution of conflict
was associated with relatively beneficial circumstances, whereas
lasting obstructions and interruptions were linked with challenges
and potential threats to survival. The latter generally imply that
priority should be given to steering behavior in more adaptive
directions (cf. the evolutionary simulations by Heerebout and
Phaf, 2010a,b), which may be avoided if the conflict can be relieved
rapidly.

Nervous systems are likely capable of analyzing changes in all
constituent features of a stimulus, separately. The representations
for these features mostly result from learning processes, so the
match with memory representations (i.e., familiarity) may play
an important role in affect elicitation. The scope of this match–
mismatch detection (cf. Williams and Gordon, 2007) likely extends
to everything that can be represented by the brain. The corre-
spondence of automatized bodily actions with stimulus features,
for instance, may be a strong source of affect (e.g., Beilock and
Holt, 2007; see also Cannon et al., 2010). In addition, if arrow
direction agrees with habitual eye movements made in the read-
ing direction (i.e., the habitual direction of attentional shift) this
raises positive affect, even when the person is not aware of these
influences or the affect itself (Phaf and Rotteveel, 2009). Con-
versely, the inhibition of non-selected stimuli induces negative
affect (Raymond et al., 2003). At a semantic level, moreover, word
triads with a remote associate raise more facial muscle activity
indicative of positive affect than word triads without such an asso-
ciate, even though the participants were ignorant of the underlying
structure (Topolinski et al., 2009). The pluriformity of poten-
tial to-be-matched representations has led to a large variety of

terms for the match (e.g., smooth, fluent, familiar, congruent, res-
onant, coherent) and mismatch (e.g., obstructed, disfluent, novel,
incongruent, dissonant, incoherent). To emphasize the general-
ity of the affect elicitation process, we propose the term affective
monitoring. Match–mismatch is determined locally in aggregates
of closely connected nodes, which we have previously called mod-
ules (Murre et al., 1992). Which representational feature is being
processed by the module depends on its interconnections to other
modules within the network. Only when there is a convergence of
match–mismatch determinations in many modules, an affective
state arises, which may be elaborated into a full emotion. Affec-
tive monitoring occurs continuously on all active representations
in the neural network, but only now and then transforms into a
conscious emotion. According to this view, “cognitive” and affec-
tive processing cannot be separated, though the latter is often not
experienced consciously, and affective monitoring represents one
of the most elementary operations performed by the brain.

THE MODEL
A NEURAL IMPLEMENTATION
Affective monitoring essentially comprises a conflict-detection
mechanism within a network module. High levels of conflict elicit
negative affect, whereas the swift resolution of conflict, resulting
in “smooth” functioning due to matching representations, signals
positive affect. At the neural level conflicts are often modeled in
terms of mutual inhibition and competitive processes (e.g.,Rumel-
hart and Zipser, 1985). Competitive models have been applied
successfully to self-organization of visual representations (e.g.,
von der Malsburg, 1973), implicit and explicit memory perfor-
mance (Murre et al., 1992; Phaf, 1994), attentional selection (Phaf
et al., 1990), and even fear conditioning (Armony et al., 1995).
A role for competitive processes in the elicitation of affect has
first been suggested by the evolutionary simulations of Heerebout
and Phaf (2010b). The fact that neural competition emerges so
readily when optimizing evolutionary fitness suggests that it may
be a basic building block of the neural networks responsible for
many kinds of information processing, including cognitive and
emotional functioning.

Neural processes are generally envisaged in the language of
neuron activations and activation transfer via connections. Con-
nections can be either excitatory, increasing the activation of
the receiving neuron, or inhibitory, decreasing the activation. A
suitable formalism for building process models can be found in
artificial neural networks or connectionist models (e.g., see Murre
et al., 1992). The latter term emphasizes that complex function
arises from connecting many very simple processors in a specific
manner. Network models formulated in the connectionist lan-
guage, however, represent extreme simplifications, which cannot
capture the full range of complexities of biological neural net-
works. Despite these limitations, we think that the connectionist
formalism provides good opportunities for casting the affective
monitoring hypothesis in a mechanistic model. Not only can such
simplified models capture core processes essential for this func-
tion, but developing concrete computational models may also lead
to new insights into affect.

In evolutionary computation the structure of the models is
not designed by the modeler to fit some set of empirical data,
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but emerges autonomously from the optimization performed
by the evolutionary algorithm (cf. Holland, 1975) under a spe-
cific set of environmental conditions. den Dulk et al. (2003, see
Figure 1), for instance, simulated agents that could increase their
fitness by attending selectively to either plants or predators. In
the computational evolution, the weights of the agents’ artificial
neural networks developed in such a way that the agents showed
organized behavior by avoiding predators and approaching plants.
The resulting networks had a dual-processing architecture (cf.,
LeDoux, 1996) with avoidance taking priority over approach
and predator and food only being differentiated in the indirect
route. This architecture emerged autonomously in the simu-
lations under the conditions set out by LeDoux’ evolutionary
reasoning and thus made it more plausible that it had actually
developed in this manner during evolution. Evolutionary compu-
tation also possesses a capacity of generating new hypotheses that
have not been previously thought of by psychologists or cognitive
neuroscientists.

More recently, after including the possibility of recurrent con-
nections between nodes, oscillations emerged spontaneously in
these networks, which nearly doubled the agents’ fitness (Heere-
bout and Phaf, 2010a). Although neural oscillations have been
investigated extensively (e.g., Buzsáki and Draguhn, 2004), the
function suggested by the evolutionary simulations appears to be
new. The oscillations facilitated attentional switching from plants
to predators, and thus led to quicker and more forceful avoid-
ance reactions when a predator suddenly showed up. In addition,
high-frequency oscillations occurred with fitness-increasing stim-
uli (i.e., food), whereas low-frequency oscillations were evoked
by fitness-reducing stimuli (i.e., predators; Heerebout and Phaf,
2010b).

The networks of the evolved agents revealed strong inhibitory
influences between neighboring nodes, which is characteristic of
competitive networks (Heerebout and Phaf, 2010b). Lateral inhi-
bition and competition have traditionally served as an explanatory
mechanism for selective attention (e.g., Duncan, 1996; see also
Phaf et al., 1990), and these simulations indicate that oscillations
act as a supplementary mechanism to selection. According to the
analysis of Heerebout and Phaf, the oscillations did not specifi-
cally influence the type of response that would be selected in the
competitive networks, but modulated the speed of selection and
of switching between selections. The trough in an oscillation (i.e.,
when the “winner” is least active) is of course the perfect time
to switch “winners” in a competitive process. Most importantly,
however, both selection by competition and oscillations emerged
autonomously from the simulations and, as reflected in the fitness
levels, appeared to have separate adaptive functions. Extending on
these simulations, we argue that affect can be dissociated from the
selection of approach and avoidance responses (see also Gable and
Harmon-Jones, 2010), and that positive and negative affect are not
stimulus-bound but are derived from the processing dynamics in
the nervous system.

Internal monitoring did not yet arise from the evolutionary
simulations, but may be derived from the competitive networks
we previously designed for the purpose of modeling implicit and
explicit memory effects (e.g., Phaf, 1994; Phaf et al., 1994, 2001).
The memory models consisted of separate modules (i.e., CALM

modules; see Murre et al., 1992) capable of detecting the local
level of competition and thus distinguishing familiar (i.e., match-
ing) from novel (i.e., non-matching) input to the module. As a
consequence of this competition monitoring, CALM modules can
exhibit two different modes of learning, which have been invoked
to account for implicit and explicit memory performance (Graf
and Mandler, 1984). Novel input results in elaboration learning,
which is characterized in CALM by an increased learning rate com-
bined with the distribution of non-specific, random activations
over the module. Elaboration leads the input pattern to become
associated with a node that is not yet committed by any other
pattern. When familiar input is presented, however, the absence
of competition keeps the learning rate low and only the existing
representation is strengthened (i.e., activation learning).

Connection weights in biological networks are subject to
change on two different time-scales: during phylogenesis and dur-
ing ontogenesis. Presumably, both the gross network architecture
of module interconnections and the internal connection scheme
of a module have largely been put into place by evolution. Fine-
tuning of this gross connection structure takes place by learning
from experiences during ontogenesis, for instance through Heb-
bian learning (see Murre et al., 1992). The networks, generally,
start out with exuberant connections (for a review see Innocenti
and Price, 2005). During development, the number of connec-
tions is selectively reduced through the physical elimination of
weak synapses (i.e.,pruning) and specific connection patterns arise
through learning processes. Both genetically pre-programmed
pruning and selective pruning of weak and unused connections
increase the specificity of the connection schemes (see Innocenti
and Price,2005). The network architecture responsible for affective
monitoring has, in our opinion, been largely installed by evolu-
tion, but is similarly fine-tuned by pruning and learning during
ontogenesis.

The competitive mechanism (see Figure 2) was built from a
few architectural principles. First, two basic node types are dis-
tinguished that can give off only excitatory or only inhibitory
connections. We called the former ones representation nodes (R-
nodes) and the latter ones veto nodes (V-nodes). Secondly, we
defined modules as regions with dense, excitatory and inhibitory,
intramodular connections and sparser, long-range, only excita-
tory, intermodular connections (cf. Phaf et al., 1990; Murre et al.,
1992). The inhibitory effects exerted by the V-nodes, generally,
result in a competitive working of the module. Due to reciprocal
inhibition, two simultaneously active V-nodes will try to suppress
one another. The most strongly activated node wins the compe-
tition, resulting in a single winner (“winner takes all,” see Murre
et al., 1992), or an activated neighborhood of only weakly inhib-
ited nodes (see Phaf et al., 2001). V-nodes can only get activated by
the excitatory connections from R-nodes within the same module.
We have assumed that there is a tight coupling between specific R-
nodes and V-nodes, so that the winner actually consists of an R–V
node pair. If the V-node wins, the coupled R-node from which it
receives its excitation, will also win the competition.

The specific function of novelty detection in CALM modules
constitutes a straightforward extension of the above competi-
tive principles. Novel, not previously encountered and stored,
input will simultaneously activate many R-nodes and subsequently
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FIGURE 1 | A schematic representation of the torus-shaped (i.e., without

edges) virtual world in the evolutionary simulations of den Dulk et al.

(2003). Predators (red), food patches (green), and agents (yellow) emit different
scents. Agents have receptors for the predator and food scents, predators for
the agent scents only. Predators and agents have left and right actuators and
move according to the laws of classical mechanics. Collisions between
predator and agent result in the agent being “eaten,” between agent and food

in the disappearance of the food patch. The predator is controlled by a fixed
neural network, so that it moves toward the agent. The agent’s network (an
example resulting from the den Dulk et al. simulations is shown at the inset) is
subject to mutations and crossovers to its genes (i.e., the connection weights).
Starting out with random connection strengths, eventually after hundreds of
generations organized behavior (i.e., avoidance of predators, approach of food)
emerges, due to the selection of the fittest agents for reproduction.
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FIGURE 2 | A two input node competitive network with separate

excitatory (R) and inhibitory (V) nodes. Arrows denote excitatory
connections, globules inhibitory connections. The network is a simplified
variant (i.e., without oscillations occurring) of the schematic network that
evolved in the simulations of Heerebout and Phaf (2010b). Competition is
implemented by strong mutual inhibition of the V-nodes. The winning
V-node eventually suppresses its competitor and the corresponding R-node,
and releases its own R-node from the inhibition by the competing V-node.

initiate much competition. Novelty detection works by determin-
ing the amount of competition in the module. The activation of
the negative monitoring Rne node (see Figure 3) is determined by
subtracting the total amount of inhibition by the V-nodes from the
total amount of excitation from their paired R-nodes. Due to the
mutual inhibition of the V-nodes, the balance will swing toward
excitation of the Rne node when many V-nodes are simultaneously
active. If only one V-node is active, however, inhibition of the Rne

node will dominate. In the CALM module, enhanced Hebbian
learning, or elaboration learning, will help settle the competi-
tion, and will lead to a strengthening of intermodular connections
to the winning nodes and to a weakening of the connections to
losing nodes. With representation of the input, which then has
been committed to a R-node and thus become familiar, much less
competition is evoked.

POSITIVE AFFECT
With a variation on Whittlesea and Williams’(1998) famous obser-
vation that encountering one’s spouse in the kitchen does not raise
much familiarity, but unexpectedly meeting her in a crowded sta-
dium does, we expect that the former situation would also not elicit
particularly much positive affect, but the latter would indeed. The
quick resolution of conflict in the latter case is a prerequisite both
for familiarity and positive affect. Despite the processing of the
spouse being massively fluent in the kitchen, the initial conflict
is missing here. The laughter raised by quick tension release (cf.
Sroufe and Waters, 1976), as is the case in humorous jokes, may be
an extreme case of such an initial conflict. In many cases more sub-
tle uncertainties are evoked by task instructions, as for instance in
our arrow experiment (Phaf and Rotteveel, 2009), which then can
be settled quite easily, or not, by task execution. Another example

FIGURE 3 |The CALM module with monitoring ability of level of

competition. Arrows denote excitatory connections, globules inhibitory
connections. Input is represented on the representation nodes (Rn). The
inhibitory Veto nodes (Vn) enable competition between potential
representations. When there is much competition, the sum of activations
from the R-nodes and inhibitions from the V-nodes to the Negative node
(Rne) will be positive. With little competition this sum will be negative and
the Rne node will not be active.

of such subtle initial incongruities can be found in the mere-
exposure task when the participant is asked to select one from
two test stimuli. In this type of task effects are largest when the
fluency is unexpected (Willems and Van der Linden, 2006), or
discrepant after a change in fluency (Hansen et al., 2008). From
an evolutionary point of view, continuous fluent processing with-
out any change in conditions would also not expected to signal
particularly fitness-enhancing opportunities.

Positive affect arises when the matching process initially raises
competition, and the competition can be solved quickly. For this
purpose, also a solution-of-competition detector node is required.
In the CALM module, presence-of-competition was implemented
by a dedicated R-node, collecting the excitations and inhibitions
from the other R- and V-nodes in the model. A similarly connected
V-node (Vne node) that inhibits a positive monitoring R-node (Rpo

node) would allow this Rpo node to become active only after the
resolution of competition (see Figure 4). The Rpo node itself is
driven by the Rne node, reflecting that positive affect needs to be
preceded by some level of competition in the matching process.
Because the Vne node decays more quickly that the Rne node,
the simple three-node network of Figure 4 functions as a change
detector. With a rapid decrease of competition the Rne node will
remain activated longer than the Vne node, so that the Rpo acti-
vation will be released. Basic assumptions in this network design
are thus that positive affect can only follow after some initial level
of competition, and that positive affect occurs later in time than
negative affect.
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FIGURE 4 |The affective monitoring submodule with the Rne,Vne, and

Rpo nodes. Both Rne and Vne receive excitatory input from the other R-nodes
and inhibitory input from the other V-nodes. Vne activation decays quicker
than Rne activation, so that Rpo will get activated particularly after fast
reductions in level of competition.

Affective monitoring distinguishes three types of internal func-
tioning of the module. If the input to the module evokes initial
competition, but this competition can be solved quickly, the faster
decay of the Vne than of the Rne node will evoke Rpo activation
(Figure 5A). If on the other hand the input sustains the com-
petition and it cannot be settled quickly, for instance because no
unified representation can be formed for conflicting inputs, Rne

and Vne activations remain high. The strong inhibition by the Vne

node will then suppress any Rpo activation (Figure 5B). Finally,
the inputs to the module may match directly, without evoking
much competition. In this case neither Rne nor Rpo node will be
activated (Figure 5C).

From a classical empirical study on the development of the
smile and laughter, Sroufe and Waters (1976) concluded much
earlier to a similar origin of positive affect: the tension–release
hypothesis. Although these authors did not want to identify the
initial tension, which they also associated with incongruity or
discrepancy, with negative affect, they postulated that the quick
release from tension could evoke smiles and laughter. The network
of Figure 4, which of course stems from a different source, could
be seen as a connectionist implementation of this tension–release
hypothesis. Tension is represented by the level of competition
between nodes in the module. If the competition can be resolved
quickly, positive affect arises. If it cannot, negative affect will
remain activated. If there is no initial competition, neither positive
nor negative affect is evoked. Affective monitoring thus extends on

FIGURE 5 | Activation plots of the network presented in Figure 4. The left
column depicts the input (i.e., level of competition in the module) to the Rne

and Vne nodes, subsequent columns the Rpe, Vne, and Rpo activations,
respectively. (A) Initially much competition arises due to the conflicting
module input, but this can be solved quickly, which then leads to considerable

Rpo activation. (B) If the competition cannot be resolved quickly, the Rne and
Vne nodes remain active for longer periods resulting in a net inhibition of the
Rpo node. (C) If the module input does not lead to much competition from the
start (i.e., a direct match), neither Rne nor Rpo will become activated very
strongly.
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the tension–release hypothesis by specifying also the conditions for
negative affect, when the tension holds on and inhibits the release
of positive affect.

TEMPORAL ORDER OF POSITIVE AND NEGATIVE AFFECT
The network implementation of affective monitoring entails that
positive affect arises later than negative affect, because the former
can appear only after the latter has disappeared. Williams and Gor-
don (2007) earlier postulated this order, which they deduced from
their ERP findings with emotional facial expressions (Williams
et al., 2006). They showed that the potentials distinguishing fearful
faces from neutral conditions precede the potentials distinguishing
happy faces from neutral. In addition, Williams and collabora-
tors obtained larger and more distributed activations with fearful
expressions than with happy expressions. They concluded that sig-
nals of danger gain precedence and therefore are processed earlier
than other stimuli. According to affective monitoring, the higher
levels of competition with negative than with positive affect could
account for the earlier, larger, and more distributed activations, but
interpretations in terms of differential pattern classification are
also possible (Schyns et al., 2007). There also appears to be a large
variability in the kind and direction of effects of facial emotion
on EEG and MEG responses (e.g., Astikainen and Hietanen, 2009;
Straube et al., 2011). In our view, moreover, positive and negative
affect are not evoked directly by happy and fearful expressions,
but result from subsequent monitoring of activity elicited by the
faces. The fearful faces may, for instance, interfere with the task
instruction of maintaining vigilance for post-experimental testing
in the Williams et al. study, whereas happy faces indicated that
everything was going smoothly. Affective monitoring predicts that
further ERP research using fluency manipulations that directly
elicit affect would show the temporal order more consistently.

Neuroimaging research focusing on memory performance and
the medial temporal lobe (MTL) has yielded converging evidence
for the order of positive and negative affect predicted by affec-
tive monitoring (Daselaar et al., 2006). In our view, memory
matches during retrieval result in high levels of familiarity and
positive affect, whereas memory mismatches correspond to nov-
elty and negative affect. In previous modeling efforts from our
group (Phaf, 1994; Murre, 1996; Phaf et al., 2001) we have assumed
that the hippocampus, which together with the parahippocam-
pal gyrus is located in MTL, is involved in novelty detection of
episodic memories. This assumption appears to be borne out by
neuroimaging work (Strange et al., 1999; Daselaar et al., 2006),
but other regions, such as prefrontal cortex, have also been impli-
cated in novelty detection (e.g., Yamaguchi et al., 2004). Indeed,
according to affective monitoring, novelty detection should be a
distributed process, with different regions involved in different
forms of novelty. The converging neuropsychological and neu-
roimaging evidence strongly points to the specific involvement of
MTL in the monitoring of memory representations (e.g., Köhler
et al., 2002).

In the study of Daselaar et al. (2006) activations of anterior
and posterior parts of MTL were determined in a word recogni-
tion task for Hits (H), Misses (M), Correct Rejections (CR), and
False Alarms (FA), separately. True oldness was reflected by acti-
vation levels associated with combined H and M performance,

as compared to CRs and FAs. Because the participant does not
need to be aware of the memory match, activations corresponding
to true oldness can be said to reflect overall level of familiarity
(i.e., match with stored memory representations. Novelty was evi-
denced by higher activation levels on CRs and Ms than on Hs
and FAs. The activation of posterior parts of MTL, which includes
parahippocampal cortex, was highly correlated with true oldness
of stimuli. Anterior parts of the hippocampus were particularly
sensitive to perceived novelty. Similar results were also obtained
with the recognition of visual scenes. Köhler et al. (2002) for
instance showed an involvement of the posterior parahippocampal
place area only when the recognition could be based on familiarity.

Interestingly, posterior parahippocampal regions have also
been linked to positive affect. Yue et al. (2007) found that activ-
ity in posterior parts of MTL after presentation of visual scenes
correlated positively with subjective scene preferences. According
to these authors the (posterior) parahippocampal cortex is par-
ticularly rich in endorphine receptors, which seem to be related
to perceptual pleasure. Also more conventional reward regions
(i.e., ventral striatum) showed higher activity levels with preferred
than less-preferred scenes, which in our view may result from syn-
chronization across different neural regions. Daselaar et al. (2006)
finally investigated the functional connectivity between anterior
and posterior parts of MTL. Importantly, and in agreement with
our model (see Figure 4), they observed a negative coupling from
anterior MTL to posterior MTL, but not vice versa. This find-
ing implies that activity induced by novelty processing can inhibit
activity involved with familiarity processing, but not the other way
around. Extending this connection structure outside the memory
domain, the affective monitoring view posits that negative affect
inhibits the activation of positive affect, but not vice versa, and
that therefore positive affect occurs later in time than negative
affect.

WHAT IS EVOKED?
Neural codes for positive and negative affect emerged from the evo-
lutionary simulations of Heerebout and Phaf (2010b). When the
agent in these simulations encountered fitness-increasing stim-
uli (i.e., food patches), its network nodes oscillated with higher
frequencies than when it was confronted with fitness-reducing
stimuli (i.e., predators). According to Johnston (2003), the lat-
ter stimuli should be called negative and the former positive. The
simulations also yielded clues about how the oscillations enhanced
fitness. Troughs in the oscillations, which have the lowest activa-
tion in the cycle, provide the best opportunity for competitors to
topple the previous winner after a change in input. When there
are many troughs over time, switches will be made earlier than
when there are only few. High-frequency oscillations with food
stimuli, therefore, allow for fast attentional switches from food
to predator when the threat appears suddenly. With lower fre-
quencies, the locking of attention to the predator ensures the
highest fitness levels. The evolutionary simulations inspired the
attentional switching hypothesis (Heerebout, 2011), which argues
that positive affect facilitates attentional flexibility (cf. Dreisbach
and Goschke, 2004; Fredrickson, 2004; van Wouwe et al., 2011),
whereas negative affect prevents disengagement of attention (cf.
Yiend and Mathews, 2001; Phaf and Kan, 2007).
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The evolutionary simulations also demonstrated how oscil-
lations could arise within a competitive setup (Heerebout and
Phaf, 2010b). Over generations a flip–flop, or push–pull, mecha-
nism evolved with feed-forward excitatory and feedback inhibitory
connections between nodes. Figure 6 shows how this oscillation
generator can be implemented in the network of Figure 4 by
adding a Vpo node, which is solely connected to the Rpo node.
The R-node excites the V-node, which subsequently inhibits this
R-node, so that in the next time step the V-node activation will go
down and inhibit the R-node less. If the R-node receives non-zero
input from other sources (i.e., the Rne node), this flip–flop process
will repeat itself over and over again, and an oscillation results. In
the CALM module (Murre et al., 1992), which acts as a template for
the present affective monitoring model, activation of the Rne node
already resulted in randomly distributed activations to the other
R-nodes of the module to break symmetry. Similarly, we propose
here that the Rpo node distributes its oscillatory activity among
these R-nodes and thus entrains them to the oscillation. Rne node
activation should spread lower-frequency, more incoherent spikes
among the R-nodes.

The evolutionary simulations did not specify which frequen-
cies (i.e., number of cycles per time unit) are negative and which
are positive. For one thing, the relation of the time unit, which is
the time needed to update all activations once, in artificial neural
networks to actual time in biological neural networks is unknown.
In addition, the many simplifications made in connectionist mod-
eling also preclude a direct translation of model time into actual
time. For more precise ideas about these frequency bands we there-
fore had to turn to research into neural oscillations and affect.
Because the two do not seem to have been associated before, only
a few studies are available with more or less coincidental findings
of a relation between oscillations and affect. Much more work
has, however, been done on oscillations and attention (Herrmann,

FIGURE 6 | Activation of Rpo results in oscillations through a flip–flop

mechanism. Excitation of Vpo by Rpo is followed by inhibition of Rpo from Vpo

in the next time step. With a constant input to Rpo this push–pull process
repeats itself indefinitely.

2001; Womelsdorf and Fries, 2006, 2007; Bauer et al., 2009), which
may support the attentional switching hypothesis emerging from
the evolutionary simulations.

The specific association of gamma (20–70 Hz) oscillations to
positive affect only came up from a conditioning study of Tsai et al.
(2009) with their innovative optogenetic method, which entails the
regulation of cellular activity by light pulses in genetically modified
animals. They established a causal relationship between gamma
stimulation and positive affect by showing that selective 50 Hz
stimulation of dopamine neurons served as a strong reward signal
in a place preference task performed by genetically modified mice.
They controlled the timing of dopamine release by neurons in
the ventral tegmental area through light pulses. The neurons were
stimulated with high-frequency light pulses (50 Hz) in one room
and with low-frequency light pulses (1 Hz) in another. The mice
developed a strong preference for the room that had been rein-
forced by gamma, even though the total number of light flashes
was equal in both frequency conditions. Gamma stimulation, how-
ever, elicited phasic increases in dopamine release that were more
than 50 times higher than after low-frequency light pulses. The
gamma resonance in these dopaminergic cells enables a broader
range of modulatory effects than of attentional flexibility by the
oscillations alone. The production of neuromodulators, such as
dopamines and endorphins, may add to the specific consequences
of gamma oscillations by evoking a broader range of physiologi-
cal reactions and action tendencies. Long-range synchronization
(e.g., Gregoriou et al., 2009) of gamma, elicited anywhere in the
network, can thus turn gamma oscillations into a more global
positive state modulating many different aspects of behavior.

The core attentional switching effect of gamma was supported
by another optogenetic study from the same group. Sohal et al.
(2009) showed that gamma induced in the prefrontal cortices of
the mice enhanced information transmission through the net-
work. This transmission was defined as the difference between
response entropy, which measures variability of output, and noise
entropy, which reflects how much output variability is unrelated
to input. It thus constitutes the degree to which the output fol-
lows the input, and would in our terms depend upon attentional
flexibility. The higher the flexibility, the more information can
be transmitted through the network. The authors of these paral-
lel optogenetic studies did not explain why they expected these
remarkable findings or how they were related. According to the
hypotheses emerging from the evolutionary simulations, how-
ever, synchronized gamma oscillations both signal positive affect
and facilitate attentional flexibility, thereby increasing information
transmission (Heerebout and Phaf, 2010a,b).

Both affective and attentional consequences of gamma oscilla-
tions induced by brightness variations on the screen (i.e., flicker)
were observed in a recent study from our group (Heerebout, 2011).
The entrainment of neural activations by visual gamma flicker has
been demonstrated in visual areas of occipital cortex (Herrmann,
2001; Williams et al., 2004), but the oscillations may well spread to
other areas (Gregoriou et al., 2009). We adapted the setup of Bauer
et al. (2009), who showed that subliminal presentation of 50 Hz
visual flicker facilitated attentional shifting to the flicker position.
A stimulus display contained gray-scale images of male and female,
emotionally neutral, faces and consisted of either two males (i.e.,
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distracters) and one female (i.e., target), or two females (i.e., dis-
tracters) and one male (i.e., target). A circular patch flickering at 50,
25, or 0 Hz preceded the target. Participants decided on the gender
of the target face (Block 1), and whether they felt the target face
was positive or negative (Block 2). A flicker-detection task was per-
formed in a third block. Two-alternative-forced-choice responses
in the first two blocks were made with the approach-avoidance
button stand of Rotteveel and Phaf (2004). In the latter study
we found that happy faces speeded approach actions and slowed
avoidance actions, whereas these action tendencies reversed with
angry faces.

The main finding of Heerebout (2011) was that 50 Hz gamma
flicker evoked positive affect, both when measured implicitly (i.e.,
Block 1) with the approach–avoidance task and when faces were
evaluated explicitly (i.e., Block 2). If the target was preceded by
a 50-Hz flicker, the participants’ rating of the neutral target went
up to 55% positive compared to 48% in the no-flicker condition.
The implicit affective measures revealed the predicted shifts in
approach and avoidance reaction times, even though participants
did not perform an affective evaluation task, and were not aware of
the gamma flicker or its affective value. Overall, reactions times to
targets were shorter after 50 Hz flickers than after 25 or 0 Hz flick-
ers, thus confirming the attentional facilitation first observed by
Bauer et al. (2009). With respect to no-flicker (0 Hz), 25 Hz flicker
did not have an effect on either attention or affect, despite being
the only type of flicker that was detected above chance in Block 3.
Even though gamma flicker was not detected by these participants,
it thus modulated both attention and affect.

Additionally, the results of other studies could be re-interpreted
along the lines of our hypotheses. Jung-Beeman et al. (2004), for
instance, measured high-frequent, gamma band, neural activity
with a scalp electroencephalogram while subjects were solving
verbal problems. This activity, which was distributed over right
anterior temporal positions, occurred 300 ms prior to the moment
of sudden insight. The authors called these moments Aha! expe-
riences, which stand in contrast to the slower solutions of more
systematic search strategies. We think that the gamma burst in this
study is not so much associated with the process of gaining insight,
but rather with the positive affect evoked by the sudden shift from
difficult to smooth processing. According to affective monitoring
(see also Sroufe and Waters, 1976), the sudden insight leads to
strong positive affect, similar to when, for instance, the punch line
of a joke “breaks through.” In terms of our network model, the
quick resolution of competition evokes Rpo activation, which then
gets involved in a push–pull process with the Vpo node resulting
in a gamma oscillation.

The absence of negative priming by 25 Hz flicker in Heere-
bout’s (2011) experiment may indicate that the postulated lower-
frequency negative oscillations lie in another frequency band. In
this domain, however, even fewer studies are available than with
gamma oscillations. We know of only one study that suggests an
association of lower-frequency theta oscillations (4–8 Hz) with
negative affect. Using magnetoencephalography, Maratos et al.
(2009) demonstrated differences in theta activity in the amyg-
dala when either blurry, containing only low spatial frequencies,
fear faces or blurry neutral faces were presented. This activity was
accompanied by similar power differences in visual and frontal

regions, which were apparently synchronized to the amygdala.
Support for the identification of the negative lower-frequency
oscillations with theta thus seems limited to only one study and
certainly much more research into this issue would be needed.
Indirect support for our association of affect with oscillations in
different frequency bands comes from EEG research in memory.
It has been claimed that memory familiarity is reflected in the
gamma band and recollection in the theta band (Gruber et al.,
2008). If recollection performance indeed results from laborious
memory search, and familiarity from fluent memory activation, we
indeed expect these to correspond to negative and positive affect,
respectively (cf. Phaf and Rotteveel, 2005). In sum, we propose
that affect first elicits oscillations in different frequency bands and
that synchronization of these oscillations to other neural regions
than where they have been evoked may have broader effects, pos-
sibly mediated by the release of affect-specific neuromodulators,
on physiology and action tendencies.

AFFECT AND BEHAVIOR SYSTEMS
Emotions are generally believed to evoke expressions, action ten-
dencies, and specific modes of information processing (e.g., Frijda,
1986; Oatley and Johnson-Laird, 1987, 1995; Panksepp, 1998). In
many theories, these emotional effects are organized in “hard-
wired” behavior systems that, similar to affective monitoring,
have an evolutionary origin. Throughout evolutionary history
the organism was confronted with recurring situations, such as
escaping from threats, finding mates, and caring for infants, for
which adaptations have developed to optimize gene survival. The
behavior systems can be activated by a repertoire of evolutionary-
prepared stimuli and provide outline scripts of previously fitness-
enhancing behavior. Panksepp, for instance, distinguishes FEAR,
SEEKING, RAGE, PANIC, LUST, CARE, and PLAY systems, which
are in capitals to emphasize that they concern emotion systems
and not only conscious emotional feelings or single brain loca-
tions. Because the systems have been given emotion names, it
seems pretty clear whether positive or negative affect is associ-
ated with a system, perhaps with the exception of the SEEK-
ING system. Although originally devised by Panksepp (see also
Berridge, 2003) as a positive emotion system, the appetitive goal-
directed behavior elicited by this system can both serve to search
for fitness-enhancing stimuli and to try to avoid fitness-reducing
stimuli. Later Panksepp and Watt (2011) conceded that even the
SEEKING system may be associated with negative affect if escape
from a potential threat is sought. Oatley and Johnson-Laird (1987,
1995) also couple their basic emotions to evolutionary-prepared
behavior systems, but they do not seem to conclude to a one-
to-one relationship between these systems and specific emotions.
Oatley and Jenkins (1996, see Table 3.2.), for instance, link the
attachment behavior system to either happiness, love, distress,
relief, anger, or anxiety, depending on the recurring theme being
addressed. In our view, when ongoing activity matches the goals
of the behavior system, for instance being with the attached per-
son, positive affect is elicited. When however a mismatch occurs,
for instance interruption of attachment, activation of the same
behavior system may lead to negative affect. Affective monitoring
thus imparts affective flavor on the behavior systems. We propose
here that, although there may be a preferential association with
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one type of affect, this association is not exclusive for any behavior
system.

There are both similarities and differences between affective
monitoring and the behavior systems. Similar to the behavior
systems, also affective monitoring probably has a repertoire of
evolutionary-prepared stimuli that may trigger it directly and
also a repertoire of evolutionary-prepared action tendencies, from
which it may select a response. For affective monitoring we postu-
late that match–mismatch, which is a dynamical property of pro-
cessing, serves as the only evolutionary-prepared signal, whereas
the behavior systems may be directly activated by definite classes of
evolutionary relevant stimuli, for instance intense stimuli, snakes,
spiders, faces, babies, etc., as well as by stimuli learned during
ontogenesis. The consequence of this assumption is that the lat-
ter stimuli have no immediate affective value, but only acquire
one indirectly through affective monitoring of the activity in the
behavior system they are associated with.

The large range of situations and stimuli that are able to evoke
affect suggests that this process cannot be localized in a single
or even a few neural regions. Affective monitoring is, moreover,
not restricted to activity in these behavior systems, but applies to
many more types of internal processing, which may not be explic-
itly related to emotion (e.g., Phaf and Rotteveel, 2009). In the
proposed implementation, moreover, well-functioning networks
have fewer active nodes and thus would be less easily detected
with neuroimaging techniques than networks suffering from a lot
of competition. A parallel finding can be observed in skill acquisi-
tion. As skills are acquired, global brain activation declines (Haier
et al., 1992) and, moreover, shifts from cortical to intermediate
cortical or subcortical regions (Saling and Phillips, 2007). If neu-
roimaging primarily detects areas with much competition, this
implies that automaticity corresponds to a relative decrease in
competition in cortical areas, but an increase at lower levels which
are perhaps involved in task execution. The lower levels of activity
in positive than in negative affect may also be one of the reasons
why less effort has been spent to investigate positive than nega-
tive emotions, at least with neuroimaging tools (e.g., see Berridge,
2003).

Behavior systems may be subject to more limited localization
than affective monitoring, but without explicit process models
the contributions of different neural areas to any function may
be very hard to determine with neuroimaging methods. Any
neuroscientific approach to mental functioning should in our
opinion emphasize procedural instead of localization aspects. The
knowledge of where a particular function resides helps little in
understanding how that function works. Perhaps the prime exam-
ple of an integrative process model for a behavior system has
been presented by LeDoux (1996) in his well-known dual-route
model. LeDoux specified the connections in a larger fear net-
work, and identified the amygdala as the hub in the wheel of fear
processing.

Fear mostly has a negative valence, but components of fear,
such as surprise and sudden changes may also figure in positive
emotions. A smiling facial expression, for instance, may well be a
fear expression signaling that the sender poses no threat. Smiling
expressions have indeed been found to also activate the amygdala
(e.g., Fitzgerald et al., 2006). The amygdala seems most involved

in coding emotional intensity, arousal, or relevance with a small
bias toward negativity (Cunningham et al., 2008). The amygdala
through its connections with the brain stem, the hypothalamus,
and cortical regions evokes the arousal, endocrine, behavioral, and
information processing effects associated with fear. Heerebout and
Phaf (2010a) suggested that the amygdala is mainly involved in the
preparation an prioritization of both approach and avoidance ten-
dencies. Frijda (1986) considered “control precedence” one of the
defining features of emotion. Activation of the amygdala may be
responsible for this precedence by boosting emotional processing
elsewhere. In a similar vein as with biased competition (Phaf et al.,
1990; Duncan, 1996), the amygdala pre-activates, either through
direct connections or through neuromodulatory control, whole
regions enabling swift selection of an appropriate action tendency.
Subsequent monitoring of the resulting internal and informa-
tion processing states would then determine what specific affect is
elicited.

The amygdala example strengthens the case for a dissocia-
tion between the emotional behavior systems and affect. Patients
with selective amygdala damage, for instance, show surprisingly
few affective consequences (Damasio, 1999). In this view, more-
over, defensive behavior can occur in the absence of negative
affect. On the other hand, negative affect may enhance such
defensive behavior, as in the startle reflex (e.g., Lang, 1995).
Although both affective monitoring and the behavior systems con-
tribute to full emotions, they do not exclusively map onto each
other. In the next paragraph we will argue that their combined
workings are not even a sufficient prerequisite for a conscious
emotion.

THE CONSTRUCTION OF CONSCIOUS EMOTIONS
At every moment in time, some of the many modules in the
vast network will give off affective signals, which only rarely
develop into conscious emotions. Distributed processing of spe-
cific features across the network will mostly result in contradictory
positive and negative signals. If, however, one type of oscillation
dominates, synchronization over large areas may occur, and an
affective state with a particular valence may arise, which does
not need to be conscious. Resonance of these oscillations in areas
responsible for the production of neuromodulators, physiological
reactions, and action tendencies may further extend the affec-
tive reactions. Synchronization in our view is not a sufficient
prerequisite for the transformation of non-conscious affect into
conscious emotion. According to constructivist theory (cf. Man-
dler, 1996; see also Barrett, 2009), consciousness arises from the
building of an internal model in terms of sensori-motor rep-
resentations (Phaf and Wolters, 1997; see also Hesslow, 2002).
Only faint informational signals for these constructions, mainly
through the observation of the person’s own behavior, are avail-
able from affect, because it has developed primarily in evolution
to steer behavior into fitness-promoting directions without the
intervention of slower conscious processes. An affective state may
thus occur but remain non-conscious (cf. Berridge and Winkiel-
man, 2003) due to the inability to incorporate it in an internal
model.

Constructivism opposes the identity assumption, which
according to Mandler (1996) “postulates that some preconscious
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state ‘breaks through’, ‘reaches’, ‘is admitted’, ‘crosses a threshold’,
‘enters’, into consciousness. A constructivist position states, in
contrast, that most conscious states are constructed out of precon-
scious structures in response to the requirements of the moment”
(p. 482). Whereas affect can be passively activated in our network
model, conscious feelings need active constructions. These feel-
ings not only include the perception of the person’s own bodily
and physiological states, facial and postural expressions, and action
tendencies, but also reconstructions of the events leading up to
the emotion (cf. Parkinson and Manstead, 1992). They generally
present an interpretation of the person’s situation, in which cur-
rent concerns, emotional schemata, and also plans for the future
are involved. The actively constructed compounds differ qualita-
tively from their passively activated non-conscious constituents,
and therefore require extensions to the network models suggested
above.

Biological and artificial networks are generally equipped with
input and output modalities, so that they can react to external
stimuli. Responses enacted externally in turn change the input,
which may again result in adjustment of the output. Activations
in the network thus accurately “model” the external situation
by closing the external loop between output and input. What is
needed for “imagining” situations that are not actually present in
the environment? Phaf and Wolters, 1997, (see also Phaf et al.,
1994) have suggested that the internalization of the output–input
loop, through the installation by evolution of long-range recur-
rent connections between output and input modalities, presents
the organism with a capacity to represent states that could poten-
tially, but need not, exist in the outside environment. Most often,
however, there is close correspondence between the internal and
external loops, which run in parallel. Phaf and Wolters argued
that the ability to construct internal models in terms of one’s own
perceptions and actions, which may be disconnected from actual
actions and perceptions, constitutes consciousness.

A similar internal-loop concept, which similar to the external
loop operates sequentially, has been proposed in the renowned
working-memory model of Baddeley (1986). He actually distin-
guished two such loops: the articulatory–auditory loop and the
visuo-spatial sketchpad. Still other input–output modalities may
have been coupled by evolution in this way, however. Given the
large role bodily states are assumed to play in emotional feelings,
also an internal loop between bodily output and input has likely
developed. Damasio (1994), for instance, postulated “as–if” loops,
in which internal models of bodily states could be maintained and
manipulated. In the neo-Jamesian view of Damasio, both inter-
nal and actual bodily states can lie on the basis of the conscious
feelings. Baddeley’s two types of working memory thus proba-
bly need to be supplemented by a third, somato-sensory, working
memory, to accommodate theories on conscious emotions (Phaf
and Wolters, 1997). We do not agree with Damasio that represen-
tations in somato-sensory working memory are solely responsible
for feelings, but think that constructions in all three types of
working memory may contribute (Phaf and Wolters, 1997). Every
type possesses long-range recurrent connections between specific
input–output modalities around a central network. In this net-
work the working memories interact and transformations from
one modality to the other take place. Processing in this network is

also responsible for the combination and elaboration of represen-
tations that are simultaneously maintained in working memory. If,
for instance, your way is blocked by another person, you may con-
struct an internal model of not being able to continue walking
in somato-sensory working memory, direct your visual atten-
tion and plan toward a possible passage in visuo-spatial working
memory, and finally construct an angry appraisal in articulatory–
auditory working memory by verbally reasoning that the person
is responsible for the obstruction.

In this paper on the elicitation of non-conscious affect, we will
not further elaborate upon constructivist theories of conscious-
ness, but instead present an intriguing example of a qualitative
dissociation between conscious and non-conscious processing.
The Jacoby and Whitehouse (1989) paradigm compares two con-
ditions in which the fluency resulting from a matching word is
either incorporated in the conscious reconstruction of the memory
for that word (i.e., the aware condition) or not (i.e., the unaware
condition). In the classical list-learning setup, a list of words is
first studied and a forced-choice recognition test on old, previously
studied, words and new words is later administered. Test words are
preceded by either matching (i.e., identical) context words, non-
matching context words, or a meaningless string of letters. The
level of consciousness is manipulated by presenting the context
word either for a short, suboptimal, or a longer, optimal, duration
between a premask and a postmask.

Matching words raise processing fluency of the test word on a
number of different features, such as the visual and auditory word
forms, and help settle the initial competition set up by the instruc-
tion to decide whether the test word is old or not. Non-matching
context words on the other hand elicit competition with the test
word on these features. Recognition requires the reconstruction of
the memory status of the word, in which also influences at the time
of testing (e.g., of the prime) may be incorporated. The higher pro-
cessing fluency at test is involved in this reconstruction as a higher
likelihood of the word being presented at study. The more difficult
processing at test due to non-matching context words is inter-
preted as a higher likelihood of novelty. This is exactly the pattern
of results Jacoby and Whitehouse obtained, but only in unaware
conditions. Matching words increased correct recognition of old,
actually studied, words and false recognition of new words relative
to non-matching words, if context words were presented subopti-
mally. In aware conditions, the recognition advantage with match-
ing words reversed into a recognition disadvantage. Still similar
fluency priming should occur as in the unaware condition. With
optimal priming, however, the matching context word is incorpo-
rated in the conscious experience of the test trial and identified as
the probable source of the enhanced fluency. Non-matching words
are similarly discounted as the source of conflict. The separation of
the two words into two conscious experiences and the counteract-
ing of the context words even reverses their influence. Discounting
and source attribution effects, such as in affective priming (Mur-
phy and Zajonc, 1993; Rotteveel et al., 2001) and mere exposure
(Bornstein, 1989), are in our view representative for conditions,
where primes are processed consciously.

Affective monitoring predicts that matching suboptimal primes
also raise positive affect, which indeed was demonstrated with
pictures by Reber et al. (1998; for a review of these and similar
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effects, see Fazendeiro et al., 2007). Affective monitoring, more-
over, adds the further prediction that non-matching words not
only elicit disfluency and conflict but also negative affect. The close
correspondence between fluency/disfluency and positive/negative
affect, at least at a non-conscious level, was shown in a study
where we replaced the matching/non-matching context words
with positive/negative context words in the Jacoby–Whitehouse
paradigm (Phaf and Rotteveel, 2005). In suboptimal conditions,
positive words led to more correct and false recognition than neg-
ative words, but the effect was only diluted but not reversed in
optimal conditions. A second experiment in this study showed
that negative affect can reduce familiarity as much as positive
affect can increase it. Positive and negative affect were induced
by covert instructions to contract facial zygomaticus and cor-
rugator muscles, respectively. Relative to a neutral induction by
juggling a pen with the fingers of the non-preferred hand, the
positive condition showed an increase in correct and false recog-
nition, whereas a decrease resulted from the negative condition.
The absence of strong discounting or attribution effects due to
conscious processing of the affective context words may well be
explained by the fact that a link between affective words and famil-
iarity was not obvious to the participants. The varying results
in conscious conditions lead us to the conclusion that the most
straightforward evidence for affective monitoring can be found
when confounding influences of conscious constructions have
been minimized.

DISCUSSION
Three main types of arguments will probably be raised against
affective monitoring.

(i) In many cases even strongly fluent processing does not elicit
much positive affect, or may even induce boredom,

(ii) Exploration, or the seeking of novelty, motivates many
human activities and is mostly evaluated positively,

(iii) Affect reflects personal meanings based on appraisal
processes which compare situations to individual concerns
and goals.

WHEN IS FLUENCY NEUTRAL, OR EVEN NEGATIVE?
The prime experimental paradigm in psychology supporting a
fluency–positivity relationship is probably mere exposure (Kunst-
Wilson and Zajonc, 1980), which entails that the “non-reinforced”
presentation of a stimulus increases liking. Although mere expo-
sure is by now well-established (Zajonc, 2001), many factors can
moderate the effect. Shifts in preference ratings generally decrease
with level of consciousness for the previous exposure (Bornstein,
1989). Even after suboptimal previous exposure, detailed, analytic,
processing at test eliminates familiarity effects both on preference
and recognition (Whittlesea and Price, 2001). In addition, when
fluency is expected, not much exposure effects can be found on
feelings of familiarity (e.g., Whittlesea and Williams, 1998) or on
positive feelings (Willems and Van der Linden, 2006). A high level
of fluency due to many repetitions may even induce boredom and
negative affect (Bornstein et al., 1990).

The absence of fluency effects when the fluency is expected
(e.g., Whittlesea and Williams, 1998; Willems and Van der Linden,

2006; see also Hansen et al., 2008) is explained in a straightfor-
ward manner within the affective monitoring framework. In our
network model (see Figure 4), positive activation always requires
some initial competition, which may not be there when the expec-
tation matches the actual outcome. Tentatively, a similar account
may apply to the recent findings of de Vries et al. (2010; cf. Freitas
et al., 2005) that a happy mood diminishes the fluency effects in
the “beauty-in-averages” phenomenon. The positive mood may
set up expectations of high fluency, which prevents the elicitation
of any affect.

The observation that fluency is not always positive has led
to a split into “cognitive” and affective interpretations of mere
exposure. The cognitive account assumes that mere exposure is
a non-affective implicit memory effect (e.g., Seamon et al., 1984;
Mandler et al., 1987; Whittlesea and Price, 2001), in which the
increased fluency is attributed to a higher liking of the stimulus,
particularly when its source is not consciously recognized. Zajonc
(1980, 2001), however, postulates primacy for affect and holds
that exposure evokes genuine positive affect. Evidence showing
that mere exposure also has diffuse mood effects (Monahan et al.,
2000), and that mere exposure is accompanied by contractions
of the facial zygomaticus muscle (Harmon-Jones and Allen, 2001;
see also Winkielman and Cacioppo, 2001), seems to have clearly
tipped the balance in favor of Zajonc’ position.

Affective monitoring integrates affective and cognitive process-
ing by arguing that the processing of familiarity/novelty coincides
with affective processing at the earliest stages of processing (cf.
Phaf and Rotteveel, 2005). It conforms to Zajonc’ idea that genuine
affect is evoked by the repeated exposure. In contrast to affective
primacy, however, this affect cannot effectively be distinguished
from cognitive processing. The illusory distinction between affect
and cognition only arises when conscious experiences are probed
(cf. Rotteveel and Phaf, 2007). Whether the previous exposure is
incorporated in the construction of the conscious feeling depends
on whether exposure can be recollected consciously. If it can,
the positive affect will mostly be discounted and attributed to
this exposure. We argue here that attribution and discounting
are expressions of conscious processing, and that the most direct
affective influences can be found when conscious recollection is
impeded.

Boredom, which represents a form of negative affect, clearly
covers larger time spans than, for instance, with subliminal pre-
sentation and requires many repetitions. Under those conditions
mere-exposure is indeed limited by an effect of boredom (cf.
Berlyne, 1970). In Experiment 2 of Bornstein et al. (1990), for
instance, affect ratings increased after the first five presentations,
but clearly decreased after 10 and more presentations. In their
Experiment 1, moreover, only low boredom–prone individuals
showed the mere-exposure effect. Similar individual differences
have been obtained by Hansen and Topolinski (2011) in the pro-
totypicality effect, which entails a preference for prototypes over
exemplars. Participants with an exploratory mindset in this experi-
ment showed a reduced preference for prototypes and an increased
preference for novel exemplars.

The role of individual differences in these fluency-affect
findings provides important clues for an explanation in terms
of evolutionary-prepared behavior systems, which function in
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parallel to affective monitoring. Many theoreticians assume an
exploratory behavior system (e.g., the PLAY system, Panksepp,
1998), which allows the organism to refine its abilities to deal
with the physical and social environment. With only a few repeti-
tions, or with subliminal presentation, positive affect is evoked by
fluent stimuli, even in high-boredom, or very exploratory, individ-
uals. After many repetitions the positive affect habituates, however,
because it is fully expected and no initial competition occurs any-
more. In these monotonous conditions the exploratory system
will take over, particularly when the exploratory system is highly
active, as it may be in high-boredom and highly exploratory per-
sons. The very fluent stimuli are then clearly in conflict with these
exploratory tendencies, and negative affect will arise. In sum, the
affective monitoring account postulates a fluency–positivity link
primarily in non-conscious conditions and only after there has
been some initial competition. In the long run, fluency effects may
peter out because they are no longer unexpected and the affective
monitoring of activity in an exploratory behavior system may turn
fluency into a negative property.

CAN NOVELTY BE POSITIVE?
Also in our view novelty can evoke positive affect, but this does not
constitute the most direct reaction. In the experiments of Berlyne
(1970), for instance, novel stimuli were evaluated more positively
than familiar stimuli, when they were presented in sequences with
very long, supraliminal, durations (9 s), sometimes after extensive
prefamiliarization. Novel stimuli may have constituted a welcome
relief from boredom and may have satisfied exploratory tendencies
evoked by the repetitive task. Humans often also actively seek nov-
elty to avoid boredom. Biederman and Vessel (2006) have posited
that pleasure arises from “infovore” behavior which maximizes the
rate at which people acquire knowledge under conditions where
there may be no immediate need for the information. Counter
to affective monitoring, but also invoking a connectionist novelty
detection mechanism similar to Murre et al. (1992; see also Phaf
et al., 2001), they assumed that novelty corresponds to positive
affect and familiarity to boredom and negative affect. They more-
over noted (see Yue et al., 2007) that preferred stimuli resulted
in larger activations than neutral stimuli in, particularly the pos-
terior portion of, the parahippocampal cortex, a region rich in
opioid receptors.

There is more reason to believe that the parahippocampal
cortex is linked to familiarity than to novelty. Daselaar et al.
(2006; see also Strange et al., 1999; Köhler et al., 2002 have, for
instance, found that activation in posterior parts of the MTL,
which includes the parahippocampal cortex, increases with the
true oldness of the stimulus, irrespective of whether the partic-
ipant consciously recollects the stimulus. Novelty on the other
hand was coded by anterior parts of the MTL, which inhibited
the posterior parts in a unidirectional fashion. The neuroimag-
ing results of Yue et al. (2007) thus seem to support a link between
preference and familiarity, rather than one between preference and
novelty.

The hypothesis of Biederman and Vessel (2006) on the opera-
tion of the opioid neurotransmitters (i.e., endorphins) also points
toward a link between smooth processing and positive affect rather
than between novelty and positive affect. According to Biederman

and Vessel, the brain is immersed in an inhibitory “GABA-bath.”
The release of the GABA neurotransmitter is in turn inhibited
by the opioids, so that competition decreases and activation can
flow more smoothly through the network. In that case, however,
also competitive learning is reduced, so that there is less opportu-
nity to develop focused representations, and stimuli would remain
relatively novel. If opioids were released due to the processing
of novel stimuli, this would seriously undermine the (competi-
tive) learning capability and would hamper the development of
sparse representations for these novel stimuli. If, however, opi-
oids are released when competition has subsided, as we propose,
these neurotransmitters would lower mutual inhibition even fur-
ther and foster attentional flexibility. The seeking of novelty thus
only takes place after longer periods of smooth processing. Pos-
itive affect may then be elicited by novelty because it matches
the exploratory tendencies set up by this particular behavior
system.

AFFECTIVE MONITORING AND APPRAISAL
Appraisal is the central concept of emotion elicitation in classical
emotion psychology (Frijda, 1986; Lazarus, 1991). It represents the
individual’s evaluation of a current or future event with respect
to personal well-being. At first sight, there is a close connec-
tion between primary appraisal and affective monitoring. Lazarus
and Folkman (1984) distinguished primary appraisal, secondary
appraisal, and reappraisal. The former refers to whether the situa-
tion has relevance for personal well-being or, to put it in another
way, “Am I in trouble or being benefited, now or in the future, and
in what way?” (Lazarus and Folkman, 1984, p. 31). Congruence
between a real or imagined situation and a personal concern evokes
positive affect, whereas incongruence leads to negative affect. Sec-
ondary appraisal differentiates between different emotions of the
same affect (see also Parkinson and Manstead, 1992) and deter-
mines “What if anything can be done about it?” (p. 31). Finally,
reappraisal is the renewed evaluation of the original encounter in
the light of the success or failure of the coping strategies resulting
from secondary appraisal.

The concept of affective monitoring owes much to Frijda
(2007): “Pleasure is the positive outcome of constantly moni-
toring one’s functioning” (p. 82), and “Emotions monitor and
regulate progress toward concern satisfaction. They signal when
goal shifts are needed or urgent” (p. 127). It is tempting to con-
sider primary appraisal a high level, conceptual, form of affective
monitoring. For appraisal it is necessary that the concerns are acti-
vated first, probably in the same manner as other meanings and
concepts can be set up for further processing. In the connection-
ist language, concerns are represented as active nodes or nodes
assemblies. Environmental situations or events result in stimulus
input that is split up along partly the same representational com-
ponents as the concerns. The presence, or alternatively the quick
resolution, of competition between these nodes elicits negative or
positive affect, respectively. We argue here, however, that affective
monitoring is not limited to the comparison with personal goals
and concerns, but is more general covering all kinds of bodily and
cognitive functioning.

Many appraisal theoreticians (e.g., Lazarus, 1991) would also
consider the non-conscious instances of affective monitoring a
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form of primary appraisal. Many of these, however, do not clearly
involve personal concerns and there is no obvious connection to
personal well-being, such as in the matching of attentional direc-
tion (Phaf and Rotteveel, 2009), or in mere exposure (Zajonc,
2001). An arrow to the right does not increase personal well-being
in left-to-right readers, but represents an impersonal byproduct of
the evolutionary basic process of affective monitoring. Appraisal
is about the pursuit of personal, and often short-term, well-being,
whereas affective monitoring results from the optimization of gene
survival. Evolutionary development leads to behavior systems or
generic mechanisms that have a net adaptive value, but that may
also result in behavior without obvious fitness benefits (cf. “span-
drels”; Gould and Lewontin, 1979), or rarely even maladaptive
behavior. The fact that all behavior has been shaped by evolu-
tion simply does not mean that all behavior is adaptive. Affect
has evolved as a gross code for adaptive value, but in a similar
manner not all positive affect signals specific benefits to the indi-
vidual. At best, affective monitoring and appraisal represent partly
overlapping processes, particularly when conceptual concerns are
monitored, but they are certainly not identical.

The nature of empirical appraisal research suggests an alto-
gether different conceptualization of appraisal. This research (e.g.,
Smith and Ellsworth, 1985; Shaver et al., 1987; Frijda et al.,
1989) has almost exclusively relied on subjective reports of con-
scious emotional contents. The role of consciousness in appraisal
has sparked an acrimonious debate between Zajonc (1980) and
Lazarus (1981, 1982). Zajonc held that non-conscious affect pre-
ceded conscious cognition whereas, according to Lazarus, the two
are completely intertwined. Although this debate may have gotten
bogged down in semantics and variable definitions, particularly
of “cognition,” there seems to be at least one substantial issue in
the debate. Lazarus did not deny, and even emphasized, non-
conscious appraisal, but did not think that it mattered much
whether appraisal was conscious or non-conscious. Zajonc held
open the possibility of dissociations between early, non-conscious,
and diffuse affect and later conscious emotions. The method of
subjective report for finding out the structure of both conscious
and non-conscious appraisal implies adherence to an identity posi-
tion (e.g., Mandler, 1996). Identity assumes, implicitly or explicitly,
that conscious and non-conscious processes do not differ qual-
itatively, and that conscious report can thus be used to probe
the fundamental structure of non-conscious appraisal. In all fair-
ness, Lazarus (1995) later acknowledged this paradox in appraisal
research and even called it a “vexing” problem. In our opinion
(see also Rotteveel and Phaf, 2007), the qualitative dissociation
between non-conscious and conscious emotional processes was
the real issue in the Zajonc–Lazarus debate.

If one wants to hold that all emotion involves appraisal in the
face of the elicitation of at least a diffuse form of emotion (i.e.,
affect) by a different mechanism, one has to concede that appraisal
can occur after the initial causation of an emotion. Increasingly,
appraisal has indeed been considered a consequence rather than a
cause of emotion (see Parkinson and Manstead, 1992; Frijda, 1993;
Frijda and Zeelenberg, 2001). A prime feature of non-conscious
processes, moreover, is that they may not be accurately represented
in the conscious contents (e.g.,Nisbett and Wilson,1977). The sub-
jective reports of emotional appraisals are, therefore, likely post hoc

reconstructions, possibly fitting commonsense causal schemata,
which may or may not reflect the underlying emotional process-
ing. This, of course agrees very well with constructionist accounts
of consciousness (e.g., Mandler, 1996).

Phaf and Wolters (1997) have argued that constructions are
responsible for all conscious contents by combining represen-
tations that are temporarily activated in working memory. We
distinguished three types of working memory, somato-sensory,
visuo-spatial, and auditory–articulatory working memory, which
are probably all involved in the conscious experience of emotion.
Verbal reports of appraisal will, however, mainly be constructed in
the auditory–articulatory type. Not only representations of under-
lying affective processes will be active but also general schemata,
demand characteristics, current concerns, and future plans may
be involved in the construction. The schema “that there must be a
reason for my behavior” will induce a reconstruction in terms of a
comparison of the emotional situation with my current goals and
concerns. If the emotional event was some time ago there is even
a chance that the appraisal will be constructed with my present
goals instead of with my goals at the time of the event (Levine,
1997).

For theoretical clarity, it would be best to fully separate affec-
tive monitoring from appraisal by reserving the latter term for
the conscious constructions of emotional experiences in working
memory. Appraisal thus coincides with the creation of conscious
emotional contents in verbal working memory. Appraisal is no
longer the elicitor of affect, but the constructor of emotional
consciousness. In our view, affect is elicited and modulates cog-
nition and behavior predominantly in a non-conscious manner.
If this affect is elaborated into a conscious emotion, the result-
ing experience runs the risk of being inaccurate with respect to
its non-conscious sources, even to the point that, very similar to
the more readily investigated false memories (e.g., Loftus, 1997),
false emotions bearing no relation to the non-conscious affect may
occur.

CONCLUSION
Building on earlier modeling and experimental work, we presented
a mechanistic view on how affect is elicited, how it is represented,
and how it modulates cognition and behavior. Elements of this
view, such as competition and oscillations, emerged from evolu-
tionary simulation, but others (e.g., match–mismatch detection)
extended upon design choices that were made in earlier models.
Together they are consistent with a large range of experimental
findings, of which only a small selection could be discussed in the
present paper.

Core tenets of the affective monitoring view are:

1. Affective monitoring is an evolutionary-early mechanism
working at the same basic level as the formation of repre-
sentations, attentional selection, and memory storage.

2. The constituent features of a representation are monitored
locally, provided they have an active counterpart against which
they can be matched.

3. If representations addressing the same module evoke much
competition, negative affect will arise.
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4. If competition can be solved quickly, negative affect will decay
quickly and positive affect will ensue.

5. If fluent processing is not preceded by initial competition,
neither positive nor negative affect will arise.

6. In parallel to affective monitoring separate mechanisms
have evolved linking specific evolutionary-prepared stimulus
repertoires to specific evolutionary-prepared action reper-
toires, such as in defensive, exploratory, attachment, and
SEEKING (or wanting) behavior systems. These behavior sys-
tems are predominantly, but not exclusively, linked to one type
of affect.

7. Positive affect locally induces gamma oscillations, whereas
negative affect probably corresponds to more incoherent
activity in the lower-frequency theta band.

8. When there is sufficient oscillatory activity, particularly
of gamma, synchronization across different neural regions
enables more global affective states.

9. Oscillatory activity in either band is associated with specific
types of attentional modulation, neuromodulatory activation,
action tendencies, and facial muscle activation.

10. Affect is primarily non-conscious but may be elaborated by
constructive processes into conscious emotions, encompass-
ing positive or negative feelings.

11. Constructive processes also entail regulatory and attri-
butional processes, which may dilute or even invert
the non-conscious match-positive and mismatch-negative
relations.

Considering positive and negative valence basic, irreducible, enti-
ties, such as reward and punishment or feeling good and bad, has
resulted in an artificial distinction between affective and cognitive
(i.e., non-affective) processes. In the affective monitoring point
of view all processing is continuously monitored and accompa-
nied by a mixture of positive and negative affect. Only when one
type of affect dominates and the oscillations resonate through-
out the network and an internal model (Phaf and Wolters, 1997;
Hesslow, 2002) that is consistent with only one type of affect,
is built, will a clear-cut affective experience arise. All process-
ing, therefore, has affective qualities, but only when the affect is
involved in conscious constructions are the processes experienced
as affective.

ACKNOWLEDGMENTS
We are grateful to Bram T. Heerebout, A. E. Yoram Tap, and
William H. Thompson for their help in various stages of this
work.

REFERENCES
Armony, J. L., Servan-Schreiber, D.,

Cohen, J. D., and LeDoux, J. E.
(1995). An anatomically constrained
neural network model of fear con-
ditioning. Behav. Neurosci. 109,
246–257.

Astikainen, P., and Hietanen, J. K.
(2009). Event-related potentials to
task-irrelevant changes in facial
expressions. Behav. Brain Funct. 5,
30.

Baddeley, A. D. (1986). Working Mem-
ory. Oxford: Oxford University
Press.

Barrett, L. F. (2009). Variety is the spice
of life: a psychological construction
approach to understanding variabil-
ity in emotion. Cogn. Emot. 23,
1284–1306.

Bauer, F., Cheadle, S. W., Parton,
A., Müller, H. J., and Usher, M.
(2009). Gamma flicker triggers
attentional selection without aware-
ness. Proc. Natl. Acad. Sci. U.S.A. 106,
1666–1671.

Beilock, S. L., and Holt, L. E. (2007).
Embodied preference judgments:
can likeability be driven by the motor
system? Psychol. Sci. 18, 51–57.

Berlyne, D. E. (1970). Novelty, com-
plexity, and hedonic valence. Percept.
Psychophys. 8, 279–286.

Berridge, K. C. (2003). Pleasures of the
brain. Brain Cogn. 52, 106–128.

Berridge, K. C., and Winkielman, P.
(2003). What is an unconscious
emotion? The case for unconscious
‘liking’. Cogn. Emot. 17, 181–211.

Biederman, I., and Vessel, E. A. (2006).
Perceptual pleasure and the brain.
Am. Sci. 94, 247–253.

Blanchette, I. (2006). Snakes, spiders,
guns, and syringes: how specific
are evolutionary constraints on the
detection of threatening stimuli? Q.
J. Exp. Psychol. 59, 1394–1414.

Bornstein, R. F. (1989). Exposure and
affect: overview and meta-analysis of
research, 1968–1987. Psychol. Bull.
106, 265–289.

Bornstein, R. F., Kale, A. R., and Cor-
nell, K. R. (1990). Boredom as a lim-
iting condition on the mere expo-
sure effect. J. Pers. Soc. Psychol. 58,
791–800.

Buzsáki, G., and Draguhn, A. (2004).
Neuronal oscillations in cortical net-
works. Science 304, 1926–1929.

Cannon, P. R., Hayes, A. E., and Tip-
per, S. P. (2010). Sensorimotor flu-
ency influences affect: evidence from
electromyography. Cogn. Emot. 24,
681–691.

Chalmers, D. J. (2004). “How
can we construct a science of
consciousness?” in The Cognitive
Neurosciences III, ed. M. S. Gaz-
zaniga, (Cambridge, MA: MIT
Press), 1111–1119.

Cunningham, W. A., Van Bavel, J. J., and
Johnsen, I. R. (2008). Affective flex-
ibility: evaluative processing goals
shape amygdala activity. Psychol. Sci.
19, 152–160.

Damasio, A. R. (1994). Descartes’ Error:
Emotion, Reason and the Human
Brain. New York: Avon Books.

Damasio, A. R. (1999). The Feeling of
What Happens. New York: Harcourt
Brace.

Daselaar, S. M., Fleck, M. S., Prince, S. E.,
and Cabeza, R. (2006). The medial
temporal lobe distinguishes old from
new independently of conscious-
ness. J. Neurosci. 26, 5835–5839.

de Vries, M., Holland, R. W., Chenier,
T., Starr, M. J., and Winkielman, P.
(2010). Happiness cools the warm
glow of familiarity: psychophysio-
logical evidence that mood modu-
lates the familiarity-affect link. Psy-
chol. Sci. 21, 321–328.

den Dulk, P., Heerebout, B. T., and
Phaf, R. H. (2003). A computational
study into the evolution of dual-
route dynamics for affective process-
ing. J. Cogn. Neurosci. 15, 194–208.

Dreisbach, G., and Goschke, T. (2004).
How positive affect modulates cog-
nitive control: reduced perseveration
at the cost of increased distractibility.
J. Exp. Psychol. Learn. Mem. Cogn.
30, 343–353.

Duncan, J. (1996). “Cooperating brain
systems in selective perception and
action,” in Attention and Perfor-
mance, Vol. XVI. Information inte-
gration in perception and communi-
cation, eds T. Inui and J. L. McClel-
land (Cambridge, MA: MIT Press),
549–578.

Fazendeiro, T., Chenier, T., and Winkiel-
man, P. (2007). “How dynamics of
thinking create affective and cogni-
tive feelings: psychology and neuro-
science of the connection between

fluency, liking, and memory,” in
Social Neuroscience, eds E. Harmon-
Jones and P. Winkielman (New York:
The Guilford Press), 271–289.

Fitzgerald, D. A., Angstadt, M., Jelsone,
L. M., Nathan, P. J., and Phan, K.
L. (2006). Beyond threat: amygdala
reactivity across multiple expres-
sions of facial affect. Neuroimage 30,
1441–1448.

Fredrickson, B. L. (2004). The broaden-
and-build theory of positive emo-
tions. Philos. Trans. R. Soc. Lond. B
Biol. Sci. 359, 1367–1377.

Freitas, A. L., Azizian, A., Travers, S.,
and Berry, S. A. (2005). The evalu-
ative connotation of processing flu-
ency: inherently positive or moder-
ated by motivational context? J. Exp.
Soc. Psychol. 41, 636–644.

Frijda, N. H. (1986). The Emotions.
Cambridge: Cambridge University
Press.

Frijda, N. H. (1993). The place of
appraisal in emotion. Cogn. Emot. 7,
357–387.

Frijda, N. H. (2007). The Laws of Emo-
tion. Mahwah, NJ: Lawrence Erl-
baum.

Frijda, N. H., Kuipers, P., and Ter Schure,
E. (1989). Relations among emo-
tion, appraisal, and emotional action
readiness. J. Pers. Soc. Psychol. 57,
212–228.

Frijda, N. H., and Zeelenberg, M.
(2001). “Appraisal: what is the
dependent?” in Appraisal Processes in
Emotion: Theory, Methods, Research,
eds K. R. Scherer, A. Schorr, and

www.frontiersin.org March 2012 | Volume 3 | Article 47 | 15

http://www.frontiersin.org
http://www.frontiersin.org/Emotion_Science/archive


Phaf and Rotteveel Affective monitoring

T. Johnstone (Oxford: Oxford Uni-
versity Press), 141–155.

Gable, P. A., and Harmon-Jones, E.
(2010). The motivational dimen-
sional model of affect: implications
for breadth of attention, memory,
and cognitive categorization. Cogn.
Emot. 24, 322–337.

Gould, S. J., and Lewontin, R. C. (1979).
The spandrels of San Marcos and
the Panglossian program: a critique
of the adaptationist programme.
Proc. R. Soc. Lond. B Biol. Sci. 205,
581–598.

Graf, P., and Mandler, G. (1984). Acti-
vation makes words more accessible,
but not necessarily more retrievable.
J. Verbal Learn. Verbal Behav. 23,
553–568.

Gregoriou, G. G., Gotts, S. J., Zhou,
H., and Desimone, R. (2009).
High-frequency, long-range cou-
pling between prefrontal and visual
cortex during attention. Science 234,
1207–1210.

Gruber, T., Tsivilis, D., Giabbiconi,
C.-M., and Müller, M. M. (2008).
Induced electroencephalogram
oscillations during source memory:
familiarity is reflected in the gamma
band, recollection in the theta band.
J. Cogn. Neurosci. 20, 1043–1053.

Haier, R. J., Siegel, B. V. Jr., MacLach-
lan, A., Soderling, E., Lottenberg,
S., and Buchsbaum, M. S. (1992).
Regional glucose metabolic changes
after learning a complex visuospa-
tial/motor task: a positron emission
tomographic study. Brain Res. 570,
134–143.

Hansen, J., Dechêne, A., and Wänke, M.
(2008). Discrepant fluency increases
subjective truth. J. Exp. Soc. Psychol.
44, 687–691.

Hansen, J., and Topolinski, S. (2011). An
exploratory mindset reduces prefer-
ence for prototypes and increases
preference for novel exemplars.
Cogn. Emot. 25, 709–716.

Harmon-Jones, E., and Allen, J. J. B.
(2001). The role of affect in the mere
exposure effect: evidence from psy-
chophysiological and individual dif-
ferences approaches. Pers. Soc. Psy-
chol. Bull. 27, 889–898.

Heerebout, B. T. (2011). Getting Emo-
tional with Evolutionary Simulations:
The Origin of Affective Processing
in Artificial Neural Networks. Saar-
brücken: LAP Lambert Academic
Publishing.

Heerebout, B. T., and Phaf, R. H.
(2010a). Emergent oscillations in
evolutionary simulations. J. Cogn.
Neurosci. 22, 807–823.

Heerebout, B. T., and Phaf, R. H.
(2010b). Good vibrations switch
attention: an affective function for

network oscillations in evolution-
ary simulations. Cogn. Affect. Behav.
Neurosci. 10, 217–229.

Herrmann, C. S. (2001). Human EEG
responses to 1–100 Hz flicker: res-
onance phenomena in visual cor-
tex and their potential correlation
to cognitive phenomena. Exp. Brain
Res. 137, 346–353.

Hesslow, G. (2002). Conscious thought
as simulation of behaviour and per-
ception. Trends Cogn. Sci. (Regul.
Ed.) 6, 242–247.

Holland, J. H. (1975). Adaptation in
Natural and Artificial Systems. Ann
Arbor: University of Michigan Press.

Hubel, D. H., and Wiesel, T. N. (1977).
Functional architecture of macaque
monkey visual cortex. Proc. R. Soc.
Lond. B Biol. Sci. 198, 1–59.

Innocenti, G. M., and Price, D. J. (2005).
Exuberance in the development of
cortical networks. Nat. Rev. Neu-
rosci. 6, 955–965.

Jacoby, L. L., and Whitehouse, K. (1989).
An illusion of memory: false recog-
nition influenced by unconscious
perception. J. Exp. Psychol. Gen. 118,
126–135.

Johnston, V. S. (2003). The origin and
function of pleasure. Cogn. Emot. 17,
167–179.

Jung-Beeman, M., Bowden, E. M.,
Haberman, J., Frymiare, J. L.,
Arambel-Liu, S., Greenblatt, R.,
Reber, P. J., and Kounios, J. (2004).
Neural activity when people solve
verbal problems with insight. PLoS
Biol. 2, 500–510. doi:10.1371/jour-
nal.pbio.0020097

Köhler, S., Crane, J., and Milner, B.
(2002). Differential contributions of
the parahippocampal place area and
the anterior hippocampus to human
memory for scenes. Hippocampus
12, 718–723.

Kunst-Wilson, W. R., and Zajonc, R. B.
(1980). Affective discrimination of
stimuli that cannot be recognized.
Science 207, 557–558.

Lang, P. J. (1995). The emotion probe:
studies of motivation and attention.
Am. Psychol. 50, 372–385.

Lazarus, R. S. (1981). A cogni-
tivist’s reply to Zajonc on emo-
tion and cognition. Am. Psychol. 36,
222–223.

Lazarus, R. S. (1982). Thoughts on the
relations between emotion and cog-
nition. Am. Psychol. 37, 1019–1024.

Lazarus, R. S. (1991). Cognition and
motivation in emotion. Am. Psychol.
46, 352–367.

Lazarus, R. S. (1995). Vexing research
problems inherent in cognitive-
mediational theories of emotion –
and some solutions. Psychol. Inq. 6,
183–196.

Lazarus, R. S., and Folkman, S. (1984).
Stress, Appraisal and Coping. New
York: Springer.

LeDoux, J. E. (1996). The Emotional
Brain. New York: Simon and Schus-
ter.

Levine, L. J. (1997). Reconstructing
memory for emotions. J. Exp. Psy-
chol. Gen. 126, 165–177.

Loftus, E. F. (1997). Creating false mem-
ories. Sci. Am. 277, 50–55.

Mandler, G. (1996). “Consciousness
redux,” in Scientific Approaches
to Consciousness: The Twenty-Fifth
Carnegie Symposium on Cognition,
eds J. C. Cohen and J. W. Schooler
(Hillsdale, NJ: Erlbaum), 479–498.

Mandler, G., Nakamura, Y., and Van
Zandt, B. J. S. (1987). Nonspecific
effects of exposure on stimuli that
cannot be recognized. J. Exp. Psychol.
13, 646–648.

Maratos, F., Mogg, K., Bradley, B., Rip-
pon, G., and Senior, C. (2009).
Coarse threat images reveal theta
oscillations in the amygdala: a mag-
netoencephalography study. Cogn.
Affect. Behav. Neurosci. 9, 133–143.

Monahan, J. L., Murphy, S. T., and
Zajonc, R. B. (2000). Subliminal
mere exposure: specific, general,
and diffuse effects. Psychol. Sci. 11,
462–466.

Murphy, S. T., and Zajonc, R. B.
(1993). Affect, cognition and aware-
ness: affective priming with optimal
and suboptimal stimulus exposures.
J. Pers. Soc. Psychol. 64, 723–739.

Murre, J. M. J. (1996). TraceLink: a
model of amnesia and consolida-
tion of memory. Hippocampus 6,
674–684.

Murre, J. M. J., Phaf, R. H., and Wolters,
G. (1992). CALM: categorizing and
learning module. Neural Netw. 5,
55–82.

Nisbett, R. E., and Wilson, T. D. (1977).
Telling more than we can know:
verbal reports on mental processes.
Psychol. Rev. 84, 231–259.

Oatley, K., and Jenkins, J. M. (1996).
Understanding Emotions. Oxford:
Blackwell.

Oatley, K., and Johnson-Laird, P. N.
(1987). Towards a cognitive the-
ory of emotion. Cogn. Emot. 1,
29–50.

Oatley, K., and Johnson-Laird, P. N.
(1995). “The communicative theory
of emotions: empirical tests, mental
models, and implications for social
interaction,” in Striving and Feeling:
Interactions Among Goals, Affect, and
Self-Regulation, eds L. L. Martin and
A. Tesser (Mahwah, NJ: Erlbaum),
363–380.

Öhman, A. (1986). Face the beast and
fear the face: animal and social fears

as prototypes for evolutionary analy-
ses of emotion. Psychophysiology 23,
123–145.

Ortony, A., and Turner, T. J. (1990).
What’s basic about basic emotions?
Psychol. Rev. 97, 315–331.

Panksepp, J. (1998). Affective Neuro-
science: The Foundations of Human
and Animal Emotions. New York:
Oxford University Press.

Panksepp, J., and Watt, D. (2011). What
is basic about basic emotions? Last-
ing lessons from affective neuro-
science. Emot. Rev. 3, 387–396.

Parkinson, B., and Manstead, A. S. R.
(1992). “Appraisal as a cause of emo-
tion,” in Emotion: Review of Per-
sonality and Social Psychology, Vol.
13, ed. M. S. Clark (London: Sage),
122–149.

Phaf, R. H. (1994). Learning in Nat-
ural and Connectionist Systems. Dor-
drecht: Kluwer Academic Publishers.

Phaf, R. H., den Dulk, P., Tijsseling,
A., and Lebert, E. (2001). Novelty-
dependent learning and topological
mapping. Conn. Sci. 13, 293–321.

Phaf, R. H., and Kan, K. J. (2007). The
automaticity of emotional Stroop: a
meta-analysis. J. Behav. Ther. Exp.
Psychiatry. 38, 184–199.

Phaf, R. H., Mul, N. M., and Wolters,
G. (1994). “A connectionist view on
dissociations,” in Attention and Per-
formance XV, Conscious and Noncon-
scious Information Processing, eds C.
Umiltà and M. Moscovitch (Cam-
bridge, MA: MIT Press), 725–751.

Phaf, R. H., and Rotteveel, M. (2005).
Affective modulation of recognition
bias. Emotion 5, 309–318.

Phaf, R. H., and Rotteveel, M. (2009).
Looking at the bright side: the affec-
tive monitoring of direction. Emo-
tion 9, 729–733.

Phaf, R. H., Van der Heijden, A. H.
C., and Hudson, P. T. W. (1990).
SLAM: a connectionist model for
attention in visual selection tasks.
Cogn. Psychol. 22, 273–341.

Phaf, R. H., and Wolters, G. (1997).
A constructivist and connection-
ist view on conscious and noncon-
scious processes. Philos. Psychol. 10,
287–307.

Raymond, J. E., Fenske, M. J., and Tavas-
soli, N. T. (2003). Selective attention
determines emotional responses to
novel visual stimuli. Psychol. Sci. 14,
537–542.

Reber, R., Winkielman, P., and Schwarz,
N. (1998). Effects of perceptual flu-
ency on affective judgments. Psychol.
Sci. 9, 45–48.

Rotteveel, M., de Groot, P., Geutskens,
A., and Phaf, R. H. (2001). Stronger
suboptimal than optimal affective
priming? Emotion 1, 348–364.

Frontiers in Psychology | Emotion Science March 2012 | Volume 3 | Article 47 | 16

http://dx.doi.org/10.1371/journal.pbio.0020097
http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Emotion_Science
http://www.frontiersin.org/Emotion_Science/archive


Phaf and Rotteveel Affective monitoring

Rotteveel, M., and Phaf, R. H. (2004).
Automatic affective evaluation does
not automatically predispose for
arm flexion and extension. Emotion
4, 156–172.

Rotteveel, M., and Phaf, R. H. (2007).
Mere exposure in reverse: mood
and motion modulate memory bias.
Cogn. Emot. 21, 1323–1346.

Rumelhart, D. E., and Zipser, D. (1985).
Feature discovery by competitive
learning. Cogn. Sci. 9, 75–112.

Saling, L. L., and Phillips, J. G. (2007).
Automatic behaviour: efficient not
mindless. Brain Res. Bull. 73, 1–20.

Schyns, P. G., Petro, L. S., and Smith, M.
L. (2007). Dynamics of visual infor-
mation integration in the brain for
categorizing facial expressions. Curr.
Biol. 17, 1580–1585.

Seamon, J. G., Marsh, R. L., and Brody,
N. (1984). Critical importance of
exposure duration for affective dis-
crimination of stimuli that are not
recognized. J. Exp. Psychol. Learn.
Mem. Cogn. 10, 465–469.

Shaver, P., Schwartz, J., Kirson, D.,
and O’Connor, C. (1987). Emotion
knowledge: further exploration of
a prototype approach. J. Pers. Soc.
Psychol. 52, 1061–1086.

Smith, C. A., and Ellsworth, P. C. (1985).
Patterns of cognitive appraisal in
emotion. J. Pers. Soc. Psychol. 48,
813–838.

Sohal, V. S., Zhang, F., Yizhar, O., and
Deisseroth, K. (2009). Parvalbumin
neurons and gamma rhythms
synergistically enhance cortical
circuit performance. Nature 459,
698–702.

Sroufe, L. A., and Waters, E. (1976). The
ontogenesis of smiling and laugh-
ter: a perspective on the organization

of development in infancy. Psychol.
Rev. 83, 173–189.

Strange, B. A., Fletcher, P. C., Henson,
R. N. A., Friston, K. J., and Dolan, R.
J. (1999). Segregating the functions
of human hippocampus. Proc. Natl.
Acad. Sci. U.S.A. 96, 4034–4039.

Straube,T.,Mothes-Lasch,M.,and Milt-
ner, W. H. R. (2011). Neural mech-
anisms of the automatic process-
ing of emotional information from
faces and voices. Br. J. Psychol. 102,
830–848.

Topolinski, S., Likowski, K. U., Weyers,
P., and Strack, F. (2009). The face
of fluency: semantic coherence auto-
matically elicits a specific pattern of
facial muscle reactions. Cogn. Emot.
23, 260–271.

Tsai, H., Zhang, F., Adamantidis, A., Stu-
ber, G. D., Bonci, A., de Lecea, L.,
and Deisseroth, K. (2009). Phasic fir-
ing in dopaminergic neurons is suf-
ficient for behavioral conditioning.
Science 324, 1080–1084.

van Wouwe, N. C., Band, G. P. H., and
Ridderinkhof, K. R. (2011). Positive
affect modulates flexibility and eval-
uative control. J. Cogn. Neurosci. 23,
524–539.

von der Malsburg, C. (1973). Self-
organization of orientation sensitive
cells in the striate cortex. Kybernetik
14, 85–100.

Vuilleumier, P., Armony, J. L., Driver, J.,
and Dolan, R. J. (2003). Distinct spa-
tial frequency sensitivities for pro-
cessing faces and emotional expres-
sions. Nat. Neurosci. 6, 624–631.

Whittlesea, B. W. A., and Price, J.
R. (2001). Implicit/explicit memory
versus analytic/nonanalytic process-
ing: rethinking the mere exposure
effect. Mem. Cognit. 29, 234–246.

Whittlesea, B. W. A., and Williams,
L. D. (1998). Why do strangers
feel familiar, but friends don’t? A
discrepancy-attribution account of
feelings of familiarity. Acta Psychol.
98, 141–165.

Willems, S., and Van der Linden, M.
(2006). Mere exposure effect: a
consequence of direct and indirect
fluency-preference links. Conscious.
Cogn. 15, 323–341.

Williams, L. M., and Gordon, E. (2007).
Dynamic organization of the emo-
tional brain: responsivity, stability,
and instability. Neuroscientist 13,
349–370.

Williams, L. M., Palmer, D., Liddell, B.
J., Song, L., and Gordon, E. (2006).
The ‘when’ and ‘where’ of perceiving
signals of threat versus non-threat.
Neuroimage 31, 458–467.

Williams, P. E., Mechler, F, Gordon,
J, Shapley, R., and Hawken, M. J.
(2004). Entrainment to video dis-
plays in primary visual cortex of
macaque and humans. J. Neurosci.
24, 8278–8288.

Winkielman, P., and Cacioppo, J. T.
(2001). Mind at ease puts a smile
on the face: psychophysiological
evidence that processing facilitation
elicits positive affect. J. Pers. Soc.
Psychol. 81, 989–1000.

Womelsdorf, T., and Fries, P. (2006).
Neuronal coherence during selective
attentional processing and sensory–
motor integration. J. Physiol. 100,
182–193.

Womelsdorf, T., and Fries, P. (2007). The
role of neuronal synchronization in
selective attention. Curr. Opin. Neu-
robiol. 17, 154–160.

Yamaguchi, S., Hale, L. A., D’Esposito,
M., and Knight, R. T. (2004). Rapid

prefrontal-hippocampal habitua-
tion to novel events. J. Neurosci. 24,
5356–5363.

Yiend, J., and Mathews, A. (2001). Anx-
iety and attention to threatening
pictures. Q. J. Exp. Psychol. 54A,
665–681.

Yue, X., Vessel, E. A., and Bieder-
man, I. (2007). The neural basis of
scene preferences. Neuroreport 18,
525–529.

Zajonc, R. B. (1980). Feeling and think-
ing: preferences need no inferences.
Am. Psychol. 35, 151–175.

Zajonc, R. B. (2001). Mere exposure: a
gateway to the subliminal. Curr. Dir.
Psychol. Sci. 10, 224–228.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 01 November 2011; accepted:
08 February 2012; published online: 01
March 2012.
Citation: Phaf RH and Rotteveel
M (2012) Affective monitoring: a
generic mechanism for affect elici-
tation. Front. Psychology 3:47. doi:
10.3389/fpsyg.2012.00047
This article was submitted to Frontiers in
Emotion Science, a specialty of Frontiers
in Psychology.
Copyright © 2012 Phaf and Rotteveel.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution Non Commercial License,
which permits non-commercial use, dis-
tribution, and reproduction in other
forums, provided the original authors and
source are credited.

www.frontiersin.org March 2012 | Volume 3 | Article 47 | 17

http://dx.doi.org/10.3389/fpsyg.2012.00047
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Emotion_Science/archive

	Affective monitoring: a generic mechanism for affect elicitation
	Introduction
	The model
	A neural implementation
	Positive affect
	Temporal order of positive and negative affect
	What is evoked?
	Affect and behavior systems
	The Construction of Conscious Emotions
	Discussion
	When is fluency neutral, or even negative?
	Can Novelty be Positive?
	Affective Monitoring and Appraisal

	Conclusion
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


