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We provide a basic review of the data screening and assumption testing issues relevant
to exploratory and confirmatory factor analysis along with practical advice for conducting
analyses that are sensitive to these concerns. Historically, factor analysis was developed
for explaining the relationships among many continuous test scores, which led to the
expression of the common factor model as a multivariate linear regression model with
observed, continuous variables serving as dependent variables, and unobserved factors
as the independent, explanatory variables. Thus, we begin our paper with a review of the
assumptions for the common factor model and data screening issues as they pertain to
the factor analysis of continuous observed variables. In particular, we describe how prin-
ciples from regression diagnostics also apply to factor analysis. Next, because modern
applications of factor analysis frequently involve the analysis of the individual items from
a single test or questionnaire, an important focus of this paper is the factor analysis of
items. Although the traditional linear factor model is well-suited to the analysis of con-
tinuously distributed variables, commonly used item types, including Likert-type items,
almost always produce dichotomous or ordered categorical variables. We describe how
relationships among such items are often not well described by product-moment correla-
tions, which has clear ramifications for the traditional linear factor analysis. An alternative,
non-linear factor analysis using polychoric correlations has become more readily available to
applied researchers and thus more popular. Consequently, we also review the assumptions
and data-screening issues involved in this method.Throughout the paper, we demonstrate
these procedures using an historic data set of nine cognitive ability variables.
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Like any statistical modeling procedure, factor analysis carries a set
of assumptions and the accuracy of results is vulnerable not only to
violation of these assumptions but also to disproportionate influ-
ence from unusual observations. Nonetheless, the importance of
data screening and assumption testing is often ignored or mis-
construed in empirical research articles utilizing factor analysis.
Perhaps some researchers have an overly indiscriminate impres-
sion that, as a large sample procedure, factor analysis is “robust” to
assumption violation and the influence of unusual observations.
Or, researchers may simply be unaware of these issues. Thus, with
the applied psychology researcher in mind, our primary goal for
this paper is to provide a general review of the data screening and
assumption testing issues relevant to factor analysis along with
practical advice for conducting analyses that are sensitive to these
concerns. Although presentation of some matrix-based formulas
is necessary, we aim to keep the paper relatively non-technical and
didactic. To make the statistical concepts concrete, we provide data
analytic demonstrations using different factor analyses based on
an historic data set of nine cognitive ability variables.

First, focusing on factor analyses of continuous observed vari-
ables,we review the common factor model and its assumptions and
show how principles from regression diagnostics can be applied to
determine the presence of influential observations. Next, we move

to the analysis of categorical observed variables, because treat-
ing ordered, categorical variables as continuous variables is an
extremely common form of assumption violation involving factor
analysis in the substantive research literature. Thus, a key aspect
of the paper focuses on how the linear common factor model
is not well-suited to the analysis of categorical, ordinally scaled
item-level variables, such as Likert-type items. We then describe
an alternative approach to item factor analysis based on polychoric
correlations along with its assumptions and limitations. We begin
with a review the linear common factor model which forms the
basis for both exploratory factor analysis (EFA) and confirmatory
factor analysis (CFA).

THE COMMON FACTOR MODEL
The major goal of both EFA and CFA is to model the relation-
ships among a potentially large number of observed variables
using a smaller number of unobserved, or latent, variables. The
latent variables are the factors. In EFA, a researcher does not have
a strong prior theory about the number of factors or how each
observed variable relates to the factors. In CFA, the number of
factors is hypothesized a priori along with hypothesized relation-
ships between factors and observed variables. With both EFA and
CFA, the factors influence the observed variables to account for
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their variation and covariation; that is, covariation between any
two observed variables is due to them being influenced by the
same factor. This idea was introduced by Spearman (1904) and,
largely due to Thurstone (1947), evolved into the common factor
model, which remains the dominant paradigm for factor analysis
today. Factor analysis is traditionally a method for fitting models
to the bivariate associations among a set of variables, with EFA
most commonly using Pearson product-moment correlations and
CFA most commonly using covariances. Use of product-moment
correlations or covariances follows from the fact that the common
factor model specifies a linear relationship between the factors and
the observed variables.

Lawley and Maxwell (1963) showed that the common factor
model can be formally expressed as a linear model with observed
variables as dependent variables and factors as explanatory or
independent variables:

yj = λ1η1 + λ2η2 + λkηk + εj

where yj is the jth observed variable from a battery of p observed
variables, ηk is the kth of m common factors, λk is the regression
coefficient, or factor loading, relating each factor to yj, and εj is the
residual, or unique factor, for yj. (Often there are only one or two
factors, in which case the right hand side of the equation includes
only λ1η1 + εj or only λ1η1 + λ2η2 + εj.) It is convenient to work
with the model in matrix form:

y = Λη + ε, (1)

where y is a vector of the p observed variables, Λ is a p × m matrix
of factor loadings, η is a vector of m common factors, and ε is
a vector of p unique factors1. Thus, each common factor may
influence more than one observed variable while each unique fac-
tor (i.e., residual) influences only one observed variable. As with
the standard regression model, the residuals are assumed to be
independent of the explanatory variables; that is, all unique fac-
tors are uncorrelated with the common factors. Additionally, the
unique factors are usually assumed uncorrelated with each other
(although this assumption may be tested and relaxed in CFA).

Given Eq. 1, it is straightforward to show that the covariances
among the observed variables can be written as a function of model
parameters (factor loadings, common factor variances and covari-
ances, and unique factor variances). Thus, in CFA, the parameters
are typically estimated from their covariance structure:

Σ = ΛΨΛ′ + Θ, (2)

where Σ is the p × p population covariance matrix for the observed
variables, Ψ is the m × m interfactor covariance matrix, and Θ is
the p × p matrix unique factor covariance matrix that often con-
tains only diagonal elements, i.e., the unique factor variances. The
covariance structure model shows that the observed covariances

1For traditional factor analysis models, the means of the observed variables are
arbitrary and unstructured by the model, which allows omission of an intercept
term in Eq. 1 by assuming the observed variables are mean-deviated, or centered
(MacCallum, 2009).

are a function of the parameters but not the unobservable scores
on the common or unique factors; hence, it is not necessary to
observe scores on the latent variables to estimate the model para-
meters. In EFA, the parameters are most commonly estimated
from the correlation structure

P = Λ∗Ψ∗Λ∗′ + Θ∗ (3)

where P is the population correlation matrix and, in that P is
simply a re-scaled version of Σ, we can view Λ∗, Ψ∗, and Θ∗
as re-scaled versions of Λ, Ψ, and Θ, respectively. This tendency
to conduct EFA using correlations is mainly a result of historical
tradition, and it is possible to conduct EFA using covariances or
CFA using correlations. For simplicity, we focus on the analysis
of correlations from this point forward, noting that the principles
we discuss apply equivalently to the analysis of both correlation
and covariance matrices (MacCallum, 2009; but see Cudeck, 1989;
Bentler, 2007; Bentler and Savalei, 2010 for discussions of the
analysis of correlations vs. covariances). We also drop the asterisks
when referring to the parameter matrices in Eq. 3.

Jöreskog (1969) showed how the traditional EFA model, or
an “unrestricted solution” for the general factor model described
above, can be constrained to produce the “restricted solution”
that is commonly understood as today’s CFA model and is well-
integrated in the structural equation modeling (SEM) literature.
Specifically, in the EFA model, the elements of Λ are all freely esti-
mated; that is, each of the m factors has an estimated relationship
(i.e., factor loading) with every observed variable; factor rotation
is then used to aid interpretation by making some values in Λ

large and others small. But in the CFA model, depending on the
researcher’s hypothesized model, many of the elements of Λ are
restricted, or constrained, to equal zero, often so that each observed
variable is determined by one and only one factor (i.e., so that there
are no “cross-loadings”). Because the common factors are unob-
served variables and thus have an arbitrary scale, it is conventional
to define them as standardized (i.e., with variance equal to one);
thus Ψ is the interfactor correlation matrix2. This convention is not
a testable assumption of the model, but rather imposes necessary
identification restrictions that allow the model parameters to be
estimated (although alternative identification constraints are pos-
sible, such as the marker variable approach often used with CFA).
In addition to constraining the factor variances, EFA requires a
diagonal matrix for Θ, with the unique factor variances along the
diagonal.

Exploratory factor analysis and CFA therefore share the goal
of using the common factor model to represent the relationships
among a set of observed variables using a small number of factors.
Hence, EFA and CFA should not be viewed as disparate meth-
ods, despite that their implementation with conventional software
might seem quite different. Instead, they are two approaches to

2In EFA, the model is typically estimated by first setting Ψ to be an identity matrix,
which implies that the factors are uncorrelated, or orthogonal, leading to the initial
unrotated factor loadings in Λ. Applying an oblique factor rotation obtains a new set
of factor loadings along with non-zero interfactor correlations. Although rotation
is not a focus of the current paper, we recommend that researchers always use an
oblique rotation.
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investigating variants of the same general model which differ
according to the number of constraints placed on the model, where
the constraints are determined by the strength of theoretical expec-
tations (see MacCallum, 2009). Indeed, it is possible to conduct
EFA in a confirmatory fashion (e.g., by using “target rotation”) or
to conduct CFA in an exploratory fashion (e.g., by comparing a
series of models that differ in the number or nature of the fac-
tors)3. Given that EFA and CFA are based on the same common
factor model, the principles and methods we discuss in this paper
largely generalize to both procedures. The example analyses we
present below follow traditional EFA procedures; where necessary,
we comment on how certain issues may be different for CFA.

In practice, a sample correlation matrix R (or sample covari-
ance matrix S) is analyzed to obtain estimates of the unconstrained
parameters given some specified value m of the number of com-
mon factors4. The parameter estimates can be plugged into Eq. 3
to derive a model-implied population correlation matrix, P̂. The
goal of model estimation is thus to find the parameter estimates
that optimize the match of the model-implied correlation matrix
to the observed sample correlation matrix. An historically pop-
ular method for parameter estimation in EFA is the “principal
factors method with prior communality estimates,” or “principal
axis factor analysis,” which obtains factor loading estimates from
the eigenstructure of a matrix formed by R − Θ̂ (see MacCallum,
2009). But given modern computing capabilities, we agree with
MacCallum (2009) that this method should be considered obso-
lete, and instead factor analysis models should be estimated using
an iterative algorithm to minimize a model fitting function, such as
the unweighted least-squares (ULS) or maximum likelihood (ML)
functions. Although principal axis continues to be used in mod-
ern applications of EFA, iterative estimation, usually ML, is almost
always used with CFA. In short, ULS is preferable to principal axis
because it will better account for the observed correlations in R
(specifically, it will produce a smaller squared difference between a
given observed correlation and the corresponding model-implied
correlation), whereas ML obtains parameter estimates that give
the most likely account of the observed data (MacCallum, 2009;
see also Briggs and MacCallum, 2003). Below, we discuss how the
assumption of normally distributed observed variables comes into
play for ULS and ML.

As shown above, given that the parameters (namely, the factor
loadings in Λ and interfactor correlations in Ψ) are estimated
directly from the observed correlations, R, using an estimator
such as ML or ULS, factor analysis as traditionally implemented is
essentially an analysis of the correlations among a set of observed
variables. In this sense, the correlations are the data. Indeed,
any factor analysis software program can proceed if a sample
correlation matrix is the only data given; it does not need the
complete raw, person by variable (N × p) data set from which

3Asparouhov and Muthén (2009) further show how an unrestricted EFA solution
can be used in place of a restricted CFA-type measurement model within a larger
SEM.
4We will not extensively discuss EFA methods for determining the number of fac-
tors except to note where assumption violation or inaccurate correlations may affect
decisions about the optimal number of common factors. See MacCallum (2009) for
a brief review of methods for determining the number of common factors in EFA.

the correlations were calculated5. Conversely, when the software
is given the complete (N × p) data set, it will first calculate the
correlations among the p variables to be analyzed and then fit the
model to those correlations using the specified estimation method.
Thus, it is imperative that the“data” for factor analysis, the correla-
tions, be appropriate and adequate summaries of the relationships
among the observed variables, despite that the common factor
model makes no explicit assumptions about the correlations them-
selves. Thus, if the sample correlations are misrepresentative of the
complete raw data, then the parameter estimates (factor loadings
and interfactor correlations) will be inaccurate, as will model fit
statistics and estimated SEs for the parameter estimates. Of course,
more explicit assumption violation also can cause these problems.
In these situations, information from the complete data set beyond
just the correlations becomes necessary to obtain “robust” results.

Before we discuss these issues further, we first present a data
example to illustrate the common factor model and to provide a
context for demonstrating the main concepts of this article involv-
ing data screening and assumption testing for factor analysis. The
purpose of this data example is not to provide a comprehensive
simulation study for evaluating the effectiveness of different factor
analytic methods; such studies have already been conducted in the
literature cited throughout this paper. Rather, we use analyses of
this data set to illustrate the statistical concepts discussed below so
that they may be more concrete for the applied researcher.

DATA EXAMPLE
Our example is based on unpublished data reported in Har-
man (1960); these data and an accompanying factor analysis are
described in the user’s guide for the free software package CEFA
(Browne et al., 2010). The variables are scores from nine cognitive
ability tests. Although the data come from a sample of N = 696
individuals, for our purposes we consider the correlation matrix
among the nine variables to be a population correlation matrix (see
Table 1) and thus an example of P in Eq. 3. An obliquely rotated
(quartimin rotation) factor pattern for a three-factor model is
considered the population factor loading matrix (see Table 2) and
thus an example of Λ in Eq. 3. Interpretation of the factor loadings
indicates that the first factor (η1) has relatively strong effects on the
variables Word Meaning, Sentence Completion, and Odd words;
thus, η1 is considered a “verbal ability” factor. The second factor
(η2) has relatively strong effects on Mixed Arithmetic, Remainders,
and Missing numbers; thus, η2 is “math ability.” Finally, the third
factor (η3) is “spatial ability” given its strong influences on Gloves,
Boots, and Hatchets. The interfactor correlation between η1 and
η2 is ψ12 = 0.59, the correlation between η1 and η3 is ψ13 = 0.43,
and η2 and η3 are also moderately correlated with ψ23 = 0.48.

These population parameters give a standard against which
to judge sample-based results for the same factor model that we
present throughout this paper. To begin, we created a random
sample of N = 100 with nine variables from a multivariate stan-
dard normal population distribution with a correlation matrix
matching that in Table 1. We then estimated a three-factor EFA

5Certain models, such as multiple-group measurement models, may also include a
mean structure, in which case the means of the observed variables also serve as data
for the complete model estimation.
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Table 1 | Population correlation matrix.

Variable 1 2 3 4 5 6 7 8 9

WrdMean 1

SntComp 0.75 1

OddWrds 0.78 0.72 1

MxdArit 0.44 0.52 0.47 1

Remndrs 0.45 0.53 0.48 0.82 1

MissNum 0.51 0.58 0.54 0.82 0.74 1

Gloves 0.21 0.23 0.28 0.33 0.37 0.35 1

Boots 0.30 0.32 0.37 0.33 0.36 0.38 0.45 1

Hatchts 0.31 0.30 0.37 0.31 0.36 0.38 0.52 0.67 1

WrdMean, word meaning; SntComp, sentence completion; OddWrds, odd words;

MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers,

Hatchts, hatchets.

Table 2 | Population factor loading matrix.

Variable Factor

η1 η2 η3

WrdMean 0.94 −0.05 −0.03

SntComp 0.77 0.14 −0.03

OddWrds 0.83 0.00 0.08

MxdArit −0.05 1.01 −0.05

Remndrs 0.04 0.80 0.06

MissNum 0.14 0.75 0.06

Gloves −0.06 0.13 0.56

Boots 0.05 −0.01 0.74

Hatchts 0.03 −0.09 0.91

WrdMean, word meaning; SntComp, sentence completion; OddWrds, odd words;

MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers;

Hatchts, hatchets. Primary loadings for each observed variable are in bold.

model using ULS and applied a quartimin rotation. The estimated
rotated factor loading matrix, Λ̂, is in Table 3. Not surprisingly,
these factor loading estimates are similar, but not identical, to the
population factor loadings.

REGRESSION DIAGNOSTICS FOR FACTOR ANALYSIS OF
CONTINUOUS VARIABLES
Because the common factor model is just a linear regression model
(Eq. 1), many of the well-known concepts about regression diag-
nostics generalize to factor analysis. Regression diagnostics are a
set of methods that can be used to reveal aspects of the data that
are problematic for a model that has been fitted to that data (see
Belsley et al., 1980; Fox, 1991, 2008, for thorough treatments).
Many data characteristics that are problematic for ordinary mul-
tiple regression are also problematic for factor analysis; the trick
is that in the common factor model, the explanatory variables
(the factors) are unobserved variables whose values cannot be
determined precisely. In this section, we illustrate how regression
diagnostic principles can be applied to factor analysis using the
example data presented above.

Table 3 | Sample factor loading matrix (multivariate normal data, no

outlying cases).

Variable Factor

η1 η2 η3

WrdMean 0.96 −0.08 0.04

SntComp 0.81 0.15 −0.13

OddWrds 0.75 0.05 0.12

MxdArit −0.06 1.01 −0.03

Remndrs 0.09 0.75 0.09

MissNum 0.09 0.80 0.06

Gloves −0.03 0.20 0.56

Boots 0.07 0.00 0.68

Hatchts −0.01 −0.01 0.85

N = 100. WrdMean, word meaning; SntComp, sentence completion; OddWrds,

odd words; MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing

numbers; Hatchts, hatchets. Primary loadings for each observed variable are in

bold.

But taking a step back, given that factor analysis is basically
an analysis of correlations, all of the principles about correla-
tion that are typically covered in introductory statistics courses
are also relevant to factor analysis. Foremost is that a product-
moment correlation measures the linear relationship between two
variables. Two variables may be strongly related to each other,
but the actual correlation between them might be close to zero if
their relationship is poorly approximated by a straight line (for
example, a U-shaped relationship). In other situations, there may
be a clear curvilinear relationship between two variables, but a
researcher decides that a straight line is still a reasonable model
for that relationship. Thus, some amount of subjective judgment
may be necessary to decide whether a product-moment correlation
is an adequate summary of a given bivariate relationship. If not,
variables involved in non-linear relationships may be transformed
prior to fitting the factor model or alternative correlations, such
as Spearman rank-order correlations, may be factor analyzed (see
Gorsuch, 1983, pp. 297–309 for a discussion of these strategies, but
see below for methods for item-level categorical variables).

Visual inspection of simple scatterplots (or a scatterplot matrix
containing many bivariate scatterplots) is an effective method for
assessing linearity, although formal tests of linearity are possible
(e.g., the RESET test of Ramsey, 1969). If there is a large number
of variables, then it may be overly tedious to inspect every bivari-
ate relationship. In this situation, one might focus on scatterplots
involving variables with odd univariate distributions (e.g., strongly
skewed or bimodal) or randomly select several scatterplots to scru-
tinize closely. Note that it is entirely possible for two variables to
be linearly related even when one or both of them is non-normal;
conversely, if two variables are normally distributed, their bivari-
ate relationship is not necessarily linear. Returning to our data
example, the scatterplot matrix in Figure 1 shows that none of the
bivariate relationships among these nine variables has any clear
departure from linearity.

Scatterplots can also be effective for identifying unusual cases,
although relying on scatterplots alone for this purpose is not
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FIGURE 1 | Scatterplot matrix for multivariate normal random sample consistent with Holzinger data (N = 100; no unusual cases).

foolproof. Cases that appear to be outliers in a scatterplot might
not actually be influential in that they produce distorted or oth-
erwise misleading factor analysis results; conversely, certain influ-
ential cases might not easily reveal themselves in a basic bivariate
scatterplot. Here, concepts from regression diagnostics come into
play. Given that regression (and hence factor analysis) is a pro-
cedure for modeling a dependent variable conditional on one or
more explanatory variables, a regression outlier is a case whose
dependent variable value is unusual relative to its predicted, or
modeled, value given its scores on the explanatory variables (Fox,
2008). In other words, regression outliers are cases with large
residuals.

A regression outlier will have an impact on the estimated regres-
sion line (i.e., its slope) to the extent that it has high leverage.
Leverage refers to the extent that a case has an unusual com-
bination of values on the set of explanatory variables. Thus, if
a regression outlier has low leverage (i.e., it is near the cen-
ter of the multivariate distribution of explanatory variables), it
should have relatively little influence on the estimated regres-
sion slope; that is, the estimated value of the regression slope
should not change substantially if such a case is deleted. Con-
versely, a case with high leverage but a small residual also has
little influence on the estimated slope value. Such a high leverage,

small residual case is often called a “good leverage” case because
its inclusion in the analysis leads to a more precise estimate of
the regression slope (i.e., the SE of the slope is smaller). Visual
inspection of a bivariate scatterplot might reveal such a case, and
a naïve researcher might be tempted to call it an “outlier” and
delete it. But doing so would be unwise because of the loss of
statistical precision. Hence, although visual inspection of raw,
observed data with univariate plots and bivariate scatterplots is
always good practice, more sophisticated procedures are needed
to gain a full understanding of whether unusual cases are likely to
have detrimental impact on modeling results. Next, we describe
how these concepts from regression diagnostics extend to factor
analysis.

FACTOR MODEL OUTLIERS
The factor analysis analog to a regression outlier is a case whose
value for a particular observed variable is extremely different from
its predicted value given its scores on the factors. In other words,
cases with large (absolute) values for one or more unique factors,
that is, scores on residual terms in ε, are factor model outliers. Eq.
1 obviously defines the residuals ε as

ε = y − Λη. (4)
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But because the factor scores (i.e., scores on latent variables in
η) are unobserved and cannot be calculated precisely, so too the
residuals cannot be calculated precisely, even with known popula-
tion factor loadings, Λ. Thus, to obtain estimates of the residuals,
ε̂, it is necessary first to estimate the factor scores, η̂, which them-
selves must be based on sample estimates of Λ̂ and Θ̂. Bollen
and Arminger (1991) show how two well-known approaches to
estimating factor scores, the least-squares regression method and
Bartlett’s method, can be applied to obtain ε̂. As implied by Eq.
4, the estimated residuals ε̂ are unstandardized in that they are
in the metric of the observed variables, y. Bollen and Arminger
thus present formulas to convert unstandardized residuals into
standardized residuals. Simulation results by Bollen and Arminger
show good performance of their standardized residuals for reveal-
ing outliers, with little difference according to whether they are
estimated from regression-based factor scores or Bartlett-based
factor scores.

Returning to our example sample data, we estimated the stan-
dardized residuals from the three-factor EFA model for each of
the N = 100 cases; Figure 2 illustrates these residuals for all nine
observed variables (recall that in this example, y consists of nine
variables and thus there are nine unique factors in ε̂). Because the
data were drawn from a standard normal distribution conforming

to a known population model, these residuals themselves should
be approximately normally distributed with no extreme outliers.
Any deviation from normality in Figure 2 is thus only due to sam-
pling error and error due to the approximation of factor scores.
Later, we introduce an extreme outlier in the data set to illustrate
its effects.

LEVERAGE
As mentioned above, in regression it is important to consider lever-
age in addition to outlying residuals. The same concept applies in
factor analysis (see Yuan and Zhong, 2008, for an extensive discus-
sion). Leverage is most commonly quantified using “hat values”
in multiple regression analysis, but a related statistic, Mahalono-
bis distance (MD), also can be used to measure leverage (e.g.,
Fox, 2008). MD helps measure the extent to which an observa-
tion is a multivariate outlier with respect to the set of explanatory
variables6. Here, our use of MD draws from Pek and MacCallum
(2011), who recommend its use for uncovering multivariate out-
liers in the context of SEM. In a factor analysis, the MD for a given

6Weisberg (1985) showed that (n − 1)h∗ is the MD for a given case from the centroid
of the explanatory variables, where h∗ is the regression hat value calculated using
mean-deviated independent variables.

FIGURE 2 | Histograms of standardized residuals for each observed variable from three-factor model fitted to random sample data (N = 100; no

unusual cases).
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observation can be measured for the set of observed variables with

MDi = (
yi − ȳ

)′
S−1 (

yi − ȳ
)

where yi is the vector of observed variable scores for case i, ȳ is the
vector of means for the set of observed variables, and S is the sam-
ple covariance matrix. Conceptually, MDi is the squared distance
between the data for case i and the center of the observed multi-
variate “data cloud” (or data centroid), standardized with respect
to the observed variables’ variances and covariances. Although it is
possible to determine critical cut-offs for extreme MDs under cer-
tain conditions, we instead advocate graphical methods (shown
below) for inspecting MDs because distributional assumptions
may be dubious and values just exceeding a cut-off may still be
legitimate observations in the tail of the distribution.

A potential source of confusion is that in a regression analysis,
MD is defined with respect to the explanatory variables, but for
factor analysis MD is defined with respect to the observed vari-
ables, which are the dependent variables in the model. But for
both multiple regression and factor analysis, MD is a model-free
index in that its value is not a function of the estimated parameters
(but see Yuan and Zhong, 2008, for model-based MD-type mea-
sures). Thus, analogous to multiple regression, we can apply MD
to find cases that are far from the center of the observed data cen-
troid to measure their potential impact on results. Additionally, an
important property of both MD and model residuals is that they
are based on the full multivariate distribution of observed vari-
ables, and as such can uncover outlying observations that may not
easily appear as outliers in a univariate distribution or bivariate
scatterplot.

The MD values for our simulated sample data are summarized
in Figure 3. The histogram shows that the distribution has a mini-
mum of zero and positive skewness, with no apparent outliers, but
the boxplot does reveal potential outlying MDs. Here, these are
not extreme outliers but instead represent legitimate values in the
tail of the distribution. Because we generated the data from a mul-
tivariate normal distribution we do not expect any extreme MDs,
but in practice the data generation process is unknown and sub-
jective judgment is needed to determine whether a MD is extreme
enough to warrant concern. Assessing influence (see below) can aid

that judgment. This example shows that extreme MDs may occur
even with simple random sampling from a well-behaved distrib-
ution, but such cases are perfectly legitimate and should not be
removed from the data set used to estimate factor models.

INFLUENCE
Again, cases with large residuals are not necessarily influential and
cases with high MD are not necessarily bad leverage points (Yuan
and Zhong, 2008). A key heuristic in regression diagnostics is that
case influence is a product of both leverage and the discrepancy
of predicted values from observed values as measured by resid-
uals. Influence statistics known as deletion statistics summarize
the extent to which parameter estimates (e.g., regression slopes
or factor loadings) change when an observation is deleted from a
data set.

A common deletion statistic used in multiple regression is
Cook’s distance, which can be broadened to generalized Cook’s
distance (gCD) to measure the influence of a case on a set of para-
meter estimates from a factor analysis model (Pek and MacCallum,
2011) such that

gCDi =
(
θ̂ − θ̂(i)

)′ [
VÂR

(
θ̂(i)

)]−1 (
θ̂ − θ̂(i)

)
,

where θ̂ and θ̂(i) are vectors of parameter estimates obtained from
the original, full sample and from the sample with case i deleted

and VÂR
(
θ̂(i)

)
consists of the estimated asymptotic variances (i.e.,

squared SEs) and covariances of the parameter estimates obtained
with case i deleted. Like MD, gCD is in a squared metric with
values close to zero indicating little case influence on parameter
estimates and those far from zero indicating strong case influence
on the estimates. Figure 4 presents the distribution of gCD values
calculated across the set of factor loading estimates from the three-
factor EFA model fitted to the example data. Given the squared
metric of gCD, the strong positive skewness is expected. The box-
plot indicates some potential outlying gCDs, but again these are
not extreme outliers and instead are legitimate observations in the
long tail of the distribution.

Because gCD is calculated by deleting only a single case i from
the complete data set, it is susceptible to masking errors, which

FIGURE 3 | Distribution of Mahalanobis Distance (MD) for multivariate normal random sample data (N = 100; no unusual cases).
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FIGURE 4 | Distribution of generalized Cook’s distance (gCD) for multivariate normal random sample data (N = 100; no unusual cases).

occur when an influential case is not identified as such because
it is located in the multivariate space close to one or more sim-
ilarly influential cases. Instead, a local influence (Cadigan, 1995;
Lee and Wang, 1996) or forward search (Poon and Wong, 2004;
Mavridis and Moustaki, 2008) approach can be used to iden-
tify groups of influential cases. It is important to recognize that
when a model is poorly specified (e.g., the wrong number of fac-
tors has been extracted), it is likely that many cases in a sample
would be flagged as influential, but when there are only a few
bad cases, the model may be consistent with the major regu-
larities in the data except for these cases (Pek and MacCallum,
2011).

EXAMPLE DEMONSTRATION
To give one demonstration of the potential effects of an influen-
tial case, we replaced one of the randomly sampled cases from
the example data with a non-random case that equaled the orig-
inal case with Z = 2 added to its values for five of the observed
variables (odd-numbered items) and Z = 2 subtracted from the
other four observed variables (even-numbered items). Figure 5
indicates the clear presence of this case in the scatterplot of
Remainders by Mixed Arithmetic. When we conducted EFA with
this perturbed data set, the scree plot was ambiguous as to the
optimal number of factors, although other model fit informa-
tion, such as the root mean square residual (RMSR) statistic (see
MacCallum, 2009), more clearly suggested a three-factor solu-
tion. Importantly, the quartimin-rotated three-factor solution (see
Table 4) has some strong differences from both the known popu-
lation factor structure (Table 2) and the factor structure obtained
with the original random sample (Table 3). In particular, while
Remainders still has its strongest association with η2, its loading
on this factor has dropped to 0.49 from 0.75 with the origi-
nal sample (0.80 in the population). Additionally, Remainders
now has a noticeable cross-loading on η3 equaling 0.32, whereas
this loading had been 0.09 with the original sample (0.06 in the

population). Finally, the loading for Boots on η3 has dropped sub-
stantially to 0.44 from 0.68 with the original sample (0.74 in the
population).

Having estimated a three-factor model with the perturbed data
set, we then calculated the associated residuals ε̂, the sample MD
values, and the gCD values. Figure 6 gives histograms of the resid-
uals, where it is clear that there is an outlying case for Mixed
Arithmetic in particular. In Figure 7, the distribution of MD also
indicates the presence of a case that falls particularly far from the
centroid of the observed data; here the outlying observation has
MD = 53.39, whereas the maximum MD value in the original data
set was only 21.22. Given that the outlying case has both large
residuals and large leverage, we expect it to have a strong influence
on the set of model estimates. Hence, Figure 8 reveals that in the
perturbed data set, all observations have gCD values very close to
0, but the outlying case has a much larger gCD reflecting its strong
influence on the parameter estimates.

The demonstration above shows how the presence of even one
unusual case can have a drastic effect on a model’s parameter
estimates; one can imagine how such an effect can produce a
radically different substantive interpretation for a given variable
within a factor model or even for the entire set of observed vari-
ables, especially if the unusual case leads to a different conclusion
regarding the number of common factors. Improper solutions
(e.g., a model solution with at least one negative estimated resid-
ual variance term, or “Heywood case”) are also likely to occur in
the presence of one or more unusual cases (Bollen, 1987), which
can lead to a researcher unwittingly revising a model or removing
an observed variable from the analysis. Another potential effect of
unusual cases is that they can make an otherwise approximately
normal distribution appear non-normal by creating heavy tails
in the distribution, that is, excess kurtosis (Yuan et al., 2002). As
we discuss below, excess kurtosis can produce biased model fit
statistics and SE estimates. Even if they do not introduce excess
kurtosis, unusual cases can still impact overall model fit. The
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FIGURE 5 | Scatterplot of “Remainders” by “Mixed Arithmetic” for perturbed sample with influential case indicated.

Table 4 | Factor loading matrix obtained with perturbed sample data.

Variable Factor

η1 η2 η3

WrdMean 0.97 −0.13 0.09

SntComp 0.70 0.29 −0.23

OddWrds 0.74 −0.01 0.21

MxdArit −0.07 1.01 0.03

Remndrs 0.17 0.49 0.32

MissNum 0.08 0.81 0.06

Gloves 0.01 0.09 0.68

Boots 0.05 0.12 0.44

Hatchts 0.02 −0.08 0.89

N = 100. WrdMean, word meaning; SntComp, sentence completion; OddWrds,

odd words; MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing

numbers; Hatchts, hatchets. Primary loadings for each observed variable are in

bold.

effect of an individual case on model fit with ML estimation can
be formally measured with an influence statistic known as likeli-
hood distance, which measures the difference in the likelihood of
the model when a potentially influential case is deleted (Pek and
MacCallum, 2011).

Upon discovering unusual cases, it is important to determine
their likely source. Often, outliers and influential cases arise from
either researcher error (e.g., data entry error or faulty adminis-
tration of study procedures) or participant error (e.g., misun-
derstanding of study instructions or non-compliance with ran-
dom responding) or they may be observations from a population

other than the population of interest (e.g., a participant with no
history of depression included in a study of depressed individ-
uals). In these situations, it is best to remove such cases from
the data set. Conversely, if unusual cases are simply extreme
cases with otherwise legitimate values, most methodologists rec-
ommend that they not be deleted from the data set prior to
model fitting (e.g., Bollen and Arminger, 1991; Yuan and Zhong,
2008; Pek and MacCallum, 2011). Instead, robust procedures that
minimize the excessive influence of extreme cases are recom-
mended; in particular, case-robust methods developed by Yuan
and Bentler (1998) are implemented in the EQS software package
(Bentler, 2004) or one can factor analyze a minimum covari-
ance determinant (MCD) estimated covariance matrix (Pison
et al., 2003), which can be calculated with SAS or the R package
“MASS.”

COLLINEARITY
Another potential concern for both multiple regression analy-
sis and factor analysis is collinearity, which refers to perfect or
near-perfect linear relationships among observed variables. With
multiple regression, the focus is on collinearity among explana-
tory variables, but with factor analysis, the concern is collinearity
among dependent variables, that is, the set of variables being factor
analyzed. When collinear variables are included, the product-
moment correlation matrix R will be singular, or non-positive
definite. ML estimation cannot be used with a singular R, and
although ULS is possible, collinearity is still indicative of concep-
tual issues with variable selection. Collinearity in factor analysis
is relatively simple to diagnose: if any eigenvalues of a product-
moment R equal zero or are negative, then R is non-positive
definite and collinearity is present (and software will likely produce
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FIGURE 6 | Histograms of standardized residuals for each observed variable from three-factor model fitted to perturbed sample data (N = 100).

a warning message)7. Eigenvalues extremely close to zero may also
be suggestive of near-collinearity8. A commonly used statistic for
evaluating near-collinearity in ordinary regression is the condition
index, which equals the square root of the ratio of the largest to
smallest eigenvalue, with larger values more strongly indicative
of near-collinearity. For the current example, the condition index
equals 6.34, which is well below the value of 30 suggested by Belsley
et al. (1980) as indicative of problematic near-collinearity.

In the context of factor analysis, collinearity often implies an
ill-conceived selection of variables for the analysis. For example,
if both total scores and sub-scale scores (or just one sub-scale)
from the same instrument are included in a factor analysis, the
total score is linearly dependent on, or collinear with, the sub-
scale score. A more subtle example may be the inclusion of both a
“positive mood”scale and a“negative mood”scale; although scores
from these two scales may not be perfectly related, they will likely

7Polychoric correlation matrices (defined below) are often non-positive definite.
Unlike a product-moment R, a non-positive definite polychoric correlation matrix
is not necessarily problematic.
8Most EFA software includes eigenvalues of R as default output. However, it is
important not to confuse the eigenvalues of R with the eigenvalues of the “reduced”
correlation matrix, R − Θ̂. The reduced correlation matrix often has negative
eigenvalues when R does not.

have a very strong (negative) correlation, which can be problematic
for factor analysis. In these situations, researchers should carefully
reconsider their choice of variables for the analysis and remove any
that is collinear with one or more of the other observed variables,
which in turn redefines the overall research question addressed by
the analysis (see Fox, 2008, p. 342).

NON-NORMALITY
In terms of obtaining accurate parameter estimates, the ULS esti-
mation method mentioned above makes no assumption regarding
observed variable distributions whereas ML estimation is based on
the multivariate normal distribution (MacCallum, 2009). Specifi-
cally, for both estimators, parameter estimates are trustworthy as
long as the sample size is large and the model is properly specified
(i.e., the estimator is consistent ), even when the normality assump-
tion for ML is violated (Bollen, 1989). However, SE estimates and
certain model fit statistics (i.e., the χ2 fit statistic and statistics
based on χ2 such as CFI and RMSEA) are adversely affected by
non-normality, particularly excess multivariate kurtosis. Although
they are less commonly used with EFA, SEs and model fit statistics
are equally applicable with EFA as with CFA and are easily obtained
with modern software (but see Cudeck and O’Dell, 1994, for cau-
tions and recommendations regarding SEs with EFA). With both
approaches,SEs convey information about the sampling variability
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FIGURE 7 | Distribution of Mahalanobis distance (MD) for perturbed sample data (N = 100).

FIGURE 8 | Distribution of generalized Cook’s distance (gCD) for perturbed sample data (N = 100).

of the parameter estimates (i.e., they are needed for significance
tests and forming confidence intervals) while model fit statistics
can aid decisions about the number of common factors in EFA or
more subtle model misspecification in CFA.

There is a large literature on ramifications of non-normality
for SEM (in which the common factor model is imbedded), and
procedures for handling non-normal data (for reviews see Bollen,
1989; West et al., 1995; Finney and DiStefano, 2006). In particular,
for CFA we recommend using the Satorra–Bentler scaled χ2 and
robust SEs with non-normal continuous variables (Satorra and
Bentler, 1994), which is available in most SEM software. Although
these Satorra–Bentler procedures for non-normal data have seen
little application in EFA, they can be obtained for EFA models
using Mplus software (Muthén and Muthén, 2010; i.e., using the SE
estimation procedure outlined in Asparouhov and Muthén, 2009).
Alternatively, one might factor analyze transformed observed vari-
ables that more closely approximate normal distributions (e.g.,
Gorsuch, 1983, pp. 297–309).

FACTOR ANALYSIS OF ITEM-LEVEL OBSERVED VARIABLES
Through its history in psychometrics, factor analysis developed
primarily in the sub-field of cognitive ability testing, where
researchers sought to refine theories of intelligence using factor
analysis to understand patterns of covariation among different

ability tests. Scores from these tests typically elicited continuously
distributed observed variables, and thus it was natural for factor
analysis to develop as a method for analyzing Pearson product-
moment correlations and eventually to be recognized as a linear
model for continuous observed variables (Bartholomew, 2007).
However, modern applications of factor analysis usually use indi-
vidual test items rather than sets of total test scores as observed
variables. Yet, because the most common kinds of test items, such
as Likert-type items, produce categorical (dichotomous or ordi-
nal) rather than continuous distributions, a linear factor analysis
model using product-moment R is suboptimal, as we illustrate
below.

As early as Ferguson (1941), methodologists have shown that
factor analysis of product-moment R among dichotomous vari-
ables can produce misleading results. Subsequent research has
further established that treating categorical items as continuous
variables by factor analyzing product-moment R can lead to incor-
rect decisions about the number of common factors or overall
model fit, biased parameter estimates, and biased SE estimates
(Muthén and Kaplan, 1985, 1992; Babakus et al., 1987; Bernstein
and Teng, 1989; Dolan, 1994; Green et al., 1997). Despite these
issues, item-level factor analysis using product-moment R per-
sists in the substantive literature likely because of either naiveté
about the categorical nature of items or misinformed belief that
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linear factor analysis is “robust” to the analysis of categorical
items.

EXAMPLE DEMONSTRATION
To illustrate these potential problems using our running exam-
ple, we categorized random samples of continuous variables with
N = 100 and N = 200 that conform to the three-factor population
model presented in Table 2 according to four separate cases of cat-
egorization. In Case 1, all observed variables were dichotomized
so that each univariate population distribution had a propor-
tion = 0.5 in both categories. In Case 2, five-category items were
created so that each univariate population distribution was sym-
metric with proportions of 0.10, 0.20, 0.40, 0.20, and 0.10 for the
lowest to highest categorical levels, or item-response categories.
Next, Case 3 items were dichotomous with five variables (odd-
numbered items) having univariate response proportions of 0.80
and 0.20 for the first and second categories and the other four vari-
ables (even-numbered items) having proportions of 0.20 and 0.80
for the first and second categories. Finally, five-category items were
created for Case 4 with odd-numbered items having positive skew-
ness (response proportions of 0.51, 0.30, 0.11, 0.05, and 0.03 for
the lowest to highest categories) and even-numbered items having
negative skewness (response proportions of 0.03, 0.05, 0.11, 0.30,
and 0.51). For each of the four cases at both sample sizes, we con-
ducted EFA using the product-moment R among the categorical

variables and applied quartimin rotation after determining the
optimal number of common factors suggested by the sample data.
If product-moment correlations are adequate representations of
the true relationships among these items, then three-factor mod-
els should be supported and the rotated factor pattern should
approximate the population factor loadings in Table 2. We describe
analyses for Cases 1 and 2 first, as both of these cases consisted of
items with approximately symmetric univariate distributions.

First, Figure 9 shows the simple bivariate scatterplot for the
dichotomized versions of the Word Meaning and Sentence Com-
pletion items from Case 1 (N = 100). We readily admit that this
figure is not a good display for these data; instead, its crudeness is
intended to help illustrate that it is often not appropriate to pre-
tend that categorical variables are continuous. When variables are
continuous, bivariate scatterplots (such as those in Figure 1) are
very useful, but Figure 9 shows that they are not particularly useful
for dichotomous variables, which in turn should cast doubt on the
usefulness of a product-moment correlation for such data. More
specifically, because these two items are dichotomized (i.e., 0, 1),
there are only four possible observed data patterns, or response
patterns, for their bivariate distribution (i.e., 0, 0; 0, 1; 1, 0; and
1, 1). These response patterns represent the only possible points
in the scatterplot. Yet, depending on the strength of relationship
between the two variables, there is some frequency of observa-
tions associated with each point, as each represents potentially

FIGURE 9 | Scatterplot of Case 1 items Word Meaning (WrdMean) by Sentence Completion (SntComp; N = 100).
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many observations with the same response pattern. Conversely,
the response pattern (0, 1) does not appear as a point in Figure 9
because there were zero observations with a value of 0 on the
Sentence Completion item and a value of 1 on Word Meaning.
As emphasized above, a product-moment correlation measures
the strength of linear association between two variables; given the
appearance of the scatterplot, use and interpretation of such a cor-
relation here is clearly dubious, which then has ramifications for a
factor analysis of these variables based on product-moment R (or
covariances).

Next, Figure 10 shows the bivariate scatterplot for the five-
category versions of the Word Meaning and Sentence Completion
variables from Case 2 (N = 100). Now there are 5 × 5 = 25 poten-
tial response patterns, but again, not all appear as points in the

plot because not all had a non-zero sample frequency. With more
item-response categories, a linear model for the bivariate associa-
tion between these variables may seem more reasonable but is still
less than ideal, which again has implications for factor analysis of
product-moment R among these items9.

One consequence of categorization is that product-moment
correlations are attenuated (see Table 5 for correlations among
Case 1 items). For example, the population correlation between
Word Meaning and Sentence Completion is 0.75, but the sample
product-moment correlation between these two Case 1 items is

9It is possible (and advisable) to make enhanced scatterplots in which each point has
a different size (or color or symbol) according to the frequency or relative frequency
of observations at each point.

FIGURE 10 | Scatterplot of Case 2 items Word Meaning (WrdMean) by Sentence Completion (SntComp; N = 100).

Table 5 | Product-moment and polychoric correlations among Case 1 item-level variables.

Variable 1 2 3 4 5 6 7 8 9

WrdMean 1 0.81 0.78 0.42 0.35 0.35 0.12 0.17 0.11

SntComp 0.60 1 0.73 0.40 0.46 0.62 0.19 0.29 0.04

OddWrds 0.56 0.52 1 0.45 0.45 0.45 0.33 0.41 0.34

MxdArit 0.27 0.26 0.29 1 0.85 0.80 0.28 0.33 0.30

Remndrs 0.23 0.30 0.30 0.64 1 0.73 0.48 0.38 0.19

MissNum 0.23 0.42 0.29 0.58 0.51 1 0.20 0.27 0.12

Gloves 0.07 0.12 0.21 0.17 0.31 0.12 1 0.45 0.52

Boots 0.11 0.19 0.27 0.21 0.25 0.17 0.29 1 0.69

Hatchts 0.07 0.02 0.22 0.19 0.12 0.07 0.35 0.49 1

N = 100. Product-moment correlations are below the diagonal; polychoric correlations are above the diagonal. WrdMean, word meaning; SntComp, sentence

completion; OddWrds, odd words; MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers; Hatchts, hatchets.
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0.60 (with N = 100). But if all correlations among items are atten-
uated to a similar degree, then the overall pattern of correlations
in R should be very similar under categorization, and thus fac-
tor analysis results may not be strongly affected (although certain
model fit indices may be affected, adversely impacting decisions
about the number of factors). Indeed, in the EFA of the Case 1
items it was evident that a three-factor model was ideal (based
on numerous criteria) and the set of rotated factor loadings (see
Table 6) led to essentially the same interpretations of the three fac-
tors as for the population model. Nonetheless, the magnitude of
each primary factor loading was considerably smaller compared to
the population model, reflecting that attenuation of correlations
due to categorization leads to biased parameter estimates. Note
also that factor loading bias was no better with N = 200 com-
pared to N = 100, because having a larger sample size does not
make the observed bivariate relationships stronger or “more lin-
ear.” However, attenuation of correlation is less severe with a larger

Table 6 | Factor loading matrix obtained with EFA of product-moment

R among Case 1 item-level variables.

Variable Factor

N = 100 N = 200

η1 η2 η3 η1 η2 η3

WrdMean 0.82 −0.06 −0.05 0.79 −0.09 −0.02

SntComp 0.74 0.10 −0.07 0.72 0.14 −0.05

OddWrds 0.66 0.00 0.20 0.69 0.02 0.11

MxdArit −0.04 0.81 0.07 −0.03 0.82 0.11

Remndrs −0.03 0.77 −0.08 −0.02 0.70 −0.08

MissNum 0.10 0.68 −0.08 0.09 0.76 −0.08

Gloves 0.00 0.12 0.43 0.03 0.01 0.47

Boots 0.07 0.03 0.60 0.00 0.01 0.61

Hatchts −0.03 −0.10 0.81 −0.02 −0.02 0.80

WrdMean, word meaning; SntComp, sentence completion; OddWrds, odd words;

MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers;

Hatchts, hatchets. Primary loadings for each observed variable are in bold.

number of response categories (see Table 7). In Case 2, the sam-
ple product-moment correlation between the Word Meaning and
Sentence Completion items is 0.68, which is still attenuated rela-
tive to the population value 0.75, but less so than in Case 1. And
when the EFA was conducted with the Case 2 variables, a similar
three-factor model was obtained, but with factor loading estimates
(see Table 8) that were less biased than those from Case 1.

Now consider Cases 3 and 4, which had a mix of positively
and negatively skewed univariate item distributions. Any simple
scatterplot of two items from Case 3 will look very similar to
Figure 9 for the dichotomized versions of Word Meaning and
Sentence Completion from Case 1 because the Case 3 items are
also dichotomized, again leading to only four possible bivariate
response patterns10. Likewise, any simple scatterplot of two items
from Case 4 will look similar to Figure 10 for the five-category
items from Case 2 because any bivariate distribution from Case 4
also has 25 possible response patterns. Yet, it is well-known that
the product-moment correlation between two dichotomous or
ordered categorical variables is strongly determined by the shape
of their univariate distributions (e.g., Nunnally and Bernstein,
1994). For example, in Case 3, because the dichotomized Word
Meaning and Sentence Completion items had opposite skewness,
the sample correlation between them is only 0.24 (with N = 100)
compared to the population correlation = 0.75 (see Table 9 for
correlations among Case 3 items). In Case 4, these two items also
had opposite skewness, but the sample correlation = 0.52 (with
N = 100) is less severely biased because Case 4 items have five cat-
egories rather than two (see Table 10 for correlations among Case
4 items). Conversely, the Word Meaning and Hatchets items were
both positively skewed; in Case 3, the correlation between these
two items is 0.37 (with N = 100), which is greater than the pop-
ulation correlation = 0.31, whereas this correlation is 0.29 (with
N = 100) for Case 4 items.

When we conducted EFA with the Case 3 and Case 4 items, scree
plots suggested the estimation of two-, rather than three-factor
models, and RMSR was sufficiently low to support the adequacy

10An enhanced scatterplot that gives information about the frequency of each cell
for Case 3 would look quite different than that for Case 1 because the categorizations
we applied lead to different frequency tables for each data set.

Table 7 | Product-moment and polychoric correlations among Case 2 item-level variables.

Variable 1 2 3 4 5 6 7 8 9

WrdMean 1 0.76 0.80 0.47 0.54 0.53 0.38 0.33 0.34

SntComp 0.68 1 0.66 0.51 0.52 0.60 0.21 0.33 0.16

OddWrds 0.72 0.60 1 0.49 0.59 0.57 0.38 0.34 0.34

MxdArit 0.43 0.46 0.45 1 0.81 0.82 0.39 0.33 0.30

Remndrs 0.48 0.47 0.53 0.75 1 0.73 0.44 0.34 0.40

MissNum 0.48 0.54 0.52 0.76 0.67 1 0.50 0.35 0.35

Gloves 0.34 0.19 0.35 0.36 0.40 0.45 1 0.58 0.51

Boots 0.30 0.30 0.31 0.31 0.31 0.32 0.53 1 0.66

Hatchts 0.32 0.16 0.33 0.27 0.36 0.32 0.45 0.60 1

N = 100. Product-moment correlations are below the diagonal; polychoric correlations are above the diagonal. WrdMean, word meaning; SntComp, sentence

completion; OddWrds, odd words; MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers; Hatchts, hatchets.
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of a two-factor solution (RMSR = 0.056 for Case 3 and = 0.077
for Case 4). In practice, it is wise to compare results for models
with varying numbers of factors, and here we know that the pop-
ulation model has three factors. Thus, we estimated both two- and
three-factor models for the Case 3 and Case 4 items. In Case 3, the
estimated three-factor models obtained with both N = 100 and
N = 200 were improper in that there were variables with nega-
tive estimated residual variance (Heywood cases); thus, in practice
a researcher would typically reject the three-factor model and
interpret the two-factor model. Table 11 gives the rotated fac-
tor pattern for the two-factor models estimated with Case 3 items.
Here, the two factors are essentially defined by the skewness direc-
tion of the observed variables: odd-numbered items, which are
all positively skewed, are predominately determined by η1 while
the negatively skewed even-numbered items are determined by η2

(with the exception of the Boots variable). A similar factor pattern
emerges for the two-factor model estimated with N = 100 for the

Table 8 | Factor loading matrix obtained with EFA of product-moment

R among Case 2 item-level variables.

Variable Factor

N = 100 N = 200

η1 η2 η3 η1 η2 η3

WrdMean 0.94 −0.10 0.05 0.94 −0.07 0.02

SntComp 0.73 0.13 −0.10 0.82 0.09 −0.08

OddWrds 0.72 0.07 0.09 0.74 0.04 0.10

MxdArit 0.11 0.98 −0.03 0.04 0.96 −0.04

Remndrs 0.11 0.70 0.09 0.04 0.76 0.12

MissNum 0.13 0.73 0.06 0.14 0.78 −0.01

Gloves −0.01 0.17 0.59 −0.02 0.10 0.60

Boots 0.03 −0.05 0.81 0.04 0.07 0.67

Hatchts 0.00 −0.02 0.75 0.01 −0.13 0.86

WrdMean, word meaning; SntComp, sentence completion; OddWrds, odd words;

MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers;

Hatchts, hatchets. Primary loadings for each observed variable are in bold.

Case 4 items, but not with N = 200 (see Table 12). Finally, the
factor pattern for the three-factor model estimated with Case 4
items is in Table 13. Here, the factors have the same basic interpre-
tation as with the population model, but some of the individual
factor loadings are quite different. For example, at both sample
sizes, the estimated primary factor loadings for Sentence Comple-
tion (0.43 with N = 100) and Remainders (0.40 with N = 100) are
much smaller than their population values of 0.77 and 0.80.

In general, the problems with factoring product-moment R
among item-level variables are less severe when there are more
response categories (e.g., more than five) and the observed uni-
variate item distributions are symmetric (Finney and DiStefano,
2006). Our demonstration above is consistent with this statement.
Yet, although there are situations where ordinary linear regres-
sion of a categorical dependent variable can potentially produce
useful results, the field still universally accepts non-linear mod-
eling methods such as logistic regression as standard for limited
dependent variables. Similarly, although there may be situations
where factoring product-moment R (and hence adapting a lin-
ear factor model) produces reasonably accurate results, the field
should accept alternative, non-linear factor models as standard for
categorical, item-level observed variables.

ALTERNATIVE METHODS FOR ITEM-LEVEL OBSERVED
VARIABLES
Wirth and Edwards (2007) give a comprehensive review of meth-
ods for factor analyzing categorical item-level variables. In general,
these methods can be classified as either limited-information or
full-information. The complete data for N participants on p cat-
egorical, item-level variables form a multi-way frequency table
with CP

j cells (i.e., C1 × C2 × . . . × Cp), or potential response

patterns, where Cj is the number of categories for item j. Full-
information factor models draw from multidimensional item-
response theory (IRT) to predict directly the probability that
a given individual’s response pattern falls into a particular cell
of this multi-way frequency table (Bock et al., 1988). Limited-
information methods instead fit the factor model to a set of
intermediate summary statistics which are calculated from the
observed frequency table. These summary statistics include the
univariate response proportions for each item and the bivariate

Table 9 | Product-moment and polychoric correlations among Case 3 item-level variables.

Variable 1 2 3 4 5 6 7 8 9

WrdMean 1 0.57 0.71 0.35 0.42 0.54 0.30 0.17 0.61

SntComp 0.24 1 0.54 0.57 0.50 0.47 0.26 0.45 0.08

OddWrds 0.46 0.22 1 0.60 0.57 0.61 0.64 0.46 0.66

MxdArit 0.16 0.35 0.26 1 0.57 0.83 0.52 0.03 0.19

Remndrs 0.23 0.21 0.33 0.24 1 0.58 0.30 0.22 0.64

MissNum 0.23 0.28 0.26 0.61 0.25 1 0.54 0.29 0.52

Gloves 0.16 0.11 0.39 0.22 0.16 0.23 1 0.32 0.61

Boots 0.08 0.26 0.18 0.02 0.09 0.17 0.14 1 0.47

Hatchts 0.37 0.04 0.41 0.09 0.39 0.22 0.37 0.19 1

N = 100. Product-moment correlations are below the diagonal; polychoric correlations are above the diagonal. WrdMean, word meaning; SntComp, sentence

completion; OddWrds, odd words; MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers; Hatchts, hatchets.
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Table 10 | Product-moment and polychoric correlations among Case 4 item-level variables.

Variable 1 2 3 4 5 6 7 8 9

WrdMean 1 0.81 0.75 0.42 0.47 0.41 0.21 0.21 0.29

SntComp 0.52 1 0.62 0.49 0.44 0.55 0.22 0.34 0.13

OddWrds 0.66 0.42 1 0.54 0.47 0.53 0.36 0.42 0.50

MxdArit 0.31 0.40 0.38 1 0.82 0.86 0.32 0.25 0.27

Remndrs 0.43 0.31 0.41 0.54 1 0.76 0.41 0.36 0.42

MissNum 0.32 0.46 0.38 0.79 0.51 1 0.35 0.30 0.33

Gloves 0.20 0.14 0.33 0.25 0.31 0.28 1 0.35 0.51

Boots 0.15 0.29 0.29 0.18 0.24 0.25 0.27 1 0.68

Hatchts 0.29 0.12 0.46 0.19 0.38 0.27 0.42 0.45 1

N = 100. Product-moment correlations are below the diagonal; polychoric correlations are above the diagonal. WrdMean, word meaning; SntComp, sentence

completion; OddWrds, odd words; MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers; Hatchts, hatchets.

Table 11 |Two-factor model loading matrix obtained with EFA of

product-moment R among Case 3 item-level variables.

Variable Factor

N = 100 N = 200

η1 η2 η1 η2

WrdMean 0.53 0.02 0.60 0.00

SntComp 0.12 0.37 0.24 0.22

OddWrds 0.69 0.04 0.75 −0.06

MxdArit −0.13 0.95 −0.01 0.76

Remndrs 0.42 0.11 0.37 0.13

MissNum 0.12 0.62 −0.01 0.87

Gloves 0.44 0.06 0.35 0.07

Boots 0.25 0.03 0.32 −0.04

Hatchts 0.78 −0.19 0.43 −0.03

WrdMean, word meaning; SntComp, sentence completion; OddWrds, odd words;

MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers;

Hatchts, hatchets. Primary loadings for each observed variable are in bold.

polychoric correlations among items. Hence, these methods are
referred to as “limited-information” because they collapse the
complete multi-way frequency data into univariate and bivariate
marginal information. Full-information factor analysis is an active
area of methodological research, but the limited-information
method has become quite popular in applied settings and sim-
ulation studies indicate that it performs well across a range of
situations (e.g., Flora and Curran, 2004; Forero et al., 2009; also
see Forero and Maydeu-Olivares, 2009, for a study comparing full-
and limited-information modeling). Thus, our remaining presen-
tation focuses on the limited-information, polychoric correlation
approach.

The key idea to this approach is the assumption that an
unobserved, normally distributed continuous variable, y∗, under-
lies each categorical, ordinally scaled observed variable, y with
response categories c = 0, 1,. . ., C. The latent y∗ links to the
observed y according to

y = c if τc−1 < y∗ < τc ,

Table 12 |Two-factor model loading matrix obtained with EFA of

product-moment R among Case 4 item-level variables.

Variable Factor

N = 100 N = 200

η1 η2 η1 η2

WrdMean 0.49 0.21 0.46 0.27

SntComp 0.23 0.40 0.55 0.12

OddWrds 0.68 0.14 0.46 0.36

MxdArit −0.11 0.96 0.87 −0.17

Remndrs 0.34 0.42 0.58 0.14

MissNum 0.02 0.84 0.88 −0.13

Gloves 0.47 0.04 0.06 0.45

Boots 0.49 −0.01 0.00 0.56

Hatchts 0.77 −0.15 −0.06 0.79

WrdMean, word meaning; SntComp, sentence completion; OddWrds, odd words;

MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers;

Hatchts, hatchets. Primary loadings for each observed variable are in bold.

where each τ is a threshold parameter (i.e., a Z -score) determined
from the univariate proportions of y with τ0 = −∞ and τC = ∞.
Adopting Eq. 1, the common factor model is then a model for the
y∗ variables themselves11,

y∗ = Λη + ε.

Like factor analysis of continuous variables, the model parame-
ters are actually estimated from the correlation structure,where the
correlations among the y∗ variables are polychoric correlations12.
Thus, the polychoric correlation between two observed, ordinal y

11The factor model can be equivalently conceptualized as a probit regression for
the categorical dependent variables. Probit regression is nearly identical to logistic
regression, but the normal cumulative distribution function is used in place of the
logistic distribution (see Fox, 2008).
12Analogous to the incorporation of mean structure among continuous variables,
advanced models such as multiple-group measurement models are fitted to the set
of both estimated thresholds and polychoric correlations.
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variables is an estimate of the correlation between two unobserved,
continuous y∗ variables (Olsson, 1979)13. Adopting Eq. 3 leads to

P∗ = ΛΨΛ′ + Θ,

where P∗ is the population correlation matrix among y∗, which
is estimated with the polychoric correlations. Next, because ML
estimation provides model estimates that most likely would have
produced observed multivariate normal data, methodologists do
not recommend simply substituting polychoric R for product-
moment R and proceed with ML estimation (e.g., Yang-Wallentin
et al., 2010). Instead, we recommend ULS estimation, where
the purpose is to minimize squared residual polychoric corre-
lations (Muthén, 1978)14. The normality assumption for each
unobserved y∗ is a mathematical convenience that allows esti-
mation of P∗; Flora and Curran (2004) showed that polychoric
correlations remain reasonably accurate under moderate viola-
tion of this assumption, which then has only a very small effect
on factor analysis results. Finally, this polychoric approach is
implemented in several popular SEM software packages (as well
as R, SAS, and Stata), each of which is capable of both EFA
and CFA.

EXAMPLE DEMONSTRATION CONTINUED
To demonstrate limited-information item factor analysis, we con-
ducted EFA of polychoric correlation matrices among the same
categorized variables for Cases 1–4 presented above, again using

13The tetrachoric correlation is a specific type of polychoric correlation that obtains
when both observed variables are dichotomous.
14Alternatively, “robust weighted least-squares,” also known as “diagonally weighted
least-squares” (DWLS or WLSMV), is also commonly recommended. Simulation
studies suggest that ULS and DWLS produce very similar results, with slightly more
accurate estimates obtained with ULS (Forero et al., 2009; Yang-Wallentin et al.,
2010).

Table 13 |Three-factor model loading matrix obtained with EFA of

product-moment R among Case 4 item-level variables.

Variable Factor

N = 100 N = 200

η1 η2 η3 η1 η2 η3

WrdMean 1.05 −0.10 −0.04 0.95 −0.10 −0.05

SntComp 0.43 0.30 −0.05 0.50 0.23 −0.03

OddWrds 0.54 0.05 0.32 0.68 0.04 0.14

MxdArit 0.17 0.92 −0.04 0.16 0.94 −0.03

Remndrs 0.17 0.40 0.25 0.16 0.46 0.17

MissNum −0.02 0.87 0.06 0.03 0.85 0.00

Gloves 0.00 0.10 0.47 0.00 0.06 0.46

Boots 0.01 0.05 0.48 0.02 0.00 0.54

Hatchts −0.01 −0.14 0.95 −0.03 −0.08 0.92

WrdMean, word meaning; SntComp, sentence completion; OddWrds, odd words;

MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers;

Hatchts, hatchets. Primary loadings for each observed variable are in bold.

ULS estimation and quartimin rotation. We begin with analyses
of the approximately symmetric Case 1 and Case 2 items. First, the
sample polychoric correlations are closer to the known population
correlations than were the product-moment correlations among
these categorical variables (see Tables 5 and 7). For example,
the population correlation between Word Meaning and Sentence
Completion is 0.75 and the sample polychoric correlation between
these two Case 1 items is 0.81, but the product-moment correlation
was only 0.60 (both with N = 100). As with product-moment R,
the EFA of polychoric R among Case 1 variables also strongly sug-
gested retaining a three-factor model at both N = 100 and N = 200;
the rotated factor-loading matrices are in Table 14. Here, the load-
ing of each observed variable on its primary factor is consistently
larger than that obtained with the EFA of product-moment R
(compare to Table 6) and much closer to the population fac-
tor loadings in Table 2. Next, with Case 2 variables, the EFA of
polychoric R again led to a three-factor model at both N = 100
and N = 200. The primary factor loadings in Table 15 were only
slightly larger than those obtained with product-moment R (in
Table 8), which were themselves reasonably close to the popula-
tion factor loadings. Thus, in a situation where strong attenuation
of product-moment correlations led to strong underestimation
of factor loadings obtained from EFA of product-moment R (i.e.,
Case 1), an alternate EFA of polychoric R produced relatively accu-
rate factor loadings. Yet, when attenuation of product-moment
correlations is less severe (i.e., Case 2), EFA of polychoric R was
still just as accurate.

Recall that in Case 3 and 4, some items were positively skewed
and some were negatively skewed. First, the polychoric corre-
lations among Case 3 and 4 items are generally closer to the
population correlations than were the product-moment correla-
tions, although many of the polychoric correlations among Case
3 dichotomous items are quite inaccurate (see Tables 9 and 10).
For example, the population correlation between Word Meaning

Table 14 |Three-factor model loading matrix obtained with EFA of

polychoric R among Case 1 item-level variables.

Variable Factor

N = 100 N = 200

η1 η2 η3 η1 η2 η3

WrdMean 0.95 −0.07 −0.05 0.94 −0.11 −0.02

SntComp 0.85 0.14 −0.09 0.82 0.19 −0.05

OddWrds 0.80 0.02 0.24 0.81 0.03 0.14

MxdArit −0.02 0.91 0.04 −0.02 0.93 −0.02

Remndrs −0.04 0.93 0.06 −0.05 0.86 0.16

MissNum 0.12 0.82 −0.12 0.12 0.87 −0.10

Gloves −0.01 0.22 0.51 0.04 0.03 0.59

Boots 0.10 0.12 0.68 0.02 0.03 0.72

Hatchts −0.01 −0.04 0.96 0.02 −0.01 0.92

WrdMean, word meaning; SntComp, sentence completion; OddWrds, odd words;

MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers;

Hatchts, hatchets. Primary loadings for each observed variable are in bold.
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Table 15 |Three-factor model loading matrix obtained with EFA of

polychoric R among Case 2 item-level variables.

Variable Factor

N = 100 N = 200

η1 η2 η3 η1 η2 η3

WrdMean 0.99 −0.08 0.04 0.97 −0.07 0.02

SntComp 0.75 0.17 −0.12 0.84 0.10 −0.08

OddWrds 0.74 0.10 0.07 0.77 0.06 0.10

MxdArit −0.06 1.00 −0.03 −0.06 1.00 −0.04

Remndrs 0.11 0.73 0.10 0.04 0.80 0.12

MissNum 0.13 0.77 0.06 0.15 0.81 0.00

Gloves −0.01 0.20 0.61 −0.03 0.14 0.61

Boots 0.04 −0.04 0.82 0.04 0.12 0.68

Hatchts −0.02 0.00 0.80 0.01 −0.08 0.89

WrdMean, word meaning; SntComp, sentence completion; OddWrds, odd words;

MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing numbers;

Hatchts, hatchets. Primary loadings for each observed variable are in bold.

and Sentence Completion was 0.75 while the sample polychoric
correlation between these oppositely skewed Case 3 items was
0.57 with N = 100 and improved to 0.67 with N = 200; but the
product-moment correlation between these two items was only
0.24 with N = 100 and 0.25 with N = 200. With five-category
Case 4 items, the polychoric correlation between Word Meaning
and Sentence Completion is 0.81 with both sample sizes, but the
product-moment correlations were only 0.52 with N = 100 and
0.51 with N = 200.

Given that the polychoric correlations were generally more
resistant to skewness in observed items than product-moment
correlations, factor analyses of Case 3 and 4 items should also be
improved. With the dichotomous Case 3 variables and N = 100,
the scree plot suggested retaining a one-factor model, but other fit
statistics did not support a one-factor model (e.g., RMSR = 0.14).
Yet, the estimated two- and three-factor models were improper
with negative residual variance estimates. This outcome likely
occurred because many of the bivariate frequency tables for item
pairs had cells with zero frequency. This outcome highlights the
general concern of sparseness, or the tendency of highly skewed
items to produce observed bivariate distributions with cell fre-
quencies equaling zero or close to zero, especially with relatively
small overall sample size. Sparseness can cause biased polychoric
correlation estimates, which in turn leads to inaccurate factor
analysis results (Olsson, 1979; Savalei, 2011). With N = 200, a
three-factor model for Case 3 variables was strongly supported;
the rotated factor loading matrix is in Table 16. Excluding Gloves,
each item has its strongest loading on the same factor as indicated
in the population (see Table 2), but many of these primary factor
loadings are strongly biased and many items have moderate cross-
loadings. Thus, we see an example of the tendency for EFA of
polychoric R to produce inaccurate results with skewed dichoto-
mous items. Nonetheless, recall that EFA of product-moment R
for Case 3 items did not even lead to a model with the correct
number of factors.

Table 16 |Three-factor model loading matrix obtained with EFA of

polychoric R among Case 3 item-level variables.

Variable Factor

η1 η2 η3

WrdMean 0.52 0.27 0.18

SntComp 0.96 0.03 −0.03

OddWrds 0.44 0.34 0.32

MxdArit 0.05 0.92 −0.07

Remndrs 0.36 0.44 0.07

MissNum 0.06 0.95 0.01

Gloves −0.22 0.53 0.42

Boots 0.22 −0.22 0.74

Hatchts −0.09 0.11 0.82

N = 200. WrdMean, word meaning; SntComp, sentence completion; OddWrds,

dd words; MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing

numbers; Hatchts, hatchets. Primary loadings for each observed variable are in

bold.

Table 17 |Three-factor model loading matrix obtained with EFA of

polychoric R among Case 4 item-level variables.

Variable Factor

η1 η2 η3

WrdMean 0.97 −0.08 −0.02

SntComp 0.85 0.09 −0.04

OddWrds 0.70 0.11 0.17

MxdArit −0.03 1.01 −0.05

Remndrs −0.02 0.83 0.12

MissNum 0.12 0.81 −0.02

Gloves 0.00 0.11 0.49

Boots 0.07 −0.02 0.69

Hatchts −0.02 −0.01 0.99

N = 200. WrdMean, word meaning; SntComp, sentence completion; OddWrds,

odd words; MxdArit, mixed arithmetic; Remndrs, remainders; MissNum, missing

numbers; Hatchts, hatchets. Primary loadings for each observed variable are in

bold.

With the five-category Case 4 items, retention of a three-factor
model was supported at both sample sizes. However, with N = 100,
we again obtained improper estimates. But with N = 200, the
rotated factor loading matrix (Table 17) is quite accurate rel-
ative to the population factor loadings, and certainly improved
over that obtained with EFA of product-moment R among these
items. Thus, even though there was a mix of positively and
negatively skewed items, having a larger sample size and more
item-response categories mitigated the potential for sparseness to
produce inaccurate results from the polychoric EFA.

In sum, our demonstration illustrated that factor analyses
of polychoric R among categorized variables consistently out-
performed analyses of product-moment R for the same vari-
ables. In particular, with symmetric items (Cases 1 and 2),
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product-moment correlations were attenuated which led to neg-
atively biased factor loading estimates (especially with fewer
response categories), whereas polychoric correlations remained
accurate and produced accurate factor loadings. When the
observed variable set contained a mix of positively and nega-
tively skewed items (Cases 3 and 4), product-moment correlations
were strongly affected by the direction of skewness (especially
with fewer response categories), which can lead to dramatically
misleading factor analysis results. Unfortunately, strongly skewed
items can also be problematic for factor analyses of polychoric R in
part because they produce sparse observed frequency tables, which
leads to higher rates of improper solutions and inaccurate results
(e.g., Flora and Curran, 2004; Forero et al., 2009). Yet this diffi-
culty is alleviated with larger sample size and more item-response
categories; if a proper solution is obtained, then the results of a
factor analysis of polychoric R are more trustworthy than those
obtained with product-moment R.

GENERAL DISCUSSION AND CONCLUSION
Factor analysis is traditionally and most commonly an analysis of
the correlations (or covariances) among a set of observed vari-
ables. A unifying theme of this paper is that if the correlations
being analyzed are misrepresentative or inappropriate summaries
of the relationships among the variables, then the factor analysis
is compromised. Thus, the process of data screening and assump-
tion testing for factor analysis should begin with a focus on the
adequacy of the correlation matrix among the observed variables.
In particular, analysis of product-moment correlations or covari-
ances implies that the bivariate association between two observed
variables can be adequately modeled with a straight line, which
in turn leads to the expression of the common factor model as
a linear regression model. This crucial linearity assumption takes
precedence over any concerns about having normally distributed
variables, although normality is important for certain model fit
statistics and estimating parameter SEs. Other concerns about
the appropriateness of the correlation matrix involve collinear-
ity and potential influence of unusual cases. Once one accepts
the sufficiency of a given correlation matrix as a representation
of the observed data, the actual formal assumptions of the com-
mon factor model are relatively mild. These assumptions are that
the unique factors (i.e., the residuals, ε, in Eq. 1) are uncorrelated
with each other and are uncorrelated with the common factors
(i.e., η in Eq. 1). Substantial violation of these assumptions typi-
cally manifests as poor model-data fit, and is otherwise difficult to
assess with a priori data-screening procedures based on descriptive
statistics or graphs.

After reviewing the common factor model, we gave separate
presentations of issues concerning factor analysis of continuous
observed variables and issues concerning factor analysis of cate-
gorical, item-level observed variables. For the former, we showed
how concepts from regression diagnostics apply to factor analysis,
given that the common factor model is itself a multivariate mul-
tiple regression model with unobserved explanatory variables. An
important point was that cases that appear as outliers in univariate
or bivariate plots are not necessarily influential and conversely that
influential cases may not appear as outliers in univariate or bivari-
ate plots (though they often do). If one can determine that unusual

observations are not a result of researcher or participant error, then
we recommend the use of robust estimation procedures instead of
deleting the unusual observation. Likewise, we also recommend
the use of robust procedures for calculating model fit statistics
and SEs when observed, continuous variables are non-normal.

Next, a crucial message was that the linearity assumption is
necessarily violated when the common factor model is fitted to
product-moment correlations among categorical, ordinally scaled
items, including the ubiquitous Likert-type items. At worst (e.g.,
with a mix of positively and negatively skewed dichotomous
items), this assumption violation has severe consequences for
factor analysis results. At best (e.g., with symmetric items with
five response categories), this assumption violation still produces
biased factor-loading estimates. Alternatively, factor analysis of
polychoric R among item-level variables explicitly specifies a non-
linear link between the common factors and the observed vari-
ables, and as such is theoretically well-suited to the analysis of
item-level variables. However, this method is also vulnerable to
certain data characteristics, particularly sparseness in the bivari-
ate frequency tables for item pairs, which occurs when strongly
skewed items are analyzed with a relatively small sample. Yet, factor
analysis of polychoric R among items generally produces supe-
rior results compared to those obtained with product-moment R,
especially if there are five or fewer item-response categories.

We have not yet directly addressed the role of sample size. In
short, no simple rule-of-thumb regarding sample size is reasonably
generalizable across factor analysis applications. Instead, adequate
sample size depends on many features of the research, such as the
major substantive goals of the analysis, the number of observed
variables per factor, closeness to simple structure, and the strength
of the factor loadings (MacCallum et al., 1999, 2001). Beyond these
considerations, having a larger sample size can guard against some
of the harmful consequences of unusual cases and assumption
violation. For example, unusual cases are less likely to exert strong
influence on model estimates as overall sample size increases. Con-
versely, removing unusual cases decreases the sample size, which
reduces the precision of parameter estimation and statistical power
for hypothesis tests about model fit or parameter estimates. Yet,
having a larger sample size does not protect against the negative
consequences of treating categorical item-level variables as contin-
uous by factor analyzing product-moment R. But we did illustrate
that larger sample size produces better results for factor analysis of
polychoric R among strongly skewed items, in part because larger
sample size reduces the occurrence of sparseness.

In closing, we emphasize that factor analysis, whether EFA or
CFA, is a method for modeling relationships among observed
variables. It is important for researchers to recognize that it
is impossible for a statistical model to be perfect; assumptions
will always be violated to some extent in that no model can
ever exactly capture the intricacies of nature. Instead, researchers
should strive to find models that have an approximate fit to
data such that the inevitable assumption violations are trivial,
but the models can still provide useful results that help answer
important substantive research questions (see MacCallum, 2003,
and Rodgers, 2010, for discussions of this principle). We recom-
mend extensive use of sensitivity analyses and cross-validation to
aid in this endeavor. For example, researchers should compare
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results obtained from the same data using different estimation
procedures, such as comparing traditional ULS or ML estimation
with robust procedures with continuous variables or comparing
full-information factor analysis results with limited-information
results with item-level variables. Additionally, as even CFA analy-
ses may become exploratory through model modification, it is

important to cross-validate models across independent data sets.
Because different modeling procedures place different demands on
data, comparing results obtained with different methods and sam-
ples can help researchers gain a fuller, richer understanding of the
usefulness of their statistical models given the natural complexity
of real data.
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