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Classification based on multiple dimensions of stimuli is usually associated with similarity-
based representations, whereas uni-dimensional classifications are associated with rule-
based representations. This paper studies classification of stimuli and category repre-
sentations in school-aged children and adults when learning to categorize compound,
multi-dimensional stimuli. Stimuli were such that both similarity-based and rule-based rep-
resentations would lead to correct classification.This allows testing whether children have
a bias for formation of similarity-based representations. The results are at odds with this
expectation. Children use both uni-dimensional and multi-dimensional classification, and
the use of both strategies increases with age. Multi-dimensional classification is best char-
acterized as resulting from an analytic strategy rather than from procedural processing of
overall-similarity. The conclusion is that children are capable of using complex rule-based
categorization strategies that involve the use of multiple features of the stimuli. The main
developmental change concerns the efficiency and consistency of the explicit learning
system.
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INTRODUCTION
The ability to categorize stimuli is central to human cognitive
functioning. It is involved in essential processes such as diagnosing
diseases, distinguishing cats from lions, and telling the difference
between verbs and nouns. As such, categorization has been studied
in infants (Mareschal and Quinn, 2001), children (Namy and Gen-
tner, 2002; Sloutsky and Fisher, 2004; Kloos and Sloutsky, 2008;
Minda et al., 2008), and adults (for an overview, see Ashby and
Maddox, 2005). Understanding the nature of category representa-
tions and the learning processes leading to those representations
are the core aspects of categorization research. A crucial question
in development is whether the dominant form of category repre-
sentations changes during development (e.g., Sloutsky, 2010), or
whether the main developmental change concerns the efficiency
of learning category representations.

CATEGORY LEARNING AND REPRESENTATIONS
In adults, the nature of the category structure determines to a large
extent which kind of representation is formed (Ashby and Mad-
dox, 2005). If the category is easy to verbalize by a one-dimensional
rule, such as blue objects versus green objects, then human adults
typically form rule-based representations. Consequently, in a gen-
eralization test that is administered after acquiring such a repre-
sentation, previously unseen stimuli are classified according to the
(one-dimensional) rule. In contrast, if the category structure is
more complicated, for example given by a multi-dimensional rule
or a rule concerning integrated dimensions (Ashby et al., 1998;
Ashby and Ell, 2001), or a rule with multiple exceptions (Medin
and Schwanenflugel, 1981), adults do not form rule-based rep-
resentations. Rather, in the case of a limited number of stimuli,
human adults typically form exemplar representations (Nosof-
sky, 1986). If exemplar representations are formed, categorization

of unseen stimuli in a generalization test is based on overall-
similarity with previously learned exemplars. In the case of many
examples, adults form decision-bound representations (Ashby
and Maddox, 2005), in which a (continuous) stimulus space is
divided into different sections by the decision-bound. Exemplar
representations and decision-bound representations both rely on
overall-similarity in judging new stimuli in a generalization test.
As the difference between decision-bound and exemplar repre-
sentations is not pertinent to the current study, we refer to these
representations as similarity-based representations.

Recent theories of categorization in adults propose models that
form multiple kinds of representations that are related to differ-
ent modules (Ashby et al., 1998; Erickson and Kruschke, 1998;
Nosofsky and Palmeri, 1998). Arguably the most comprehensive
neuroscience based multiple systems account of categorization is
competition between verbal and implicit systems (COVIS), pro-
posed by Ashby et al. (1998). The COVIS model proposes two
competing systems: a verbal learning system and an implicit, or
procedural, learning system. The verbal system learns easy to ver-
balize categories resulting in rule-based representations. COVIS’
implicit learning system implements procedural learning and
forms overall-similarity-based representations.

There is ample evidence that both of these learning processes
occur in human adults. Rule-based representations are often
assumed to result from a process of hypothesis testing applied
to series of stimuli. Such learning by hypothesis testing has been
studied extensively for decades (going back to, e.g., Bruner et al.,
1956). Research into procedural or implicit learning of categories
dates back even longer to the classic study by Hull (1920) in which
participants were asked to categorize Chinese alphabet charac-
ters. Recent advances in neuropsychology relate these (verbal and
implicit) learning strategies to the involvement of different brain
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areas (Ashby et al., 1998; Ashby and Ell, 2001). The verbal (explicit)
learning system predominantly involves the anterior cingulate and
the prefrontal cortices, whereas the caudate nucleus, and striatal
areas, play an essential role in the implicit learning system (Ashby
et al., 1998).

CATEGORIZATION IN CHILDREN
The issue of rule-based versus similarity-based representations has
been the focus of research throughout cognitive science (Hahn
and Chater, 1998; Pothos, 2005), in developmental psychology
(Gentner and Medina, 1998), and the development of catego-
rization learning in particular (Sloutsky, 2003, 2010). Based on
knowledge of different maturational trajectories of prefrontal and
striatal areas, the areas involved in verbal versus implicit learning,
Ashby et al. (1998) predict that children’s performance on implicit
learning tasks is relatively mature; a similar prediction is found in
Reber (1992) based on evolutionary considerations. A number of
studies indeed found children’s performance in implicit learning
to be comparable to adults (e.g., Meulemans et al., 1998; DeGuise
and Lassonde, 2001). In contrast, according to COVIS, children’s
verbal learning system will be importantly impaired. This is con-
firmed in a number of studies that find that children are impaired
in learning (complex) rule-based categories, whereas they perform
similar to adults in similarity-based category learning (Kloos and
Sloutsky, 2008; Minda et al., 2008).

Broadly speaking, within multiple systems models of catego-
rization, there are two main possible causes of developmental
change: First, the relative dominance of the verbal system increases
with age, or second, the efficiency and consistency of the verbal sys-
tem improves with age. We want to gain insight into these different
causes by studying categorization learning in a large sample of chil-
dren with a large age range and comparing their performance with
adults.

In adults, the verbal system certainly is more dominant than the
implicit system, meaning that adults typically start by using the
verbal system, even when the optimal learning strategy is implicit
(Johansen and Palmeri, 2002). Within COVIS, this is modeled as
a bias for the verbal system. In developmental research, there is
a long tradition of research claiming that the implicit system is
dominant in children, for example in free classification (Smith,
1989; see Hanania and Smith, 2010 for a review of similar results).
Such claims are, however, not without criticism. At least some
developmental studies on free classification show evidence for the
formation of rule-based representations during childhood. Both
children and adults categorize stimuli that vary on two dimen-
sions, on the basis of a single dimension (Cook and Odom, 1988,
1992; Wilkening and Lange, 1989; Thompson, 1994; Raijmakers
et al., 2004). The developmental changes that do occur in those
studies mostly concern the consistency of classification (Thomp-
son, 1994), and the relative salience of the stimulus dimensions (cf.
Mash, 2006). Hence, one could argue that children tend to use the
verbal system if the task permits doing so, albeit less consistently
than most adults would do.

To summarize so far, verbal and implicit learning processes
result in rule-based and similarity-based representations respec-
tively. To test for the presence of rule-based versus similarity-
based representations, generalization trials are administered after

the learning phase in a categorization experiment. The default
interpretation of such generalization trials is that generalization on
the basis of a single-dimension implies rule-based representations.
In contrast, generalization on the basis of multiple dimensions to
learned examples implies the use of similarity-based representa-
tions. However, one could question whether this interpretation
applies under all circumstances. If children only attend to a sin-
gle dimension, did they ever consider using other dimensions?
Selective attention to stimulus features plays an important role
in categorization learning in children (Kloos and Sloutsky, 2008).
Categorization studies in animals show, for example, that pigeons
almost never use all available stimulus dimensions in classification
(Lea and Wills, 2008). It is typically expected that pigeons’ learn-
ing processes are implicit regardless of the task (see Huber, 2001).
However, in rule-based categorization tasks in which human adults
would form rule-based representations, pigeons do not general-
ize on the basis of overall-similarity (Lea and Wills, 2008; Lea
et al., 2009; Wills et al., 2009). Similar arguments may apply
to multi-dimensional categorization. When participants classify
stimuli based on multiple dimensions or features, this does not
automatically imply that the underlying representations are sim-
ilarity based. Other sources of information may be necessary to
answer this question and we propose to use response times for this
purpose, which are further discussed below.

CATEGORIZATION OF COMPOUND STIMULI
To study the relative dominance of the verbal versus the implicit
learning system, participants in the current experiment learn to
categorize compound stimuli, for which categorization can be suc-
cessful by using either the verbal or the implicit system. This should
bring out any bias that participants have in favor of one the sys-
tems. In the current experiment we (1) test which representations
are formed of compound (multi-dimensional) stimuli by employ-
ing a generalization test with previously unseen stimuli, and (2)
study developmental trends in the types of representations that
are formed of such stimuli.

If the main driving force of development of categorization
concerns the relative dominance of the explicit system, it is
hypothesized that (young) children will predominantly form
overall-similarity-based representations, and that this predomi-
nance decreases with age. However, if the main cause of devel-
opment of categorization concerns the maturation of the explicit
system rather than its dominance, the main age effects should
concern consistency, learning ability, and speed of processing.
As we use compound, multi-dimensional stimuli, it is expected
that rule-based processing of such stimuli using all dimensions is
more time-consuming than is rule-based processing using a single
dimension or overall-similarity-based processing. Response times
may hence be used to discriminate these different representational
formats (cf. van der Maas and Jansen, 2003), next to generalization
behavior.

The category-learning study presented here largely resembles
the comparative study (human adults and pigeons) presented in
Lea et al. (2009). The stimulus structures for the compound stimuli
are such that both rule-based categorization as well as overall-
similarity-based categorization lead to correct classification of
stimuli. In the generalization phase of the experiment, different
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types of trials are used to determine which representations partic-
ipants have formed. Pre-training on individual dimensions of the
stimuli ensures that participants are aware of all the dimensions
of the compound stimuli such that limits in selective attention
are less likely to determine individual differences in categorization
behavior (cf. Kloos and Sloutsky, 2008).

Assuming a multiple systems account of categorization as we
do here, important individual differences are expected which need
to be accounted for in the analysis of the generalization data
(cf. Nosofsky et al., 1994; Erickson and Kruschke, 1998; Johansen
and Palmeri, 2002; Visser et al., 2009). The technique of mixture
analysis (such as latent class analysis) is a systematic and reliable
way of analyzing category-learning data accounting for individ-
ual differences, for errors, and for consistency of responding (e.g.,
Jansen and Van der Maas, 1997, and Bouwmeester et al., 2004;
Bouwmeester et al., 2007, for applications in the developmental
literature). Since these methods are not standard in the categoriza-
tion literature, we briefly describe how we intend to apply these
techniques.

STATISTICAL APPROACH
In the present study, a generalization test is used to establish which
representations children and adults have formed. Typically, such
generalization tests consist of a series of previously unseen items
that participants are required to categorize. Subsequently classify-
ing participants as having formed either rule-based or similarity-
based representations is hence based on this series of items and is
usually done by counting the number of items that deviate from
the ideal or expected pattern for both rule-based and similarity-
based responding (see, e.g., Johansen and Palmeri, 2002). This
way of classifying participants has a number of drawbacks that are
briefly discussed in turn.

First, there can be ties for individual participants who then
remain unclassified. This can be a serious problem, especially so
when the number of items that is used to discriminate strategies
is small.

Second, when matching participants’ responses to ideal pat-
terns, it is hard to deal with errors. In particular, participants may
not respond consistently according to their strategy,e.g.,due to dis-
traction errors. When using the number of responses on which a
particular participant deviates from the ideal pattern of responses,
it is difficult to judge what an acceptable maximum is for this
number of errors. Also related to the quantification of errors in
pattern matching, is the question whether an observed pattern of
responses is a real pattern, i.e., that should be classified accordingly,
or whether it is the result of adding errors (noise) to another, sim-
ilar pattern. This issue of consistency is particularly relevant with
regards to comparing adults and children in their performance in
a categorization task because children may be less consistent than
adults in applying their strategies (see, e.g., Raijmakers et al., 2004,
for an example in the triad classification task).

Third, classifying participants according to an ideal pattern of
responses to a set of items precludes the possibility of discovering
new or different patterns of responding that were not hypothe-
sized. However, it could very well be the case that participants
use strategies that were unforeseen, but that could nevertheless
be interesting from a theoretical perspective. Latent class analysis

does not suffer from aforementioned drawbacks and has success-
fully been applied in similar situations when distinct strategies
were expected to be found (cf. Jansen and Van der Maas, 1997;
Raijmakers et al., 2004). Hence, we propose to apply latent class
analysis to model response patterns that result from the gener-
alization task. Below, a brief overview of latent class models is
presented to show how it overcomes these drawbacks.

LATENT CLASS ANALYSIS
Latent class models belong to the family of latent structure mod-
els (Lazarsfeld and Henry, 1968). The main aim of these types of
models is to explain correlations between responses to different
items by introducing a latent variable. In our case, the items are
generalization items that are administered after learning the cat-
egorization. In latent class models, the latent variable is nominal,
indicating the existence of a number of different types of people
rather than a dimension (such as extraversion) on which people
vary continuously.

The interested reader is referred to McLachlan and Peel (2000
Chap. 5) for a general (technical) overview of finite mixture and
latent class models. McCutcheon (1987) provides an introduction
into latent class models in the social sciences.

In the current application of latent class models, we consider
generalization items that participants have to classify as belonging
to one of two categories, say, A and B. The latent classes in the
proposed model consist of a probability of classifying an item in
category A for each of the items. Hence, each latent class consists
of a typical pattern of responding to the generalization items. In
contrast with the method of counting the number of items that
deviate from an ideal pattern of responses, in latent class models,
probabilities are estimated for each pattern. Inasmuch as such a
probability deviates from 1 or 0, this can be considered as an error
rate on that particular item, given a particular class; consequently,
the error rates for each of the items provide an estimate of the
consistency that participants display in responding to that partic-
ular item (see, e.g., McCutcheon, 1987). These item probabilities
are usually referred to as the conditional probabilities, as they are
estimated conditional on the latent class; that is, each latent class
has a particular set of conditional probabilities for all items.

Next to these conditional probabilities, the second set of para-
meters in a latent class model is the set of unconditional or prior
probabilities. These specify the proportions of participants that
occupy the latent classes. Based on the estimated conditional, and
unconditional probabilities of the best fitting, most parsimonious
latent class model, each individual participant can be assigned to
a latent class. This is applied below in the results section to sep-
arate rule-based classifiers from similarity-based classifiers, such
that further analyses can be applied to those data separately, in
particular concerning their response times.

Latent class models can be applied in an exploratory fashion
so as to allow for the possibility to detect response patterns that
were not hypothesized beforehand. By fitting latent class models
with an increasing number of latent classes, it is possible to detect
unforeseen response patterns. Note that latent class models are
not process models of categorization such as the decision-bound
or exemplar based models (see, e.g., Ashby and Maddox, 2005, for
a description of these). Rather, latent class analysis is used here as
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a statistical tool to help detect different representations that par-
ticipants use in categorizing stimuli. In particular, here we apply
latent class analysis to cluster patterns of responses to general-
ization items in order to uncover different representations that
participants acquired during learning.

MATERIALS AND METHODS
The goal of the current experiment is to test which kind of rep-
resentations children form when learning to categorize multiple-
dimensional stimuli. The experiment consisted of three phases:
Phase I is a pre-learning phase, Phase II is the learning phase, and
Phase III is the generalization phase. To ensure that participants
can discriminate the separate dimensions that the compound stim-
uli consist of, in Phase I of the experiment, the participants are
pre-trained on single-dimensional stimuli consisting of the sepa-
rate dimensions of the compound stimuli used in Phases II and III.
In Phase II of the experiment, the participants learn to categorize
compound (multi-dimensional) stimuli. In Phase III participants
categorize previously unseen stimuli, new compounds of the same
dimensions that were learned in Phase I, to test their generalization
behavior.

PARTICIPANTS
The participant characteristics are listed in Table 1, which contains
the total number of participants per age group, their sex, and the
number of participants that failed at completing Phase I of the
task within the time limit. The age groups of the children were
chosen such that they contained approximately equal numbers of
participants. Participants stemmed from three groups. The first
group of participants consisted of 184 children from a primary
school in Amsterdam whose parents consented in their partici-
pation in this study. Of these 184 participants, 46 did not finish
learning in Phase I in the allotted time of approximately 30 min.
Data were incomplete for 14 children, and those were left out of
further analyses.

The dropout due to not finishing the task in the first group of
participants was concentrated in the 4- to 5-year olds. Hence, to
have more participants in this age range, a second group of 4- to
5-year-old participants (whose parents consented in their partici-
pation in this study) from a different primary school in Amsterdam
were tested. This second group consisted of 40 children, of which
16 finished the task in the first session. Of the remaining children,
11 were re-tested the following day (the other 13 were not re-tested
for various reasons), of which only 3 finished the task in a second

Table 1 | Participant characteristics.

Age 4.0–6.0 6.0–8.5 8.5–11.0 11.0–13.4 Adults Total

Part 51 53 55 50 23 232

Female 28 32 30 31 13 134

Fail 31 10 10 4 0 55

Mean 5.0 7.2 9.9 12.0 23.8

Part denotes the number of participants per age group; female denotes the num-

ber of female participants per age group, and the final row labeled fail denotes

the number of participants that did not finish Phase I of the experiment within

the time limit (or gave up earlier).

session. Data of one child was incomplete and was hence left out
of further analyses.

The third group of participants consisted of 23 students from
the University of Amsterdam who received course credit or a small
financial reward (7 Euro) for their participation in the experiment.
The mean age of participants in this group was 23.8 (SD = 6). Par-
ticipants that failed at learning until criterion in Phase I did not
proceed to Phases II and III of the experiment. There were 177
participants that finished all three Phases of the experiment; those
participants’ data are entered into the strategy analyses below.

STIMULI
In Phase I of the experiment, the pre-training phase, participants
learned to categorize the three pairs of stimuli that are depicted
in Figure 1. The three dimensions to be learned consist of donut,
checkerboard and bar stimuli. Each dimension has two levels, for
“donut” stimuli: (level 1) thin and wide versus (level 2) thick and
narrow; for checkerboard stimuli: (1) four by four versus (2) eight
by eight squares; for bar stimuli: (1) thin and long versus (2) thick
and short. All stimuli were 540 × 540 pixels in size (this includes
the black background; note that the number of white pixels is
identical in all stimulus figures).

In Phase II of the experiment, participants learned to cate-
gorize the compound stimuli, see Figure 2. In these stimuli, the
dimensions of Phase I are combined in a congruent manner; that

FIGURE 1 | Stimuli for Phase I of the experiment, the pre-training

phase.

FIGURE 2 | Example stimuli for Phase II of the experiment, the learning

phase.
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FIGURE 3 | “One-away” stimuli for Phase III of the experiment, the

generalization phase.

is, the level 1 values of each dimension in Phase I were combined,
as were the level 2 values. These stimuli can hence be denoted by
111 and 222, indicating the value of the stimulus at each dimen-
sion, i.e., the donut, checkerboard, and bar dimensions. Each of
these 2 stimuli can be configured into a triangle in six ways, result-
ing in a total of 12 stimuli that were presented to participants in
Phase II1.

In the final Phase III of the experiment, the generalization
phase, the set of stimuli is derived from the set of stimuli in
Phase II by replacing one of the dimensions by its counterpart; e.g.,
replacing a wide by a narrow donut. Figure 3 depicts an example;
using notation above used for Phase II stimuli, such stimuli can be
denoted, e.g., 121 and 112; that is, stimuli in which, respectively,
the second or third dimension is altered into its counterpart com-
pared to the Phase II stimuli. This results in a total of 36 stimuli
presented in Phase III.

PROCEDURE
Participants were tested individually while seated in front of a 15′′
touch screen on which the stimuli were presented one by one on
a black background. Two red buttons were drawn to the left and
right bottom sides of the screen, respectively, where the partici-
pants could touch the screen to classify stimuli as “left” or “right.”
Participants were seated such that they could comfortably reach
the two red response buttons on the touch screen. Preceding Phase
I, participants practiced on two trials, with two stimuli that were
different from the stimuli used in the experiment. At each trial,
in Phase I–III, participants’ response (“left” or “right”) and the
corresponding response time were recorded.

In Phase I, participants learned the correct classification of both
levels of all single dimension stimuli (Figure 1) by trial and error.
Phase I consisted of one or more blocks of 48 trials in which each of
the six stimuli were presented eight times. When, for each dimen-
sion, each level was classified correctly for at least six out of eight

1Phase II of the experiment was further divided into four conditions corresponding
to differently configured versions of the stimuli (e.g., the donut could be at the top
of the triangle or at one of the bases et cetera). These conditions were added to allow
testing whether participants form a representation based on one particular posi-
tion on the screen when classifying the compound stimuli. Only three participants
seemed to be doing so (see the Results for further details).

trials, the participant went on to Phase II. Otherwise, a new block
of trials was started. The task was stopped after approximately
30 min if a participant could not finish it because of making too
many mistakes or if the participant was becoming frustrated by
the task.

Participants had to classify each stimulus by hitting the left
(level 1) or right (level 2) response buttons on the touch screen.
Showing a smiley face for 0.5 s immediately following a correct
response provided positive feedback. The response–stimulus inter-
val (RSI) was 1.3 s after which the next trial was presented. In case
of an incorrect response, the stimulus remained on the screen,
and the participant had to correct his/her response. Each time
the participant touched the screen, a soft sound was to be heard to
ensure that participants were aware that they had made a response;
this was necessary because on incorrect responses, the layout of
the screen did not change in any respect. Suppes and Ginsberg
(1962) show that overt correction responses facilitate learning for
children, but not for adults.

In Phase II, the same procedure was followed, with blocks of
12 trials. Feedback conditions were identical to Phase I. Partici-
pants went on to Phase III of the experiment when in a block of
12 trials no more than two errors were made; otherwise, they were
presented with a new block of 12 trials.

In Phase III, the generalization phase, participants were asked
to classify the third set of 36 stimuli, which contained incongruent
dimensions, as opposed to those in Phase II. The stimuli were pre-
sented in random order and once each. The participants received
positive feedback for every classification they made, regardless of
their answer.

RESULTS
PRELIMINARY ANALYSES
A binomial regression with age and sex as factors on the com-
bined samples of children and adults, revealed that age was the
only significant predictor of finishing Phase I of the experi-
ment, F(1, 232) = 47.9, p < 0.001 (sex had F < 1). The strat-
egy analyses of the generalization performance in Phase III of
the Experiments were conducted on all participants who fin-
ished the task in one session, which amounts to a total of 177
participants. The average number of blocks needed to com-
plete Phase I learning was 4.2; the average number of blocks
needed to complete Phase II learning was 1.3. Age, sex, and the
differently configured versions of the stimuli in Phase II did
not significantly influence the number of trials needed to reach
criterion2.

2The characteristics of the children that did not finish the Phase I were as follows.
On average, these participants had responded to 4.9 blocks of trials (235 trials)
when the experiment was stopped. It should be noted that the distribution of these
numbers was quite skewed with 11 participants finishing less than 3 blocks, but also
participants that made up to 11 blocks of trials. To gain further insight into how
close these participants were to arriving at the criterion, we computed their percent-
ages correct in the final full block of trials that they made. The percentages correct
were computed for each pair of stimuli separately. Only 14 participants fulfilled the
criterion in this final block on one pair of stimuli, and 9 of those had two pairs
above criterion. Note that the criterion for going to Phase two of the experiment
was to have six out of eight repetitions correct for each stimulus. Working memory
limitations may be the cause of this performance deficit in the youngest children.
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STRATEGY ANALYSES: MODEL SPECIFICATION AND SELECTION
The main goal of this study is to classify the representations that
participants have formed of the compound stimuli learned in
Phase II of the Experiment by means of the generalization tri-
als presented in Phase III. The data in Phase III consists of 36 trials
with responses to the stimuli that were incongruent in one of the
dimensions (Figure 3). Note that these 36 trials consist of 6 unique
combinations of stimulus elements, each presented in 6 different
configurations. The responses (left or right) to these stimuli were
recoded as zero and one and then summed per stimulus type (i.e.,
disregarding the different configurations). This results in 6 sum
scores that were analyzed; these sum scores ranged from 0 to 6. In
the latent class analyses, the sum scores3 were modeled as binomial
distributions with n = 6.

Latent class analysis is applied to these 6 sum scores to test
whether children had formed different representations that they
used in responding to the Phase III stimuli. For example, partici-
pants who had formed a (single dimension) rule-based representa-
tion were expected to pay attention only to one of the dimensions
and choose left or right accordingly. Conversely, children who had
formed a similarity-based representation of the stimuli in Phase II
were expected to use multiple dimensions in classifying the stimuli
in Phase III.

Latent class models with an increasing number of latent classes
were fitted to the generalization data. Models were fitted using the
flexmix package (Leisch, 2004) for the R statistical programming
environment (R Development Core Team, 2009). When fitting a
set of models, it is necessary to select which model most ade-
quately describes the data. The Bayesian information criteria (BIC,
Schwarz, 1978) is commonly used in comparing non-nested com-
peting models, in this case between models with an increasing
number of latent classes (see Lin and Dayton, 1997, for details on
the specific use of the BIC, and other information criteria, in latent
class models). In the case of non-nested models, traditional tests
for comparing models, such as the log likelihood ratio test, are not
applicable. The BIC provides a trade-off between goodness-of-fit,
the log likelihood, and the number of parameters in the models;
note that for each added latent class, a set of conditional proba-
bilities for each of the items needs to be estimated, as well as the
class size or prior probability. Lower values of the BIC indicate bet-
ter models, in which goodness-of-fit and parsimony are balanced.
The flexmix package provides the BIC values as output, next to the
conditional and unconditional probabilities of the latent classes.

In Table 2, the goodness-of-fit indices for latent class mod-
els with one through to seven classes are listed. As can be seen
in Table 2, using the BIC, the six-class model is selected as the
best fitting, most parsimonious model. In Table 3, the parameter
estimates for the six-class model are provided.

The parameter estimates that are given in Table 3 represent the
probability of responding with the “right” key on that particular
stimulus. Note that the probabilities are the probability of success
in a binomial distribution with n = 6 items.

The items in the Table are labeled 112, 121, etc. The first item,
for example, refers to the stimulus in which the third dimension

3Note that analyses are collapsed over differently rotated/configured versions of the
stimuli here. Possible effects of the different configurations are discussed later.

Table 2 | Goodness-of-fit measures for latent class models.

# Classes LL* # Pars BIC

1 −2829.4 6 5689.8

2 −2131.0 13 4329.4

3 −1894.7 20 3893.0

4 −1746.1 27 3631.9

5 −1574.9 34 3325.9

6 −1522.5 41 3257.4

7 −1508.3 48 3265.1

*LL denotes the loglikelihood of the model; #pars is the number of (freely esti-

mated) parameters of the model; BIC is the Bayesian information criterion.

The 6-class model has the lowest BIC value (in bold face), indicating that this is

the optimal model.

has value 2 whereas the other dimensions have value 1; in partic-
ular, this is the stimulus that has a thin and wide donut, a four by
four checkerboard, and a short and thick bar. The final column of
Table 3 gives the interpretations of each of the classes in terms of
representational format. These are discussed below.

SINGLE- AND MULTIPLE-DIMENSIONAL REPRESENTATIONS
As can be derived from the probabilities in Table 3, most classes
have very clear interpretations. Class 1 in the Table has low prob-
abilities of answering “right” to the items 112, 121, and 211, and
high probabilities of answering “right” to the other three items.
This is the expected pattern for responding based on multiple
dimensions, because the first three items have two dimensions in
common with the Phase II stimuli that were categorized “left” (the
prototypical stimulus for category“left” has code 111). The second
set of three items has two dimensions in common with the Phase
II stimuli that were categorized “right” (prototype 222). This class
is hence labeled “multi” for multi-dimensional responding.

The pattern of probabilities in Class 2 corresponds to single-
dimensional responding, in particular based on the third dimen-
sion (“donut”). Participants in Class 2 respond “left” to items 121,
211, and, 221 in which the third dimension has a “1.” In contrast,
these participants respond with the “right” key to items 112, 212,
and 122. Classes 3 and 4 can be similarly interpreted and are conse-
quently labeled the “checks” and “bars” classes, respectively. Class
5 has probabilities around 0.5 for each of the six items, albeit with
quite some variability; that is, participants in Class 5 choose left or
right responses approximately equally in response to each of the
stimuli and hence do not follow any clear strategy. Consequently,
this class is labeled the “guess” class. The pattern of probabilities
in Class 6 is hard to interpret with some probabilities around 0.5
but others somewhat below at 0.16. If anything, the pattern tends
to the opposite of the “checks” class. Class 6 is labeled “other”4.

4One possible type of strategy that is not easily detected using these items is a strategy
that we label a “position” strategy. Of each stimulus type, six differently configured
versions were presented in Phase III. The latent class analysis above assumes that
participants respond to each of those six items identically; however, if they followed
a “position” strategy that would not be the case. The position strategy consists in
participants choosing a single position from the compound stimuli and base their
response on that particular position. For example, a participant could decide to
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Table 3 | Parameter estimates for latent class model with six classes.

Class Part Items

112 121 211 122 212 221 Rule

1 32 0.05 0.08 0.11 0.90 0.91 0.90 Multi

2 43 0.98 0.03 0.03 0.98 0.95 0.02 Donut

3 18 0.08 0.93 0.05 0.93 0.07 0.97 Checks

4 18 0.03 0.14 0.91 0.02 0.82 0.97 Bars

5 53 0.41 0.48 0.43 0.75 0.67 0.69 Guess

6 13 0.48 0.16 0.60 0.16 0.62 0.31 Other

See the text for details about items and rules; “part” indicates the number of participants in each class.

From the latent class analysis, it is clear that participants form
one of a number of distinct representations in response to the
presentation of compound stimuli. The first column in Table 3
provides the number of participants in each class. A number of
things are noteworthy about this. First, there are a large number of
participants that do not follow any clear strategy, i.e., there are 66
participants in Classes 5 and 6, 37% of the total number of partic-
ipants. Second, 79 participants (45%) follow a single-dimensional
strategy, over half of which use the donut dimension to base their
responses on. Third, 32 participants use a multi-dimensional strat-
egy, 18% of the total. Finally, the patterns of probabilities in Classes
1 through 4 are very clear; that is, the probabilities do not differ
much from zero or one, indicating a high consistency or stability
of these patterns of responding. Together, this pattern of results
shows that there are significant individual differences in the pref-
erences of participants to represent the stimuli and to classify
new stimuli. In the following section, individual participants are
assigned to latent classes to relate these individual differences to
age in order to study developmental trends in the formation of
different types of representations.

DEVELOPMENTAL TRENDS
As noted earlier, an important main developmental trend concerns
the probability of finishing Phase I of the task, which is related to
the efficiency of the verbal learning system because the core task
in Phase I is to acquire single dimension rule-based representa-
tions. Table 4 lists the numbers of participants that responded
using multiple dimensions, a single dimension or otherwise,
grouped by age5. The age groups of the children participants are
chosen such that these groups contain roughly equal numbers

always base a response on the top stimulus in the triangle, whether that is one of
the checkerboards or one of the donuts or one of the bar stimuli. We inspected
the response patterns of the participants to determine whether they were following
such a strategy. For 3 participants this was abundantly clear; these had, 36, 36, and
35 of their responses consistent with a position strategy. Three further participants
had 30 responses consistent with a position strategy. Hence, possibly a total of six
participants were actually following a “position” strategy.
5Note that in Table 4, participants are collapsed over the different configuration
conditions of Phase II. It was tested whether the four configuration conditions had
any effect on the strategies that participants employed in Phase III of the experi-
ment. This was done by a χ2 test on the cross tabulation of condition and posterior
classification, which turned out non-significant, χ2 = 10.5, df = 15, p = 0.79. This
indicates that the configuration conditions did not affect the strategies chosen by
participants.

Table 4 | Number of participants using different strategies by age

group.

Age group 1-Dim (%) Multi (%) Other (%) Total

4.0–6.0 4 (20) 2 (10) 14 (70) 20

6.0–8.5 18 (42) 8 (18) 17 (40) 43

8.5–11.0 24 (53) 6 (13) 15 (33) 45

11.0–13.4 20 (43) 11 (24) 15 (33) 46

Adults 13 (54) 5 (23) 5 (23) 23

total 79 (45) 32 (18) 66 (37) 177

1-Dim is the number of participants performing single-dimensional classifica-

tion of the generalization stimuli; multi is the group that performs based on a

multi-dimensional strategy, and other are the remaining two classes.

of participants. The single-dimension groups are collapsed here
because our main interest is to study whether participants use any
single-dimensional rules versus other strategies.

The proportion of participants using the single-dimensional
strategies increases with age, from 20% in the youngest age group
to 54% of the adult participants. The proportion of participants
that have formed a multi-dimensional representation increases
slightly with age, from 10% in the youngest children to 23% in
the adults. A multinomial logistic regression on class member-
ship with age as (continuous) factor confirms that the overall
effect of age on class membership is significant [likelihood ratio
χ2(2) = 7.69, p < 0.05]; also the separate effects of age on the
probabilities of using a single versus multi-dimensional gener-
alization are both significant (Wald statistics 5.7 and 4.0 respec-
tively, both ps < 0.05). The ratio between single-dimension and
multi-dimensional strategies does not show large variability and
a Chi-squared test indicates that age does not influence the rela-
tive proportion of single- versus multi-dimensional strategy use
[χ2(4) = 1.9, p = 0.75]. It is clear from this pattern of results that
there is no change with age in preference or bias from similarity-
based to rule-based processing as expected. Below, the multi-
dimensional group is discussed to more precisely to characterize
the underlying representations.

RESPONSE TIMES
To further clarify the interpretation of the multi-dimensional
group, the response times of participants in Phase III of the
experiment are analyzed. In particular, it was hypothesized that if
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participants use an overall-similarity representation to base their
responses on in Phase III, they should be able to judge items rel-
atively fast. On the other hand, if participants use an analytic
strategy, meaning that they take into account each of the dimen-
sions of the compound stimuli in turn to base their decision upon,
response times are expected to be relatively slow. The latter would
certainly be so when put in contrast with the participants that have
formed a single dimensional rule-based representation of those
stimuli, as those only need to consider a single dimension instead
of all three dimensions. Therefore, in Figure 4, we have plotted the
mean response times on trials in Phase III of participants whom
were classified into the multi-dimensional class and those who
were classified into one of the single-dimensional classes.

Figure 4 reveals that participants in the multi-dimensional
group are much slower than are the single-dimensional par-
ticipants. This is confirmed by a main effect of Class, F(1,
106) = 161.7, p < 0.001, in an ANOVA with Class (multi- versus
single dimensional), and age (continuous) as factors. This analysis
also reveals that RTs decrease with age, F(1, 106) = 30.2, p < 0.001.
Importantly, the interaction between these factors also reaches sig-
nificance, F(1, 106) = 16.2, p < 0.001. This pattern of results is
similar when the adult group is left out of the analyses, and also
when the (multi-dimensional strategy) participant with a mean
RT of about 9 s is left out (who could be considered an outlier
with respect to his/her response times).

The direction of the main effect for Class in the RTs, i.e.,
multi-dimensional responding is slower than single-dimensional
responding, is best interpreted as evidence for the use of an analytic
strategy by the participants that use multi-dimensional classifi-
cation. This conclusion is further supported by the interaction
effect with age; it is natural to expect that if participants use an
analytic strategy, then it is highly likely that older participants
become more efficient at applying such a strategy and that this
increase in efficiency is larger when one has to compare three
dimensions instead of one dimension. When using an implicit
overall-similarity-based representation to classify stimuli, it is not
expected that the increase in efficiency with age is larger than for
single-dimensional strategies.

FIGURE 4 | Response times of one-dimensional (dim) responders and

multi-dimensional (multi) responders, as a function of age of

participants.

This pattern of results indicates that with age children had,
when they passed the post of Phase I of the experiment, an increas-
ing probability of learning rule-based representations like adults.
We found no evidence of similarity-based representations. Com-
bined with the finding that many of the younger children did
not finish Phase I, this indicates a growing efficiency of the ver-
bal learning system as the main factor explaining developmental
differences.

DISCUSSION
The present study was designed to characterize patterns of gen-
eralization performance that children show in a categorization
learning experiment in which both verbal and implicit learning
can lead to optimal performance. The results clearly indicate mul-
tiple modes of categorization: both single-dimensional and multi-
dimensional categorization occur among both children and adults.
A third group of participants shows inconsistent generalization
performance.

MULTI-DIMENSIONAL GENERALIZATION
The participants that showed single-dimensional generalization
were most likely using a rule-based strategy. The pre-training
Phase I of the experiment ensured that participants were familiar
with the separate dimensions of the compound stimuli and could
use them in classification. In addition to the one-dimensional cat-
egorizers, we observed a considerable group of participants that
showed multi-dimensional categorization in the generalization
Phase III. The size of this group increases with age. Following
the default interpretation that such multi-dimensional categoriza-
tion is the result of an overall-similarity representation, this would
lead to the counter-intuitive conclusion that human adults show
more implicit classification processes than children. The alterna-
tive interpretation that the multi-dimensional categorization is an
analytical process is hence more likely. This is further supported
by the response time analyses.

In such an analytical process, all three dimensions of the
stimulus are compared to the learned prototypes and the best
match is chosen. This decision process is much more complicated
than applying a single-dimensional rule is. This interpretation of
multi-dimensional classification is supported by the analysis of
the response times. The application of multi-dimensional rules
requires more processing time than the application of single-
dimensional rules, and the difference decreases with age. This is
in contrast with implicit processing which is generally assumed
to be faster than processing by the verbal system (Ashby et al.,
1998). Moreover, implicit processing is assumed to be relatively
stable throughout development (Reber, 1992). If each reason-
ing step in the categorization process would take a constant
amount of time, and if the required time for each step decreases
with age, the interaction that we found is typically expected (cf.
the analyses of reaction times presented in van der Maas and
Jansen, 2003). Hence, the multi-dimensional categorizers are most
likely using a multi-dimensional rule-based categorization strat-
egy. Additional experimenting should be used to further confirm
this, e.g., by applying a dual task procedure in the generalization
phase. This is based on the assumption that implicit or proce-
dural processing of stimuli is not affected by additional working
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memory load, whereas explicit processing is (Ashby and Maddox,
2011).

SIMILARITY-BASED REPRESENTATIONS
Our results are partly convergent with those by Minda et al. (2008).
Comparable with our results, their results indicate that children
and adults perform similarly in categorizing compound stimuli.
Minda et al. interpret this finding as evidence that both chil-
dren and adults use implicit or procedural processing in learning
such categories, which fits with the holistic/analytic distinction
(e.g., Smith and Shapiro, 1989). In contrast, our strategy analy-
ses and the response time analyses show that behavior is more
consistent with rule-based processing. Again, further experiment-
ing should shed light on the differences between these studies.
Many factors may explain the differences, such as integrated ver-
sus separate dimensions of the stimuli, many or few learning trials
(cf. Johansen and Palmeri, 2002), and the separation of learning
and generalization phases of the experiments (Minda et al. based
their strategy analyses on the learning trials rather than having a
separate generalization phase as we did).

Kloos and Sloutsky (2008) conclude that “similarity-based rep-
resentation is a developmental default, whereas rule-based repre-
sentations are a product of learning and development” (p. 68).
The current results are partly convergent with that conclusion
inasmuch as we found that the use of rule-based representa-
tions increases with age. In contrast with their results though, we
found no evidence of similarity-based representations occurring
in children, which Kloos and Sloutsky predicted to be dominant
in learning of dense categories (in both children and adults).

This divergence may be due to many differences between these
studies. First, our stimulus structures were simpler and had fewer
dimensions than those in Kloos and Sloutsky (2008). Second, their
training phase consisted of only 16 presentations of the target
category, whereas our training phase consisted of training until
criterion with stimuli from both categories. The current results
further indicate that many children, and even some of the adults,
learned to categorize the stimuli but nevertheless did not show
consistent generalization behavior.

Our results indicate that children have no problem in pro-
cessing multi-dimensional stimuli when provided with proper
pre-training of the separate stimulus dimensions. Given such pre-
training, we found no discernable developmental differences in
the dominance of either multi-dimensional or single-dimensional
processing. A partly convergent conclusion was recently found in
comparing children and adults in information-integration cate-
gorization learning (Huang-Pollock et al., 2011). They found that
children were less inclined than adults in adopting an implicit pro-
cessing strategy in learning a category structure that is hard to rep-
resent in an explicit manner. If anything, what follows from these
results is that children have as strong a preference for explicit pro-
cessing as do adults, even when this does not lead to optimal per-
formance and learning (Huang-Pollock et al., 2011). The current
results extend a similar finding to a much broader age range.

Similarities between child and adult performance has been
found in a number of other fields as well (see, e.g., Gopnik et al.,
2001, for an example in causal learning; see Wellman and Gelman,
1992, for discussion). Differences between children and adults in

this study were related to achieving criterion in pre-training and
in the speed of rule execution in the generalization phase of the
experiment. From these results it can be concluded that the main
cause for developmental differences in categorization is related to
the efficiency of the verbal system that learns rule-based represen-
tations, rather than an increasing dominance of the verbal system
over the implicit system.

STRATEGY ANALYSES AND GUESSING BEHAVIOR
As was shown in the strategy analyses, 37% of participants showed
unclear patterns of generalization. In particular, 53 participants
(30%) were classified as belonging to the “guess” Class of the latent
class model. This indicates that these participants have not formed
any clear representation of the stimuli, or at least not a represen-
tation that could be detected by the items that were used here.
It is important to note that with rule-analysis methodologies that
match observed response patterns with expected response patterns
one cannot reliably detect guessing as a separate strategy (Jansen
and Van der Maas, 1997; but see Siegler and Chen, 2008). The
“guessers” that we found among the participants are not showing
any other strategy6. It is not uncommon, however, that a consider-
able group of participants does not show systematic categorization
behavior in a generalization phase of category-learning studies
(e.g., Johansen and Palmeri, 2002). Using latent class analysis,
such a group of participants can be separated from other groups
of participants showing homogeneous behavior using firm sta-
tistical arguments (cf. Raijmakers et al., 2004; van der Maas and
Straatemeier, 2008).

In addition to the participants that were included into the strat-
egy analyses, a considerable group of participants did not finish
the acquisition Phase I, and consequently also did not enter Phases
II and III of the experiment. How could we best characterize these
individuals? The largest part of these participants did not learn at
all; some of them learned the task partially. Multiple interpreta-
tions are consistent with these results. First, children find it difficult
to concentrate for the full duration of the task, which was certainly
an issue. A second interpretation is that they were learning in some
implicit manner, and that they would simply need many more
trials to reach criterion. A third interpretation could be that chil-
dren try to do some explicit learning, but that their memory span
and/or abstraction strategies are too limited to memorize the six
items simultaneously (cf. Waldron and Ashby, 2001; Zeithamova
and Maddox, 2006, for discussion of the role of working memory
in categorization). Such different interpretations do not rule each
other out and this provides interesting opportunities for future
research.

As was shown, the“guess”and“other”class prevalences decrease
with age, as the prevalences of the single and multi-dimensional
classes increase with age. This can be interpreted as an indica-
tion that the younger the children were, the larger the probability
that they had an inconsistent response pattern. This could be an
indication of a growing ability in rule execution (Crone et al.,
2004) as part of the explicit learning system.

6Classification on basis of an element that appears in a certain position of the com-
pound stimulus is done by only a few of those participants (see text footnote 4).
Hence, this is not a general explanation of the behavior of this group.
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CATEGORY LEARNING AND GENERALIZATION
Characterizing representations is usually done on the basis of
generalization data as was done in the current study. Response
time data were used to provide additional, and valuable infor-
mation giving an overall consistent interpretation of the results.
Among the children of 4 years of age and older, there are many
who form rule-based representations. Some of them even apply
multi-dimensional categorization rules. The number of rule
users, both one-dimensional and multi-dimensional, increases
with age. Nevertheless, we cannot exclude the possibility that
some children would eventually come to learn a categoriza-
tion task with the present complexity with an implicit learn-
ing strategy, if they would have been exposed long enough
to it.

Next to generalization data and response times, the learning
or acquisition curves may provide information about represen-
tational formats; studying such curves is common in animal
learning (Gallistel et al., 2004), but hardly in humans (see how-
ever Schmittmann et al., 2006), and hence provides additional
opportunities for studying categorization learning. This may be
particularly useful in cases where competition between implicit
and explicit learning processes is expected as proposed in the
COVIS model of categorization learning (Ashby et al., 1998; Ashby
and Maddox, 2011).

CONCLUSION
We conclude by stressing again that the present research has found
ample evidence for the use of both single-dimensional and multi-
dimensional rules by school-aged children. Children are able to
form complex multi-dimensional representations, and sponta-
neously do so even when easier options are available. Applying
(complex) rules becomes faster as children grow older. The main
developmental trend that we found evidence for in this study is
the growing efficiency of the verbal system to learn rule-based
representations. This is both evident from the decreasing dropout
in Phase I as well as the increasing use of consistent representa-
tions in Phase III. Important challenges for future research concern
the interaction between stimulus structure and representational
format in a developmental context. This research illustrates the
usefulness of applying latent class analysis to generalization per-
formance in categorization tasks in order to classify participants.
Similarly, analyzing response time data in relation to generaliza-
tion performance has been shown to provide supporting evidence
to interpret generalization patterns.
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