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The purpose of this article is to help researchers avoid common pitfalls associated with
reliability including incorrectly assuming that (a) measurement error always attenuates
observed score correlations, (b) different sources of measurement error originate from the
same source, and (c) reliability is a function of instrumentation.To accomplish our purpose,
we first describe what reliability is and why researchers should care about it with focus on
its impact on effect sizes. Second, we review how reliability is assessed with comment on
the consequences of cumulative measurement error. Third, we consider how researchers
can use reliability generalization as a prescriptive method when designing their research
studies to form hypotheses about whether or not reliability estimates will be acceptable
given their sample and testing conditions. Finally, we discuss options that researchers may
consider when faced with analyzing unreliable data.
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The vast majority of commonly used parametric statistical pro-
cedures assume data are measured without error (Yetkiner and
Thompson, 2010). However, research indicates that there are
at least three problems concerning application of the statisti-
cal assumption of reliable data. First and foremost, researchers
frequently neglect to report reliability coefficients for their data
(Vacha-Haase et al., 1999, 2002; Zientek et al., 2008). Presum-
ably, these same researchers fail to consider if data are reliable and
thus ignore the consequences of results based on data that are
confounded with measurement error. Second, researchers often
reference reliability coefficients from test manuals or prior research
presuming that the same level of reliability applies to their data
(Vacha-Haase et al., 2000). Such statements ignore admonitions
from Henson (2001), Thompson (2003a),Wilkinson and APA Task
Force on Statistical Inference (1999), and others stating that relia-
bility is a property inured to scores not tests. Third, researchers that
do consider the reliability of their data may attempt to correct
for measurement error by applying Spearman’s (1904) correction
formula to sample data without considering how error in one
variable relates to observed score components in another variable
or the true score component of its own variable (cf. Onwueg-
buzie et al., 2004; Lorenzo-Seva et al., 2010). These so-called
nuisance correlations, however, can seriously influence the accuracy
of the statistics that have been corrected by Spearman’s formula
(Wetcher-Hendricks, 2006; Zimmerman, 2007). In fact, as readers
will see, the term correction for attenuation may be considered a
misnomer as unreliable data do not always produce effects that are
smaller than they would have been had data been measured with
perfect reliability.

PURPOSE
The purpose of this article is to help researchers avoid common
pitfalls associated with reliability including incorrectly assuming

that (a) measurement error always attenuates observed score
correlations, (b) different sources of measurement error originate
from the same source, and (c) reliability is a function of instru-
mentation. To accomplish our purpose, the paper is organized as
follows.

First, we describe what reliability is and why researchers should
care about it. We focus on bivariate correlation (r) and discuss how
reliability affects its magnitude. [Although the discussion is lim-
ited to r for brevity, the implications would likely extend to many
other commonly used parametric statistical procedures (e.g., t -
test, analysis of variance, canonical correlation) because many are
“correlational in nature” (Zientek and Thompson, 2009, p. 344)
and “yield variance-accounted-for effect sizes analogous to r2”
(Thompson, 2000, p. 263).] We present empirical evidence that
demonstrates why measurement error does not always attenuate
observed score correlations and why simple steps that attempt
to correct for unreliable data may produce misleading results.
Second, we review how reliability is commonly assessed. In addi-
tion to describing several techniques, we highlight the cumulative
nature of different types of measurement error. Third, we con-
sider how researchers can use reliability generalization (RG) as
a prescriptive method when designing their research studies to
form hypotheses about whether or not reliability estimates will be
acceptable given their sample and testing conditions. In addition
to reviewing RG theory and studies that demonstrate that relia-
bility is a function of data and not instrumentation, we review
barriers to conducting RG studies and propose a set of metrics
to be included in research reports. It is our hope that editors will
champion the inclusion of such data and thereby broaden what
is known about the reliability of educational and psychological
data published in research reports. Finally, we discuss options that
researchers may consider when faced with analyzing unreliable
data.
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RELIABILITY: WHAT IS IT AND WHY DO WE CARE?
The predominant applied use of reliability is framed by classi-
cal test theory (CTT, Hogan et al., 2000) which conceptualizes
observed scores into two independent additive components: (a)
true scores and (b) error scores:

Observed Score (OX) = True Score (TX)+Error Score (EX) (1)

True scores reflect the construct of interest (e.g., depression,
intelligence) while error scores reflect error in the measurement of
the construct of interest (e.g., misunderstanding of items, chance
responses due to guessing). Error scores are referred to as mea-
surement error (Zimmerman and Williams, 1977) and stem from
random and systematic occurrences that keep observed data from
conveying the “truth” of a situation (Wetcher-Hendricks, 2006, p.
207). Systematic measurement errors are“those which consistently
affect an individual’s score because of some particular character-
istic of the person or the test that has nothing to do with the
construct being measured” (Crocker and Algina, 1986, p. 105).
Random errors of measurement are those which “affect an indi-
vidual’s score because of purely chance happenings” (Crocker and
Algina, 1986, p. 106).

The ratio between true score variance and observed score vari-
ance is referred to as reliability. In data measured with perfect
reliability, the ratio between true score variance and observed score
variance is 1 (Crocker and Algina, 1986). However, the nature of
educational and psychological research means that most, if not all,
variables are difficult to measure and yield reliabilities less than 1
(Osborne and Waters, 2002).

Researchers should care about reliability as the vast majority
of parametric statistical procedures assume that sample data are
measured without error (cf. Yetkiner and Thompson, 2010). Poor
reliability even presents a problem for descriptive statistics such
as the mean because part of the average score is actually error.
It also causes problems for statistics that consider variable rela-
tionships because poor reliability impacts the magnitude of those
results. Measurement error is even a problem in structural equa-
tion model (SEM) analyses, as poor reliability affects overall fit
statistics (Yetkiner and Thompson, 2010). In this article, though,
we focus our discussion on statistical analyses based on observed
variable analyses because latent variable analyses are reported less
frequently in educational and psychological research (cf. Kieffer
et al., 2001; Zientek et al., 2008).

Contemporary literature suggests that unreliable data always
attenuate observed score variable relationships (e.g., Muchinsky,
1996; Henson, 2001; Onwuegbuzie et al., 2004). Such literature
stems from Spearman’s (1904) correction formula that estimates
a true score correlation (rTXTY) by dividing an observed score cor-
relation (rOXOY) by the square root of the product of reliabilities
(rXXrYY):

rTXTY = rOXOY√
rXXrYY

(2)

Spearman’s formula suggests that the observed score correlation is
solely a function of the true score correlation and the reliability of
the measured variables such that the observed correlation between
two variables can be no greater than the square root of the product

of their reliabilities:

rOXOY = rTXTY

√
rXXrYY (3)

Using derivatives of Eqs 2 and 3, Henson (2001) claimed, for
example, that if one variable was measured with 70% reliabil-
ity and another variable was measured with 60% reliability, the
maximum possible observed score correlation would be 0.65 (i.e.,√

0.70 × 0.60). He similarly indicated that the observed correla-
tion between two variables will only reach its theoretical maximum
of 1 when (a) the reliability of the variables are perfect and (b)
the correlation between the true score equivalents is equal to 1.
(Readers may also consult Trafimow and Rice, 2009 for an inter-
esting application of this correction formula to behavioral task
performance via potential performance theory).

The problem with the aforementioned claims is that they do
not consider how error in one variable relates to observed score
components in another variable or the true score component of its
own variable. In fact, Eqs 2 and 3, despite being written for sample
data, should only be applied to population data in the case when
error does not correlate or share common variance (Zimmerman,
2007), as illustrated in Figure 1. However, in the case of correlated
error in the population (see Figure 2) or in the case of sample

FIGURE 1 | Conceptual representation of observed score variance in

the case of no correlated error. T, true scores; E, error scores. Note:
shaded area denotes shared variance between T X and TY.

FIGURE 2 | Conceptual representation of observed score variance in

the case of correlated error.T, true scores; E, error scores. Note: lighted
shaded area denotes shared variance between T X and TY. Dark shaded area
denotes shared variance between EX and EY.
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data, the effect of error on observed score correlation is more
complicated than Eqs 2 or 3 suggest. In fact, it is not uncommon
for observed score correlations to be greater than the square root
of the product of their reliabilities (e.g., see Dozois et al., 1998).
In such cases, Spearman’s correction formula (Eq. 2) will result
in correlations greater than 1.00. While literature indicates that
such correlations should be truncated to unity (e.g., Onwuegbuzie
et al., 2004), a truncated correlation of 1.00 may be a less accurate
estimate of the true score correlation than its observed score coun-
terpart. As readers will see, observed score correlations may be less
than or greater than their true score counterparts and therefore less
or more accurate than correlations adjusted by Spearman’s (1904)
formula.

To understand why observed score correlations may not always
be less than their true score counterparts, we present Charles’s“cor-
rection for the full effect of measurement error” (Charles, 2005, p.
226). Although his formula cannot be used when “true scores and
error scores are unknown,”the formula clarifies the roles that relia-
bility and error play in the formation of observed score correlation
and identifies “the assumptions made in the derivation of the
correction for attenuation” formula (Zimmerman, 2007, p. 923).
Moreover, in the case when observed scores are available and true
and error scores are hypothesized, the quantities in his formula
can be given specific values and the full effect of measurement
error on sample data can be observed.

Charles’s (2005) formula extends Spearman’s (1904) formula by
taking into account correlations between error scores and between
true scores and error scores that can occur in sample data:

rTXTY = rOXOY√
rXXrYY

− rEXEY

√
eXX

√
eYY√

rXXrYY
− rTXEY

√
eYY√

rYY
− rTYEX

√
eXX√

rXX

(4)

Although not explicit, Charles’s formula considers the correlations
that exist between true scores and error scores of individual mea-
sures by defining error (e.g., eXX, eYY) as the ratio between error
and observed score variance. Although error is traditionally rep-
resented as 1 – reliability (e.g., 1 − rXX), such representation is
only appropriate for population data as the correlation between
true scores and error scores for a given measure (e.g., rTXEX ) is
assumed to be 0 in the population. Just as with rEXEY , rTXEY , rTYEX ,
correlations between true and error scores of individual measures
(rTXEX , rTYEY) are not necessarily 0 in sample data. Positive corre-
lations between true and error scores result in errors (e.g., eXX)
that are less than 1 – reliability (e.g., 1 − rxx), while negative cor-
relations result in errors that are greater than 1 – reliability, as
indicated in the following formula (Charles, 2005):

eXX =
(

1 − rXX − covTXEX

S2
OX

)
(5)

Through a series of simulation tests, Zimmerman (2007)
demonstrated that an equivalent form of Eq. 4 accurately produces
true score correlations for sample data and unlike Spearman’s
(1904) formula, always yields correlation coefficients between
−1.00 and 1.00. From Eq. 4, one sees that Spearman’s formula

results in over corrected correlations when rEXEY , rTXEY , and rTYEX

are greater than 0, and under-corrected correlations when they are
less than 0.

By taking Eq. 4 and solving for rOXOY , one also sees that
the effect of unreliable data is more complicated than what is
represented in Eq. 3:

rOXOY = rTXTY

√
rXXrYY + rEXEY

√
eXX

√
eYY + rTXEY

√
eYY

√
rXX

+ rTYEX

√
eXX

√
rYY (6)

Equation 6 demonstrates why observed score correlations can be
greater than the square root of the product of reliabilities and
that the full effect of unreliable data on observed score correlation
extends beyond true score correlation and includes the correla-
tion between error scores, and correlations between true scores
and error scores.

To illustrate the effect of unreliable data on observed score cor-
relation, consider the case where rTXTY = 0.50, rXX = rYY = 0.80,
rEXEY = 0.50, and rTXEY = rTYEX = 0.10. For the sake
of parsimony, we assume rTXEX = rTYEY = 0 and there-
fore that eXX = 1 − rXX and eYY = 1 − rYY. Based on Eq. 3, one
would expect that the observed score correlation to be 0.40
(0.50

√
0.80 × 0.80). However, as can be seen via the boxed points

in Figure 3, the effect of correlated error, the correlation between
T X and EY, and the correlation between TY and EX respectively
increase the expected observed score correlation by 0.10, 0.04, and
0.04 resulting in an observed score correlation of 0.58, which is
greater than the true score correlation of 0.50, and closer to the
true score correlation of 0.50 than the Spearman (1904) correction
resulting from Eq. 2 which equals 0.725 (i.e., 0.58/

√
0.80 × 0.80).

This example shows that the attenuating effect of unreliable data
(first term inEq. 6) is mitigated by the effect of correlated error
(second term in Eq. 6) and the effects of correlations between true
and error scores (third and forth terms in Eq. 6), assuming that the
correlations are in the positive direction. Correlations in the neg-
ative direction serve to further attenuate the true score correlation
beyond the first term in Eq. 6. This example further shows that
observed score correlations are not always attenuated by measure-
ment error and that in some cases an observed score correlation
may provide an estimate that is closer to the true score correlation
than a correlation that has been corrected by Spearman’s formula.

As illustrated in Figure 3, the effect of correlated error and
correlations between true and error scores tend to increase as reli-
ability decreases and the magnitudes of rTXEY , rTYEX , and rEXEY

increase. The question, of course, is how big are these so-called
“nuisance correlations” in real sample data? One can expect that,
on average, repeated samples of scores would yield correlations
of 0 for rTXEY and rTYEX , as these correlations are assumed to be
0 in the population (Zimmerman, 2007). However, correlations
between errors scores are not necessarily 0 in the population. Cor-
relation between error scores can arise, for example, whenever
tests are administered on the same occasion, consider the same
construct, or are based on the same set of items (Zimmerman and
Williams, 1977). In such cases, one can expect that, on average,
repeated samples of error scores would approximate the level of
correlated error in the population (Zimmerman, 2007). One can
also expect that the variability of these correlations would increase
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FIGURE 3 | Effect of unreliable data on observed score correlation

as a function of reliability, correlated error (rEX EY
), and correlations

between true and error scores (rTX EY
, rTY EX

). Note: rTXEX
= rTYEY

= 0;
eXX = eYY = 1 − reliability. The boxed point on the left-hand panel
indicates the effect of correlated error on an observed score

correlation when rTX TY
= 0.50, r XX = rYY = 0.80, and rEX EY

= 0.50. The
boxed point on the right-hand panel indicates the effect of a
correlation between true and error scores (e.g., rTYEX

) on an observed
score correlation when rTXTY

= 0.50, rXX = rYY = 0.80, and
rTXEY

= rTYEX
= 0.10.

Table 1 | SAT data observed, error, and true scores.

Writing scores Reading scores

State Observed (OY) True (TY) Error (EY) Observed (OY) True (TY) Error (EY)

Connecticut 513.0 512.0 1.0 509.0 509.8 −0.8

Delaware 476.0 485.0 −9.0 489.0 495.8 −6.8

Georgia 473.0 481.2 −8.2 485.0 491.4 −6.4

Maryland 491.0 496.4 −5.4 499.0 500.6 −1.6

Massachusetts 509.0 510.6 −1.6 513.0 513.2 −0.2

New Hampshire 511.0 510.4 0.6 523.0 521.0 2.0

New Jersey 497.0 495.8 1.2 495.0 495.4 −0.4

New York 476.0 480.4 −4.4 485.0 488.2 −3.2

North Carolina 474.0 481.2 −7.2 493.0 495.6 −2.6

Pennsylvania 479.0 482.2 −3.2 493.0 493.0 0.0

Rhode Island 489.0 491.4 −2.4 495.0 495.6 −0.6

South Carolina 464.0 473.8 −9.8 482.0 486.6 −4.6

Virginia 495.0 498.4 −3.4 512.0 511.4 0.6

M 488.2 492.2 −4.0 497.9 499.9 −1.9

SD 16.1 12.9 3.8 12.6 10.6 2.7

as the sample size (n) decreases. Indeed, Zimmerman (2007) found
that the distributions for rTXEY , rTYEX , and rEXEY yielded SDs of
∼ 1/

√
n − 1. The fact that there is sampling variance in these val-

ues makes “dealing with measurement error and sampling error
pragmatically inseparable” (Charles, 2005, p. 226).

To empirically illustrate the full effect of unreliable data on
observed score correlation, we build on the work of Wetcher-
Hendricks (2006) and apply Eq. 6 to education and psychology
examples. For education data, we analyzed SAT writing and read-
ing scores (Benefield, 2011; College Board, 2011; Public Agenda,
2011). For psychology data, we analyzed scores from the Beck

Depression Inventory-II (BDI-II; Beck, 1996) and Beck Anxiety
Inventory (BAI; Beck, 1990). We close this section by contrasting
CTT assumptions relating to reliability to population and sam-
ple data and summarizing how differences in those assumptions
impact the full effect of reliability on observed score correlations.

EDUCATION EXAMPLE
We applied Eq. 6 to average SAT scores from 13 states associ-
ated with the original USA colonies (see Table 1). We selected
these states as they were a cohesive group and were among the 17
states with the highest participation rates (Benefield, 2011; College
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Board, 2011; Public Agenda, 2011). We used data reported for 2011
as observed data and the long-run average of SAT scores reported
since the new form of the SAT was introduced as true scores,
given the psychometric principle from Allen and Yen (1979) that
long-run averages equal true score values (cf. Wetcher-Hendricks,
2006). To compute error scores, we subtracted true scores from
observed scores. The components of Eq. 6 applied to the SAT data
are presented in Table 2 and yield the observed score correlation
(0.90), as follows:

rOXOY = 0.91
√

0.71 × 0.65 + 0.84
√

0.05
√

0.06

+ 0.62
√

0.06
√

0.71 + 0.68
√

0.05
√

0.65

0.90 = 0.62 + 0.04 + 0.12 + 0.12

(7)

While the reliability of the SAT data served to attenuate the
true score correlation between reading and writing scores (cf. first
term in Eq. 7), the correlations between (a) reading error scores
and writing errors scores (cf. second term in Eq. 7), (b) reading
error scores and writing true scores (cf. third term in Eq. 7), and
(c) writing errors scores and reading true scores (cf. forth term
in Eq. 7), served to mitigate the effect of that attenuation. Also
note that the observed score correlation (0.90) is more in-line with
the true score correlation (0.91) than what Spearman’s (1904) cor-
rection formula yielded (i.e., 0.90/

√
0.71 × 0.65 = 1.33). Given

that Spearman’s correction produced a value in excess of 1.00, it

Table 2 | Values for observed score correlation computation for SAT

and beck data.

Component SAT Beck

r (T X, TY) 0.91 0.69

r (EX, EY) 0.84 0.76

r (T X, EY) 0.62 0.47

r (TY, EX) 0.68 −0.14

rXX(SD2
TX

/SD2
OX

) 0.71 0.79

rYY(SD2
TY

/SD2
OY

) 0.65 0.83

eXX(SD2
TX

/SD2
OX

) 0.05 0.21

eYY (SD2
TY

/SD2
OY

) 0.06 0.17

would be more accurate to report the observed score correlation,
rather than follow conventional guidelines (e.g., Onwuegbuzie
et al., 2004) and report 1.00.

PSYCHOLOGY EXAMPLE
We applied Eq. 6 to average class BDI-II (Beck, 1996) and BAI
(Beck, 1990) scores from Nimon and Henson, 2010; see Table 3).
In their study, students responded to the BDI-II and BAI at two
times within the same semester (i.e., time-1, time-2). Following
Wetcher-Hendricks’ (2006) example of using predicted scores as
true scores, we used scores for time-1 as observed data and the
predicted scores (regressing time-2 on time-1) as true scores. As in
the education example, we subtracted true scores from observed
scores to compute error scores. The components of Eq. 6 applied
to Nimon and Henson’s (2010) data are presented in Table 2 and
yield the observed score correlation of 0.81, as follows:

rOXOY = 0.69
√

0.79 × 0.83 + 0.76
√

0.21
√

0.17

+ 0.47
√

0.17
√

0.79 − 0.14
√

0.21
√

0.83

0.81 = 0.56 + 0.14 + 0.17 − 0.06

(8)

In Nimon and Henson’s (2010) data, the true score correla-
tion (0.69) is lower than the observed score correlation (0.81).
In this case, the attenuating effect of unreliability in scores was
mitigated by other relationships involving error scores which,
in the end, served to increase the observed correlation rather
than attenuate it. As in the SAT data, Spearman’s (1904) cor-
rection (0.81/

√
0.79 × 0.83 = 1.00) produced an over corrected

correlation coefficient. The over-correction resulting from Spear-
man’s correction was largely due to the formula not taking into
account the correlation between the error scores and the corre-
lation between the true anxiety score and the error depression
score.

SUMMARY
Classical test theory can be used to prove that ρTX EX

, ρTY EY
, ρTX EY

,
and ρTY EX

all equal to 0 in a given population (Zimmerman, 2007).
However, the tenets of CTT do not provide proof that ρEX EY

= 0.
Furthermore, in the case of sample data, rTXEX , rTYEY , rTXEY , rTYEX ,
and rEXEY are not necessarily zero.

Table 3 | Beck data observed, error, and true scores.

Class Depression scores (BDI-II) Anxiety scores (BAI)

Observed (OY) True (TY) Error (EY) Observed (OY) True (TY) Error (EY)

1 6.67 7.76 −1.10 7.34 9.08 −1.74

2 10.26 10.45 −0.19 11.04 11.26 −0.22

3 5.92 4.75 1.17 9.69 8.69 1.00

4 7.21 7.40 −0.19 7.00 6.98 0.02

5 6.85 7.28 −0.43 7.31 6.40 0.91

6 6.78 6.67 0.12 9.27 8.84 0.43

7 6.13 6.82 −0.70 6.60 7.70 −1.09

8 11.54 10.23 1.32 12.62 11.93 0.69

M 7.67 7.67 0.00 8.86 8.86 0.00

SD 2.06 1.88 0.85 2.17 1.94 0.98
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Because rTXEX , rTYEY , rTXEY , rTYEX , and rEXEY may not be zero
in any given sample, researchers cannot assume that poor reliabil-
ity will always result in lower observed score correlations. As we
have demonstrated, observed score correlations may be less than
or greater than their true score counterparts and therefore less or
more accurate than correlations adjusted by Spearman’s (1904)
formula.

Just as reliability affects the magnitude of observed score corre-
lations, it follows that statistical significance tests are also impacted
by measurement error. While error that causes observed score cor-
relations to be greater than their true score counterparts increases
the power of statistical significance tests, error that causes observed
score correlations to be less than their true score counterparts
decreases the power of statistical significance tests, with all else
being constant. Consider the data from Nimon and Henson (2010)
as an example. As computed by G∗Power 3 (Faul et al., 2007), with
all other parameters held constant, the power of the observed score
correlation (rOXOY = 0.81, 1 − β = 0.90) is greater than the power
of true score correlation (rTXTY = 0.69, 1 − β = 0.62). In this case,
error in the data served to decrease the Type II error rate rather
than increase it.

As we leave this section, it is important to note that the effect
of reliability on observed score correlation decreases as reliability
and sample size increase. Consider two research settings reviewed
in Zimmerman (2007): In large n studies involving standardized
tests, “many educational and psychological tests have generally
accepted reliabilities of 0.90 or 0.95, and studies with 500 or 1,000
or more participants are not uncommon” (p. 937). In this research
setting, the correction for and the effect of reliability on observed
score correlation may be accurately represented by Eqs 2 and 3,
respectively, as long as there is not substantial correlated error
in the population. However, in studies involving a small number
of participants and new instrumentation, reliability may be 0.70,
0.60, or lower. In this research setting, Eq. 2 may not accurately
correct and Eq. 3 may not accurately represent the effect of mea-
surement error on an observed score correlation. In general, if the
correlation resulting from Eq. 2 is much greater than the observed
score correlation, it is probably inaccurate as it does not consider
the full effect of measurement error and error score correlations
on the observed score correlation (cf. Eq. 4, Zimmerman, 2007).

RELIABILITY: HOW DO WE ASSESS?
Given that reliability affects the magnitude and statistical sig-
nificance of sample statistics, it is important for researchers to
assess the reliability of their data. The technique to assess reliabil-
ity depends on the type of measurement error being considered.
Under CTT, typical types of reliability assessed in educational
and psychological research are test–retest, parallel-form, inter-
rater, and internal consistency. After we present the aforemen-
tioned techniques to assess reliability, we conclude this section by
countering a common myth regarding their collective nature.

TEST–RETEST
Reliability estimates that consider the consistency of scores across
time are referred to as test–retest reliability estimates. Test–retest
reliability is assessed by having a set of individuals take the same
assessment at different points in time (e.g., week 1, week 2) and

correlating the results between the two measurement occasions.
For well-developed standardized achievement tests administered
reasonably close together, test–retest reliability estimates tend to
range between 0.70 and 0.90 (Popham, 2000).

PARALLEL-FORM
Reliability estimates that consider the consistency of scores across
multiple forms are referred to as parallel-form reliability estimates.
Parallel-form reliability is assessed by having a set of individuals
take different forms of an instrument (e.g., short and long; Form
A and Form B) and correlating the results. For well-developed
standardized achievement tests, parallel-form reliability estimates
tend to hover between 0.80 and 0.90 (Popham, 2000).

INTER-RATER
Reliability estimates that consider the consistency of scores across
raters are referred to as inter-rater reliability estimates. Inter-rater
reliability is assessed by having two (or more) raters assess the
same set of individuals (or information) and analyzing the results.
Inter-rater reliability may be found by computing consensus esti-
mates, consistency estimates, or measurement estimates (Stemler,
2004):

Consensus
Consensus estimates of inter-rater reliability are based on the
assumption that there should be exact agreement between
raters. The most popular consensus estimate is simple percent-
agreement, which is calculated by dividing the number of cases
that received the same rating by the number of cases rated. In
general, consensus estimates should be 70% or greater (Stemler,
2004). Cohen’s kappa (κ; Cohen, 1960) is a derivation of simple
percent-agreement, which attempts to correct for the amount of
agreement that could be expected by chance:

κ = po − pc

1 − pc
(9)

where po is the observed agreement among raters and pc is
the hypothetical probability of chance agreement. Kappa val-
ues between 0.40 and 0.75 are considered moderate, and values
between 0.75 and 1.00 are considered excellent (Fleiss, 1981).

Consistency
Consistency estimates of inter-rater reliability are based on the
assumption that it is unnecessary for raters to yield the same
responses as long as their responses are relatively consistent. Inter-
rater reliability is typically assessed by correlating rater responses,
where correlation coefficients of 0.70 or above are generally
considered acceptable (Barrett, 2001).

Measurement
Measurement estimates of inter-rater reliability are based on the
assumption that all rater information (including discrepant rat-
ings) should be used in creating a scale score. Principal compo-
nents analysis is a popular technique to compute the measurement
estimate of inter-rater reliability (Harman, 1967). If the amount
of shared variance in ratings that is accounted for by the first prin-
cipal component is greater than 60%, it is assumed that raters are
assessing a common construct (Stemler, 2004).
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INTERNAL CONSISTENCY
Reliability estimates that consider item homogeneity, or the degree
to which items on a test are internally consistent, are referred to
as internal consistency reliability estimates. Measures of internal
consistency are the most commonly reported form of reliability
coefficient because they are readily available from a single admin-
istration of a test (Hogan et al., 2000; Henson, 2001). Internal con-
sistency reliability is typically assessed by computing coefficient
alpha (α; Cronbach, 1951):

α = k

(k − 1)

[
1 −

(∑
SD2

i

SD2
Total

)]
(10)

where k refers to the number of items on the assessment device, i
refers to item, and Total refers to the total scale score.

Note that the first part of the formula [k/(k − 1)] attempts to
“correct” for potential bias in scales that have a small number of
items. The rationale is that the more items in a scale, the less likely
items will be biased. As k increases, the correction for bias becomes
smaller. For two items, the correction is 2 [2/(2 − 1)]. For 10 items,
the correction is 1.1, and for 100 items, the correction is only 1.01.

Due to the impact that internal consistency has on the inter-
pretation of scale scores and variable relationships, researchers
typically relate estimates of internal consistency to established
benchmarks. Henson (2001) reviewed such benchmarks and cited
0.90 as a minimum internal consistency estimate for standard-
ized test scores used for important educational decisions and 0.80
for scores used for general research purposes. Nunnally (1967)
suggested minimum reliabilities of 0.60 or 0.50 for early stages
of research, but this was increased to an exploratory standard of
0.70 in his second edition (1978, see also Nunnally and Bern-
stein, 1994). This change may have resulted in “many researchers
citing Nunnally (1978) if they attained this loftier standard and
citing the first edition if they did not!” (Henson, 2001, p. 181). In
general, internal consistency estimates should be strong for most
research purposes, although the exact magnitude of an acceptable
coefficient alpha would depend on the purposes of the research.

For example, it is conceivable that coefficient alpha can be too
high, which would occur when the items of measurement are
highly redundant and measuring the same aspect of a construct.
At the extreme of this case, all items would be perfectly correlated
and thus alpha would be a perfect 1.00 (see Henson, 2001, for a
demonstration). This would reflect poor measurement because of
redundancy and, possibly, failure to reflect an appropriate breadth
of items from the range of all possible items that could be used
to measure the construct (cf. Hulin et al., 2001). Furthermore, a
high coefficient alpha is sometimes misinterpreted as an indicator
of unidimensionality. This is not the case, and in his summary
thoughts on the history of his formula, Cronbach (2004) noted he
had “cleared the air by getting rid of the assumption that the items
of a test were unidimensional” (p. 397). It is certainly possible to
find substantial alpha coefficients even when there are multiple
(sometimes subtle) constructs represented in the data.

Conversely, low alphas may indeed reflect a failure to recog-
nize multiple dimensions within a data set, particularly when
those dimensions or factors are weakly correlated. In such cases,
researchers should first explore the factor structure of their data

prior to computation of alpha, and alpha generally should be com-
puted at the subscale (e.g., factor) level rather than on a global
test level when there are multiple constructs being assessed. The
bottom line is that the interpretation of coefficient alpha when
assessing constructs should consider (a) item representativeness
and breadth and (b) desired overlap between items.

MULTIPLE SOURCES OF MEASUREMENT ERROR
It is important to note that the sources of measurement error
described in this section are separate and cumulative (cf. Anastasi
and Urbina, 1997). As noted by Henson (2001),

Too many researchers believe that if they obtain α = 0.90
for their scores, then the same 10% error would be found
in a test–retest or inter-rater coefficient. Instead, assuming
10% error for internal consistency, stability, and inter-rater,
then the overall measurement error would be 30%, not 10%
because these estimates explain different sources of error (p.
182).

The point to be made here is that measurement error can origi-
nate from a variety of sources, which can lead to more cumulative
measurement error than the researcher might suspect. Of course,
this can impact observed relationships, effect sizes, and statistical
power.

In order to get a better understanding of the sources of mea-
surement error in scores, generalizability theory (G theory) can be
employed which allows researchers to“(a) consider simultaneously
multiple sources of measurement error, (b) consider measurement
error interaction effects, and (c) estimate reliability coefficients
for both “relative” and “absolute” decisions” (Thompson, 2003b,
p. 43). As a full discussion of G theory is beyond the scope of this
article, readers are directed to Shavelson and Webb (1991) for an
accessible treatment. We continue with a discussion of how pub-
lished reliability estimates can be used to inform research design
and RG studies.

HOW DO WE PLAN? THE ROLE OF RG
As defined by Vacha-Haase (1998), RG is a method that helps
characterize the reliability estimates for multiple administrations
of a given instrument. Vacha-Haase further described RG as an
extension of validity generalization (Schmidt and Hunter, 1977;
Hunter and Schmidt, 1990) and stated that RG “characterizes (a)
the typical reliability of scores for a given test across studies, (b) the
amount of variability in reliability coefficients for given measures,
and (c) the sources of variability in reliability coefficients across
studies” (p. 6). RG assesses the variability in reliability estimates
and helps identify how sample characteristics and sampling design
impacts reliability estimates.

In a meta-analysis of 47 RG studies, Vacha-Haase and Thomp-
son (2011) found that the average of the coefficient alpha means
from these studies was 0.80 (SD = 0.09) with a range from 0.45
to 0.95. These results illustrate the extent to which reliability
estimates can vary across studies, and in this case, across instru-
ments. Because any given RG study quantifies the variation of
reliability across studies for a given instrument, the results empir-
ically demonstrate that the phrases “the reliability of the test” and
“the test is not reliable” are inappropriate and that reliability is
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a property inured to data, not instrumentation (Thompson and
Vacha-Haase, 2000, p. 175).

Results from RG studies also provide empirical evidence that
reliability estimates can vary according to sample characteristics.
In their meta-analysis, Vacha-Haase and Thompson (2011) found
that “the most commonly used predictor variables included gen-
der (83.3% of the 47 RG studies), sample size (68.8%), age in years
(54.2%), and ethnicity (52.1%)” (p. 162). Upon evaluating pre-
dictor variables across studies, they found number of items and
the sample SD of scale scores to be noteworthy, as well as age
and gender. However, as is true with all analyses Vacha-Haase and
Thompson’s review was contingent on the independent variables
included in the models, as variable omission can impact results
(cf. Pedhazur, 1997).

USING RG TO PLAN
While RG studies demonstrate the importance of assessing relia-
bility estimates for the data in hand, they can also help researchers
make educated decisions about the design of future studies.
Researchers typically devote considerable energies toward study
design because a poorly designed study is likely to produce results
that are not useful or do not provide reliable answers to research
questions. When data need to be collected from study partici-
pants, researchers must determine the most suitable instrument
and should consult existing literature to understand the relation-
ship between the reliability of the data to be measured and the
population of interest. When available, an RG study can help
guide researchers in the instrument selection process. By consult-
ing reliability estimates from published reports, researchers can
form hypotheses about whether or not reliability estimates will be
acceptable given their sample and testing conditions.

To illustrate how RG studies can improve research design, we
provide a hypothetical example. Presume that we want to conduct
a study on a sample of fifth-grade students and plan to admin-
ister the Self-Description Questionnaire (SDQ; cf. Marsh, 1989).
Because we want to conduct a study that will produce useful results,
we endeavor to predict if scores from our sample are likely to
produce acceptable levels of reliability estimates. Also, presume
we are considering modifications such as shortening the 64-item
instrument (because of limitations in the available time for admin-
istration) and changing the original five-point Likert type scale to
a six-point Likert type scale (because of concern about response
tendency with a middle option).

Results from Leach et al.’s (2006) RG study of the SDQ may
help us decide if the SDQ might be an appropriate instrument to
administer to our sample and if our proposed modifications might
result in acceptable reliability estimates. For each domain of the
SDQ, Leach et al. found that the reliability estimates tended to be
within an acceptable range with general self-concept (GSC) scores
yielding lower reliability estimates. However, even for GSC scores,
the majority of the reliability estimates were within the acceptable
range. Furthermore, Leach et al. found that “the most pervasive
(predictor of reliability variation) seemed to be the role of the five-
point Likert scale and use of the original version (unmodified) of
the SDQ I” (p. 300).

The RG study suggests that SDQ I scores for our hypothet-
ical example would likely yield acceptable levels of reliability

presuming we did not modify the original instrument by short-
ening the instrument or changing the five-point Likert scale, and
also assuming we employ a sample that is consistent with that for
which the instrument was developed. These decisions help us with
study design and mitigate our risk of producing results that might
not be useful or yield biased effect sizes.

As illustrated, prior to administering an instrument, researchers
should consult the existing literature to determine if an RG study
has been conducted. RG studies have been published on a vari-
ety of measures and in a variety of journals. Researchers might
first want to consult Vacha-Haase and Thompson (2011), as the
authors provided references to 47 RG studies, including reports
from Educational and Psychological Measurement, Journal of
Nursing Measurement, Journal of Personality Assessment, Person-
ality and Individual Differences, Personal Relationships, Journal of
Marriage and Family, Assessment, Psychological Methods, Jour-
nal of Cross-Cultural Psychology, Journal of Managerial Issues,
and International Journal of Clinical and Health Psychology. The
fundamental message is that RG studies are published, and con-
tinue to be published, on a variety of measures in a variety of
journals including journals focusing on measurement issues and
substantive analyses.

BARRIERS TO CONDUCTING RG STUDIES
Researchers need to be cognizant of the barriers that impact RG
results, as these barriers limit the generalization of results. Insuf-
ficient reporting of reliability estimates and sample characteristics
are primary difficulties that impact the quality of RG results. When
details about measurement and sampling designs are not provided,
model misspecifications in RG studies may occur (Vacha-Haase
and Thompson, 2011). As Dimitrov (2002) noted, misspecifi-
cations may “occur when relevant characteristics of the study
samples are not coded as independent variables in RG analysis”
(p. 794). When sampling variance is not included, the ability to
conduct extensions to Vacha-Haase’s (1998) RG method may also
be impeded. For example, Rodriguez and Maeda (2006) noted
that some RG studies make direct adjustments of alpha coeffi-
cients. However they noted problems with adjusting some but not
all alphas in RG studies when researchers fail to publish sample
variances.

Reliability estimates
Meticulous RG researchers have been discouraged to find that
many of the studies they consult either (a) only report the relia-
bilities from previous studies (i.e., induct reliability coefficients)
and not report reliabilities from their sample at hand or (b) do not
report reliabilities at all (cf. Vacha-Haase et al., 2002). Vacha-Haase
and Thompson (2011) found that “in an astounding 54.6% of the
12,994 primary reports authors did not even mention reliability!”
and that “in 15.7% of the 12,994 primary reports, authors did
mention score reliability but merely inducted previously reported
values as if they applied to their data” (p. 161).

The file drawer problem of researchers not publishing results
that were not statistically significant might be another factor
that limits RG results. As discussed above, when reliability esti-
mates are low, the ability to obtain noteworthy effect sizes can
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be impacted. Rosenthal (1979) noted that the file drawer prob-
lem might, in the extreme case, result in journals that “are filled
with the 5% of the studies that show Type I errors, while the file
drawers back at the lab are filled with the 95% of the studies that
show non-significant (e.g., p > 0.05) results” (p. 638). As noted by
Rosenthal (1995), when conducting meta-analyses, a solution to
the file drawer problem does not exist, “but reasonable bound-
aries can be established on the problem, and the degree of damage
to any research conclusion that could be done by the file drawer
problem can be estimated” (Rosenthal, 1995, p. 189). Because RG
studies are meta-analyses of reliability estimates, RG studies are
not immune to a biased sample of statistically significant studies
and reliability estimates that never make it out of the file drawer
might be lower than the estimates published in refereed journal
publications.

Sample characteristics
Insufficient reporting of sample variance, sample characteris-
tics, and sample design is another barrier impacting RG results.
Insufficient reporting practices have been documented by sev-
eral researchers. Miller et al. (2007) noted “given the archival
nature of the analysis, however, selection of predictor variables
was also limited to those that were reported in the reviewed
articles” (p. 1057). Shields and Caruso (2004) noted limita-
tions on coding variables and stated that “practical considera-
tions and insufficient reporting practices in the literature restrict
the number and type of predictor variables that can be coded”
(p. 259). Within teacher education research, for example, Zien-
tek et al. (2008) found that only 9% of the articles “included
all of the elements necessary to possibly conduct a replication
study” (p. 210) and that many studies fail to report both means
and SD.

REPORTING RECOMMENDATIONS
In order to improve RG studies and remove barriers encoun-
tered with insufficient reporting practices, we propose a list
of relevant information in Figure 4 to be included in journal
articles and research publications. Reporting this information
will facilitate RG researchers’ ability to conduct meaningful RG
studies. Many of these items are necessary for study replica-
tion; hence they adhere to recommendations from the Amer-
ican Educational Research Association (AERA, 2006) and the
American Psychological Association (APA, 2009b). We want to
emphasize the importance of providing (a) the means and SD
for each subscale, (b) the number of items for each subscale,
and (c) the technique used to compute scale scores (e.g., sum,
average).

To illustrate how these can be presented succinctly within a
journal article format, we present a sample write-up in the Appen-
dix. This narrative can serve as a guide for journal publications and
research reports and follows the American Psychological Associa-
tion (APA, 2009a) guidelines to help reduce bias when reporting
sample characteristics. According to APA (2009a),

Human samples should be fully described with respect to
gender, age, and, when relevant to the study, race or eth-
nicity. Where appropriate, additional information should be
presented (generation, linguistic background, socioeconomic
status, national origin, sexual orientation, special interest
group membership, etc.). (p. 4)

In addition to improving the ability to conduct RG studies, pro-
viding this information will allow future researchers to replicate
studies and compare future findings with previous findings. To
address journal space limitations and ease in readability, group
means, SD, and reliability estimates may be disaggregated within

FIGURE 4 | Recommended data to report for each set of scores subjected

to an inferential test. Note: Data should be reported for each set of scores
analyzed across all measurement occasions (e.g., pre-test, post-test) and

groups (e.g., gender, management level). aThe Appendix adheres to the APA
(2009a) recommendations for reporting race. Reporting of sample
characteristics by race should follow APA (2009a) guidelines.
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a table, as illustrated in the Appendix. Readers can also consult
Pajares and Graham (1999) as a guide for presenting data.

WHAT DO WE DO IN THE PRESENCE OF UNRELIABLE DATA?
Despite the best-laid plans and research designs, researchers will at
times still find data with poor reliability. In the real-world problem
of conducting analyses on unreliable data, researchers are faced
with many options which may include: (a) omitting variables from
analyses, (b) deleting items from scale scores, (c) conducting“what
if” reliability analyses, and (d) correcting effect sizes for reliability.

OMITTING VARIABLES FROM ANALYSES
Yetkiner and Thompson (2010) suggested that researchers omit
variables (e.g., depression, anxiety) that exhibit poor reliability
from their analyses. Alternatively, researchers may choose to con-
duct SEM analyses in the presence of poor reliability whereby
latent variables are formed from item scores. The former become
the units of analyses and yield statistics as if multiple-item scale
scores had been measured without error. However, as noted by
Yetkiner and Thompson, reliability is important even when SEM
methods are used, as score reliability affects overall fit statistics.

DELETING ITEMS FROM SCALE SCORES
Rather than omitting an entire variable (e.g., depression, anxiety)
from an analysis, a researcher may choose to omit one or more
items (e.g., BDI-1, BAI-2) that are negatively impacting the relia-
bility of the observed score. Dillon and Bearden (2001) suggested
that researchers consider deleting items when scores from pub-
lished instruments suffer from low reliability. Although “extensive
revisions to prior scale dimensionality are questionable . . . one or
a few items may well be deleted” in order to increase reliability
(Dillon and Bearden, p. 69). Of course, the process of item dele-
tion should be documented in the methods section of the article.
In addition, we suggest that researchers report the reliability of the
scale with and without the deleted items in order to add to the
body of knowledge of the instrument and to facilitate the ability
to conduct RG studies.

CONDUCTING “WHAT IF” RELIABILITY ANALYSES
Onwuegbuzie et al. (2004) proposed a “what if reliability” analysis
for assessing the statistical significance of bivariate relationships.
In their analysis, they suggested researchers use Spearman’s (1904)
correction formula and determine the “minimum sample size
needed to obtain a statistically significant r based on observed
reliability levels for x and y” (p. 236). They suggested, for example,
that when rOXOY = 0.30, rxx = 0.80, ryy = 0.80, rTXTY , based on
Spearman’s formula, yields 0.38 (0.30/

√
(0.80 × 0.80)) and “that

this corrected correlation would be statistically significant with a
sample size as small as 28” (p. 235).

Underlying the Onwuegbuzie et al. (2004) reliability analysis,
presumably, is the assumption the error is uncorrelated in the
population and sample. However, even in the case that such an
assumption in tenable, the problem of “what if reliability” analysis
is that the statistical significance of correlation coefficients that
have been adjusted by Spearman’s formula cannot be tested for
statistical significance (Magnusson, 1967). As noted by Muchinsky
(1996):

Suppose an uncorrected validity coefficient of 0.29 is signifi-
cantly different than zero at p = 0.06. Upon application of the
correction for attenuation (Spearman’s formula), the validity
coefficient is elevated to 0.36. The inference cannot be drawn
that the (corrected) validity coefficient is now significantly
different from zero at p < 0.05 (p. 71).

As Spearman’s formula does not fully account for the measure-
ment error in an observed score correlation, correlations based on
the formula have a different sampling distribution than correla-
tions based on reliable data (Charles, 2005). Only in the case when
the full effect of measurement error on a sample observed score
correlation has been calculated (i.e., Eq. 4 or its equivalent) can
inferences be drawn about the statistical significance of rTXTY .

CORRECTING EFFECT SIZES FOR RELIABILITY
In this article we presented empirical evidence that identified limi-
tations associated with reporting correlations based on Spearman’s
(1904) correction. Based on our review of the theoretical and
empirical literature concerning Spearman’s correction, we offer
researchers the following suggestions.

First, consider whether correlated errors exist in the population.
If a research setting is consistent with correlated error (e.g., tests are
administered on the same occasion, similar constructs, repeated
measures), SEM analyses may be more appropriate to conduct
where measurement error can be specifically modeled. However,
as noted by Yetkiner and Thompson (2010), “score reliability esti-
mates do affect our overall fit statistics, and so the quality of our
measurement error estimates is important even in SEM” (p. 9).

Second, if Spearman’s correction is greater than 1.00, do not
truncate to unity. Rather consider the role that measurement and
sampling error is playing in the corrected estimate. In some cases,
the observed score correlation may be closer to the true score
correlation than a corrected correlation that has been truncated
to unity. Additionally, reporting the actual Spearman’s correction
provides more information than a value that has been truncated
to unity.

Third, examine the difference between the observed score cor-
relation and Spearman’s correction. Several authors have suggested
that a corrected correlation “very much higher than the original
correlation” (i.e., 0.85 vs. 0.45) is “probably inaccurate” (Zim-
merman, 2007, p. 938). A large difference between an observed
correlation and corrected correlation “could be explained by cor-
related errors in the population, or alternatively because error are
correlated with true scores or with each other in an anomalous
sample” (Zimmerman, 2007, p. 938).

Fourth, if analyses based on Spearman’s correction are reported,
at a minimum also report results based on observed score correla-
tions. Additionally, explicitly report the level of correlation error
that is assumed to exist in the population.

CONCLUSION
In the present article, we sought to help researchers understand
that (a) measurement error does not always attenuate observed
score correlations in the presence of correlated errors, (b) different
sources of measurement error are cumulative, and (c) reliability
is a function of data, not instrumentation. We demonstrated that
reliability impacts the magnitude and statistical significance tests
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that consider variable relationships and identified techniques that
applied researchers can use to fully understand the impact of mea-
surement error on their data. We synthesized RG literature and
proposed a reporting methodology that can improve the quality
of future RG studies as well as substantive studies that they may
inform.

In a perfect world, data would be perfectly reliable and
researchers would not have worry to what degree their analyses
were subject to nuisance correlations that exist in sample data.

However, in the real-world, measurement error exists, can be
systematic, and is unavoidably coupled with sampling error. As
such, researchers must be aware of the full impact that measure-
ment error has on their results and do all that they can a priori
to select instruments that are likely to yield appropriate levels of
reliability for their given sample. If considering these factors, we
can better inform our collective research and move the fields of
education and psychology forward by meticulously reporting the
effects of reliability in our data.
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APPENDIX
EXAMPLE WRITE-UP FOR SAMPLE, INSTRUMENT, AND RESULT SECTIONS
Sample
A convenience sample of 420 students (200 fifth graders, 220 sixth graders) were from a suburban public intermediate school in the
southwest of the United States and included 190 Whites (100 males, 90 females; 135 regular education, 55 gifted education), 105 Blacks
(55 males, 50 females; 83 regular education, 22 gifted education), 95 Hispanics (48 males, 47 females; 84 regular education, 11 gifted
education), 18 Asians (9 males, 9 females; 13 regular education, 5 gifted education), and 12 Others (5 males, 7 females; 10 regular
education, 2 gifted education). The school consisted of 45% of students in high-poverty as defined by number of students on free
lunch. None of the students were in special education. Parental and/or student consent was obtained by 94% of the students, providing
a high response rate.

INSTRUMENT
Marat (2005) included an instrument that contained several predictors of self-efficacy (see Pintrich et al., 1991; Bandura, 2006). In
the present study, five constructs were included: Motivation Strategies (MS: 5 items); Cognitive Strategies (CS; 15 items); Resource
Management Strategies (MS; 12 items); Self-Regulated Learning (SRL; 16 items); and Self-Assertiveness (SA; 6 items). No modifications
were made to the items or the subscales but only five of the subscales from the original instrument listed above were administered. The
English version of the instrument was administered via paper to students by the researchers during regular class time and utilized a
five-point Likert scale anchored from 1 (not well) to 5 (very well). Composite scores were created for each construct by averaging the
items for each subscale.

RESULTS
Coefficient alpha was calculated for the data in hand resulting in acceptable levels of reliability for MS (0.82, 0.84), CS (0.85, 0.84), RMS
(0.91, 0.83), SRL (0.84, 86), and SA (0.87, 0.83), fall and spring, respectively (Thompson, 2003a).

GIFTED AND REGULAR STUDENTS
Table A1 provides the reliability coefficients, bivariate correlations, means, SD for each factor disaggregated by gifted and regular
students.

Table A1 | Bivariate correlations, means, SD, and reliability coefficient disaggregated by gifted and

regular education students.

α, Coefficient alpha; M, mean; SD, standard deviation. Bivariate correlations below the diagonal are for Gifted students

and above the diagonal are for Regular education students. MS, motivation strategies; CS, cognitive strategies; RMS,

resource management strategies; SRL, self-regulated learning; SA, self-assertiveness.
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