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In speeded two-choice tasks, optimal performance is prescribed by the drift diffusion
model. In this model, prior information or advance knowledge about the correct response
can manifest itself as a shift in starting point or as a shift in drift rate criterion. These
two mechanisms lead to qualitatively different choice behavior. Analyses of optimal per-
formance (i.e., Bogacz et al., 2006; Hanks et al., 2011) have suggested that bias should
manifest itself in starting point when difficulty is fixed over trials, whereas bias should
(additionally) manifest itself in drift rate criterion when difficulty is variable over trials. In
this article, we challenge the claim that a shift in drift criterion is necessary to perform opti-
mally in a biased decision environment with variable stimulus difficulty.This paper consists
of two parts. Firstly, we demonstrate that optimal behavior for biased decision problems
is prescribed by a shift in starting point, irrespective of variability in stimulus difficulty. Sec-
ondly, we present empirical data which show that decision makers do not adopt different
strategies when dealing with bias in conditions of fixed or variable across-trial stimulus
difficulty. We also perform a test of specific influence for drift rate variability.
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INTRODUCTION
In real-life decision making, people often have a priori preferences
for and against certain choice alternatives. For instance, some
people may prefer Audi to Mercedes, Mac to PC, or Gillette to
Wilkinson, even before seeing the product specification. For prod-
uct preferences, people are influenced by prior experiences and
advertising. Here we study the effects of prior information in the
context of perceptual decision making, where participants have to
decide quickly whether a cloud of dots is moving to the left or
to the right. Crucially, participants are given advance information
about the likely direction of the dots. In the experiment reported
below, for instance, participants were sometimes told that 80% of
the stimuli will be moving to the right. How does this advance
information influence decision making?

In general, advance information that favors one choice alterna-
tive over the other biases the decision process: people will prefer
the choice alternative that has a higher prior probability of being
correct. This bias usually manifests itself as a shorter response time
(RT) and a higher proportion correct when compared to a deci-
sion process with equal prior probabilities. Because bias expresses
itself in two dependent variables simultaneously (i.e., RT and pro-
portion correct), and because people only have control over a
specific subset of the decision environment (e.g., the participant
cannot control task difficulty) an analysis of optimal adjustments
is traditionally carried out in the context of a sequential sam-
pling model. Prototypical sequential sampling models such as the
Sequential Probability Ratio Test (SPRT; e.g., Wald and Wolfowitz,

1948; Laming, 1968) or the drift diffusion model (DDM; Ratcliff,
1978) are based on the assumption that the decision maker grad-
ually accumulates noisy information until an evidence threshold
is reached.

In such sequential sampling models, the biasing influence of
prior knowledge can manifest itself in two ways (e.g., Diederich
and Busemeyer, 2006; Ratcliff and McKoon, 2008; Mulder et al.,
2012). The first manifestation, which we call prior bias, is that
a decision maker decides in advance of the information accu-
mulation process to lower the evidence threshold for the biased
alternative. The second manifestation, which we call dynamic bias
(cf. Hanks et al., 2011), is that a decision maker weighs more heav-
ily the evidence accumulated in favor of the biased alternative.
There is both theoretical and empirical evidence that shows that
both types of bias manifest itself in different situations.

The situation that has been studied most often is one in which
task difficulty is fixed across trials. For this case, Edwards (1965)
has shown that optimal performance can be achieved by prior bias
alone. In empirical support for this theoretical analysis, Bogacz
et al. (2006) demonstrated that in three experiments the perfor-
mance of participants approximated the optimality criterion from
Edwards (1965). In a recent paper by Gao et al. (2011), it was
demonstrated that for fixed stimulus difficulty, but varied response
deadlines over trials, behavioral data was best described by the
implementation of prior bias.

Another situation is one in which task difficulty varies across
trials. For this case, Hanks et al. (2011) reasoned that people should
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tend ever more strongly toward the biased response option as the
information accumulation process continues (see also Yang et al.,
2005; Bogacz et al., 2006, p. 730). The intuitive argument is that a
lengthy decision process indicates that the decision is difficult (i.e.,
the stimulus does not possess much diagnostic information), and
this makes it adaptive to attach more importance to the advance
information. In the extreme case, a particular stimulus can be so
difficult that it is better to simply go with the advance information
and guess that the biased response option is the correct answer.

Thus, in an environment of constant difficulty an optimal
decision maker accommodates advance information by prior bias
alone, such that a choice for the likely choice alternative requires
less evidence than that for the unlikely choice alternative. The
conjecture of Hanks et al. (2011) is that, in an environment of vari-
able difficulty, an optimal decision maker accommodates advance
information not just by prior bias, but also by dynamic bias.

This paper has two main goals. The first goal is to extend
the analytical work of Edwards (1965) and show that prior bias
accounts for optimal performance regardless of whether stimu-
lus difficulty is fixed or variable across trials. The second goal
is to examine empirically which kind of bias decision makers
implement when stimulus difficulty is fixed or variable.

The organization of the paper is as follows. In the first
section we briefly introduce the drift diffusion model (DDM),
the prototypical sequential sampling model that can be used to
model both prior bias and dynamic bias (Bogacz et al., 2006;

van Ravenzwaaij et al., 2012). Next we present analytical work that
shows how optimal performance in biased decision environments
may be achieved with prior bias alone, regardless of whether
stimulus difficulty is fixed or variable. We then present an empir-
ical study showing how people accommodate bias for fixed and
variable stimulus difficulty in similar fashion.

THE DRIFT DIFFUSION MODEL (DDM)
In the DDM (Ratcliff, 1978; Ratcliff and Rouder, 2000; Wagen-
makers, 2009; van Ravenzwaaij et al., 2012), a decision process
with two response alternatives is conceptualized as the accumu-
lation of noisy evidence over time. Evidence is represented by a
single accumulator, so that evidence in favor of one alternative is
evidence against the other alternative. A response is initiated when
the accumulated evidence reaches one of two predefined thresh-
olds. For instance, in a lexical decision task, participants have to
decide whether a letter string is an English word, such as TANGO,
or a non-word, such as TANAG (Figure 1).

The model assumes that the decision process commences at
the starting point z, from which point evidence is accumulated
with a signal-to-noise ratio that is governed by mean drift rate v
and Wiener noise. Without trial-to-trial variability in drift rate,
the change in evidence x is described by the following stochastic
differential equation

dx(t ) = v · dt + s · dW (t ), (1)
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FIGURE 1 |The DDM and its key parameters, illustrated for a

lexical decision task. Evidence accumulation begins at starting point
z, proceeds over time guided by mean drift rate v, but subject to
random noise, and stops when either the upper or the lower

boundary is reached. Boundary separation a quantifies response
caution. The predicted RT equals the accumulation time plus the time
required for non-decision processes Ter (i.e., stimulus encoding and
response execution).

Frontiers in Psychology | Cognitive Science May 2012 | Volume 3 | Article 132 | 2

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive


van Ravenzwaaij et al. BIAS

where W represents the Wiener noise process (i.e., idealized
Brownian motion). Parameter s represents the standard deviation
of dW (t )1. Values of v near zero produce long RTs and high error
rates. Trial-to-trial variability in drift rate is quantified by η.

Evidence accumulation stops and a decision is initiated once
the evidence accumulator hits one of two response boundaries.
The difference between these boundaries, boundary separation a,
determines the speed–accuracy trade-off; lowering a leads to faster
RTs at the cost of a higher error rate. When the starting point, z,
is set at a/2, bias in the decision process is not manifested in the
starting point. Together, these parameters generate a distribution
of decision times (DTs). The observed RT, however, also consists of
stimulus-non-specific components such as response preparation
and motor execution, which together make up non-decision time
Ter. The model assumes that Ter simply shifts the distribution of
DT, such that RT = DT + Ter (Luce, 1986).

Thus, the five key parameters of the DDM are (1 and 2) speed
of information processing, quantified by mean drift rate v and
standard deviation of drift rate η; (3) response caution, quanti-
fied by boundary separation a; (4) evidence criterion, quantified
by starting point z ; and (5) non-decision time, quantified by Ter.
In addition to these five parameters, the full DDM also includes
parameters that specify across-trial variability in starting point,
and non-decision time (Ratcliff and Tuerlinckx, 2002).

BIAS IN THE DDM
Recall from the introduction that decision makers may implement
bias in two ways. A decision maker may decide prior to the start of
the decision process that less evidence is required for a response in
favor of the biased alternative than for the non-biased alternative.
This type of bias, which we call prior bias, is manifested in the
DDM as a shift in starting point (see the top panel of Figure 2, see

1Parameter s is a scaling parameter that is usually fixed. For the remainder of this
paper, we set it to 0.1.

Prior Bias: Shift in z

Neutral

Biased

RT

Dynamic Bias: Shift in vc

NeutralBiased

RT

FIGURE 2 | Schematic representation of bias due to a shift in starting

point z (top panel) or a shift in drift rate criterion vc (bottom panel). The
gray lines represent neutral stimuli for comparison.

also Ratcliff, 1985; Ratcliff and McKoon, 2008; Mulder et al., 2012).
Prior bias is most pronounced at the onset of the decision process,
but dissipates over time due to the effects of the diffusion noise s.
Edwards (1965) showed that when across-trial stimulus difficulty
is fixed, it is optimal to shift the starting point an amount pro-
portional to the odds of the prior probabilities of each response
alternative.

Alternatively, a decision maker may weigh evidence in favor of
the biased response alternative more heavily than evidence in favor
of the non-biased response alternative. This type of bias, which we
call dynamic bias, is manifested in the DDM as a shift in drift rate
criterion (see the bottom panel of Figure 2, see also Ratcliff, 1985;
Ratcliff and McKoon, 2008; Mulder et al., 2012). With a shift in
the drift rate criterion, drift rate for the likely choice alternative
is enhanced by a bias component, such that the cumulative effect
of dynamic bias grows stronger over time (compare the differ-
ence between the biased and neutral lines for shift in z and shift
in vc).

BIAS IN THEORY
Below, we examine analytically which DDM parameter shifts in
starting point and drift rate criterion produce optimal perfor-
mance. We differentiate between fixed and variable difficulty. Two
criteria of optimality are discussed: highest mean proportion cor-
rect when there is a fixed response deadline (i.e., the interrogation
paradigm) and lowest mean RT (MRT) for a fixed mean propor-
tion correct (see also Bogacz et al., 2006). In the next section,
we discuss highest mean proportion correct for the interrogation
paradigm.

OPTIMALITY ANALYSIS I: THE INTERROGATION PARADIGM
In the interrogation paradigm, participants are presented with
a stimulus for a fixed period of time. Once the response dead-
line T is reached, participants are required to immediately make
a response (see Figure 3). Thus, for the interrogation paradigm,
there are no response boundaries. As such, the unbiased start-
ing point z is 0. In this section, we will look at optimal DDM
parameter settings for a biased decision in the interrogation par-
adigm. The performance criterion is the mean proportion cor-
rect. First, we discuss fixed stimulus difficulty across trials, or
η = 0. Second, we discuss variable stimulus difficulty across trials,
or η > 0.

Fixed difficulty
In order to find the maximum mean proportion correct for
the interrogation paradigm, we assume that participants base
their response depending on whether the evidence accumula-
tor is above or below zero when the accumulation process is
interrupted (see, e.g., van Ravenzwaaij et al., 2011; Figure 9).
We choose parameter settings such that if the accumulator is
above zero at time T, the biased response is given, whereas if the
accumulator is below zero at time T, the non-biased response is
given.

Across trials, the final point of the evidence accumulator will
be normally distributed with mean vT + z and standard devia-
tion s

√
T (e.g., Bogacz et al., 2006; van Ravenzwaaij et al., 2011).

In what follows, we assume that stimuli corresponding to either
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FIGURE 3 |The interrogation paradigm. At deadline T, decision makers choose a response alternative depending on the sign of the evidence accumulator. The
shaded area under the distribution represents the proportion of correct answers.

of the two response alternatives are equally difficult2. For fixed
difficulty, the analytical expression for mean proportion correct
for an unbiased decision in the interrogation paradigm, denoted
by PcIF,U, is given by

PcIF ,U = �

[
vT + z

s
√

T

]
, (2)

where � denotes the standard normal cumulative distribution3.
In PcIF,U, the I denotes “Interrogation,” the F denotes “Fixed Dif-
ficulty,” and the U denotes “Unbiased.” For a biased decision, this
expression becomes:

PcIF ,B = β�

[
(v + vc ) T + z

s
√

T

]
+ (1 − β) �

[
(v − vc ) T − z

s
√

T

]
.

(3)

where β denotes the proportion of stimuli that are consistent with
the prior information (i.e., in the experiment below, β = 0.80) and
vc denotes the shift in drift rate criterion. In PcIF,B, the I denotes
“Interrogation,” the F denotes“Fixed Difficulty,”and the B denotes
“Biased.” Equation (3) is derived from equation (2) as follows. To
incorporate a shift in starting point z toward the biased alternative,
the left-hand side of equation (3) contains z (cf. equation (2)). In
the right-hand side, z is replaced by −z to account for the fact that
the correct answer lies at the non-biased threshold. To incorporate
a shift in drift rate criterion, the left-hand side of equation (3) adds

2This is commonly the case in perceptual decision tasks, such as the random dot
motion task (Newsome et al., 1989), which we will be using in the experiment
reported below.
3Note that for an unbiased decision, z = 0.

a shift vc to mean drift rate v. In the right-hand side, the shift vc is
subtracted from mean drift rate v.

Maxima for PcIF,B occur for:

zmax + vc · T =
s2 log

(
β

1−β

)
2v

, (4)

where zmax denotes the value of the starting point that leads to
the highest PcIF,B (e.g., Edwards, 1965; Bogacz et al., 2006, for
expressions without vc·T ).

The addition of vc·T to the left-hand side of equation (4) fol-
lows from inspection of both numerators in equation (3): it shows
a trade-off between the starting point z and the shift in drift rate
criterion vc, such that �z = �vc·T, where � denotes a parameter
shift. Therefore, the maximum value of PcIF,B does not belong to a
unique set of parameters, but exists along an infinite combination
of values for z and vc. This trade-off is graphically displayed for
different sets of parameter values in Figure 4.

Figure 4 shows that for a drift rate v of 0.2 or 0.3, combined
with a deadline T of 300 or 500 ms, every maximum that occurs
for a particular value of z with vc = 0 may also be reached for dif-
ferent combinations of z and vc (bias β is set to 0.8). Results for
different sets of parameters look qualitatively similar.

Taken at face value, this result challenges the claim that optimal
behavior in biased decision problems is exclusively accomplished
by a shift in starting point z : the same level of accuracy may
be accomplished by, for instance, setting z = 0 and vc = zmax/T
or any other combination of values that is consistent with the
parameter trade-off �z = �vc·T. Importantly, however, partic-
ipants have to be aware of the exact moment of the deadline
T to be able to utilize the trade-off between starting point and
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FIGURE 4 | Mean percentage correct for fixed difficulty (η = 0) in the interrogation paradigm for different combinations of starting point z and shift in

mean drift rate vc. Due to the trade-off �z = �vc·T, no unique maximum exists.

drift rate criterion. Recent work by Gao et al. (2011) exam-
ined the type of bias people implement when the deadline T
is varied across blocks of trials, so that exact knowledge of the
deadline is absent. The authors used the leaky competing accu-
mulator model (LCA), a model akin to the DDM with separate
accumulators for each response alternative. Using the LCA, the
authors were able to differentiate between dynamic bias (shift in
the input of the biased accumulator), and two accounts of prior
bias (shift in starting point of the biased accumulator and shift
in response threshold of the biased accumulator). The results
showed that for varying deadline T, people implement a shift in
starting point for the biased accumulator. This is indicative of
prior bias.

Next, we examine optimal decision making in the interroga-
tion paradigm when participants have no a priori knowledge of
the difficulty of the decision problem. In other words, stimulus
difficulty varies across trials.

Variable difficulty
To obtain an expression for the mean proportion correct in
the interrogation paradigm when there is across-trial variabil-
ity in stimulus difficulty, it is necessary to include across-trial
variability in drift rate, or η. The mean proportion correct
for this situation, or PcIV,B, is derived by multiplying equa-
tion (3) by a Gaussian distribution of drift rates with mean
v and standard deviation η. The resulting expression needs to
be integrated over the interval (−∞, ∞) with respect to drift
rate ξ :

PcIV ,B =
∫ ∞

−∞

(
β�

[
(ξ + vc ) T + z

s
√

T

]
+ (1 − β) �

×
[

(ξ − vc ) T − z

s
√

T

])
1√

2πη2
exp

(
− (ξ − v)2

2η2

)
dξ ,

(5)
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which simplifies to

PcIV ,B = β�

⎡
⎢⎣ (v + vc ) T + z

s
√

T + T 2η2
/

s2

⎤
⎥⎦

+ (1 − β) �

⎡
⎢⎣ (v − vc ) T − z

s
√

T + T 2η2
/

s2

⎤
⎥⎦ . (6)

In PcIV,B, the I denotes “Interrogation,” the V denotes “Variable
Difficulty,” and the B denotes “Biased.” The derivation can be
found in the appendix.

By differentiating with respect to z in a way analogous to the
derivation of equation (4) from equation (3), maxima for PcIV,B

occur for:

zmax + vc · T =
(
s2 + η2T

)
log

(
β

1−β

)
2v

, (7)

where zmax denotes the value of the starting point that leads to the
highest PcIV,B.

Once again, the addition of vc·T to the left-hand side of equa-
tion (7) follows from inspection of both numerators in equation
(6): it shows a trade-off between the starting point z and the shift
in drift rate criterion vc, such that �z = �vc·T, where � denotes
a parameter shift. Figure 5 graphically displays the parameter
trade-off for the same sets of parameter values that were used
in Figure 4 (η is set to 0.1). Results for different sets of parameters
look qualitatively similar.

In sum, our derivations and figures show that in the inter-
rogation paradigm with variable across-trial stimulus difficulty,
optimal decisions may again be reached by shifting either starting
point z, drift rate criterion vc, or a combination of the two. For an
Ornstein–Uhlenbeck process, the fact that both types of bias can-
not be distinguished in the interrogation paradigm for both fixed
and variable stimulus difficulty had already been demonstrated
(Feng et al., 2009, see also Rorie et al., 2010). Contrary to the fixed
difficulty situation, however, participants need to know the value
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FIGURE 5 | Mean percentage correct for variable difficulty (η = 0.1) in the interrogation paradigm for different combinations of starting point z and

shift in mean drift rate vc. Due to the trade-off �z = �vc·T, no unique maximum exists.
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of deadline T to optimize performance even when just shifting
starting point.

As noted in the introduction, Hanks et al. (2011) suggested that
bias should manifest itself as shifts in both starting point and the
drift rate criterion when stimulus difficulty varies over trials. The
authors reasoned that decision makers should decide in favor of
the biased alternative when the decision process is lengthy, because
slow decisions are likely to be difficult decisions. However, in the
interrogation paradigm, all decisions take equally long. In order to
more thoroughly investigate the claim of Hanks et al. (2011), it is
necessary to eliminate the deadline T and examine a different cri-
terion of optimality: minimum MRT for a fixed percentage correct.

OPTIMALITY ANALYSIS II: MINIMUM MRT FOR FIXED ACCURACY
In this section we consider the minimum mean RT for fixed accu-
racy in a free response paradigm. In the free response paradigm,
a response is made once the evidence accumulator hits an upper
boundary a or a lower boundary 0; the unbiased starting point z
is a/2. First, we discuss the situation in which across-trial stimulus
difficulty is fixed.

Fixed difficulty
In order to find the minimum MRT for a given level of accuracy,
we need expressions for both MRT and accuracy in the DDM for
a biased decision. We can then calculate combinations of starting
point z and drift criterion shift vc that yield a given level of accuracy
for a given set of parameter values for drift rate v, boundary sepa-
ration a, and diffusion noise s. The last step is to calculate the MRT
for each combination of starting point z and drift criterion shift vc.

For fixed difficulty, the analytical expression for mean propor-
tion correct for an unbiased decision without a deadline, denoted
by PcF,U, is given by

PcF ,U =
exp

(
2av
s2

)
− exp

(
2(a−z)v

s2

)
exp

(
2av
s2

)
− 1

, (8)

(see, e.g., Wagenmakers et al., 2007, equation (2))4. In PcF,U,
the F denotes “Fixed Difficulty,” and the U denotes “Unbiased.”
Transforming equation (8) to an expression for a biased decision
occurs in a similar fashion as the derivation of equation (3) from
equation (2):

PcF ,B = βPc+F ,B + (1 − β) Pc−F ,B , (9)

where

Pc+F ,B =
⎡
⎣ exp

(
2a(v+vc )

s2

)
− exp

(
2(a−z)(v+vc )

s2

)
exp

(
2a(v+vc )

s2

)
− 1

⎤
⎦

Pc−F ,B =
⎡
⎣ exp

(
2a(v−vc )

s2

)
− exp

(
2z(v−vc )

s2

)
exp

(
2a(v−vc )

s2

)
− 1

⎤
⎦ .

(10)

In PcF,B, the B denotes “Biased.”

4Note that for an unbiased decision, z = a/2.

To incorporate a shift in starting point z toward the biased
alternative, Pc + F,B contains z as in equation (8). For Pc − F,B, z is
replaced by a − z to account for the fact that the correct answer
lies at the non-biased threshold. To incorporate a shift in drift rate
criterion, Pc + F,B adds a shift vc to mean drift rate v. For Pc − F,B,
the shift vc is subtracted from mean drift rate v.

Now that we have an expression for mean proportion correct
for a biased decision without a response deadline, we need an
expression for MRT. For an unbiased decision without deadline,
MRT is given by

MRTU = − z

v
+ a

[
exp

(−2vz/s2
)− 1

]
v
[
exp

(−2va/s2
)− 1

] , (11)

(e.g., Grasman et al., 2009, equation (5)). For a biased decision,
this expression becomes

MRTB = β

(
− z

v + vc
+ a

[
exp

(−2(v + vc)z/s2
)− 1

]
(v + vc)

[
exp

(−2(v + vc)a/s2
)− 1

]
)

+ (1 − β)

(
− a − z

v − vc
+ a

[
exp

(−2(v − vc)(a − z)/s2
)− 1

]
(v − vc)

[
exp

(−2(v − vc)a/s2
)− 1

]
)

.

(12)

In what follows, we will fix PcF,B to two percentages (i.e., 90 and
95%). Then, we calculate MRTB for each combination of starting
point z and drift rate criterion vc that yields the predetermined
value of PcF,B and determine which combination is optimal in the
sense that it results in the lowest MRTB.

Firstly we considered the following set of parameters: mean
drift rate v = 0.2, boundary separation a = 0.12, and bias β = 0.85.
The top-left panel of Figure 6 shows that an accuracy level of 90%
may be achieved by a combination of shifts for starting point z and
shifts of drift rate criterion vc. Again, both parameters exist in a
trade-off relationship, such that higher values of z combined with
lower values of vc produce the same mean proportion correct.

The bottom-left panel of Figure 6 shows MRT for each calcu-
lated combination of starting point z and drift rate criterion vc.
The x-axis shows the value for starting point z (as a proportion of
boundary separation a), the associated value for drift rate criterion
vc can be found in the top-left panel. The MRT results show that
the lowest value for MRT is reached when all bias is accounted for
by a shift in starting point z.

Secondly we considered a mean drift rate v = 0.3 and an accu-
racy level of 95%. The results, shown in the right two panels of
Figure 6, are qualitatively similar6.

In sum, when there is no response deadline and across-trial
difficulty is fixed, the optimal way to deal with bias is by shifting
the starting point toward the biased response alternative, without
shifting the drift rate criterion. In an empirical paper by Simen
et al. (2009), it was demonstrated that human participants do
indeed shift starting point toward the biased response alternative.

5For the remainder of this article we set non-decision time Ter = 0.
6We explored a range of values for Bias β, accuracy, and drift rate. The results were
always qualitatively similar: the lowest MRT was achieved when vc = 0.
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FIGURE 6 | Fixed difficulty (η = 0) in the free response paradigm.

Minimum MRT is achieved when all bias is accounted for by a shift in
starting point z. Bias β = 0.8, boundary separation a = 0.12. Top panel:
Parameter combinations of starting point as a ratio of boundary

separation z /a and shift in drift rate criterion vc that lead to the same
fixed level of accuracy (90% for v = 0.2, 95% for v = 0.3). Bottom
panel: Mean RT that corresponds to the parameter combinations of the
top panel.

No explicit mention of shifts in drift rate criterion are made. In
the next subsection, we examine optimal performance for variable
stimulus difficulty across trials.

Variable difficulty
Unfortunately, for variable difficulty there are no expressions for
mean percentage correct and MRT. As such, we approximate
the results for fixed difficulty by numerically obtaining combi-
nations of starting point z and drift rate criterion vc that yield
two percentages correct (i.e., 90 and 95%). Then, we determine
which combination is optimal in the sense that it results in the
lowest MRT.

The top-left panel of Figure 7 shows the set of parameter values
of starting point z and drift rate shift vc that lead to a percentage
correct of 90% with a mean drift rate v = 0.2. The top-right panel
shows the set of parameter values of starting point z and drift
rate shift vc that lead to a percentage correct of 95% with a mean
drift rate v = 0.3. For both panels, boundary separation a = 0.12,
bias β = 0.8, and standard deviation of drift rate η = 0.1. The bot-
tom panels of Figure 7 show corresponding values of MRT. The
MRT results show that as for fixed difficulty, the lowest value for
MRT is reached when all bias is accounted for by a shift in starting
point z.

In sum, in paradigms with variable across-trial difficulty, but no
response deadline, the optimal way to deal with bias is by shifting
the starting point toward the biased response alternative, without

shifting the drift rate criterion. This result mirrors the result for
fixed difficulty.

Interim conclusion
Hanks et al. (2011) claimed that for biased decisions with variable
across-trial stimulus difficulty, optimal performance requires not
just a shift in starting point but also a shift in drift rate criterion
(i.e., dynamic bias). Our results challenge this claim: regardless
of whether stimulus difficulty is fixed or variable, optimal per-
formance can be obtained by having bias only shift the starting
point, and not the drift rate criterion. In the next section, we will
investigate how people perform in practice.

BIAS IN PRACTICE
We have demonstrated that optimal performance in decision con-
ditions with a biased response alternative can be achieved by
shifting only the starting point criterion. However, people may
not accommodate bias in an optimal manner. For instance, Hanks
et al. (2011) demonstrated that in a decision environment with
variable across-trial stimulus difficulty, participants accommo-
date advance information by dynamic bias. The authors did not,
however, directly compare the performance of participants in con-
ditions with fixed and variable across-trial stimulus difficulty. In
this section, we perform such a comparison and address the ques-
tion whether the inclusion of variability in stimulus difficulty alters
the way in which people accommodate advance information. We
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FIGURE 7 | Variable difficulty (η = 0.1) in the free response

paradigm. Minimum MRT is achieved when all bias is accounted for by
a shift in starting point z. Bias β = 0.8, boundary separation a = 0.12.
Top panel: Parameter combinations of starting point as a ratio of

boundary separation z /a and shift in drift rate criterion vc that lead to
the same fixed level of accuracy (90% for v = 0.2, 95% for v = 0.3).
Bottom panel: Mean RT that corresponds to the parameter
combinations of the top panel.

also examine if the performance of people in practice corresponds
to the theoretical optimality indicated in the previous sections.

Our experiment also allows us to test a prediction from the
DDM, namely that increasing the variability in across-trial stim-
ulus difficulty results in a higher estimate of across-trial drift
rate variability η. The experiment used a random dot motion
task (Newsome et al., 1989) with advance information about the
upcoming direction of movement. In a within-subjects design,
each participant was administered a condition with fixed stimulus
difficulty (i.e., identical coherence of movement from trial-to-
trial) and a condition with variable stimulus difficulty (i.e., variable
coherence).

PARTICIPANTS
Eleven healthy participants (8 female), aged 19–40 years (mean
24.6) performed a random-dots motion (RDM) paradigm in
exchange for course credit or a monetary reward of 28 euros.
Participants were recruited through the University of Amsterdam
and had normal or corrected-to-normal vision. The procedure
was approved by the ethical review board at the University of
Amsterdam and informed consent was obtained from each par-
ticipant. According to self-report, no participant had a history of
neurological, major medical, or psychiatric disorder.

Materials
Participants performed an RT version of an RDM task. Partici-
pants were instructed to maintain fixation on a cross at the middle

of the screen and decide the direction of motion of a cloud of par-
tially randomly moving white dots on a black background. The
decision was made at any time during motion viewing with a left
or right button press. The stimulus remained on screen until a
choice was made. The motion stimuli were similar to those used
elsewhere (e.g., Newsome and Paré, 1988; Britten et al., 1992; Gold
and Shadlen, 2003; Palmer et al., 2005; Ratcliff and McKoon, 2008;
Mulder et al., 2010): white dots, with a size of 3 × 3 pixels, moved
within a circle with diameter of 5˚ with a speed of 5˚/s and a density
of 16.7 dots/degree2/s on a black background. On the first three
frames of the motion stimulus, the dots were located in random
positions. For each of these frames the dots were repositioned after
two subsequent frames (the dots in frame one were repositioned
in frame four, the dots in frame two were repositioned in frame
five, etc.). For each dot, the new location was either random or in
line with the motion direction. The probability that a dot moved
coherent with the motion direction is defined as coherence. For
example, at a coherence of 50%, each dot had a probability of
50% to participate in the motion–stimulus, every third frame (see
also Britten et al., 1992; Gold and Shadlen, 2003; Palmer et al.,
2005).

Visual stimuli were generated on a personal computer (Intel
Core2 Quad 2.66 GHz processor, 3 GB RAM, two graphical cards:
nvidia GeForce 8400 GS and a nvidia GeForce 9500 GT, run-
ning MS Windows XP SP3) using custom software and the Psy-
chophysics Toolbox Version 3.0.8 (Brainard, 1997) for Matlab
(version 2007b, Mathworks, 1984).
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Difficulty
To get acquainted with the task, each participant performed a
practice block of 40 easy trials (60% coherence). To match the
difficulty level of the motion stimuli across participants, each
participant performed an additional block of 400 trials of ran-
domly interleaved stimuli with different motion strengths (resp.
0, 10, 20, 40, and 80% coherence, 80 trials each). We fitted the
DDM to the mean response times and accuracy data of this block
using a maximum likelihood procedure, constraining the drift
rates to be proportional to the coherence settings (Palmer et al.,
2005). For each participant, the motion strength at 75% accuracy
was then interpolated from the psychometric curve (predicted by
the proportional-rate diffusion model) and used in the experi-
mental blocks with fixed coherence across trials. For blocks with
mixed coherences, we randomly sampled performance levels from
a uniform distribution (range: 51–99), and interpolated for each
randomly chosen performance level the associated coherence from
the psychometric curve.

Design
Each participant performed four sessions of the RDM task. In
each session, participants performed six blocks of 100 trials: three
blocks with the coherence fixed across trials, and three blocks
with coherence varied across trials. For each condition (fixed
and variable coherence) there were two biased and one neutral
block. Prior information was given at the start of each experi-
mental block. In the first experimental block, participants were
told that there was a larger probability that the dots will move
to the left (left-bias). In the second block, participants were told
that there was an equal probability that the dots will move to
the left or to the right (neutral). In a third block, the instruc-
tions indicated that there was a larger probability that the dots
will move to the right (right-bias). For the biased blocks, prior
information was consistent with the stimulus direction in 80% of
the trials. The sequence of conditions was counterbalanced across
participants.

Analyses
In order to quantify bias in the starting point and the drift rate
criterion, we fit the diffusion model to the data with the Diffusion
Model Analysis Toolbox (DMAT, Vandekerckhove and Tuerlinckx,
2007). We estimated the following parameters: mean drift rate v,
boundary separation a, non-decision time Ter, starting point z,
standard deviation of drift rate η, range of starting point sz, and
range of non-decision time st.

For both the fixed difficulty condition and the variable diffi-
culty condition we estimated a mean drift rate v for consistent,
neutral, and inconsistent stimuli. This resulted in six different
estimates for mean drift rate v. In addition, for both the fixed
difficulty condition and the variable difficulty condition we esti-
mated a starting point z for left-biased, neutral, and right-biased
stimuli. This resulted in six different estimates for starting point
z. Furthermore, for the fixed difficulty condition and the variable
difficulty condition we estimated a boundary separation a and a
standard deviation of drift rate η, resulting in two different esti-
mates for these parameter. Finally, we constrained non-decision
time Ter, range of starting point sz, and range of non-decision

time st to be equal over stimulus type, conditions, and sessions,
resulting in a single estimate for each of those parameters.

Starting point bias was calculated as half of the difference
between the starting point z for left-biased stimuli and the start-
ing point z for right-biased stimuli, scaled by boundary separation
a. The maximum bias in starting point was therefore 50%. Drift
rate criterion bias was calculated as half of the difference between
mean drift rate v for consistent stimuli and mean drift rate v for
inconsistent stimuli, scaled by the sum of mean drift rate v for
consistent and inconsistent stimuli. The maximum bias in drift
rate criterion was therefore 50% as well7.

RESULTS
For the presented analyses, we report Bayesian posterior probabil-
ities in addition to conventional p-values. When we assume, for
fairness, that the null-hypothesis and the alternative hypothesis
are equally plausible a priori, a default Bayesian t -test (Rouder
et al., 2009) allows one to determine the posterior plausibility
of the null-hypothesis and the alternative hypothesis. We denote

the posterior probability for the null-hypothesis as p
Bayes
H 0 . When,

for example, p
Bayes
H 0 = 0.9, this means that the plausibility for

the null-hypothesis has increased from 0.5 to 0.9. Posterior prob-
abilities avoid the problems that plague p-values, allow one to
directly quantify evidence in favor of the null-hypothesis, and
arguably relate more closely to what researchers want to know
(e.g., Wagenmakers, 2007).

In order to assess whether our manipulation of across-trial
parameter difficulty was successful, we compared the estimate
of across-trial drift rate variability η between the fixed and vari-
able difficulty conditions. The results show that across-trial drift
rate variability η was larger in the variable difficulty condi-
tion (mean: 0.23) then in the fixed difficulty condition (mean:

0.14; t (20) = 2.25, p < 0.05, p
Bayes
H 0 = 0.34), suggesting that the

across-trial difficulty manipulation was successful8.
The left panel of Figure 8 shows both starting point bias and

drift rate criterion bias for the fixed difficulty condition and the
variable difficulty condition. In the fixed difficulty condition, both
the bias in starting point and the bias in drift rate are larger

than zero (t (10) = 5.85, p < 0.01, p
Bayes
H 0 < 0.01, and t (10) = 3.43,

p < 0.01, p
Bayes
H 0 = 0.10, respectively). In the variable difficulty

condition, both the bias in starting point and the bias in drift rate

also are larger than zero (t (10) = 6.89, p < 0.01, p
Bayes
H 0 < 0.01,

and t (10) = 4.14, p < 0.01, p
Bayes
H 0 = 0.04, respectively). The right

panel of Figure 8 shows MRT and proportion correct for consis-
tent, neutral, and inconsistent stimuli for the fixed and variable
difficulty conditions.

Since both types of bias are measured on different scales, they
cannot be compared directly. The important claim by Hanks et al.
(2011) is that bias in the drift rate criterion is larger in the vari-
able difficulty condition than in the fixed difficulty condition. In
order to assess this claim we compared both types of bias directly

7In theory, negative drift rates could lead to a larger bias. However, none of our
participants had negative drift rates for any of the stimulus types.
8Note that the alternative hypothesis is roughly twice as likely as the null-hypothesis

according to p
Bayes
H 0 .
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FIGURE 8 | Left panel: starting point bias and drift rate criterion bias.

Right four panels: MRT (top) and proportion correct (bottom) for fixed (left)
and variable (right) difficulty. Dots represent the mean, error bars represent
95% confidence intervals. Con, consistent; Neu, neutral; Inc, inconsistent.

between the two conditions. Consistent with the visual impres-
sion from the left panel of Figure 8, the statistical analysis reveal
no differences for starting point bias and drift rate criterion bias

(t (20) = 0.61, p > 0.05, p
Bayes
H 0 = 0.74, and t (20) = 0.75, p > 0.05,

p
Bayes
H 0 = 0.73, respectively).

In sum, both in the fixed difficulty condition and in the vari-
able difficulty condition, participants exhibit bias in starting point
and drift rate criterion. The results suggest there is no difference
between the two conditions in the amount of each type of bias,
challenging the claim by Hanks et al. (2011) that bias in the drift
rate criterion should be more pronounced when stimulus difficulty
is variable than when it is fixed.

MODEL PREDICTIVES
In cognitive modeling, model fit can be assessed by means of model
predictives. Model predictives are simulated data generated from
the cognitive model, based on the parameter estimates for the real
data. If the generated data closely resemble the real empirical data,
then the model fit is deemed adequate (e.g., Gelman and Hill,
2007).

For this experiment, we drew 100 samples from the real data
set and generated diffusion model parameter estimates for each
participant and each condition separately using a bootstrap pro-
cedure. For each of these samples, we generated synthetic data,

for which we calculated the 0.1, 0.3, 0.5, 0.7, and 0.9 RT quantiles
for both the real data set and the synthetic data set. The real and
synthetic RT quantiles are shown in Figure 9.

Figure 9 shows a quantile probability plot (e.g., Ratcliff, 2002),
where the left-hand side represents error RTs for the five quan-
tiles, and the right-hand side represents correct RTs for those same
quantiles. The circles represent stimuli that were consistent with
the biased response direction, the squares represent stimuli that
were neutral, and the triangles represent stimuli that were incon-
sistent with the biased response direction. The filled symbols in
the figure show the empirical data, the open symbols show the
simulated data that were generated using the DMAT parameter
estimates.

For response accuracy, the correspondence between the empir-
ical data and the synthetic data can be judged by the horizontal
disparity between the data points and the model points. Figure 9
shows that the diffusion model captures the error rate reasonably
well for most of the stimulus types, as indicated by the horizon-
tal disparity between the filled and open symbols. The diffusion
model does capture the RTs well, as can be judged from the ver-
tical disparity between the filled and open symbols. The quantile
probability plot nicely shows how correct responses are fastest for
consistent stimuli and slowest for inconsistent stimuli, whereas
error responses are fastest for inconsistent stimuli and slowest for
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FIGURE 9 | Model predictives indicate that the parameter estimates of DMAT describe the data well. Filled symbols: empirical data. Open symbols:
bootstrapped synthetic data, based on the model parameter estimates.

consistent stimuli, which is consistent with prior bias (see, e.g.,
Mulder et al., 2012).

CONCLUSION
It is not straightforward to perform optimally in response time
tasks in which one response option is more likely than the
other. When stimulus difficulty is fixed across trials, Edwards
(1965) has demonstrated that optimal performance requires
advance information to be accommodated solely by a shift
in starting point. Recently, Hanks et al. (2011) claimed that
when stimulus difficulty varies from trial-to-trial, optimal per-
formance also requires a shift in drift rate criterion (i.e.,
dynamic bias).

The contribution of this paper is twofold. Firstly, we demon-
strated that in theory, optimal performance can be achieved by a
shift in starting point only. This result holds regardless of whether
stimulus difficulty is fixed or variable from trial-to-trial. Secondly,
we presented empirical data showing that people accommodate
bias similarly for conditions of fixed and variable across-trial dif-
ficulty. Specifically, decision makers incorporate both prior and
dynamic bias, and no evidence suggested that the presence of vari-
ability in stimulus difficulty made participants rely more on shifts
in the drift rate criterion.

In the theoretical part, we first considered the interrogation
paradigm. We demonstrated that optimal performance can be
achieved by entertaining a bias in starting point, by entertaining
a bias in the drift rate criterion, or by a combination of the two.
There was no qualitative difference between conditions of fixed
and variable across-trial stimulus difficulty.

It could be argued that the theoretical results of the interro-
gation paradigm are unlikely to apply in practice. Specifically,
participants need to know the exact moment of the deadline T
to be able to utilize the trade-off between starting point and drift
rate criterion. Also, the argument of Hanks et al. (2011) depends
on the time course of the decision process: long decisions are most
likely difficult decisions, so the longer a decision takes, the more
adaptive it becomes to select the biased response alternative. In the
interrogation paradigm, however, each decision process takes an
identical amount of time.

Another complication when interpreting results for the interro-
gation paradigm is that for variable difficulty, the optimal setting
of the starting point depends on the time deadline (see equa-
tion (7)). Because the decision maker does not know the exact
value of the time deadline, a more realistic expression should
integrate over some unknown distribution of time deadlines
that describes the uncertainty in T on the part of the decision
maker.

In a task setting without response deadline, our results show
that optimal performance is achieved by shifting only the start-
ing point; additionally shifting the drift rate criterion only serves
to deteriorate performance. Crucially, we found that this result is
true for both fixed and variable across-trial stimulus difficulty. As
such, our results conflict with the claim by Hanks et al. (2011) that
optimal decision makers should entertain a shift in drift rate cri-
terion to accommodate bias under conditions of variable stimulus
difficulty.

In the empirical part, we conducted an experiment in which we
manipulated across-trial stimulus difficulty in order to investigate
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if performance of decision makers is optimal. We also wanted
to test whether decision makers accommodate bias differently in
decision environments with fixed and variable across-trial stimu-
lus difficulty. We successfully manipulated across-trial variability
in difficulty, as evidenced by a higher value of across-trial drift rate
variability η for variable across-trial difficulty than for fixed-trial
difficulty. Our results showed that performance of participants was
not optimal: decision makers implemented both a shift in starting
point and a shift in drift rate criterion in order to deal with bias
in prior information about the decision alternatives. Contrary to
the theory of Hanks et al. (2011), there was no difference in the
implementation of dynamic bias between conditions of fixed and
variable across-trial stimulus difficulty.

In sum, we conclude that dynamic bias is not needed for opti-
mal performance, not when stimulus difficulty is fixed and not
when it is variable. From the perspective of optimality, advance

information should affect only prior bias (i.e., starting point),
such that the evidence threshold is lowered for the choice alterna-
tive that is most likely to be correct a priori. In practice it appears
that people use both prior bias and dynamic bias; our experi-
ment suggests that increasing the variability of stimulus difficulty
does not cause participants to accommodate advance information
preferentially by shifting the drift rate criterion.
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APPENDIX
DERIVATION OF EQUATION (6)
To understand the derivation of equation (6) from equation (5),

let us focus on the first part �
[

(ξ+vc )T+z
s
√

T

]
(the treatment of the

second part is analogous) and write it as �[Aξ + B], with A =
√

T
s

and B = vc T+z
s
√

T
. We then have the following integral I :

I =
∫ +∞

−∞
� [Aξ + B] φ

(
ξ ; v , η2) dξ ,

where φ(ξ ; v, η2) stands for the normal density function for ξ with
mean v and variance η2. We can continue as follows:

I =
∫ +∞

−∞
� [Aξ + B] φ

(
ξ ; v , η2) dξ

=
∫ +∞

−∞

∫ Aξ+B

−∞
φ (x ; 0, 1) dxφ

(
ξ ; v , η2) dξ

=
∫ +∞

−∞

∫ B

−∞
φ (x ; −Aξ , 1) φ

(
ξ ; v , η2) dxdξ

=
∫ +∞

−∞

∫ B/A

−∞
φ
(
x ; −ξ , 1/A2)φ (ξ ; v , η2) dxdξ

=
∫ B/A

−∞

∫ +∞

−∞
φ
(
x ; −ξ , 1/A2)φ (ξ ; v , η2) dξdx .

The inner integral is a known integral in Bayesian statistics (see,
e.g., Gelman et al., 2004). The kernel of the product of the two nor-
mal distributions contains an exponent with quadratic terms in ξ

and x (Gelman et al., 2004). Thus, ξ and x have a bivariate nor-
mal distribution and thus marginalizing over ξ results in a normal
distribution for x.

Using the double expectation theorem (see Gelman et al., 2004),
we can find the marginal mean of x :

E(x) = E [E(x|ξ)]

= E[−ξ ]
= −v .

Applying a similar theorem for the marginal variance of x gives
(Gelman et al., 2004):

Var(x) = E [Var(x|ξ)] + Var [E(x|ξ)]

= E
[
1/A2]+ Var(−ξ)

= 1/A2 + η2.

Therefore, we can simplify the inner integral to φ(x ; − v,
1/A2 + η2):

I =
∫ B/A

−∞
φ
(
x ; −v , 1/A2 + η2) dx

=
∫ B/A+v√

1/A2+η2

−∞
φ (x ; 0, 1) dx

= �

⎡
⎢⎣ B

/
A + v√

1
/

A2 + η2

⎤
⎥⎦

= �

⎡
⎢⎣ vc T+z

T + v√
s2
/

T + η2

⎤
⎥⎦

= �

⎡
⎢⎣ (vc + v) T + z

s
√

T + T 2η2
/

s2

⎤
⎥⎦ ,

which is, after multiplication with β, equal to the first term of
equation (6). The second part can be found in a similar way.
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