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In recent years, predictive coding strategies have been proposed as a possible means by
which the brain might make sense of the truly overwhelming amount of sensory data
available to the brain at any given moment of time. Instead of the raw data, the brain
is hypothesized to guide its actions by assigning causal beliefs to the observed error
between what it expects to happen and what actually happens. In this paper, we present
a variety of developmental neurorobotics experiments in which minimalist prediction error-
based encoding strategies are utilize to elucidate the emergence of infant-like behavior in
humanoid robotic platforms. Our approaches will be first naively Piagian, then move onto
more Vygotskian ideas. More specifically, we will investigate how simple forms of infant
learning, such as motor sequence generation, object permanence, and imitation learning
may arise if minimizing prediction errors are used as objective functions.
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INTRODUCTION
With 50 million neurons and several hundred kilometers of axons
terminating in almost one trillion synapses for every cubic cen-
timeter, yet consuming only about 20 W of energy for the entire
cortex, the brain is arguably one of the most complex and highly
efficient information processing systems known (Hart, 1975;
Drubach, 2000). It is also the seat of sensory perception, motor
coordination, memory, and creativity – in short, what makes us
human. How this is precisely achieved by an approximately 1500 g
piece of flesh remains one of the last frontiers of modern science.

This task becomes even more Herculean if one attempts to
build an artificial system capable of emulating at least some of
the core competences of the mammalian brain. von Neumann
(1958) in his remarkable little book titled “The Computer and
the Brain” elegantly elaborated the key puzzle here: programma-
ble digital computers (as co-championed by him; now termed
“von Neumann machines”) solve complex problems by subdivid-
ing them into myriads of elementary logical propositions that are
then processes in a serial fashion. This is possible since (a) dig-
ital computers operate at incredibly high clock speed, and (b)
because – assuming no hardware/software flaw – the result of
each computation step is error-free. So much different, however, is
how the brain solves problems. Individual neurons encode/decode
information at <103 Hz, yet, in less than 200–300 ms, complex
visual objects are recognized. That is to say, within 102 to 103 com-
putation steps, our brain somehow manages to clean up the noisy
spatio-temporal fluctuations of incoming photons on the retina,
encode key information embedded within such fluctuations in the
language of spike trains, relay them to dozens of more specialized

high-order visual areas, extract invariant visual features using mys-
teriously judicious neuromorphic machine learning algorithms,
and finally bind the distributed features into a uniform percept
which lets “us” feel the qualia of the perceived object. Reminding
ourselves that even the simplest “hello world” can take up almost
101 lines of code in modern object oriented programming lan-
guages, and most non-trivial machine learning algorithms require
anywhere between 103 and 106 encoding steps, this is indeed a very
remarkable achievement. Even more puzzling, as von Neumann
observed, neurons are most likely able to perform computations
at a mere two to three decimals only. Given the rapidly accumulat-
ing rounding errors at such low level of precision, truly complex
computations seem out of question. Yet, ipso facto the brain must
have figured out how to do it.

In recent years, predictive coding strategies have been proposed
as a possible means by which the brain might indeed escape the von
Neumannian limitations (Rao and Ballard, 1999; Bar, 2009; Bubic
et al., 2010; Wacongne et al., 2011). In this brave new prediction-
land, the traditional perception-to-cognition-to-action strategies
are deemed to be incompatible with what we know about how
the brain, in real time, makes sense of truly massive amount of
sensory data. As other papers in this special issue will elaborate
in great detail, predictive encoding schemes will most likely entail
two distinct mechanisms: one that uses prediction error rather
than incoming raw data as the fundamental currency of the brain’s
information processing (Srinivasan et al., 1982; Hosoya et al., 2005;
Navalpakkam and Itti, 2007); and the secondary information inter-
pretation system that assigns a cause (“belief”) to the observed
prediction error (Nijhawan, 1997; Kersten et al., 2004; Collerton
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et al., 2005; Summerfield et al., 2006; Hohwy et al., 2008). From
a more teleological point of view, the objective function of the
brain is then to minimize the prediction error (i.e., “free energy”
or “surprise”; Friston, 2010; Friston et al., 2011, 2012) in the next
iteration by modifying the state and/or the sensory bandwidth of
the brain. This is where neurorobotics comes in. Notwithstand-
ing the various incarnations of this field, neuroroboticists unite
the conviction that embodiment (Weng et al., 2001; Pfeifer et al.,
2007; Kaplan, 2008; Friston, 2011; Kaplan and Oudeyer, 2011), i.e.,
the physical state of the artificial agent should play a significant
role in determining its behavioral fabric (Dickinson et al., 2000;
Pfeifer and Bongard, 2007). Secondly, albeit conceptually simple
forward processing robotics schemes have gained some traction
thanks to the availability of cheap brute force number crunch-
ers (Siciliano and Khatib, 2008), more inferential systems make
a much better use of the available resources than those that do
not (see, e.g., Rucci et al., 2007 versus Siciliano and Khatib, 2008).
Thirdly, and this being more our personal bias, many neuroro-
botics frameworks not only attempt to replicate the behavioral
outcomes per se, but they also venture to explain the entire genesis
of behavioral chains within neurobiologically realistic constraints
(Fleischer et al., 2007; Oudeyer et al., 2007; Yamashita and Tani,
2008; Namikawa et al., 2011).

In this paper we will present a variety of neurorobotics experi-
ments in which minimalist prediction error-based encoding strate-
gies are utilized to elucidate the emergence of infant-like behavior
in robots. Our approaches will be first naively Piagian (Piaget,
1954), then move onto more Vygotskian (Vygotsky, 1986), which
are psychological hypotheses on the development of the cogni-
tive abilities in the human infants. First, we will build a robot
which generates the self-emerging cognitive functions by expe-
riences, similarly to Piaget’s explanation of infant learning. We
will demonstrate this in our first and second experiments on
motor sequence learning and object permanence learning. Then,
we will show that a robot performs imitative learning, which is
the core of Vygotskian development. Thus, we will investigate how
simple forms of infant-like functions may arise from the frame-
works to use minimization of prediction errors as the objective
functions.

OVERALL MATERIALS AND METHODS
For all experiments described in this study, commercially available
humanoid robots have been used in conjunction with a variety of
custom-written neural modeling software in Matlab (MathWorks,
Natick, MA, USA) and C++. AnNAO humanoid robot system
(Aldebaran Robotics, Paris, France) was the platform of choice for
experiments #1 and #2 (see Figures 1, 2, and 4). Its movements
are controlled by actuators with a total of 25 degrees of freedoms
(five DOFs in one arm; body size: 57.3 cm with an internal cam-
era module in the head). To achieve the higher image resolution
and frame rate (>10 fps) needed for experiment #2, we used an
external CCD camera (920 p) mounted on the head. Experiment
#3 was performed by using two identical sets of the DARwIn-
OP humanoid robot platform (RoMeLa, Blacksburg, VA, USA; see
Figure 7). It is 45.5 cm tall (20 degree of freedom movement)
and has a built-in 2-mega pixels resolution camera. For the sake
of computational efficacy, the effective resolution was reduced to
320 × 240 pixels. Finally, for the imitation experiments described

in this work, only the 2 × 3 degrees of freedom associated with the
left and right arm motions were used.

NEUROROBOTIC EXPERIMENTS
LEARNING MOTOR SEQUENCES THROUGH PREDICTION ERROR
MINIMIZATION
During the first 2 months of life, human infants explore the kine-
matic envelope of their body motion through brisk and repetitive
body movements, such as kicking their legs (Maja, 1998). Such
purely itinerant motor actions are soon replaced by more coher-
ent motor sequences. In neurorobotics, a few studies (Tani, 2003;
Tani et al., 2004; Kober and Peters, 2009) have reported the emer-
gence of motor sequences from experiences. In particular, Tani
et al. reported an arm robot with recurrent neural network with
parametric bias (RNNPB), which could passively learn and repro-
duce it. Similar to their approaches, we attempted to replicate
the transition from random to coherent motor action sequences
of infants, using a humanoid neurorobotic platform. In contrast
to Tani’s model, we used two-layered self-organizing feature map
(SOFM) and the transition matrixes within them.

The task for the robot was to learn and reproduce three distinct
motor sequences by representing motor sequences as continu-
ous trajectories in a SOFM (see, e.g., Kohonen, 1990, 2001). Our
system is composed of a two-layer SOFM and a transition prob-
ability matrix for each layer. The first layer stores feasible motor
conformations, and its transition matrix stores direct transition
probability among the conformations. The second layer stores
feasible motor sequences built from the first layer and transition
probabilities among the sequences. To minimize predictive error,
our system generated the most probable actions from top-down
and bottom-up Bayesian methods. Robot could restore precise
trained behavior. Detailed methods are followed.

First, our robot extracted the set of feasible states of its own
motor action space. While a human subject manipulated the
robot’s right arm exploring the feasible action states, the five
respective actuator angle values were sampled (10 Hz, total 1500
samples) indicated as feature vectors u(k) ∈ R

5 for k = 1, . . ., 1500.
This set of feature vectors of feasible states was used by the SOFM
to build a map of 20 × 20 two-dimensional internal action states,
vs (Figure 1).

After the internal action state space was formed with the SOFM,
three action sequences were trained by a predefined dataset. The
dataset was given as sequences of internal states vs for 120 time
steps, and it was a simple shape of trajectory (Figure 2A). While the
three sequences were being trained, the state transition probabili-
ties P t(vm | vn) for all state vn to all other states vm were computed.
Additionally, action sequences were represented in action sequence
space w ∈ R

20 × 20 by tracing action history: the value of each cell
in w is set to one when corresponding internal state v is activated,
and the value diminished according to Eq. 1 with increasing time
steps (Figure 2A, action sequence). The action sequences were
given to 10 × 10 SOFM to build a map of sequence states, xs. Each
sequence state neuron memorized parts of the action sequence.

w(k+1) = e−0.1w(k) + w ′, w ′ ∈ R
20×20,

w ′ =
{

w ′
(i,j) = 1 i, j ∈ v(k)

w ′
(i,j) = 0 i, j /∈ v(k)

(1)
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FIGURE 1 | Structure of motor action learning and reproduction system.

The current action feature vector u(k) is reduced to internal action state v(k) .
From recent history w(k) of the internal action state (bright red is recently
activated neuron), we can evaluate the most probable current action sequence
state x(k) . An action sequence state stores the probability of an action state

within a sequence [w(k + 1) bright blue node is a more feasible action state].
With this top-down probability and the immediate probability of the next
action state (P t ), we can find the posterior probabilities of the incoming action
state, v(k + 1) . From the first SOFM layer, this action state maps to action
feature vector u(k + 1) . The robot generates the action represented by u(k + 1) .

FIGURE 2 |Training action sequences and regeneration. (A) Three target sequences represented on internal action space. Green dots represents action
states overlapped in two sequences. (B) These trained action sequences are reproduced by the humanoid robot.

To reproduce motor actions, the immediate transition proba-
bility (P t) of the current action state and top-down probabilities
of actions from the current sequence are combined. The current

action sequence was generated by Eq. 1, and this was mapped
to the action sequence map to find the current sequence state.
This sequence state determined the probabilities of activation of
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action states. Those two probabilities are multiplied for posterior
probability. The robot activated the action with the maximum pos-
terior probability. For initializing actions, initial 10 action states
of trained sequences were delivered to the system, and this was

followed by 120 time steps of actions generated by the system. We
tested our model for 1000 randomly selected different initial con-
ditions for three sequences. In 100% of the cases, it could generate
perfect sequence trajectories.

FIGURE 3 | Resolving conflict between overlapping sequences. The
next action state was resolved, in which two sequences are
overlapping. (A) In generating action sequence 2, the robot arrived at
the cell emphasized with the blue dashed line, where two sequences
(2 and 3) are overlapping. Only with state transition probability

P t (vm | vn) the robot should follow the left cell of the blue dashed line in
sequence 3. (B) The top-down probability from the current sequence
cell shows the probability of activation for each cell. (C) With the
top-down probability and transition probability, sequence 2 is selected
and followed.

FIGURE 4 | Structure of permanence system. (A) Humanoid robot NAO
tracking a target object on a screen. (B) The target object moves in a circular
trajectory. When the target object arrived at a predefined position, the object

was occluded for specific time. Our humanoid robot stored the trajectory of
the object with a hierarchical Bayesian inference system (C) and predicted the
position of the object under occlusion.
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FIGURE 5 | Structure one level of hierarchical Bayesian system. It records
movement sequence from forward input (spatial pooler ) and finds the
transition probability across spatial poolers (markov graph). The movement
sequences are concatenated and fed forward to a higher level. As a result, the

higher level stores longer sequences. When inferring the next movement, the
probability from the current level (from Markov graph) and feedback
probability from the higher level (backward input ) are combined in the
predictor to find the posterior probabilities for the next possible movements.

Interestingly, our model could resolve overlapping sequence
problems. There were four internal action states in which
sequences overlapped (one example is Figure 3A, sequence 2 and 3
overlap). In those states, the robot should select the feasible action

for the current sequence, and it is impossible only with transition
probabilities (Figure 3A, the robot will select sequence 3 instead
of sequence 2). The recent actions of the robot are represented
in action sequence space as (Eq. 1), and this is used to define the
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current action sequence. The current action sequence fed back
probabilities of activation of action states (Figure 3B). Top-down
prior knowledge about a sequence could resolve the conflict to
produce the right action sequence (Figure 3C). As a result, we
made our robot to learn possible motor sequences by itself.

Our result is comparable to the RNNPB results of Tani et al.
(2004). Within RNNPB, the primitive sub-sequence patterns are
self-organized in a recurrent neural network. Similarly, the feasible
motor spaces and the sequences are hierarchically self-organized
in our model. Within the minimization of the prediction error
framework, the self-organized model of the world was used to
produce the motor sequences. In comparison to Tani’s models,
our SOFM has more explicit coding of the state space which is
tractable to the system.

OBJECT PERMANENCE
One of the most remarkable cognitive faculties displayed dur-
ing early infanthood is the ability to form a conception of
object permanence (Moore et al., 1978; Gredebäck et al., 2002;
Gredebäck and von Hofsten, 2004; Rosander and von Hofsten,
2004). This ability is justly considered a milestone in an infant’s
cognitive development, as it enables the brain to perform rela-
tional operations on both what is physically present as well as on
what is merely inferred to be present in the visual environment.
In this second experiment we designed a simplified hierarchical
Bayesian inference system (similar to Hierarchical Temporal Mem-
ory, Hawkins and Blakeslee, 2004; George, 2008; Hawkins et al.,
2009; Greff, 2010) capable of forming beliefs regarding the cur-
rent position of a visual object, even if it is in fact occluded by a
masking object.

A camera attached to a robot head collected the target images
(10 Hz, 424 × 240 resolution). The images were preprocessed so
that the movements of a visual object were represented by tran-
sition directions at each time step, d(t ) ∈ D, D = {0 to 7/8π; 1/8π

steps}, and we set chain codes, each of which includes the time
series of the transition directions of the object for each period of
time. We used five consecutive chain code tuples m1 ∈ D5 for the
base level of our hierarchical model to describe the movement for
each time step.

We let the model learn the movement state sequence with our
hierarchical model. Each node of our model at the kth level stored
movement states, mk (spatial pooler in Figure 5) and the transition

probabilities, Pm(m(t )
k |m(t−1)

k ); m(t )
k , m(t−1)

k ∈ mk , between the
states (Markov graph in Figure 5). The 2 ∼ 4 consecutive move-
ment states were concatenated to build longer sequence informa-
tion, mk+1 ∈ mk ⊕ mk ⊕ . . . ⊕ mk, (Temporal pooler in Figure 5)
and this was fed forward to a higher region (Forward output
in Figure 5). A higher node repeated this process. As a result, a
higher region node stored a longer sequence of movements and
the transition probabilities between longer sequences.

Training was followed by occlusion tasks. When a target
dot arrived at a specific occlusion point in a circular trajec-
tory, the dot was occluded. We conducted an experiment in
which the occlusion time was varied from 500 to 3000 ms
(500, 1000, 1500, 2000, 2500, 3000 ms). At occlusion times, our
model predicted the movement sequence of the target dot in
a Bayesian manner. For each node at the kth level, evidence

about the current movement was given bottom-up to a higher

node. Higher nodes selected longer sequences m(t )
k , which had

the highest probability P
(

m(t )
k |m(t )

k−1 ⊕ m(t−1)

k−1 ⊕ . . . ⊕ m(t−n)

k−1

)
for the evidence sequence with length n. The selected sequence
gave prior knowledge about incoming movement sequence

P
(

m(t+1)

k |m(t )
k

)
, and it was fed back to a lower node. The

node combined the prior probability top-down and probability

of immediate transition probability Pm

(
m(t+1)

k−1 |m(t )
k−1

)
its own

Markov graph to build posterior probabilities Ppos

(
m(t+1)

k−1 |m(t )
k−1

)
of movement sequences (Figure 5). The sequence with the best
posterior probability in the lowest node was selected as the current
predicted motion of the occluded object.

Our model predicted the positions of predicted objects bet-
ter than without prediction (Figure 6). Our machine could track
the correct position of an occluded object more than 80% of the
time within 500 ms. This accuracy was reduced as the occlusion
time increased but our model tracked occluded objects better than
tracking without prediction (Figure 6). We built a map from object
position to robot action state. With this map, our robot could
follow the visual and occluded object.

IMITATION LEARNING
In our final neurorobotics experiment, we attempted to provide a
simple error-prediction based model to capture the key features
of imitation learning. Action learning through imitation is one of
the most prominent infant learning behaviors, considered to be a
key element in the genesis of unsupervised learning capabilities in
humans. In imitation learning, subjects should produce the sim-
ilar sequences of self-images to the teacher’s image sequences of
particular motor actions.

In this area, Ito and Tani (2004) proposed the RNNPB based
model. In their experiment, a robot’s RNNPB was trained with the
positions of two visual markers and joint angles corresponding to
the marker’s positions. When the sequences of the positions of the
visual markers were given, the robot could reproduce the corre-
sponding motor sequences. They used only the positions of the
visual markers to represent the visual image of self and target. In

FIGURE 6 | Accuracy of permanence model was calculated as the

percentage of time in which the distance between the predicted

position and real position were under object size. Our model showed
better performance in estimating the position of the object than a model
without prediction (naïve) for both the total time tracking (left ) and a specific
time interval with occlusion (right ).
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contrast, our robot had to reproduce motor sequences from the
target’s whole visual image.

In our experimental setting (see Figure 7) two physically iden-
tical copies of DARwIn-OP humanoid robotic platforms were
placed such that their vision systems would capture the other in
the center of their respective visual fields. Of the two robots, the
independent “teacher” robot performed a number of predefined
motor sequences employing its two arms. The dependent “infant”
robot, on the other hand, had to learn and imitate the teacher’s
motor sequences without any prior knowledge of the teacher’s
motor sequences.

To imitate another, an infant needs to know how simi-
lar/dissimilar its actions are going to be with respect to those
displayed by the teacher. We hypothesize that this can be done
by acquiring two categories of information: a visuomotor map,
how self-body configuration is to imitate teacher robot’s image
in a time; and an action sequence model, how the configurations
connect to generate particular motor actions.

Our imitation system is composed of three parts: a motor state
model g and action sequence model h, which are neural net-
works to learn and generate motor sequences, and a visuomotor
map f, which is the association between self-image and self-model

FIGURE 7 | Structure of imitation learning. (A) The target system
(left robot) produces image sequence (v*) from internal state
sequence (y ). The agent system (right robot) follows by mapping the
image sequence (v*) to the memorized self-image of (v i ) whose
internal action states x is known. The target’s visual sequence

produces a sequence of internal action states in agent. The agent
trains this sequence to build action sequences (z ) and reproduces the
action to real motor state u. (B) The agent sees visual images of
target robot (up), and the motor state of the agent is derived from the
image (down).
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(Figure 7B). By matching the target images to self-image, target
image sequences were estimated to the self-motor states of the
agent robot. With the sequence of self-motor sequences, the robot
could build an action sequence model of actions, which was used
to generate real actions.

First, the agent learned the possible motor states. The two arms
of the agent robot generated random motions, and the angles of
six actuators (three for each arm) were sampled to a set of feature
vectors u′

t ∈ R
6 for t = 1, . . . , k. The feature vectors were deliv-

ered to SOFM g, and the motor state space u ∈ R
6 was reduced

to 900 (30 × 30, two-dimensional), the number of internal motor
state cells xs, preserving the topology of the feature space. Next, we
produced a visuomotor map f between internal motor state cell x
and the robot’s self-visual image v. For each internal motor state
cell x, a corresponding motor action was generated, and a visual
image of the robot was taken. The image was processed to binary
visual image vis on visual sensory space R

320×240 and mapped to
the internal motor state x (Figure 7B).

To imitate the action sequences of the target system, sequences
of images v∗

t for t = 1, . . ., k generated by the target were given to
the agent. By configuring the maximally matched stored images
vis in f given image v∗, the robot can find what action state the
target is performing under the assumption that the target sys-
tem also follows the f of the agent. The motor state sequences
xt for t = 1, . . ., k were extracted from the sequence of deliv-
ered images. Our robot generated transition matrix T across
each internal motor state and a model h of action sequences as
in the first experience. The action sequence model h equals an
SOFM having neurons to represent action sequences where each
neuron is referred to as action sequence state z. The imitation
of the agent was the generation of the most probable motion
sequences given the motions of the target. Thus, if the target
system generated its motions according to its states, the agent
followed the series of motions by estimating the most probable
action sequence state z in h at each time t and by generating the
most probable internal motor state x and motion u and at t + 1
given zt.

In the experiment, we trained five different motion sequences
to imitate. Among the total of 30 action sequences provided, 25
sessions were one of the five action sequences randomly provided,
and for five random sessions, random action sequences were deliv-
ered. In the test, we provided 100 sessions of action sequences, each
of which was an action sequence randomly selected among the five
types in the training.

We tested the performance of our model in two domains, where
we set the numbers of both internal motor states in a map g and
action sequences in a map h to 900, each of which represented a
representative motor action and action sequence. First, we tested
whether the model of the agent’s actions was the same as the tar-
get’s. The generated motor states in the space motor state model
resulting from imitative actions of the agent were compared to the
motor states of the target system under the assumption that the
target system had the same motor state model. Second, we com-
pared the image of the target and agent during imitation. For each
image in all imitation time, we classified pixels of the target and
agent’s images into two classes: robot and background by bright-
ness threshold. We summated the number of pixels in the same
class.

In the case of performance measure in internal state space, the
predicted internal states xs of the agent at each time were com-
pared against the series of states ys of the target, assuming that the
target system had the same SOFM g. Examples of imitative actions
of the agent against each of the five types of target system actions
are shown in Figure 8. The skeleton images of the target system
were flipped with respect to y–z plane for qualitative comparisons
between the actions of the target and the imitation of the agent.
The result of quantitative measure over motor space is shown in
Table 1, and is only 31.20% while the qualitative result in Figure 8
indicated reliable performance.

In the case of performance measure in visual sensory space, we
measured four quantities, namely, accuracy, precision, sensitivity,
and selectivity, as shown in Table 1. The results show that the imi-
tative actions generated by the series of predictive estimation of xs
under the estimation of the most probable action sequences z were

FIGURE 8 | Our agent imitates five target action sequences. The agent
(bottom) imitates all five action sequences of the target system (top). Red

and blue lines show the trajectory of the tip of the hand, and black line is the
skeleton of the systems during overlapping for task time.
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Table 1 | Result of imitation of the agent in visual sensory and internal

state space.

Measure Comparison space

Visual sensory space (%) Motor space (%)

Accuracy 99.43 31.20

Precision 98.63 –

Sensitivity 98.64 –

Selectivity 99.64 –

The image of our system was very similar to the image of target system during

imitation (visual sensory space), but it did not imitated target’s action in motor

feature space as expected (motor space).

over 98% for all four measures while the performance measure
over the SOFM g was low.

The results demonstrate inconsistent performance of the imi-
tative actions of the agent against each domain where the per-
formance were measured. The measures over the visual sensory
space indicated successful imitative actions of the agent as with
the qualitative comparisons, while the measure over the internal
state space showed discrepancy. This inconsistency, especially of
the result over the internal state space, resulted because the inter-
nal states of the target estimated by the agent based on the visual
sensory inputs were different from the actual internal states of the
target; however, the estimated state and the actual one represented
similar or almost identical features over motor and visual sensory
inputs because of the characteristics of SOFM g, in which neurons
neighboring each other represent similar information. Thus, the
behavioral performance for the imitative actions of the agent was
above 98%, even though the estimated sequences of the internal
states differed from the actual states of the target.

Furthermore, our results indicate that learning and internal-
ization by imitation of motor action sequences of a target system

in terms of the internal motor map help an agent to learn a set
of action sequences, expending from random actions to a congru-
ent set of actions. Using the association between self-images and
self-motor conformations, our robot could figure out what con-
formation should be used to imitate the target’s images. Our robot
internalized the target robot’s image and image sequences into the
self-image sequence and finally into self-motor sequences.

CONCLUSION
Infants are born with only a limited model of the world encoded
in their genes, and they need to construct successive belief models
about most causes and their causal relations in the world. This
learning process includes causal models about their own bodies.
Even more, our brain is faced with only incomplete data about the
world. Predictive coding schemes may explain how the brain con-
structs a hypothetical model of the world and uses this model to
generate prediction for incoming signals. With such an ideomotor
perspective, predictive coding can explain how actions are pro-
duced by minimizing prediction error. With this framework, the
results of our study suggest that even minimalist prediction error
(experiment #1) and causal inference (experiments #2, and #3)
can replicate key features observed during the emergence of infant
learning phenomena, such as action sequence generation, object
permanence, and imitation. Future studies have yet to provide
the full evidence that neurorobotic frameworks using predictive
coding schemes will fare substantially better on our challenging
task of building truly intelligent machines modeled after human
beings.
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