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If perception corresponds to hypothesis testing (Gregory, 1980); then visual searches might
be construed as experiments that generate sensory data. In this work, we explore the idea
that saccadic eye movements are optimal experiments, in which data are gathered to test
hypotheses or beliefs about how those data are caused. This provides a plausible model
of visual search that can be motivated from the basic principles of self-organized behavior:
namely, the imperative to minimize the entropy of hidden states of the world and their
sensory consequences.This imperative is met if agents sample hidden states of the world
efficiently.This efficient sampling of salient information can be derived in a fairly straightfor-
ward way, using approximate Bayesian inference and variational free-energy minimization.
Simulations of the resulting active inference scheme reproduce sequential eye movements
that are reminiscent of empirically observed saccades and provide some counterintuitive
insights into the way that sensory evidence is accumulated or assimilated into beliefs about
the world.
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INTRODUCTION
This paper continues our effort to understand action and per-
ception in terms of variational free-energy minimization (Fris-
ton et al., 2006). The minimization of free energy is based on
the assumption that biological systems or agents maximize the
Bayesian evidence for their model of the world through an active
sampling of sensory information. In this context, negative free
energy provides a proxy for model evidence that is much easier
to evaluate than evidence per se. Under some simplifying assump-
tions, free-energy reduces to the amount of prediction error. This
means that minimizing free-energy corresponds to minimizing
prediction errors and can be formulated as predictive coding (Rao
and Ballard, 1999; Friston, 2005). Expressed like this, minimizing
free-energy sounds perfectly plausible and fits comfortably with
Bayesian treatments of perception (Knill and Pouget, 2004; Yuille
and Kersten, 2006). However, log model evidence is the comple-
ment of self information or surprise in information theory. This
means that maximizing evidence corresponds to minimizing sur-
prise; in other words, agents should sample their world to preclude
surprises. Despite the explanatory power of predictive coding as a
metaphor for perceptual inference in the brain, it leads to a rather
paradoxical conclusion: if we are trying to minimize surprise, we
should avoid sensory stimulation and retire to a dark and quiet
room.

This is the dark room problem and is often raised as a natural
objection to the principle of free-energy minimization. In Friston
et al. (2012), we rehearse the problem and its implications in the
form of a three-way conversation between a physicist, a philoso-
pher, and an information theorist. The resolution of the dark room
problem is fairly simple: prior beliefs render dark rooms surpris-
ing. The existence of these beliefs is assured by natural selection, in
the sense that agents that did not find dark rooms surprising would

stay there indefinitely, until they die of dehydration or loneliness.
However, this answer to the darkroom paradox does not tell us
very much about the nature or principles that determine the prior
beliefs that are essential for survival. In this paper, we consider
prior beliefs more formally using information theory and the free-
energy formulation and specify exactly what these prior beliefs
are optimizing. In brief, we will see that agents engage actively
with their sensorium and must be equipped with prior beliefs that
salient features of the world will disclose themselves, or be discov-
ered by active sampling. This leads to a natural explanation for
exploratory behavior and visual search strategies, of the sort stud-
ied in psychology and psychophysics (Gibson, 1979; Itti and Koch,
2001; Humphreys et al., 2009; Itti and Baldi, 2009; Shires et al.,
2010; Shen et al., 2011; Wurtz et al., 2011). Crucially, this behavior
is an emergent property of minimizing surprise about sensations
and their causes. In brief, this requires an agent to select or sam-
ple sensations that are predicted and believe that this sampling will
minimize uncertainty about those predictions.

The prior beliefs that emerge from this formulation are sen-
sible from a number of perspectives. We will see that they can
be regarded as beliefs that sensory information is acquired to
minimize uncertainty about its causes. These sorts of beliefs are
commonplace in everyday life and scientific investigation. Per-
haps the simplest example is a scientific experiment designed to
minimize the uncertainty about some hypothetical mechanism
or treatment effect (Daunizeau et al., 2011). In other words, we
acquire data we believe will provide evidence for (or against) a
hypothesis. In a psychological setting, if we regard perception as
hypothesis testing (Gregory, 1980), this translates naturally into
an active sampling of sensory data to disclose the hidden objects
or causes we believe are generating those data. Neurobiologically,
this translates to optimal visual search strategies that optimize the
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salience of sampling; where salience can be defined operationally
in terms of minimizing conditional uncertainty about perceptual
representations. We will see that prior beliefs about the active
sampling of salient features are exactly consistent with the max-
imization of Bayesian surprise (Itti and Baldi, 2009), optimizing
signal detection (Morgan, 2011), the principle of minimum redun-
dancy (Barlow, 1961), and the principle of maximum information
transfer (Linsker, 1990; Bialek et al., 2001).

From the point of view of the free-energy principle, a more
detailed examination of prior beliefs forces us to consider some
important distinctions about hidden states of the world and the
controlled nature of perceptual inference. In short, free-energy
minimization is applied to both action and perception (Friston,
2010) such that behavior, or more simply movement, tries to
minimize prediction errors, and thereby fulfill predictions based
upon conditional beliefs about the state of the world. However,
the uncertainty associated with those conditional beliefs depends
upon the way data are sampled; for example, where we direct our
gaze or how we palpate a surface. The physical deployment of sen-
sory epithelia is itself a hidden state of the world that has to be
inferred. However, these hidden states can be changed by action,
which means there is a subset of hidden states over which we have
control. These will be referred to as hidden controls states or more
simply hidden controls. The prior beliefs considered below per-
tain to these hidden controls and dictate how we engage actively
with the environment to minimize the uncertainty of our percep-
tual inferences. Crucially, this means that prior beliefs have to be
encoded physically (neuronally) leading to the notion of fictive or
counterfactual representations; in other words, what we would infer
about the world, if we sample it in a particularly way. This leads
naturally to the internal representation of prior beliefs about fictive
sampling and the emergence of things like intention and salience.
Furthermore, counterfactual representations take us beyond pre-
dictive coding of current sensations and into prospective coding
about our sensory behavior in the future. This prospective coding
rests on an internal model of control (control states) that may be
an important element of generative models that endow agents with
a sense of agency. This is because, unlike action, hidden controls
are inferred, which requires a probabilistic representation of con-
trol. We will try to illustrate these points using visual search and the
optimal control of saccadic eye movements (Grossberg et al., 1997;
Itti and Baldi, 2009; Srihasam et al., 2009); noting that similar prin-
ciples should apply to active sampling of any sensory inputs. For
example, they should apply to motor control when making infer-
ences about objects causing somatosensory sensations (Gibson,
1979).

This paper comprises four sections. In the first, we focus on
theoretical aspects and describe how prior beliefs about hidden
control states follow from the basic imperatives of self organiza-
tion (Ashby, 1947). This section uses a general but rather abstract
formulation of agents, in terms of the states they can occupy, that
enables us to explain action, perception, and control as corol-
laries of a single principle. The particular focus here will be on
prior beliefs about control and how they can be understood in
terms of more familiar constructs such as signal detection the-
ory, the principle of maximum mutual information and specific
treatments of visual attention such as Bayesian surprise (Itti and

Baldi, 2009). Having established the underlying theory, the sec-
ond section considers neurobiological implementation in terms
of predictive coding and recurrent message passing in the brain.
This brief section reprises the implicit neural architecture we have
described in many previous publications and extends it to include
the encoding of prior beliefs in terms of (place coded) saliency
maps. The third and fourth sections provide an illustration of
the basic ideas using neuronally plausible simulations of visual
search and the control of saccadic eye movements. This illustra-
tion allows us to understand Bayes-optimal searches in terms of
saliency maps and the saltatory accumulation of evidence during
perceptual categorization. We conclude with a brief discussion of
the theoretical implications of these ideas and how they could be
tested empirically.

ACTION, PERCEPTION, AND CONTROL
This section establishes the nature of Bayes-optimal inference
in the context of controlled sensory searches. It starts with the
basic premise that underlies free-energy minimization; namely, the
imperative to minimize the dispersion of sensory states and their
hidden causes to ensure a homeostasis of the external and internal
milieu (Ashby, 1947). It shows briefly how action and perception
follow from this imperative and highlights the important role of
prior beliefs about the sampling of sensory states.

This section develops the ideas in a rather compact and formal
way. Readers who prefer a non-mathematical description could
skip to the summary and discussion of the main results at the end
of this section. For people familiar with the free-energy formula-
tion, this paper contains an important extension or generalization
of the basic account of action and perception: here, we consider
not just the minimization of sensory surprise or entropy but the
entropy or dispersion of both sensory states and the hidden states
that cause them. In brief, this leads to particular prior beliefs
about the active sampling of sensory states, which may offer an
explanation for the nature of sensory searches.

NOTATION AND SET UP
We will use X : Ω × . . . → R for real valued random variables and
x ∈ X for particular values. A probability density will be denoted
by p(x) = Pr{X = x} using the usual conventions and its entropy
H [p(x)] by H (X). The tilde notation x̃ = (

x , x ′, x ′′, . . .
)

denotes
variables in generalized coordinates of motion (Friston, 2008),
where each prime denotes a temporal derivative (using Lagrange’s
notation). For simplicity, constant terms will be omitted from
equalities.

In what follows, we would consider free-energy minimization
in terms of active inference: Active inference rests on the tuple (Ω,
ψ, S, A, R, q, p) that comprises the following:

• A sample space Ω or non-empty set from which random
fluctuations or outcomes ω ∈ Ω are drawn.

• Hidden states Ψ:Ψ × A × Ω → R that constitute the dynamics
of states of the world that cause sensory states and depend on
action.

• Sensory states S:Ψ × A × Ω → R that correspond to the agent’s
sensations and constitute a probabilistic mapping from action
and hidden states.
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• Action A:S ×R → R corresponding to an agent’s action that
depends on its sensory and internal states.

• Internal states R:R × S × Ω → R that constitute the dynamics
of states of the agent that cause action and depend on sensory
states.

• Conditional density q
(
ψ̃

)
:= q

(
ψ̃|μ̃

)
– an arbitrary prob-

ability density function over hidden states ψ̃ ∈ ψ that is
parameterized by internal states μ̃ ∈ R.

• Generative density p
(

s̃, ψ̃|m
)

– a probability density func-

tion over sensory and hidden states under a generative model
denoted by m.

We assume that the imperative for any biological system is to
minimize the dispersion of its sensory and hidden states, with
respect to action (Ashby, 1947). We will refer to the sensory and
hidden states collectively as external states S × Ψ. Mathematically,
the dispersion of external states corresponds to the (Shannon)
entropy of their probability density that, under ergodic assump-
tions, equals (almost surely) the long-term time average of Gibbs
energy:

H (S, Ψ) = Et

[
G

(
s̃(t ), ψ̃(t )

)]

G = − ln p
(

s̃(t ), ψ̃(t )|m
) (1)

Gibbs energy G
(

s̃, ψ̃
)

is defined in terms of the generative den-

sity or model. Clearly, agents cannot minimize this energy directly
because the hidden states are unknown. However, we can decom-
pose the entropy into the entropy of the sensory states (to which
the system has access) and the conditional entropy of hidden states
(to which the system does not have access)

H (S, Ψ) = H (S) + H (Ψ|S)

= Et
[− ln p (s̃(t )|m) + H (Ψ|S = s̃(t ))

] (2)

This means that the entropy of the external states can
be minimized through action to minimize sensory surprise
− ln p (s̃(t )|m) , under the assumption that the consequences of
action minimize conditional entropy:

a(t ) = arg min
a∈A

{− ln p (s̃(t )| m)
}

ũ(t ) = arg min
ũ∈U

{H (Ψ| S = s̃(t ))} (3)

The consequences of action are expressed by changes in a sub-
set of external states U ⊂ Ψ, that we will call hidden control states
or hidden controls. When Eq. 3 is satisfied, the variation of entropy
in Eq. 1 with respect to action and its consequences are zero, which
means the entropy has been minimized (at least locally). However,
the hidden controls cannot be optimized explicitly because they are
hidden from the agent. To resolve this problem, we first consider
action and then return to optimizing hidden controls post hoc.

ACTION AND PERCEPTION
Action cannot minimize sensory surprise directly (Eq. 3) because
this would involve an intractable marginalization over hidden

states, so surprise is replaced with an upper bound called varia-
tional free energy (Feynman, 1972). This free energy is a functional
of the conditional density or a function of its parameters and is
relatively easy to evaluate. However, replacing surprise with free
energy means that internal states also have to minimize free energy,
to ensure it is a tight bound on surprise:

a(t ) = arg min
a∈A

{F (s̃(t ), μ̃(t ))}

μ̃(t ) = arg min
μ̃∈R

{F (s̃(t ), μ̃)}

F = Eq

[
G

(
s̃, ψ̃

)]
− H

[
q

(
ψ̃ |μ̃

)]

= − ln p (s̃ | m) + D
[

q(ψ̃)||p
(
ψ̃ | s̃, m

)]

≥ − ln p (s̃ | m)

(4)

This induces a dual minimization with respect to action and
the internal states that parameterize the conditional density. These
minimizations correspond to action and perception respectively.
In brief, the need for perception is induced by introducing free
energy to finesse the evaluation of surprise; where free energy can
be evaluated by an agent fairly easily, given a Gibbs energy or a
generative model. The last equality says that free energy is always
greater than surprise because the second (Kullback–Leibler diver-
gence) term is non-negative. This means that when free energy is
minimized with respect to the internal states, free-energy approx-
imates surprise and the conditional density approximates the
posterior density over external states:

D
[

q
(
ψ̃

)
||p

(
ψ̃ | s̃, m

)]
≈ 0 ⇒

⎧⎨
⎩

q
(
ψ̃

)
≈ p

(
ψ̃ | s̃, m

)
H

[
q

(
ψ̃

)]
≈ H (Ψ | S = s̃)

(5)

This is known as approximate Bayesian inference, which
becomes exact when the conditional and posterior densities have
the same form (Beal, 2003). Minimizing free energy also means
that the entropy of the conditional density approximates the con-
ditional entropy. This allows us to revisit the optimization of
hidden controls, provided we know how they affect the entropy
of the conditional density:

THE MAXIMUM ENTROPY PRINCIPLE AND THE LAPLACE ASSUMPTION
If we admit an encoding of the conditional density up to second
order moments, then the maximum entropy principle (Jaynes,
1957) implicit in the definition of free energy (Eq. 4) requires

q
(
ψ̃|μ̃

)
= N (μ̃, Σ) to be Gaussian. This is because a Gaussian

density has the maximum entropy of all forms that can be speci-
fied with two moments. Adopting a Gaussian form is known as the
Laplace assumption and enables us to express the entropy of the
conditional density in terms of its first moment or expectation.
This follows because we can minimize free energy with respect to
the conditional covariance as follows:

F = G (s̃, μ̃) + 1

2
tr

(
Σ · ∂μ̃μ̃G

) − 1

2
ln | Σ | ⇒ ∂ΣF

= 1

2
∂μ̃μ̃G − 1

2
Π
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∂ΣF = 0 ⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Π = ∂μ̃μ̃G

H
[

q
(
ψ̃

)]
= − 1

2 ln
∣∣ ∂μ̃μ̃G

∣∣
F = G (s̃, μ̃) + 1

2 ln
∣∣ ∂μ̃μ̃G

∣∣
(6)

Here, the conditional precision
∏

(s̃, μ̃) is the inverse of the
conditional covariance Σ(s̃, μ̃). In short, the entropy of the con-
ditional density and free energy are functions of the conditional
expectations and sensory states.

BAYES-OPTIMAL CONTROL
We can now optimize the hidden controls vicariously through
prior expectations that are fulfilled by action. This optimization
can be expressed in terms of prior expectations about hidden
controls

η̃u(t ) = arg min
η̃u∈U

{
H

[
q

(
ψ̃| μ̃x (t + τ) , η̃u

)]}
(7)

This equation means the agent expects hidden controls to min-
imize a counterfactual uncertainty about hidden states. This
uncertainty corresponds to entropy of a fictive or counterfactual
density parameterized by conditional expectations about hidden
states in the future μ̃x (t + τ) that depend on hidden controls.
From Eq. 6, minimizing counterfactual uncertainty is equivalent
to maximizing the precision of counterfactual beliefs.

Interestingly, Eqs 4 and 7 say that conditional expectations
(about hidden states) maximize conditional uncertainty, while
prior expectations (about hidden controls) minimize conditional
uncertainty. This means the posterior and prior beliefs are in oppo-
sition, trying to maximize and minimize uncertainty (entropy)
about hidden states respectively. The latter represent prior beliefs
that hidden states are sampled to maximize conditional con-
fidence, while the former minimizes conditional confidence to
ensure the explanation for sensory data does not depend on very
precise values of the hidden states – in accord with the maximum
entropy principle (or Laplace’s principle of indifference). In what
follows, we will refer to the negative entropy of the counterfactual
density as salience noting that salience is a measure of certainty
about hidden states that depends on how they are sampled. In
other words, salience is the precision of counterfactual beliefs that
depend on where or how sensory data are sampled. This means
that prior beliefs about hidden controls entail the expectation that
salient features will be sampled.

A subtle but important point in this construction is that it
optimizes hidden controls without specifying how they depend
on action. The agent is not aware of action because action is not
inferred or represented. Instead, the agent has prior beliefs about
hidden (and benevolent) causes that minimize conditional uncer-
tainty. The agent may infer that these control states are produced
by its own movements and thereby infer agency, although this
is not necessary: The agent’s generative model must specify how
hidden controls affect sensory samples so that action can realize
prior beliefs; however, the agent has no model or representation
of how action affects hidden controls. This is important because it
eschews the inverse motor control problem; namely, working out
which actions produce desired hidden controls. We will return to
this later.

SUMMARY
To recap, we started with the assumption that biological systems
seek to minimize the dispersion or entropy of states in their exter-
nal milieu to ensure a sustainable and homoeostatic exchange with
their environment (Ashby, 1947). Clearly, these states are hidden
and therefore cannot be measured or changed directly. However,
if agents know how their action changes sensations (for example,
if they know contracting certain muscles will necessarily excite
primary sensory afferents from stretch receptors), then they can
minimize the dispersion of their sensory states by countering sur-
prising deviations from expected values. If the uncertainty about
hidden states, given sensory states, is small, then the implicit min-
imization of sensory surprise through action will be sufficient.
Minimizing surprise through action is not as straightforward as it
might seem, because the evaluation of surprise per se is intractable.
This is where free energy comes in – to provide an upper bound
that enables agents to minimize free energy instead of surprise.
However, in creating the upper bound the agent now has to mini-
mize the difference between surprise and free energy by changing
its internal states. This corresponds to perception and makes the
conditional density an approximation to the true posterior density
(Helmholtz, 1866/1962; Gregory, 1980; Ballard et al., 1983; Dayan
et al., 1995; Friston, 2005). When the agent has optimized its con-
ditional density, through Bayes-optimal perception, it is now in a
position to minimize the uncertainty about hidden states causing
sensations. It can do this by engaging action to realize prior beliefs
about states which control this uncertainty. In other words, it only
has to believe that hidden states of the world will disclose them-
selves in an efficient way and then action will make these beliefs
come true.

For example, if I am sitting in my garden and register some flut-
tering in the periphery of my vision, then my internal brain states
will change to encode the perceptual hypothesis that the sensa-
tions were caused by a bird. This minimizes my surprise about the
fluttering sensations. On the basis of this hypothesis I will select
prior beliefs about the direction of my gaze that will minimize
the uncertainty about my hypothesis. These prior beliefs will pro-
duce proprioceptive predictions about my oculomotor system and
the visual consequences of looking at the bird. Action will fulfill
these proprioceptive predictions and cause me to foveate the bird
through classical reflex arcs. If my original hypothesis was correct,
the visual evidence discovered by my orienting saccade will enable
me to confirm the hypothesis with a high degree of conditional
certainty. We will pursue this example later using simulations.

Crucially, placing prior beliefs about hidden controls in the
perception–action cycle rests upon having a generative model that
includes control. In other words, this sort of Bayes-optimal search
calls on an internal model of how we sample our environment.
Implicit in a model of controlled sampling is a representation
or sense of agency, which extends the free-energy formalism in
an important way. Note however, this extension follows naturally
from the basic premise that the purpose of action and percep-
tion is to minimize the joint entropy of hidden world states and
their sensory consequences. In this section, we have seen how
prior beliefs, that afford important constraints on free energy,
can be harnessed to minimize not just the entropy of sensory
states but also the hidden states that cause them. This adds extra
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dependencies between conditional and prior expectations that
have to be encoded by internal brain states (see Figure 1). We
will see later that this leads to a principled exploration of the
sensorium, which shares many features with empirical behavior.
Before considering the neurobiological implementation of these
dependencies, this section concludes by revisiting counterfactual
priors to show that they are remarkably consistent with a number
of other perspectives:

THE INFOMAX PERSPECTIVE
Priors about hidden controls express the belief that conditional
uncertainty will be minimal. The long-term average of this con-
ditional uncertainty is the conditional entropy of hidden states,
which can be expressed as the entropy over hidden states minus
the mutual information between hidden and sensory states

H (Ψ | S) = Et [H (Ψ | S = s̃(t ))] = H (Ψ) − I (Ψ; S) (8)

In other words, minimizing conditional uncertainty is equiv-
alent to maximizing the mutual information between external
states and their sensory consequences. This is one instance of the

Infomax principle (Linsker, 1990). Previously, we have considered
the relationship between free-energy minimization and the prin-
ciple of maximum mutual information, or minimum redundancy
(Barlow, 1961, 1974; Optican and Richmond, 1987; Oja, 1989;
Olshausen and Field, 1996; Bialek et al., 2001) in terms of the
mapping between hidden and internal states (Friston, 2010). In
this setting, one can show that “the Infomax principle is a special
case of the free-energy principle that obtains when we discount
uncertainty and represent sensory data with point estimates of
their causes.” Here, we consider the mapping between external
and sensory states and find that prior beliefs about how sensory
states are sampled further endorse the Infomax principle.

THE SIGNAL DETECTION PERSPECTIVE
A related perspective comes from signal detection theory (Morgan,
2011) and the sensitivity of sensory mappings to external states of
the world: For a sensory mapping with additive Gaussian noise (in
which sensory precision is not state dependent):

s̃ = g̃
(
ψ̃

)
+ ω̃

p (ω̃ | m) = N (0, Σω)

FIGURE 1 |This schematic shows the dependencies among various

quantities that are assumed when modeling the exchanges of a self

organizing system like the brain with the environment. The top panel
describes the states of the environment and the system or agent in terms of
a probabilistic dependency graph, where connections denote directed
dependencies. The quantities are described within the nodes of this graph
with exemplar forms for their dependencies on other variables (see main
text). Here, hidden and internal states are separated by action and sensory
states. Both action and internal states encoding a conditional density
minimize free energy, while internal states encoding prior beliefs maximize

salience. Both free energy and salience are defined in terms of a generative
model that is shown as fictive dependency graph in the lower panel. Note
that the variables in the real world and the form of their dynamics are different
from that assumed by the generative model; this is why external states are in
bold. Furthermore, note that action is a state in the model of the brain but is
replaced by hidden controls in the brain’s model of its world. This means that
the agent is not aware of action but has beliefs about hidden causes in the
world that action can fulfill through minimizing free energy. These beliefs
correspond to prior expectations that sensory states will be sampled in a way
that optimizes conditional confidence or salience.
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p
(
ψ̄ | m

) = N (
η̃, Σψ

)
G (s̃, μ̃) = 1

2

(
s̃ − g̃ (μ̃)

)T
Πω

(
s̃ − g̃ (μ̃)

) − 1
2 ln |Πω|

+ 1
2 (μ̃ − η̃)T Πψ (μ̃ − η̃)

H
[

q
(
ψ̃

)]
= − 1

2 ln
∣∣∣∂μ̃g̃ T Πω∂μ̃g̃ + Πψ

∣∣∣ (9)

This means minimizing conditional uncertainty (as approxi-
mated by the entropy of the conditional density) rests on max-
imizing signal to noise: ∂μ̃g̃ T ∏

ω∂μ̃g̃ . Here, the gradients of the
sensory mapping ∂μ̃g̃ can be regarded as the sensitivity of the sen-
sory mapping to changes in hidden states, where this sensitivity
depends on hidden controls.

There are several interesting points to be made here: first, when
the sensory mapping is linear, its gradient is constant and condi-
tional uncertainty does not depend upon hidden controls. In this
instance, everything is equally salient and there are no optimal
prior beliefs about hidden controls. This has been the simplifying
assumption in previous treatments of the free-energy principle,
where “the entropy of hidden states is upper-bounded by the
entropy of sensations, assuming their sensitivity to hidden states
is constant, over the range of states encountered” (Friston, 2010).
However, this assumption fails with sensory mappings that are
non-linear in hidden controls. Important examples in the visual
domain include visual occlusion, direction of gaze and, most sim-
ply, the level of illumination. The last example speaks directly to the
dark room problem and illustrates its resolution by prior beliefs: if
an agent found itself in a dark room, the simplest way to increase
the gain or sensitivity of its sensory mapping would be to switch on
a light. This action would be induced by prior beliefs that there will
be light, provided the agent has a generative model of the propri-
oceptive and visual consequences of illuminating the room. Note
that action is caused by proprioceptive predictions under beliefs
about hidden controls (changes in illumination), which means
the agent does not have to know or model how its actions change
hidden controls.

Finally, although we will not pursue it in this paper, the con-
ditional entropy or salience also depends on how causes affect
sensory precision. This is only relevant when sensory precision is
state dependent; however, this may be important in the context of
attention and salience. We have previously cast attention has opti-
mizing conditional expectations about precision (Feldman and
Friston, 2010). In the current context, this optimization will affect
salience and subsequent sensory sampling. This will be pursued in
another paper.

THE BAYESIAN SURPRISE PERSPECTIVE
Bayesian surprise is a measure of salience based on the Kullback–
Leibler divergence between the conditional density (which encodes
posterior beliefs) and the prior density (Itti and Baldi, 2009).
It measures the information in the data that can be recognized.
Empirically, humans direct their gaze toward visual features with
high Bayesian surprise: “subjects are strongly attracted toward
surprising locations, with 72% of all human gaze shifts directed
toward locations more surprising than the average, a figure which
rises to 84% when considering only gaze targets simultaneously
selected by all subjects” (Itti and Baldi, 2009). In the current setup,

Bayesian surprise is the cross entropy or divergence between the
posterior and priors over hidden states

D
[

q
(
ψ̃

)
|| p

(
ψ̃ | m

)]
= Eq

{
− ln p

(
ψ̃ | m

)}
− H

[
q

(
ψ̃

)]
(10)

If prior beliefs about hidden states are uninformative, the first term
is roughly constant. This means that maximizing salience is the
same as maximizing Bayesian surprise. This is an important obser-
vation because it links salience in the context of active inference
with the large literature on salience in the theoretical (Humphreys
et al., 2009) and empirical (Shen et al., 2011; Wardak et al., 2011)
visual sciences; where Bayesian surprise was introduced to explain
visual searches in terms of salience.

Minimizing free energy will generally increase Bayesian sur-
prise, because Bayesian surprise is also the complexity cost associ-
ated with updating beliefs to explain sensory data more accurately
(Friston, 2010). The current arguments suggest that prior beliefs
about how we sample the world - to minimize uncertainty about
our inferences - maximize Bayesian surprise explicitly. The term
Bayesian surprise can be a bit confusing because minimizing sur-
prise per se (or maximizing model evidence) involves keeping
Bayesian surprise (complexity) as small as possible. This paradox
can be resolved here by noting that agents expect Bayesian surprise
to be maximized and then acting to minimize their surprise, given
what they expect.

In summary, the imperative to maximize salience or condi-
tional confidence about the causes of sensations emerges naturally
from the basic premise that self organizing biological systems (like
the brain) minimize the dispersion of their external states when
subject to an inconstant and fluctuating environment. This imper-
ative, expressed in terms of prior beliefs about hidden controls in
the world that are fulfilled by action, is entirely consistent with
the principle of maximum information transfer, sensitivity argu-
ments from signal detection theory and formulations of salience
in terms of Bayesian surprise. In what follows, we now consider
the neurobiological implementation of free-energy minimization
through active inference:

NEUROBIOLOGICAL IMPLEMENTATION OF ACTIVE
INFERENCE
In this section, we take the general principles above and consider
how they might be implemented in the brain. The equations in
this section may appear a bit complicated; however, they are based
on just four assumptions:

• The brain minimizes the free energy of sensory inputs defined
by a generative model.

• This model includes prior expectations about hidden controls
that maximize salience.

• The generative model used by the brain is hierarchical, non-
linear, and dynamic.

• Neuronal firing rates encode the expected state of the world,
under this model.

The first assumption is the free-energy principle, which leads
to active inference in the embodied context of action. The second
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assumption follows from the arguments of the previous section.
The third assumption is motivated easily by noting that the world
is both dynamic and non-linear and that hierarchical causal struc-
ture emerges inevitably from a separation of temporal scales
(Ginzburg and Landau, 1950; Haken, 1983). Finally, the fourth
assumption is the Laplace assumption that, in terms of neural
codes, leads to the Laplace code that is arguably the simplest and
most flexible of all neural codes (Friston, 2009).

Given these assumptions, one can simulate a whole variety of
neuronal processes by specifying the particular equations that con-
stitute the brain’s generative model. The resulting perception and
action are specified completely by the above assumptions and can
be implemented in a biologically plausible way as described below
(see Table 1 for a list of previous applications of this scheme). In
brief, these simulations use differential equations that minimize
the free energy of sensory input using a generalized (gradient)
descent (Friston et al., 2010b).

.
μ̃(t ) = Dμ̃(t ) − ∂μ̃F (s̃, μ̃)

ȧ(t ) = −∂aF (s̃, μ̃)
(11)

These coupled differential equations describe perception and
action respectively and just say that internal brain states and
action change in the direction that reduces free energy. The first
is known as (generalized) predictive coding and has the same
form as Bayesian (e.g., Kalman–Bucy) filters used in time series
analysis; see also (Rao and Ballard, 1999). The first term in Eq.
11 is a prediction based upon a differential matrix operator D

Table 1 | Processes and paradigms that have been modeled using the

scheme in this paper.

Domain Process or paradigm

Perception Perceptual categorization (bird songs; Friston and

Kiebel, 2009)

Novelty and omission-related responses (Friston and

Kiebel, 2009)

Perceptual inference (speech; Kiebel et al., 2009)

Sensory

learning

Perceptual learning (mismatch negativity; Friston and

Kiebel, 2009)

Attention Attention and the Posner paradigm (Feldman and

Friston, 2010)

Attention and biased competition (Feldman and

Friston, 2010)

Motor control Retinal stabilization and oculomotor reflexes (Friston

et al., 2010a)

Saccadic eye movements and cued reaching (Friston

et al., 2010a)

Motor trajectories and place cells (Friston et al., 2011)

Sensorimotor

integration

Bayes-optimal sensorimotor integration (Friston et al.,

2010a)

Behavior Heuristics and dynamical systems theory (Friston and

Ao, 2011)

Goal-directed behavior (Friston et al., 2009)

Action

observation

Action observation and mirror neurons (Friston et al.,

2011)

that returns the generalized motion of the expectation, such that

Dμ̃ = [
μ′, μ′′, μ′′′, . . .

]T
. The second term is usually expressed as

a mixture of prediction errors that ensures the changes in condi-
tional expectations are Bayes-optimal predictions about hidden
states of the world. The second differential equation says that
action also minimizes free energy - noting that free energy depends
on action through sensory states S: Ψ ×A × Ω → R. The differen-
tial equations in (11) are coupled because sensory input depends
upon action, which depends upon perception through the condi-
tional expectations. This circular dependency leads to a sampling
of sensory input that is both predicted and predictable, thereby
minimizing free energy and surprise.

To perform neuronal simulations under this framework, it is
only necessary to integrate or solve Eq. 11 to simulate the neu-
ronal dynamics that encode conditional expectations and ensuing
action. Conditional expectations depend upon the brain’s gen-
erative model of the world, which we assume has the following
(hierarchical) form

s = g (1)
(

x(1), v(1), u(i)
)

+ ω(1)
v

ẋ(1) = f (1)
(

x(1), v(1), u(i)
)

+ ω(1)
x

...

v(i−1) = g (i)
(

x(i), v(i), u(i)
)

+ ω(i)
v

ẋ(i) = f (i)
(

x(i), v(i), u(i)
)

+ ω(i)
x

...

(12)

This equation is just a way of writing down a model that speci-
fies a probability density over the sensory and hidden states, where
the hidden states Ψ = X ×V × U have been divided into hidden
dynamic, causal and control states. Here [g (i), f (i)] are non-linear
functions of hidden states that generate sensory inputs at the first
(lowest) level, where, for notational convenience, v(0): = s.

Hidden causes V ⊂ Ψ can be regarded as functions of hidden
dynamic states; hereafter, hidden states X ⊂ Ψ. Random fluctua-

tions (ω
(i)
x , ω(i)

v ) on the motion of hidden states and causes are
conditionally independent and enter each level of the hierarchy.
It is these that make the model probabilistic: they play the role
of sensory noise at the first level and induce uncertainty about
states at higher levels. The (inverse) amplitudes of these random
fluctuations are quantified by their precisions (

∏(i)
x ,

∏(i)
v ), which

we assume to be fixed in this paper. Hidden causes link hierarchi-
cal levels, whereas hidden states link dynamics over time. Hidden
states and causes are abstract quantities (like the motion of an
object in the field of view) that the brain uses to explain or pre-
dict sensations. In hierarchical models of this sort, the output of
one level acts as an input to the next. This input can produce
complicated (generalized) convolutions with deep (hierarchical)
structure.

PERCEPTION AND PREDICTIVE CODING
Given the form of the generative model (Eq. 12) we can now
write down the differential equations (Eq. 11) describing neu-
ronal dynamics in terms of (precision-weighted) prediction errors
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on the hidden causes and states. These errors represent the dif-
ference between conditional expectations and predicted values,
under the generative model (using A · B: = ATB and omitting
higher-order terms):

˙̃μ(i)
x = Dμ̃(i)

x + ∂ g̃ (i)

∂μ̃
(i)
x

· ξ(i)
v + ∂ f̃ (i)

∂μ̃
(i)
x

· ξ(i)
x − DT ξ(i)

x

˙̃μ(i)
v = Dμ̃(i)

v + ∂ g̃ (i)

∂μ̃
(i)
v

· ξ(i)
v + ∂ f̃ (i)T

∂μ̃
(i)
v

· ξ(i)
x − ξ(i+1)

v

˙̃μ(i)
u = Dμ̃(i)

u + ∂ g̃ (i)

∂μ̃
(i)
u

· ξ(i)
v + ∂ f̃ (i)

∂μ̃
(i)
u

· ξ(i)
x − ξ(i+1)

u

ξ(i)
x =

∏(i)

x
(Dμ̃(i)

x − f̃ (i)(μ̃(i)
x , μ̃(i)

v , μ̃(i)
u ))

ξ(i)
v =

∏(i)

v

(
μ̃(i −1)

v − g̃ (i)
(
μ̃(i)

x , μ̃(i)
v , μ̃(i)

u

))

ξ(i)
u =

∏(i)

u
(μ̃(i −1)

u − η̃(i)
u )

(13)

Equation 13 can be derived fairly easily by computing the free
energy for the hierarchical model in Eq. 12 and inserting its gradi-
ents into Eq. 11. What we end up with is a relatively simple update
scheme, in which conditional expectations are driven by a mixture
of prediction errors, where prediction errors are defined by the
equations of the generative model.

It is difficult to overstate the generality and importance of Eq.
13: its solutions grandfather nearly every known statistical esti-
mation scheme, under parametric assumptions about additive or
multiplicative noise (Friston, 2008). These range from ordinary
least squares to advanced variational deconvolution schemes. The
resulting scheme is called generalized filtering or predictive coding
(Friston et al., 2010b). In neural network terms, Eq. 13 says that
error units receive predictions from the same level and the level
above. Conversely, conditional expectations (encoded by the activ-
ity of state units) are driven by prediction errors from the same
level and the level below. These constitute bottom-up and lateral
messages that drive conditional expectations toward a better pre-
diction to reduce the prediction error in the level below. This is the
essence of recurrent message passing between hierarchical levels
to optimize free energy or suppress prediction error: see Friston
and Kiebel (2009) for a more detailed discussion. In neurobio-
logical implementations of this scheme, the sources of bottom-up
prediction errors, in the cortex, are thought to be superficial pyra-
midal cells that send forward connections to higher cortical areas.
Conversely, predictions are conveyed from deep pyramidal cells,
by backward connections, to target (polysynaptically) the super-
ficial pyramidal cells encoding prediction error (Mumford, 1992;
Friston and Kiebel, 2009). Figure 2 provides a schematic of the
proposed message passing among hierarchically deployed cortical
areas.

ACTION
In active inference, conditional expectations elicit behavior by
sending top-down predictions down the hierarchy that are
unpacked into proprioceptive predictions at the level of the cra-
nial nerve nuclei and spinal-cord. These engage classical reflex

arcs to suppress proprioceptive prediction errors and produce the
predicted motor trajectory

ȧ = − ∂

∂a
F = − ∂ s̃

∂a
· ξ(1)

v (14)

The reduction of action to classical reflexes follows because the
only way that action can minimize free energy is to change sensory
(proprioceptive) prediction errors by changing sensory signals;
cf., the equilibrium point formulation of motor control (Feldman
and Levin, 1995). In short, active inference can be regarded as
equipping a generalized predictive coding scheme with classical
reflex arcs: see (Friston et al., 2009, 2010a) for details. The actual
movements produced clearly depend upon top-down predictions
that can have a rich and complex structure, due to perceptual
optimization based on the sampling of salient exteroceptive and
interoceptive inputs.

COUNTERFACTUAL PROCESSING
To optimize prior expectations about hidden controls it is neces-
sary to identify those that maximize the salience of counterfactual
representations implicit in the counterfactual density in Eq. 7.
Clearly, there are many ways this could be implemented. In this
paper, we will focus on visual searches and assume that counter-
factual expectations are represented explicitly and place coded in
a saliency map over the space of hidden causes. In other words,
we will assume that salience is encoded on a grid correspond-
ing to discrete values of counterfactual expectations associated
with different hidden control states. The maximum of this map
defines the counterfactual expectation with the greatest salience,
which then becomes the prior expectation about hidden control
states. This prior expectation enters the predictive coding in Eq.
13. The salience of the j-th counterfactual expectation is, from
Eqs 9 and 12,

η̃u(t ) = arg maxη̃j S(η̃j)

S(η̃j) = −H [q(ψ̃ | μ̃x (t + τ), μ̃v (t + τ), η̃j)]
= 1

2 ln
∣∣∣∂ψ̃ε̃T

j Πω∂ψ̃ε̃j + Πψ

∣∣∣
(15)

where the counterfactual prediction errors and their precisions
are:

ε̃
(i)
j =

⎡
⎢⎣

Dμ̃
(i)
x − f̃ (i)(μ̃

(i)
x , μ̃(i)

v , η̃(i)
j )

μ̃
(i−1)
v − g̃ (i)(μ̃

(i)
x , μ̃(i)

v , η̃(i)
j )

μ̃
(i−1)
u − η̃

(i)
u

⎤
⎥⎦ ,

∏(i)

ω
=

⎡
⎢⎣

∏(i)
x ∏(i)

v ∏(i)
u

⎤
⎥⎦

ε̃j =

⎡
⎢⎢⎣

ε
(1)
j
...

ε
(n)
j

⎤
⎥⎥⎦ ,

∏
ω

=
⎡
⎢⎣

∏(1)
ω

. . . ∏(n)
ω

⎤
⎥⎦

(16)
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FIGURE 2 | Schematic detailing the neuronal architecture that might

encode conditional expectations about the states of a hierarchical

model. This shows the speculative cells of origin of forward driving
connections that convey prediction error from a lower area to a higher area
and the backward connections that construct predictions (Mumford, 1992).
These predictions try to explain away prediction error in lower levels. In
this scheme, the sources of forward and backward connections are
superficial and deep pyramidal cells respectively. The equations represent

a generalized descent on free-energy under the hierarchical models
described in the main text: see also (Friston, 2008). State units are in black
and error units in red. Here, neuronal populations are deployed
hierarchically within three cortical areas (or macro-columns). Within each
area, the cells are shown in relation to cortical layers: supra-granular (I–III)
granular (IV) and infra-granular (V–VI) layers. For simplicity, conditional
expectations about control states had been absorbed into conditional
expectations about hidden causes.

Given that we will be simulating visual searches with saccadic
eye movements, we will consider the prior expectations to be
updated at discrete times to simulate successive saccades, where
the hidden controls correspond to locations in the visual scene
that attract visual fixation.

SUMMARY
In summary, we have derived equations for the dynamics of per-
ception and action using a free-energy formulation of adaptive
(Bayes-optimal) exchanges with the world and a generative model
that is both generic and biologically plausible. In what follows, we
use Eqs 13–15 to simulate neuronal and behavioral responses. A
technical treatment of the material above can be found in (Fris-
ton et al., 2010a), which provides the details of the scheme used
to integrate Eq. 11 to produce the simulations in the next section.
The only addition to previous illustrations of this scheme is Eq. 15,
which maps conditional expectations about hidden states to prior
expectations about hidden controls: it is this mapping that under-
writes the sampling of salient features and appeals to the existence
of hidden control states that action can change. Put simply, this
formulation says that action fulfills predictions and we predict
that the consequences of action (i.e., hidden controls) minimize
the uncertainty about predictions.

MODELING SACCADIC EYE MOVEMENTS
In this section, we will illustrate the theory of the previous section,
using simulations of sequential eye movements. Saccadic eye
movements are a useful vehicle to illustrate active inference about
salient features of the world because they speak directly to visual
search strategies and a wealth of psychophysical, neurobiological,
and theoretical study (e.g., Grossberg et al., 1997; Ferreira et al.,
2008; Srihasam et al., 2009; Bisley and Goldberg, 2010; Shires et al.,
2010; Tatler et al., 2011; Wurtz et al., 2011). Having said this, we do
not aim to provide detailed neurobiological simulations of oculo-
motor control, rather to use the basic phenomenology of saccadic
eye movements to illustrate the key features of the optimal infer-
ence scheme described above. This scheme can be regarded as a
formal example of active vision (Wurtz et al., 2011); sometimes
described in enactivist terms as visual palpation (O’Regan and
Noë, 2001).

In what follows, we describe the production of visual sig-
nals and how they are modeled in terms of a generative model.
We will focus on a fairly simple paradigm – the categoriza-
tion of faces – and therefore sidestep many of the deeper chal-
lenges of understanding visual searches. These simulations should
not be taken as a serious or quantitative model of saccadic eye
movements – they just represent a proof of principle to illustrate

www.frontiersin.org May 2012 | Volume 3 | Article 151 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Perception_Science/archive


Friston et al. Perceptions as hypotheses

the basic phenomenology implied by prior beliefs that constitute
a generative model. Specifying a generative model allows us to
compute the salience of stimulus features that are sampled and
enables us to solve or integrate Eq. 11 to simulate the neuronal
encoding of posterior beliefs and ensuing action. We will illus-
trate this in terms of oculomotor dynamics and the perception
of a visual stimulus or scene. The simulations reported below
can be reproduced by calling (annotated) Matlab scripts from the
DEM graphical user interface (Visual search), available as academic
freeware (http://www.fil.ion.ucl.ac.uk/spm/).

THE GENERATIVE PROCESS
To integrate the generalized descent on free energy in Eq. 11,
we need to define the processes generating sensory signals as a
function of (hidden) states and action:

sp = xp + ωv ,p

sq = g (I , xp) + ωv ,q

gi = I (di,1 + xp,1, di,2 + xp,2) · hi

ẋp = a − 1
16 xp + ωx ,p

(17)

Note that these hidden states are true states that actually pro-
duce sensory signals. These have been written in boldface to
distinguish them from the hidden states assumed by the generative
model (see below). In these simulations, the world is actually very
simple: sensory signals are generated in two modalities – propri-
oception and vision. Proprioception, sp ∈ R

2 reports the center of
gaze or foveation as a displacement from the origin of some extrin-
sic frame of reference. Inputs in the visual modality comprise a list
sq ∈ R

256 of values over an array of sensory channels sampling a
two-dimensional image or visual scene I: R

2 → R. This sampling
uses a grid of 16 × 16 channels that uniformly samples a small part
the image (one sixth of the vertical and horizontal extent). The
numerical size of the grid was chosen largely for computational
expedience. In terms of its size in retinotopic space – it represents
a local high-resolution (foveal) sampling that constitutes an atten-
tional focus. To make this sampling more biologically realistic, each
channel is equipped with a center-surround receptive field that
samples a local weighted average of the image. The weights cor-
respond to a Gaussian function with a standard deviation of one
pixel minus another Gaussian function with a standard deviation
of four pixels. This provides an on-off center-surround sampling.
Furthermore, the signals are modulated by a two-dimensional
Hamming function – to model the loss of precise visual infor-
mation from the periphery of the visual field. This modulation
was meant to model the increasing size of classical receptive fields
and an attentional down-weighting of visual input with increasing
eccentricity from the center of gaze (Feldman and Friston, 2010).

The only hidden states in this generative process xp ∈ R
2 are the

center of oculomotor fixation, whose motion is driven by action
and decays with a suitably long time constant of 16 time bins (each
time bin corresponds to 12 ms). These hidden states are also sub-
ject to random fluctuations, with a temporal smoothness of one
half of a time bin (6 ms). The hidden states determine where the
visual scene is sampled (foveated). In practice, the visual scene cor-
responds to a large grayscale image, where the i-th visual channel

is sampled at location di + xp ∈ R
2 using sinc interpolation (as

implemented in the SPM image analysis package). Here, di ∈ R
2

specifies the displacement of the i-th channel from the center of the
sampling grid. The proprioceptive and visual signals were effec-
tively noiseless, where there random fluctuations (ωv,p , ωv,q) had
a log precision of 16. The motion of the fixation point was sub-
ject to low amplitude fluctuations (ωx,p) with a log precision of
eight. This completes our description of the process generating
proprioceptive and visual signals, for any given visual scene and
action-dependent trajectory of hidden states (center of fixation).
We now turn to the model of this process that generates predictions
and action:

THE GENERATIVE MODEL
The model of sensory signals used to specify variational free
energy and consequent action (visual sampling) is slightly more
complicated than the actual process of generating data:

sp = xp + ωv ,p

sq =
∑

i

exp(xq,i)g (Ii , xp) + ωv ,q

ẋp = 1
4 (u − xp) + ωx ,p

ẋq = 1 −
∑

i

exp(xq,i) − 1
1024 xq + ωx ,p

(18)

As in the generative process above, proprioceptive signals are
just a noisy mapping from hidden proprioceptive states encoding
the direction of gaze. The visual input is modeled as a mixture
of images sampled at a location specified by the proprioceptive
hidden state. This hidden state decays with a time constant of four
time bins (48 ms) toward a hidden control state. In other words,
the hidden control determines the location that attracts gaze.

The visual input depends on a number of hypotheses or internal
images Ii: R2 → R: i ∈ {1,. . ., N } that constitute the agent’s prior
beliefs about what could cause its visual input. In this paper, we
use N = 3 hypotheses. The input encountered at any particular
time is a weighted mixture of these internal images, where the
weights correspond to hidden perceptual states. The dynamics of
these perceptual states (last equality above) implement a form of
dynamic softmax, in the sense that the solution of their equations
of motion ensures the weights sum (approximately) to one:

ẋq = 0 ⇒
∑

i

exp(xq,i) ≈ 1 (19)

This means we can interpret exp(xq,i) as the (softmax) probability
that the i-th internal image or hypothesis is the cause of visual
input. The decay term (with a time constant of 512 time bins) just
ensures that perceptual states decay slowly to the same value, in
the absence of perceptual fluctuations.

In summary, given hidden proprioceptive and perceptual states
the agent can predict the proprioceptive and visual input. The gen-
erative model is specified by Eq. 18 and the precision of the random
fluctuations that determine the agent’s prior certainty about sen-
sory inputs and the motion of hidden states. In the examples below,
we used a log precision of eight for proprioceptive sensations and
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the motion of hidden states that - and let the agent believe its
visual input was fairly noisy, with a log precision of four. In prac-
tice, this means it is more likely to change its (less precise) posterior
beliefs about the causes of visual input to reduce prediction error,
as opposing to adjusting its (precise) posterior beliefs about where
it is looking. All that now remains is to specify prior beliefs about
the hidden control state attracting the center of gaze:

PRIORS AND SALIENCY
To simulate saccadic eye movements, we integrated the active infer-
ence scheme for 16 time bins (196 ms) and then computed a map
of salience to reset the prior expectations about the hidden con-
trol states that attract the center of gaze. This was repeated eight
times to give a sequence of eight saccadic eye movements. The
simulation of each saccade involves integrating the coupled dif-
ferential Eqs 11, 14, and 17 to solve for the true hidden states,
action, and posterior expectations encoded by neuronal activity.
The integration used a local linearization scheme (Ozaki, 1992) in
generalized coordinates of motion as described in several previous
publications (Friston et al., 2010a).

The salience was computed for 1024 = 32 × 32 locations dis-
tributed uniformly over the visual image or scene. The prior
expectation of the hidden control state was the (generalized)
location η̃j ∈ [ηj , 0, 0, . . .]T that maximized salience, according
to Eq. 15:

η̃u = arg max
η̃j

S(η̃j)

S(η̃j) = −H [q(ψ̃ | μ̃x (t + τ), μ̃v (t + τ), η̃j)]
(20)

The fictive prediction errors at each location where evaluated
at their solution under the generative model; namely,

μ̃x (t + τ) =
[

μ̃x ,p(t + τ) = η̃j

μ̃x ,q(t + τ) = μ̃x ,q(t )

]
(21)

In other words, salience is evaluated for proprioceptive and
perceptual expectations encoding current posterior beliefs about
the content of the visual scene and the fictive point of fixation to

which gaze is attracted. The ensuing salience over the 32 × 32 loca-
tions constitutes a salience map that drives the next saccade. Notice
that salience is a function of, and only of, fictive beliefs about the
state of the world and essentially tells the agent where to sample
(look) next. Salience depends only on sensory signals vicariously,
through the current posterior beliefs. This is important because
it means that salience is not an attribute of sensations, but beliefs
about those sensations. In other words, salience is an attribute of
features we believe to be present in the world and changes with the
way that those features are sampled. In the present setting, salience
is a function of where the agent looks. Note that the simulations
of saccadic eye movements in this paper are slightly unusual, in
that the salience map extends beyond the field of view. This means
salient locations in the visual scene are represented outside the field
of view: these locations are parts of a scene that should provide
confirmatory evidence for current hypotheses about the extended
(visual) environment.

Figure 3 provides a simple illustration of salience based upon
the posterior beliefs or hypothesis that local (foveal) visual inputs
are caused by an image of Nefertiti. The left panels summarize
the classic results of Yarbus (1967); in terms of a stimulus and the
eye movements it elicits. The right panels depict visual input after
sampling the image on the right with center-surround receptive
fields and the associated saliency map based on a local sampling
of 16 × 16 pixels, using Eq. 20. Note how the receptive fields sup-
press absolute levels of luminance contrast and highlight edges. It
is these edges that inform posterior beliefs about both the content
of the visual scene and where it is being sampled. This informa-
tion reduces conditional uncertainty and is therefore salient. The
salient features of the image include the ear, eye, and mouth. The
location of these features and a number of other salient locations
appear to be consistent with the locations that attract saccadic eye
movements (as shown on the right). Crucially, the map of salience
extends well beyond the field of view (circle on the picture). As
noted above, this reflects the fact that salience is not an attribute of
what is seen, but what might be seen under a particular hypothesis
about the causes of sensations.

To make the simulations a bit more realistic, we added a fur-
ther prior implementing inhibition of return (Itti and Koch, 2001;

FIGURE 3 |This provides a simple illustration of salience based upon

the posterior beliefs or hypothesis that local (foveal) visual inputs

are caused by an image of Nefertiti. The left panels summarize the
classic results of Yarbus; in terms of a stimulus and the eye movements
it elicits. The right panels depict visual input after sampling the image on
the right (using conventional center-surround receptive fields) and the
associated saliency map based on a local sampling of 16 × 16 pixels,

using the generative model described in the main text. The size of the
resulting field of view, in relation to the visual scene, is indicated with the
circle on the left image. The key thing to note here is that the salient
features of the image include the ear, eye, and mouth. The location of
these features and other salient locations appear to be consistent with
the locations that attract saccadic eye movements (as shown on the
left).
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Wang and Klein, 2010). This involved suppressing the salience
of locations that have been recently foveated, using the following
scheme:

Sk = Sk − (Sk × Rk−1)

Rk = ρ(Sk) + 1
2 Rk−1

(22)

Here, Sk = S(η̃j)−min(S(η̃j)) is the differential salience for the
k-th saccade and Rk is an inhibition of return map that remem-
bers recently foveated locations. This map reduces the salience
of previous locations if they were visited recently. The function
ρ(Sk ) ∈ [0,1] is a Gaussian function (with a standard deviation
of 1/16 of the image size) of the distance from the location of
maximum salience that attracts the k-th saccade. The addition of
inhibition of return ensures that a new location is selected by each

saccade and can be motivated ethologically by prior beliefs that
the visual scene will change and that previous locations should be
revisited.

FUNCTIONAL ANATOMY
Figure 4 provides an intuition as to how active inference under
salience priors might be implemented in the brain. This schematic
depicts a particular instance of the message passing scheme in
Figure 2, based on the generative model above. This model pre-
scribes a particular hierarchical form for generalized predictive
coding; shown here in terms of state and error units (black and red,
denoting deep and superficial pyramidal cell populations respec-
tively) that have been assigned to different cortical or subcortical
regions. The insert on the left shows a visual scene (a picture of
Nefertiti) that can be sampled locally by foveating a particular

FIGURE 4 |This schematic depicts a particular instance of the

message passing scheme in Figure 2. This example follows from the
generative model of visual input described in the main text. The model
prescribes a particular hierarchical form for generalized predictive coding;
shown here in terms of state and error units (black and red respectively)
that have been assigned to different cortical or subcortical regions. The
insert on the left shows a visual scene (a picture of Nefertiti) that can be
sampled locally by foveating a particular point – the true hidden state of
the world. The resulting visual input arrives in primary visual cortex to elicit
prediction errors that are passed forward to what and where streams.
State units in the “what” stream respond by adjusting their
representations to provide better predictions based upon a discrete
number of internal images or hypotheses. Crucially, the predictions of
visual input depend upon posterior beliefs about the direction of gaze
encoded by state units in the “where” stream. These conditional

expectations are themselves informed by top-down prior beliefs about the
direction of gaze that maximizes salience. The salience map shown in the
center is updated between saccades based upon posterior beliefs about
the content of the visual scene. Posterior beliefs about the content of the
visual scene provide predictions of visual input and future hidden states
subtending salience. Posterior beliefs about the direction of gaze are used
to form predictions of visual input and provide proprioceptive predictions
to the oculomotor system in the superior colliculus and pontine nuclei, to
elaborate a proprioceptive prediction error. This prediction error drives the
oculomotor system to fulfill posterior beliefs about where to look next.
This can be regarded as an instance of the classical reflects arc, whose set
point is determined by top-down proprioceptive predictions. The variables
associated with each region are described in detail in the text, while the
arrows connecting regions adopt same format as in Figure 2 (forward
prediction error afferents in red and backward predictions in black).

Frontiers in Psychology | Perception Science May 2012 | Volume 3 | Article 151 | 12

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science/archive


Friston et al. Perceptions as hypotheses

point – the true hidden state of the world. The resulting visual
input arrives in primary visual cortex to elicit prediction errors
that are passed forward to “what” and “where” streams (Ungerlei-
der and Mishkin, 1982). State units in the “what” stream respond
by adjusting their representations to provide better predictions
based upon a discrete number of internal images or hypotheses.
Crucially, the predictions of visual input depend upon posterior
beliefs about the direction of gaze, encoded by the state units
in the “where” stream (Bisley and Goldberg, 2010). These pos-
terior expectations are themselves informed by top-down prior
beliefs about the direction of gaze that maximizes salience. The
salience map shown in the center is updated between saccades
based upon conditional expectations about the content of the
visual scene. Conditional beliefs about the direction of gaze pro-
vide proprioceptive predictions to the oculomotor system in the
superior colliculus and pontine nuclei, to elaborate a propriocep-
tive prediction error (Grossberg et al., 1997; Shires et al., 2010;
Shen et al., 2011). This prediction error drives the oculomotor
system to fulfill posterior beliefs about where to look next. This
can be regarded as an instance of the classical reflects arc, whose
set point is determined by top-down proprioceptive predictions.
The anatomical designations should not be taken seriously (for
example, the salience map may be assembled in the pulvinar or
frontal cortex and mapped to the deep layer of the superior col-
liculus). The important thing to take from this schematic is the
functional logic implied by the anatomy that involves reciprocal
message passing and nested loops in a hierarchical architecture that
is not dissimilar to circuits in the real brain. In particular, note that
representations of hidden perceptual states provide bilateral top-
down projections to early visual systems (to predict visual input)
and to the systems computing salience, which might involve the
pulvinar of the thalamus (Wardak et al., 2011; Wurtz et al., 2011).

SUMMARY
In this section, we have described the process generating sensory
information in terms of a visual scene and hidden states that
specify how that scene is sampled. We have described both the
likelihood and priors that together comprise a generative model.
The special consideration here is that these priors reflect prior
beliefs that the agent will sample salient sensory features based
upon its current posterior beliefs about the causes of those fea-
tures. We are now in a position to look at the sorts of behavior this
model produces.

SIMULATING SACCADIC EYE MOVEMENTS
In this section, we present a few examples of visual search under the
generative model described above. Our purpose here is to illustrate
the nature of active inference, when it is equipped with priors that
maximize salience or minimize uncertainty. We will present three
simulations; first a canonical simulation in which the visual scene
matches one of three internal images or hypotheses. This simula-
tion illustrates the operation of optimal visual searches that select
the hypothesis with the lowest free energy and minimize condi-
tional uncertainty about this hypothesis. We will then repeat the
simulation using a visual scene that the agent has not experienced
and has no internal image of. This is used to illustrate a failure
to select a hypothesis and the consequent itinerant sampling of

the scene. Finally, largely for fun, we simulate a “dark room” agent
whose prior beliefs compel it to sample the least salient locations
to demonstrate how these priors result in sensory seclusion from
the environment.

Figure 5 shows the results of the first simulation, in which the
agent had three internal images or hypotheses about the scene
it might sample (an upright face, an inverted face, and a rotated
face). The agent was presented with an upright face and its poste-
rior expectations were evaluated over 16 (12 ms) time bins, after
which salience was evaluated. The agent then emitted a saccade by
foveating the most salient location during the subsequent 16 time
bins – from its starting location (the center of the visual field).
This was repeated for eight saccades. The upper row shows the
ensuing eye movements as red dots (in the extrinsic coordinates
of the true scene) at the fixation point of each saccade. The corre-
sponding sequence of eye movements is shown in the insert on the
upper left, where the red circles correspond roughly to the agent’s
field of view. These saccades were driven by prior beliefs about the
direction of gaze based upon the salience maps in the second row.
Note that these maps change with successive saccades as posterior
beliefs about the hidden perceptual states become progressively
more confident. Note also that salience is depleted in locations that
were foveated in the previous saccade – this reflects the inhibition
of return. Posterior beliefs about hidden states provide visual and
proprioceptive predictions that suppress visual prediction errors
and drive eye movements respectively. Oculomotor responses are
shown in the third row in terms of the two hidden oculomo-
tor states corresponding to vertical and horizontal displacements.
The portions of the image sampled (at the end of each saccade)
are shown in the fourth row (weighted by the Hamming function
above). The final two rows show the posterior beliefs in terms
of their sufficient statistics (penultimate row) and the perceptual
categories (last row) respectively. The posterior beliefs are plot-
ted here in terms of posterior expectations and 90% confidence
interval about the true stimulus. The key thing to note here is
that the expectation about the true stimulus supervenes over its
competing representations and, as a result, posterior confidence
about the stimulus category increases (the posterior confidence
intervals shrink to the expectation): see (Churchland et al., 2011)
for an empirical study of this sort phenomena. The images in
the lower row depict the hypothesis selected; their intensity has
been scaled to reflect conditional uncertainty, using the entropy
(average uncertainty) of the softmax probabilities.

This simulation illustrates a number of key points. First, it illus-
trates the nature of evidence accumulation in selecting a hypothe-
sis or percept the best explains sensory data. One can see that this
proceeds over two timescales; both within and between saccades.
Within-saccade accumulation is evident even during the initial
fixation, with further stepwise decreases in uncertainty as salient
information is sampled. The within-saccade accumulation is for-
mally related to evidence accumulation as described in models of
perceptual discrimination (Gold and Shadlen, 2003; Churchland
et al., 2011). This is meant in the sense that the posterior expec-
tations about perceptual states are driven by prediction errors.
However, the accumulation here rests explicitly on the formal pri-
ors implied by the generative model. In this case, the prevalence
of any particular perceptual category is modeled as a dynamical
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FIGURE 5 |This figure shows the results of the first simulation, in

which a face was presented to an agent, whose responses were

simulated using the optimal inference scheme described in the main

text. In this simulation, the agent had three internal images or hypotheses
about the stimuli it might sample (an upright face, an inverted face, and a
rotated face). The agent was presented with an upright face and its
conditional expectations were evaluated over 16 (12 ms) time bins until the
next saccade was emitted. This was repeated for eight saccades. The
ensuing eye movements are shown as red dots at the location (in extrinsic
coordinates) at the end of each saccade in the upper row. The corresponding
sequence of eye movements is shown in the insert on the upper left, where
the red circles correspond roughly to the proportion of the image sampled.
These saccades are driven by prior beliefs about the direction of gaze based
upon the saliency maps in the second row. Note that these maps change
with successive saccades as posterior beliefs about the hidden states,
including the stimulus, become progressively more confident. Note also
that salience is depleted in locations that were foveated in the previous

saccade. These posterior beliefs provide both visual and proprioceptive
predictions that suppress visual prediction errors and drive eye movements
respectively. Oculomotor responses are shown in the third row in terms of
the two hidden oculomotor states corresponding to vertical and horizontal
displacements. The associated portions of the image sampled (at the end of
each saccade) are shown in the fourth row. The final two rows show the
posterior beliefs in terms of their sufficient statistics and the stimulus
categories respectively. The posterior beliefs are plotted here in terms of
conditional expectations and the 90% confidence interval about the true
stimulus. The key thing to note here is that the expectation about the true
stimulus supervenes over its competing expectations and, as a result,
conditional confidence about the stimulus category increases (the
confidence intervals shrink to the expectation). This illustrates the nature of
evidence accumulation when selecting a hypothesis or percept that best
explains sensory data. Within-saccade accumulation is evident even during
the initial fixation with further stepwise decreases in uncertainty as salient
information is sampled at successive saccades.
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FIGURE 6 |This figure uses the same format as the previous figure,

but shows the result of presenting an unknown (unrecognizable)

face – the image of Nefertiti from previous figures. Because the agent
has no internal image or hypothesis that can produce veridical predictions
about salient locations to foveate, it cannot resolve the causes of its
sensory input and is unable to assimilate visual information into a precise
posterior belief about the stimulus. Saccadic movements are generated by

a saliency map that represents the most salient locations based upon a
mixture of all internal hypotheses about the stimulus. Irrespective of
where the agent looks, it can find no posterior beliefs or hypothesis that
can explain the sensory input. As a result, there is a persistent posterior
uncertainty about the states of the world that fail to resolve themselves.
The ensuing percepts are poorly formed and change sporadically with
successive saccades.

process that has certain continuity properties. In other words,
inherent in the model is the belief that the content of the world
changes in a continuous fashion. This means that posterior beliefs
have a persistence or slower timescale than would be observed
under schemes that just accumulate evidence. This is reflected in
the progressive elevation of the correct perceptual state above its
competitors and the consequent shrinking of the posterior con-
fidence interval. The transient changes in the posterior beliefs,
shortly after each saccade, reflect the fact that new data are being

generated as the eye sweeps toward its new target location. It
is important to note that the agent is not just predicting visual
contrast, but also how contrast changes with eye movements –
this induces an increase in conditional uncertainty (in generalized
coordinates of motion) during the fast phase of the saccade. How-
ever, due to the veracity of the posterior beliefs, the conditional
confidence shrinks again when the saccade reaches its target loca-
tion. This shrinkage is usually to a smaller level than in the previous
saccade.
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FIGURE 7 |This figure uses the same format as the previous figures but

shows the result of presenting a known (recognizable) face to an agent

whose prior beliefs about eye movements are that they should minimize

salience, as opposed to maximize it. This can be regarded as an agent that
prefers dark rooms. This agent immediately foveates the least informative part
of the scene and maintains fixation at that location (because the inhibition of
return operates by decreasing the salience of the location foveated

previously). This results in a progressive increase in uncertainty about the
stimulus; as reflected in the convergence of posterior expectations about the
three hypotheses and an increase in conditional uncertainty (penultimate
row). As time progresses, the percept fades (lower row) and the agent is
effectively sequestered from its sensorium. Note here how the salience map
remains largely unchanged and encodes a composite salience of all (three)
prior hypotheses about states of the world causing visual input.

This illustrates the second key point; namely, the circular
causality that lies behind perception. Put simply, the only hypoth-
esis that can endure over successive saccades is the one that
correctly predicts the salient features that are sampled. This sam-
pling depends upon action or an embodied inference that speaks
directly to the notion of visual palpation (sniffing; O’Regan and
Noë, 2001). This means that the hypothesis prescribes its own ver-
ification and can only survive if it is a correct representation of the

world. If its salient features are not discovered, it will be discarded
in favor of a better hypothesis. This provides a nice perspective
on perception as hypothesis testing, where the emphasis is on the
selective processes that underlie sequential testing. This is partic-
ularly pertinent when hypotheses can make predictions that are
more extensive than the data available at any one time.

Finally, although the majority of saccades target the eyes and
nose, as one might expect, there is one saccade to the forehead.
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This is somewhat paradoxical, because the forehead contains no
edges and cannot increase posterior confidence about a face. How-
ever, this region is highly informative under the remaining two
hypotheses (corresponding to the location of the nose in the
inverted face and the left eye in the rotated face). This subliminal
salience is revealed through inhibition of return and reflects the
fact that the two competing hypotheses have not been completely
excluded. This illustrates the competitive nature of perceptual
selection induced by inhibition of return and can regarded, heuris-
tically, as occasional checking of alternative hypotheses. This is a
bit like a scientist who tries to refute his hypothesis by acquir-
ing data that furnish efficient tests of his competing or null
hypotheses.

We then repeated the simulation, but used an unknown (unrec-
ognizable) face – the image of Nefertiti from previous Figures.
Because the agent has no internal image or hypothesis that can
produce veridical predictions about salient locations to foveate,
it cannot resolve the causes of its sensory input and is unable to
assimilate visual information into a precise posterior belief. (See
Figure 6). Saccadic movements are generated by a saliency map
that represents the most salient locations based upon a mixture of
all internal hypotheses about the stimulus. The salience maps here
have a lower spatial resolution than in the previous figure because
sensory channels are deployed over a larger image. Irrespective of
where the agent looks, it can find no posterior beliefs or hypothesis
that can explain the sensory input. As a result, there is a persistent
conditional uncertainty about the states of the world that fail to
resolve themselves. The ensuing percepts are poorly formed and
change sporadically with successive saccades.

Finally, we presented a known (recognizable) face to an agent
whose prior beliefs minimize salience, as opposed to maximize
it. This can be regarded as an agent that (a priori) prefers dark
rooms. This agent immediately foveates the least informative part
of the scene and maintains fixation at that location – see Figure 7.
This results in a progressive increase in uncertainty and ambiguity
about the stimulus causing visual input; as reflected in the con-
vergence of posterior expectations about the three hypotheses and
an increase in conditional uncertainty (penultimate row). As time
progresses, the percept fades (lower row) and the agent is effec-
tively sequestered from its sensorium. Note here how the salience
map remains largely unchanged and encodes a composite salience
of all (three) prior hypotheses about visual input.

DISCUSSION
This work suggests that we can understand exploration of the sen-
sorium in terms of optimality principles based on straightforward
ergodic or homoeostatic principles. In other words, to maintain
the constancy of our external milieu, it is sufficient to expose our-
selves to predicted and predictable stimuli. Being able to predict
what is currently seen also enables us to predict fictive sensations
that we could experience from another viewpoint. The mathemat-
ical arguments presented in the first section suggest that the best
viewpoint is the one that confirms our predictions with the greatest
precision or certainty. In short, action fulfills our predictions, while
we predict the consequences of our actions will maximize confi-
dence in those predictions. This provides a principled way in which
to explore and sample the world; for example, with visual searches

using saccadic eye movements. These theoretical considerations
are remarkably consistent with a number of compelling heuristics;
most notably the Infomax principle or the principle of minimum
redundancy, signal detection theory, and recent formulations of
salience in terms of Bayesian surprise.

Simulations of successive saccadic eye movements or visual
search, based on maximizing saliency or posterior precision repro-
duce, in a phenomenological sense, some characteristics of visual
searches seen empirically. Although these simulations should not
be taken as serious proposals for the neurobiology of oculomo-
tor control, they do provide a rough proof of principle for the
basic idea. An interesting perspective on perception emerges from
the simulations, in which percepts are selected through a form of
circular causality: in other words, only the correct percept can sur-
vive the cycle of action and perception, when the percept is used
to predict where to look next. If the true state of the world and the
current hypothesis concur, then the percept can maintain itself by
selectively sampling evidence for its own existence. This provides
an embodied (enactivist) explanation for perception that fits com-
fortably with the notion of visual sniffing or palpation (O’Regan
and Noë, 2001; Wurtz et al., 2011), in contrast to passive evidence
accumulation schemes. Having said this, evidence accumulation
is an integral part of optimal inference; in the sense that dynam-
ics on representations of hidden states, representing competing
hypotheses, are driven by prediction errors. However, this is only
part of the story; in that emerging representations come to play a
role in determining where to search for evidence. This is illustrated
nicely in the context of saccadic eye movements of the sort we have
simulated.

There are many limitations of the current scheme that we have
glossed over. For example, there is no principled reason why we
should include inhibition of return. Of course, we can appeal to
natural selection to say that this sort of prior belief would be more
robust in a changing environment; however, this sort of proposi-
tion is best substantiated with simulations or analytic arguments.
The question here would be whether inhibition of return is an
emergent property of free-energy minimization or Bayes-optimal
sampling of the visual scene. Another simplifying assumption that
we have made is that the agent executes a new saccade or search
on a fixed and slow timescale, without considering how saccadic
eye movements are actually triggered or when they may be trig-
gered in an optimal fashion (Grossberg et al., 1997). Note that
the emission of sporadic movements follows from the sporadic
updates of the salience map – the actual movement is responding
continuously to proprioceptive predictions based upon salience.
One advantage of considering sporadic updates is that the solution
of fictive hidden states in the future becomes relatively simple; for
example, given prior beliefs about hidden control (the location
of a point attractor of foveation), it is a relatively simple matter
to compute the hidden states in the future (that are attracted to
that location). This advantage may have been exploited by evolu-
tion. However, the fixed timescale (16 times bins of 12 ms) does
not account for the link between when and where in oculomotor
control – observed particularly in reading studies (Rayner, 1978):
Solving for fictive states in the future may not be simple when hid-
den causes are changing quickly – as in reading (Yarbus, 1967). Eye
movements have been studied extensively in the context of reading
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or have been used to infer reading processes. Huge amounts of
data are available (including corpus studies) and it would be inter-
esting to see how the current framework could explain robust
effects in reading. Moreover, models of oculomotor control in
reading – such as EZ-Reader or SWIFT (Rayner, 2009) – are par-
ticularly elaborate and include contextual constraints (allowing
predictions) and mechanisms linking where and when decisions.
These schemes represent interesting task-specific models that may
lend themselves to integration in the theoretical framework intro-
duced here. Finally, we have not paid much attention to the vast
amount of work on the neurobiology of saccadic eye movements
and their functional anatomy. It will be an interesting exercise to
see how much of the empirical work on the psychophysics and
neurophysiology of saccades can be addressed using the theory
above.

There are a number of obvious next steps that suggest them-
selves. For example, endowing the generative model with a deeper
hierarchical structure and allowing it to represent multiple objects
at the same time. One can see, at least intuitively, how the ensuing
inference would correspond to scene construction and require one
to address fundamental issues like translational invariance and the
representation of things like occlusion and depth. The hierarchi-
cal nature of representations is particularly interesting from the
point of view of face processing: for example Miellet et al. (2011)
showed that observers can use either a local (sampling foveal infor-
mation) or a global (sampling diagnostic extra-foveal features)
strategy – suggesting “that face identification is not rooted in a
single, or even preferred, information-gathering strategy” (Miel-
let et al., 2011). In the same vein, a central fixation bias has been
established for Eastern observers (Blais et al., 2008; Miellet et al.,
2010). The nature of hierarchical inference may be crucial for a
formal understanding of these phenomena: in hierarchical gener-
ative models, hidden causes are represented at multiple levels of
abstraction, each with conditional dependencies on other levels.
This means that each – global or local – level contributes to condi-
tional uncertainty and will therefore compete in determining the
most salient sensory samples that resolve uncertainty. One can see
how a context-sensitive competition among different levels of rep-
resentation could manifest as a switching between the sampling of
sensory information that informs local and global features (Miel-
let et al., 2011). In principle, this sort of competition could be
simulated by repeating the simulations presented above, using a
hierarchical generative model.

It would also be interesting to simulate bistable perception
within the current framework, using ambiguous figures and binoc-
ular presentation. The illustrations in this paper have used static
visual scenes; however, the same principles could be applied to
dynamically changing scenes and should, hopefully, reproduce
the sorts of saccades seen in reading. The solutions to hid-
den fictive states in this dynamic context would be more com-
plicated but not computationally intractable. Finally, we have
not considered microsaccadic or fixation or movements. In the
setting of active inference, fast microscopic movements repre-
sent an interesting area of study because they are the prod-
uct closed loop feedback control with multiple hierarchically
deployed loops (see Figure 4). This suggests that their statis-

tics should show some interesting features characteristic of self-
organized dynamics that are not bound to a particular temporal
scale. We look forward to addressing these and other theoretical
issues.

As noted by our reviewers, not all sensory epithelia can be
moved around to search the sensorium – as in active touch
and vision. For example, how could we generalize this approach
to audition? An intriguing possibility is the prior beliefs that
guide the active sampling of somatosensory and visual informa-
tion could also guide directed attention. In Feldman and Friston
(2010), we described the use of prior beliefs – about the loca-
tion of precise sensory information – to explain the behavioral
and electrophysiological correlates of attention (in the context
of the Posner paradigm and biased competition). One might
imagine that prior beliefs about the location of salient sensory
information would not just inform proprioceptive predictions
but predictions about the precision of sensory signals at particu-
lar locations in visual and auditory space. Turning this conjecture
around, it suggests that (directed) attention could be understood –
and implemented – in terms of prior beliefs about salient sensory
channels that provide precise sensory confirmation of latent per-
ceptual hypotheses. This perspective may provide a nice (formal)
unification of overt active searches and covert attentional searches,
in terms of prior beliefs that select where we look and where we
attend.

It should be noted that the contribution of this work is purely
conceptual and that we have not considered any empirical val-
idation of the underlying ideas. There are many theoretically
informed empirical initiatives that touch on the issues we have
considered and much more: see Thurtell et al. (2011), Dandekar
et al. (2012), Morvan and Maloney (2012), Purcell et al. (2012)
for recent examples. There are a number of interesting ways in
which the computational ideas above could be linked to empiri-
cal studies of saccadic eye movements. First, one could focus on
empirically derived salience maps and try to reverse engineer the
underlying visual hypotheses that subjects were entertaining. In
other words, Eq. 15 provides a model of a salience map – in
terms of underlying hypothetical images and precisions; which
(in principle) can be estimated, given an empirical salience map
based on occupancy during visual searches. One could take this
a stage further and use the simulations above as a generative or
forward model of real eye movements – in terms of their statistics
as measured with eye tracking or in terms of neuronal responses
measured with electroencephalography. The exciting thing here is
that one could then optimize the model parameters (e.g., internal
templates) or compare different models of salience using Bayesian
model comparison. As noted by one of our reviewers, the (neu-
ronally plausible) predictive coding scheme we used to simulate
saccadic eye movements can also be used to simulate event related
potentials. This speaks to the interesting notion of modeling eye
movements measured with eye tracking, oculomotor responses
with electrooculography, and event related neuronal responses
with electroencephalography. In principle, this modeling could
furnish a dynamic causal model (David et al., 2006) of multimodal
responses – elicited by visual searches – that is both physiologically
and computationally informed. This is outstanding but poten-
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tially important work that could provide empirical evidence for
the theoretical ideas presented in this and other papers.

In summary, we have tried to formalize the intuitive notion that
are interactions with the world are akin to sensory experiments,
by which we confirm our hypotheses about its causal structure
in an optimal and efficient fashion. This mandates prior beliefs
that the deployment of sensory epithelia and our physical rela-
tionship to the world will disclose its secrets – beliefs that are
fulfilled by action. The resulting active or embodied inference
means that not only can we regard perception as hypotheses, but

we could regard action as performing experiments that confirm or
disconfirm those hypotheses.
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