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Cues to pitch include spectral cues that arise from tonotopic organization and temporal
cues that arise from firing patterns of auditory neurons. fMRI studies suggest a common
pitch center is located just beyond primary auditory cortex along the lateral aspect of Hes-
chl’s gyrus, but little work has examined the stages of processing for the integration of pitch
cues. Using electroencephalography, we recorded cortical responses to high-pass filtered
iterated rippled noise (IRN) and high-pass filtered complex harmonic stimuli, which differ
in temporal and spectral content.The two stimulus types were matched for pitch saliency,
and a mismatch negativity (MMN) response was elicited by infrequent pitch changes. The
P1 and N1 components of event-related potentials (ERPs) are thought to arise from primary
and secondary auditory areas, respectively, and to result from simple feature extraction.
MMN is generated in secondary auditory cortex and is thought to act on feature-integrated
auditory objects. We found that peak latencies of both P1 and N1 occur later in response
to IRN stimuli than to complex harmonic stimuli, but found no latency differences between
stimulus types for MMN. The location of each ERP component was estimated based on
iterative fitting of regional sources in the auditory cortices.The sources of both the P1 and
N1 components elicited by IRN stimuli were located dorsal to those elicited by complex
harmonic stimuli, whereas no differences were observed for MMN sources across stimuli.
Furthermore, the MMN component was located between the P1 and N1 components,
consistent with fMRI studies indicating a common pitch region in lateral Heschl’s gyrus.
These results suggest that while the spectral and temporal processing of different pitch-
evoking stimuli involves different cortical areas during early processing, by the time the
object-related MMN response is formed, these cues have been integrated into a common
representation of pitch.
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INTRODUCTION
Pitch is the perceptual correlate of stimulus frequency, and is
important across a number of domains. Pitch can be used to
convey prosodic and semantic information in speech (e.g., Frick,
1985; see Moore, 2008 for a review), and is central to music
perception. In addition, pitch information provides one of the
primary cues for separating overlapping sounds and attributing
them to their correct sources in a complex soundscape (Breg-
man, 1990). Sounds with pitch typically contain energy at a
fundamental frequency and at harmonics at integer multiples
of the fundamental frequency. Normally, the different frequency
components are integrated into a single percept whose pitch
corresponds to the fundamental frequency. In fact, even if the
energy at the fundamental frequency is not present in the stimu-
lus, the pitch percept corresponding to that frequency remains.
This phenomenon is known as the pitch of the missing fun-
damental, and it emphasizes that pitch extraction is a complex
process that depends on spectrotemporal processing of informa-
tion contained in the sound stimulus. The mechanisms of pitch
extraction can be studied using a variety of stimuli that evoke pitch
sensations.

At the level of the cochlea, frequency information is repre-
sented in two ways. Physical characteristics of the basilar mem-
brane, such as the variation in stiffness along its length, give rise
to a place-based representation (Von Bekesy, 1960). Energy at
different frequencies causes maximal displacement of the mem-
brane at different locations along its length, generating a tono-
topic organization such that high frequencies are represented
near the base of the cochlea, while low frequencies are repre-
sented more apically. The mechanical energy contained in the
sound wave is converted to an electrical signal via the depo-
larization of inner hair cells such that tonotopic organization is
maintained in the auditory nerve, through subcortical nuclei, and
into primary auditory cortex (e.g., see Formisano et al., 2003;
Humphries et al., 2010 for reviews). The second frequency rep-
resentation is based on the periodicity of action potentials in
auditory nerve fibers. Because inner hair cells depolarize when
the basilar membrane is maximally displaced, firing across a pop-
ulation of auditory nerve fibers occurs at time intervals that
represent the inverse of the frequency of the acoustic signal
(e.g., Delgutte and Cariani, 1992; Cedolin and Delgutte, 2005,
2007).
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The neural mechanisms that underlie pitch perception are not
yet entirely understood. One class of models is based on place or
tonotopic information. For example, Goldstein (1973) described a
place-based model in which the harmonic structure of an acoustic
stimulus could be matched to a harmonic template to extract
pitch. However, such models have at least two inherent limita-
tions. The first is that such a mechanism would require resolution
of individual harmonics, but studies have shown that listeners can
identify the pitch of complex harmonic stimuli even when the
spectral content of those stimuli is confined to the region where
harmonics are unresolved (de Boer, 1976). The second limitation
of models that rely solely on place cues is that, although the tono-
topicity of the basilar membrane may allow for the extraction
of place cues at low intensities, these tonotopic maps have been
shown to degrade progressively with increasing stimulus inten-
sity beginning at auditory thresholds (Moore, 2003). A second
class of models is based on the temporal firing code, suggesting
that the tonotopic organization of the auditory system may not
be required for pitch extraction. Rather, these theories suggest
that pitch extraction depends on a mechanism that takes advan-
tage of the distribution of inter-spike intervals in the auditory
nerve to calculate the fundamental frequency of a complex audi-
tory stimulus (e.g., Cariani and Delgutte, 1996). These theories
account for the limitations of spectral models, as the temporal
code could represent the fundamental frequency of a harmonic
complex sound even if only unresolvable harmonics were present
in the stimulus, and such models are more robust to changes in
sound level. However, purely temporal models of pitch perception
cannot explain why the salience of harmonic stimuli containing
resolvable harmonics exceeds the salience of stimuli contain-
ing exclusively unresolved harmonics (Houstma and Smurzynski,
1990; Shackleton and Carlyon, 1994). Thus, current working mod-
els of pitch extraction typically take into account both the cues
arising from the tonotopy of the auditory system and the tempo-
ral fine structure in the signal, signal envelope cues, or both (e.g.,
Oxenham et al., 2009; Moore and Gockel, 2011; Santurette and
Dau, 2011).

Although a substantial literature has developed examining these
models, how and where spectral and temporal frequency informa-
tion is combined to give rise to the percept of pitch is still largely
unknown. Although frequency is analyzed subcortically, pitch does
not appear to be represented until at least the level of primary
auditory cortex. For example, Gockel et al. (2011) failed to find a
representation of pitch in the frequency following response (FFR)
elicited from subcortical nuclei. Electrophysiological recordings
in animal models (Merzenich and Brugge, 1973; Merzenich et al.,
1974) and functional imaging studies in humans (Lauter et al.,
1985; Pantev et al., 1988) have shown that primary auditory cortex
contains a tonotopic frequency organization, with neurons selec-
tively responsive to high-frequency sounds located medially on the
superior temporal plane, and those responsive to low-frequency
sounds located more laterally. Using magnetoencephalography
(MEG), Pantev et al. (1996) found that neural populations in A1
were responsive to the fundamental frequency of a complex stim-
ulus containing harmonics of that fundamental, but no energy
at f0 itself. They concluded that the tonotopic organization of
A1 is based on periodicity rather than frequency, suggesting that

primary auditory cortex contains the first representation of stim-
ulus pitch. However, it has since been suggested that the response
recorded by Pantev et al. (1996) may have been in response to
the distortion product commonly found at f0 in missing funda-
mental stimuli, or to a band of masking noise that was centered
at this frequency (Walker et al., 2011). Moreover, electrophysi-
ological recordings in awake macaques have failed to find any
individual neurons in A1 that are responsive to the pitch of the
missing fundamental (Schwarz and Tomlinson, 1990). Instead, it
appears that pitch is first represented beyond primary auditory
cortex.

Physiological recordings from a region just beyond primary
auditory cortex at the anterolateral low-frequency border of A1 in
the marmoset have identified a restricted region of cells respon-
sive to pure tones and complex tones of the same pitch (Bendor
and Wang, 2005). The search for an equivalent neural population
in human cortex has predominantly employed iterated rippled
noise (IRN), a class of stimuli created by delaying a copy of a
noise waveform and adding it back to the original noise. When
this process is repeated a number of times, the resultant stimulus
exhibits temporal regularity at the period of the delay, which is
heard as a pitch equal to the inverse of that delay (e.g., a delay
of 5 ms results in a perceived pitch of 200 Hz; Patterson et al.,
1996). IRN stimuli can be high-pass filtered to remove all of the
energy in the region of the resolvable harmonics, leaving a high-
frequency spectrum that resembles white noise, although with an
increasing number of iterations it will contain some unresolved
spectral information. These filtered IRN stimuli still elicit a pitch
percept, suggesting that the introduction of temporal regularity by
the iterated delay-and-add process provides cues to pitch that are
predominantly represented by a temporal code. Thus, IRN stimuli
primarily engage the temporal pitch mechanism, and provide a
useful comparison for stimuli with more salient spectral cues such
as pure tones or complex harmonic sounds.

Collectively, PET and fMRI studies using IRN stimuli to inves-
tigate pitch processing in humans have suggested that the pitch
center is located along the lateral aspect of Heschl’s gyrus (Grif-
fiths et al., 1998; Patterson et al., 2002; Hall et al., 2005). However,
it has been rightly suggested that in order for a single area of
cortex to be considered a true pitch center, it must respond to all
pitch-evoking stimuli. Using a wider variety of stimulus types, Hall
and Plack (2009) found that although Heschl’s gyrus was indeed
responsive to IRN stimuli, responses from this region to other
pitch-evoking stimuli were largely variable both between condi-
tions and between listeners. They found that the most overlap in
regions of activation across different types of pitch-evoking stimuli
was not located along Heschl’s gyrus, but rather along the planum
temporale (PT). This led to the suggestion that lateral Heschl’s
gyrus is selectively responsive to the physical characteristics of IRN
rather than the pitch percept it creates, and that the PT is the most
likely candidate for a common pitch center. However, recent stud-
ies have implicated lateral Heschl’s gyrus in response to a variety of
pitch-evoking stimuli, including tones in noise, Huggins pitch, and
binaural band-pitch stimuli (Puschmann et al., 2010), harmonic
complexes (Penagos et al., 2004), and click trains (Gutschalk et al.,
2004). Thus, the question of where a common pitch-processing
center might exist remains an issue of much debate.
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Studies aiming to examine a common pitch representation in
human auditory cortex have overwhelmingly relied on the high
spatial resolution of functional imaging techniques like fMRI (Pat-
terson et al., 2002; Penagos et al., 2004; Hyde et al., 2008; Hall
and Plack, 2009; Puschmann et al., 2010; Barker et al., 2011a).
These methods are well-suited to localizing neural populations
generating specific responses, but they are unable to reveal detail
with respect to the temporal sequence of events involved in the
processing of pitch-evoking stimuli. One might expect that early
processing of spectral and temporal cues is accomplished in sep-
arate areas, but that an integrated pitch percept is later generated
in a common area. The finer temporal resolution of electroen-
cephalography (EEG) is better suited to address this question, as
the relative timing of components from event-related potentials
(ERPs) can help index stages of processing.

Acoustic stimuli evoke a characteristic sequence of ERPs includ-
ing long-latency, cortically generated components such as the P1
and N1. The P1 response is observed as a frontally positive-going
deflection with a peak occurring roughly 50 ms after the onset
of the acoustic stimulus. The generators of this component are
thought to reside in primary auditory cortex, located predomi-
nantly in intermediate sections of Heschl’s gyrus (Godey et al.,
2001; Yvert et al., 2005). Conversely, the N1 component is seen
as a frontally negative-going deflection peaking roughly 100 ms
after stimulus onset, and is thought to have multiple generators
in secondary auditory areas including lateral Heschl’s gyrus and
PT (Godey et al., 2001; Yvert et al., 2005). In addition to these
potentials, there are also components that arise from violations
of expectations for sound features, such as the mismatch nega-
tivity (MMN). The MMN is elicited in response to an infrequent
deviant auditory stimulus occurring within a sequence of repeat-
ing standard stimuli, such as when a stimulus with one pitch is
repeated from trial to trial, but is occasionally replaced by a stim-
ulus with different pitch (e.g., Näätänen et al., 1978, 2007; Picton
et al., 2000). This response is thought to reflect the updating of
auditory memory caused by a mismatch between the deviant
auditory signal and the sensory-memory of the standard stim-
ulus. Based on a review of the literature, Näätänen and Winkler
(1999) have suggested that while N1 likely reflects simple fea-
ture detection, the MMN likely operates on perceptible auditory
objects (see also Sussman et al., 1998; Takegata et al., 1999, 2001;
Winkler et al., 2005). In the case of pitch perception, this means
that while the N1 and MMN components may share overlapping
generators (Picton et al., 2000), N1 is likely generated before the
formation of a single pitch percept whereas MMN is generated
after the formation of a single pitch percept based on all the avail-
able cues. Furthermore, the location of MMN activity in the brain
is slightly different depending on whether the feature being mod-
ified is pitch, duration, or sound location (Giard et al., 1995).
Thus, MMN is sensitive enough to employ for examining the
location of an integrated pitch percept. By comparing the P1, N1,
and MMN elicited by pitch-evoking stimuli containing either pri-
marily spectral or primarily temporal cues, we can determine at
what stage of auditory processing these different codes for pitch
are combined into a common pitch representation. Moreover, by
contrasting the N1 and MMN responses, we can compare the rep-
resentation of pitch-evoking stimuli in secondary auditory areas

before and after the stimulus features are combined into a pitch
percept.

An important consideration that is often overlooked in the lit-
erature on pitch processing is the effect of pitch saliency on the
measurement of neural signatures of the percept. It has been sug-
gested rightly that in order for an area of cortex to be considered a
true pitch center, it must show a graded response to acoustic stim-
uli such that the response increases with increased pitch saliency
(Hall and Plack, 2009). A number of researchers have measured
fMRI responses to stimuli of varying pitch saliency in an effort
to isolate areas of auditory cortex that would satisfy this criterion
(Hall et al., 2005; Hall and Plack, 2009; Puschmann et al., 2010;
Barker et al., 2011a). Furthermore, using MEG, Krumbholz et al.
(2003) found that pitch onset responses are correlated with pitch
saliency even when measured independently from sound onset by
transitioning from white noise to iterated noise with a very sim-
ilar spectrum. However, studies comparing stimuli with different
cues to pitch (spectral, temporal, binaural) typically fail to equate
the pitch saliency across the different stimulus types. By failing to
equate saliency across different pitch-evoking stimuli, these stud-
ies introduce an additional confound in that different areas of
auditory cortex may make different contributions to pitch repre-
sentation depending on pitch saliency. Indeed, in an attempt to
observe the effect of pitch saliency on fMRI recordings, Penagos
et al. (2004) elicited responses to complex stimuli that differed
in their harmonic structure such that some contained harmonics
in low spectral regions (340–1100 Hz: the strong pitch condition)
while others contained harmonics in high spectral regions (1200–
2000 Hz: the weak pitch condition). These contrasts differed in
both pitch saliency and spectral content, and control contrasts
revealed that activity in anterolateral auditory cortex was sensi-
tive to saliency and not to other differences between these stimuli.
This result indicates that the responses of pitch-sensitive regions
depend on pitch saliency. Barker et al. (2011a) measured discrim-
ination thresholds for each of the stimulus types used in their
experiment (pulse trains and complex tones comprised of unre-
solved harmonics) and determined that they were linearly related
to the degree of regularity in the stimulus. However, they did not
report whether saliency differed between stimulus types, nor did
they control for saliency during fMRI recording.

Thus, to accurately locate areas of overlapping activity across
stimuli containing different cues to pitch using functional imag-
ing, the saliency of the pitch percept must be controlled. This
consideration is equally important for ERP analysis of pitch per-
ception. Processing-related components such as the MMN have
been shown to differ in amplitude and latency depending on the
complexity of the stimulus and the difficulty of the discrimination
(e.g., see Picton et al., 2000). For example, the latency of the MMN
elicited by stimuli that differ in periodicity pitch is longer than
the MMN evoked by an equivalent frequency change in pure tone
stimuli, suggesting that the extraction of periodicity-based pitch
requires more complex processing than extraction of spectral pitch
(Winkler et al., 1997). Picton et al. (2000) have suggested, further,
that in order to determine the relative timing for discrimination
of different types of auditory features, it is essential to measure
MMN latencies when the difficulties of the discriminations are
equivalent.
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In the present study, we compare responses to two different
stimulus types that evoke pitch sensations, IRN and complex
tone stimuli containing unresolved harmonic components. Fur-
thermore, we matched them for the saliency of their perceived
pitch (see Materials and Methods for details). We compare the
amplitude and latency of cortically generated ERPs including com-
ponents thought to be generated before (P1, N1) and after (MMN)
a pitch percept is extracted. We use dipole-fitting methods to deter-
mine the locations of the neural sources of these components, and
make comparisons across stimuli to investigate when and where a
common representation of pitch might exist in auditory cortex.

MATERIALS AND METHODS
PARTICIPANTS
Twelve normal hearing adults participated (three males, mean
age = 21.8 years ± 1.67). All of the subjects participated in each
condition of the experiment. After the nature of the study was
described, each subject gave informed consent to participate, and
filled in a short survey outlining their hearing and musical history.
No subject reported any history of hearing impairment. No par-
ticipants were highly musically trained (mean = 3.1 ± 2.8 years of
formal instruction) and no significant correlations were found
between amount of musical training and any of the measures
reported below (p > 0.2 for all correlations). The study procedures
were approved the McMaster Research Ethics Board.

STIMULI
Two types of stimuli were created for this experiment: high-pass
filtered IRN stimuli and high-pass filtered harmonic complexes.
All stimuli were created using Adobe Audition, were 450 ms in
duration, employed 10 ms linear onset and offset ramps, and were
presented at 70 dBA.

Iterated rippled noise stimuli were created by generating a sam-
ple of frozen white noise, and adding it to itself following a delay
equal to the inverse of the frequency of the desired pitch per-
cept (for a schematic illustration, see Figure 1). This process was
repeated a total of 16 times, as pitch perception for IRN stimuli
has been shown to plateau at 16 iterations; further iterations do
not increase pitch salience (Patterson et al., 1996). The delay time
was set to either 6 ms, in order to create a signal with a perceived
pitch of 167 Hz, or 5 ms, in order to create a signal with a per-
ceived pitch of 200 Hz. To ensure equal power across the length
of the stimuli, the first and last 100 ms (which contain a gradual
increase and decrease in power, respectively, resulting from the
iterative delay-and-add process) were removed. The IRN stimuli
were then high-pass filtered at 2600 Hz (high-ordered Butterworth
filter), representing the 13th harmonic of the 200-Hz stimulus, to
remove spectral content in the range of the resolvable harmon-
ics. IRN stimuli have characteristic ripples in their power spectra
at low frequencies; high-pass filtering in this way removes these
spectral pitch cues.

Complex harmonic stimuli with fundamental frequencies of
167 and 200 Hz were generated by adding harmonics of equal
intensity from the fundamental frequency to 20 kHz. These har-
monic stimuli were high-pass filtered at 2600 Hz such that the
pitch-evoking information was constrained to the same spectral
area as in the IRN stimuli. Despite having spectral information

FIGURE 1 | Schematic diagram of the delay (D), gain (G), and add

networks used to generate the type of IRN stimuli used in the present

study (adapted fromYost, 1996). A sample of white noise is added (G = 1)
to itself following some delay. This process is repeated a number of times,
and the resulting stimulus has a perceivable pitch component at the inverse
of the delay (1/D).

limited to the region typically considered to contain primarily
unresolved harmonics, these complexes evoked a stronger pitch
sensation than the IRN stimuli, likely because their spectral peaks
were more defined (see Figure 2). To equate saliency between
the stimulus types, these complexes were presented in white noise
at an intensity that was determined as follows. Six listeners with
musical experience (mean = 10.8 years of formal instruction) were
recruited to participate in a pitch-saliency matching exercise. Par-
ticipants with musical training were chosen as they readily under-
stood the concept of pitch strength. Given that both stimulus types
were novel, it is unlikely that relative pitch saliency would dif-
fer between participants with and without musical training. The
participants listened to the IRN stimulus and compared it to the
complex harmonic stimulus in a white noise masker, each pre-
sented over Sennheiser HDA 200 headphones. They were asked to
“adjust the intensity of the noise masker until the strength of the
perceived pitch was equal between their newly created combina-
tion and the pitch-matched IRN stimulus.” They were able to hear
each stimulus as many times as needed, and the matching exercise
concluded when they determined that they had created the best
possible match. The signal-to-noise ratio (SNR) was recorded for
each of the two stimuli (30.3 ± 2.1 dB for the 167-Hz stimulus and
28.0 ± 1.5 dB for the 200-Hz stimulus). These SNRs were applied
to the level of white noise added to the complex harmonic stim-
uli. Inter-subject reliability was high for this exercise (standard
error = 0.92 dB) suggesting that this type of perceptual matching
exercise was reliable for matching pitch saliency between stimulus
types.

Power spectra for the IRN and complex tone stimuli are shown
in Figure 2A. Following 16 iterations of the process used to gener-
ate IRN sounds, some spectral information emerges in their power
spectra. However, close examination of the information contained
at these spectral peaks reveals that while the harmonic stimuli con-
tain distinct peaks at harmonics of the fundamental frequency, the
spectral cues contained in the IRN stimuli are much less clearly
defined (Figure 2B). It is also possible that cochlear interactions
may introduce some spectral cues to IRN stimuli at the position
on the basilar membrane corresponding to the fundamental fre-
quency. This would not be the case for the harmonic complexes
as they were presented in broadband noise to equate for pitch
saliency. However, potential difference tones corresponding to the
fundamental frequency in the case of the IRN stimuli would be
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FIGURE 2 | (A) Shows the power spectra calculated using Welch’s method
for the IRN (blue) and complex harmonic (red) 200 Hz stimuli used in the
experiment. The spectra were calculated with a 11025-point Hamming
window applied with a 10925-point overlap. (B) Shows a zoomed-in view
of three of the upper harmonics of the stimuli, illustrating the difference

between the “rippled noise” spectrum and a complex waveform made up
of discrete harmonics. In particular, the harmonics of the complex
waveform are higher in amplitude and more defined in that they show
sharper peaks whereas those of the IRN stimuli are more spread out in
frequency.

of low amplitude. Furthermore, it has been demonstrated using a
low-pass noise masker that the effects of IRN in lateral HG cannot
be explained by a response to distortion products (Hall and Plack,
2009).

PROCEDURE
Participants were seated comfortably in a sound attenuating room,
and EEG signals were collected using a 128-channel EGI Hydro-
Cel GSN electrode net connected to NetStation 4.2 software. Data
from each of the 128 electrodes were digitized at 1000 Hz with a
vertex reference and bandpass filter of 0.1–400 Hz, while electrode
impedance was maintained below 50 kΩ (the EGI system is high
impedance). In each condition, a traditional oddball paradigm
was employed whereby the standard stimulus (perceived pitch of
167 Hz) was presented on 85% of trials, and a deviant (oddball)
stimulus (perceived pitch of 200 Hz) was presented on the remain-
ing 15% of trials. All stimuli were delivered to a speaker positioned
1 m in front of the listener using a presentation program written
in E-prime. Each participant heard both the IRN and complex
harmonic stimulus conditions in different blocks of trials, and the

order of presentation was randomized. In each of the two blocks,
participants heard a total of 750 stimuli (638 standard and 112
deviant) at an SOA of 800 ms. The whole recording lasted roughly
20 min. Participants watched a silent movie for the duration of
the experiment and were asked to minimize movements and eye
blinks during testing phases.

ANALYSIS
Data were resampled offline at 200 Hz, converted to an average
reference, and bandpass filtered between 0.5 and 20 Hz with a
roll-off of 24 dB/octave. For each condition, ERPs to the deviant
and standard stimuli (excluding those standards that immediately
followed a deviant) were averaged separately for each individual,
using EEProbe software. Filtered continuous data were segmented
into 500 ms epochs containing a 100-ms baseline and 400 ms
post-stimulus onset. This epoch contained all of the compo-
nents of interest (P1, N1, and MMN), and eliminated any possible
stimulus-offset responses that were not of interest in the present
study. EEG responses exceeding ±120 μV were considered artifact,
thus any epoch in which the response from any electrode exceeded
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this limit was removed before averaging. Difference waves were
created for each subject by subtracting the standard waveform
from the deviant waveform. Finally, data from all subjects were
averaged to create grand average waveforms. To visualize the wave-
forms, 72 electrodes were selected and divided into four groupings
in each hemisphere, and averaged within each grouping to repre-
sent brain responses recorded at the frontal (16 electrodes), central

(20 electrodes), parietal (18 electrodes), and occipital (18 elec-
trodes) regions (Figure 3). This virtual electrode montage has been
used successfully in previous EEG studies to illustrate the average
responses observed across scalp regions (e.g.,He and Trainor,2009;
Trainor et al., 2011; Marie and Trainor, 2012).

The peak latency and amplitude of the P1, N1, and MMN com-
ponents were measured in each subject at each of the scalp regions

FIGURE 3 | Electrode groupings (see Materials and Methods for details).

Seventy-two of 128 electrodes were divided into four groups (frontal, central,
parietal, and occipital) for each hemisphere. Each group contained between
16 and 20 electrodes that were averaged together to represent EEG

responses from that scalp region. The remaining channels around the
perimeter of the net were excluded from analysis to avoid artifacts resulting
from muscle activity in the face and neck, and channels along the midline
were removed to allow for comparison between hemispheres.
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defined in Figure 3. P1 and N1 were defined as the first positive
and negative-going deflections in the frontal and central regions,
respectively (with polarity reversed in the parietal and occipital
regions), and were measured in each individual in response to
the standard stimulus in each stimulus condition (IRN and com-
plex harmonic). MMN was defined as the largest negative peak
between 100 and 300 ms at the frontal and central regions (with
polarity again reversed in the parietal and occipital regions), and
was measured from the difference wave (deviant-standard) for
each individual for each stimulus condition. P1, N1, and MMN
were largest at the frontal regions, so six separate analyses of vari-
ance (ANOVA) were conducted on the peak amplitude and latency
at frontal regions for each component to test whether they varied
across condition and hemisphere.

Source analyses were performed to compare the locations of
the generators of the P1, N1, and MMN components across stim-
ulus conditions as follows. Regional sources, each containing three
orthogonal dipoles, were fit for each component in each subject
using the four-shell ellipsoid model included in the Brain Electri-
cal Source Analysis (BESA) software package. Two sources were
fixed to the eyes to account for any residual muscle-related activity
that was not eliminated during artifact rejection. An additional
regional source was then fit in the auditory cortex of each hemi-
sphere, and the two were constrained to be symmetric between
hemispheres. The 3D location of the symmetrical sources was
determined by the inverse solutions generated by BESA. Partic-
ipants for whom these regional sources accounted for less than
85% of the variance in the field patterns for one or more compo-
nents were excluded from further analysis (in the remaining 8 of 12
subjects, this fitting paradigm accounted for a mean variance of 95,
92, and 92% in the P1, N1, and MMN components, respectively).
It has been suggested that in addition to generators in auditory
cortex, frontal areas may contribute to the MMN response; how-
ever the fitting of an additional pair of regional sources did not
significantly reduce the residual variance.

RESULTS
Group average ERP waveforms for each of the electrode groups
across stimulus conditions are presented in Figure 4. P1 and
N1 reverse polarity between frontal and occipital regions, indica-
tive of activity originating in auditory cortex. Separate repeated-
measures ANOVAs examined P1 and N1 peak amplitude and
latency in response to the standard stimuli, as measured in the
frontal regions of each listener. For each analysis, within-subject
factors included stimulus type (IRN, complex) and hemisphere
(left, right). The order of stimulus blocks was treated as a between-
subjects factor, and was shown to have no effect on the amplitude
or latency of the P1 and N1 components. There were no signifi-
cant effects of hemisphere or stimulus type on P1 or N1 amplitude.
For latency, there was also no significant effect of hemisphere for
either component (p = 0.95 and p = 0.37 for P1 and N1 respec-
tively), but there was a significant effect of stimulus type for both
P1 latency [F(1, 11) = 19.83, p = 0.001] and N1 latency [F(1,
11) = 73.04, p < 0.001]. Both the P1 and N1 components occurred
later in response to the IRN stimuli than to the complex harmonic
stimuli, suggesting that the extraction of stimulus features takes
more time in the IRN condition. Analyses were also conducted to

examine peak amplitudes and latencies of the P1 and N1 compo-
nents in response to deviant stimuli, and results were similar. N1
latency again demonstrated a significant effect of stimulus type
[F(1, 11) = 24.55, p < 0.001]. For P1 latency, the trend was in the
same direction as for standards, but failed to reach significance
(p = 0.28), most likely because there were few deviant stimuli
presented.

Figure 5 compares the grand average difference waves (deviant-
standard) showing the MMN elicited by pitch changes in the IRN
and complex harmonic stimuli. The front-to-back reversal is con-
sistent with a generator in auditory cortex. Within-subject t -tests
revealed latencies at which the difference waveforms were signif-
icantly different from zero (i.e., latencies at which the response
to the deviant stimulus was significantly different from that to
the standard, as shown by the bars beneath the waveforms in
Figure 5). Separate repeated-measures ANOVAs examined MMN
peak amplitude and latency, as measured in the frontal regions of
each listener. For each analysis, within-subject factors were stim-
ulus type (IRN, complex) and hemisphere (left, right). The order
of stimulus blocks was again treated as a between-subjects factor,
and was shown to have no effect on MMN amplitude or latency.
For MMN latency, unlike P1 and N1 components, stimulus type
had no significant main effect [F(1, 11) = 0.33, p = 0.58]. How-
ever, the amplitude of the MMN was larger for IRN stimuli than
for complex harmonic stimuli [F(1, 11) = 13.89, p = 0.003]. The
increased MMN amplitude in the IRN condition suggests that
more neurons were recruited for analysis of pitch in the IRN case
than in the case of the complex harmonic stimuli, but the time
taken to form a pitch percept was similar.

Figure 6 depicts the regional sources fit for the P1, N1, and
MMN components of the grand average waveforms for each stim-
ulus condition using inverse solutions generated by BESA. The
locations of symmetric dipoles fit using this method were recorded
for each component in each participant for each stimulus condi-
tion. Within-subject t -tests were performed to determine whether
the location of these source estimates differed between stimulus
types. While no significant differences were observed in the ros-
trocaudal (p = 0.37 and p = 0.31 for P1 and N1, respectively) or
mediolateral (p = 0.80 and p = 0.77 for P1 and N1, respectively)
planes, both the P1 and N1 components generated in response
to the complex harmonic stimuli were determined to have orig-
inated from sources dorsal to those generated in response to the
IRN stimuli [t (7) = 5.90, p = 0.001 for P1, t (7) = 5.56, p = 0.001
for N1]. Conversely, source estimates of the MMN component
for IRN and complex harmonic stimuli were not shown to dif-
fer significantly along the dorsoventral [t (7) = 1.71, p = 0.13],
rostrocaudal [t (7) = 0.03, p = 0.97], or mediolateral [t (7) = 0.49,
p = 0.64] planes. Thus these source models reveal differences
between the P1 and N1 components elicited in response to IRN
versus complex harmonic stimuli, while failing to find a differ-
ence between stimulus types for MMN. Collectively, these data
suggest that the pitch representations elicited by IRN and com-
plex harmonic stimuli are processed in different cortical areas
in primary auditory cortex (indexed by P1) and early process-
ing in secondary auditory areas (indexed by N1). However, the
MMN components elicited in response to each stimulus type had
a common source in secondary auditory cortex. While our source
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FIGURE 4 | Grand average waveforms in response to IRN and complex harmonic stimuli for standard trials (A) and deviant trials (B) for all eight scalp

regions.

analysis does not allow us to determine the precise anatomical loca-
tion of the MMN response to pitch, the data suggest it is located
between the regions generating P1 and N1 (see Figure 7), con-
sistent with a source in the area in lateral Heschl’s gyrus that has
been revealed by fMRI studies using stimuli with a variety of cues
to pitch (Griffiths et al., 1998; Patterson et al., 2002; Gutschalk
et al., 2004; Penagos et al., 2004; Hall et al., 2005; Puschmann et al.,
2010).

DISCUSSION
In the current experiment, we recorded participants’ ERP
responses to occasional pitch changes in high-pass filtered IRN and
complex harmonic stimuli matched for perceptual pitch saliency.
We used the fact that different ERP components reflect different
stages of processing to investigate when and where in auditory

cortex different cues to pitch might be integrated into a com-
mon representation. Particularly useful for this question is the fact
that P1 (around 50 ms after stimulus onset, originating in primary
auditory cortex) and N1 (around 100 ms after stimulus onset, orig-
inating in secondary auditory cortex) responses are thought to
reflect early feature processing whereas MMN (around 150 ms) is
thought to operate on perceptible auditory objects (Näätänen and
Winkler, 1999). Specifically, we found no difference in the ampli-
tude of P1 and N1 responses across stimuli, but both P1 and N1
responses occurred earlier for complex harmonic than IRN stim-
uli, suggesting somewhat different processes at work for different
cues to pitch at these stages of processing. The converse was true
for MMN, with responses to pitch changes not different in latency,
but larger for IRN than complex harmonic stimuli, suggesting
that although more neurons might be recruited for the analysis
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of sounds with less spectral pitch information, the timing of the
formation of an integrated pitch percept appears to be similar
for sounds regardless of spectral and temporal cues. In any case,
the most important findings were in the results of the regional
source estimation analyses. As expected, P1 sources were located
more rostral and dorsal than sources for N1, consistent with P1
originating in primary auditory cortex and N1 in secondary audi-
tory cortex. Furthermore, for both P1 and N1, source locations
were highly significantly different for the IRN and complex har-
monic stimuli. This difference suggests that at these pre-object
integration stages of processing, different features of the stimuli
give rise to processing in somewhat different brain regions. On
the other hand, there was no significant difference between the
source locations of the MMN for the IRN and complex harmonic
stimuli. This suggests that at this stage of processing an integrated

pitch perception is formed, regardless of the particular pitch cues
present. It is important to note that the P1 and N1 components
elicited in response to standard and deviant stimuli of the same
stimulus type are expected to be very similar. It is possible that
they reflect in part, processing of non-pitch features (Barker et al.,
2011b). However, neural activity related to these features should
be largely eliminated in the difference wave, and the MMN compo-
nent should reflect primarily pitch processes. Therefore, the fact
that we see no latency or source localization difference for the
MMN response between stimulus types, despite different latencies
and source localizations for the P1 and N1 components suggests
a common process of object formation. Furthermore, the MMN
response to pitch change was located between the locations of
the P1 and N1 generators, which is consistent with fMRI stud-
ies indicating the existence of a pitch center located adjacent to
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FIGURE 6 |Three-dimensional locations of symmetric regional sources fit using inverse solutions generated by BESA. (A) Shows the location
of P1 in both stimulus conditions. (B) Shows the location of N1 in both stimulus conditions. (C,D) Show the location of P1, N1, and MMN in the IRN
and complex harmonic conditions, respectively.

primary auditory cortex along the lateral aspect of Heschl’s gyrus.
In sum, different cues to pitch appear to be processed in somewhat
different regions during early cortical processing, but by about

155 ms after stimulus onset, an integrated pitch percept is formed
regardless of particular cues to pitch, as indexed by the MMN
response.
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coordinates of the P1 and N1 components elicited by the IRN and

complex harmonic stimuli, as well as the common MMN elicited by

both stimulus types. In the BESA Cartesian coordinate system, the X -axis
passes through the Left Pre-Auricular point (LPA) and Right Pre-Auricular
point (RPA) with right being the positive direction. The Y -axis passes
through the nasion, with rostral being positive. The Z -axis is orthogonal to
the X - and Y -axes, with dorsal being the positive direction. Components
shown are all located in the right hemisphere, while symmetric sources in
the left hemisphere have been omitted for clarity.

The fine temporal resolution of EEG recording allows exami-
nation of individual stages of auditory processing that differ on a
millisecond scale. However, the spatial resolution of this method
is not as good as that of functional imaging methods such as fMRI,
as the locations of cortical activity must be modeled on the basis
of electrical field distributions at the scalp. Source location estima-
tion is accomplished through inverse modeling, in which source
locations are estimated and the pattern of activity that they would
generate at the head surface is calculated. An iterative process is
employed whereby the sources are moved in location and orienta-
tion until the surface pattern best matches that measured during
the experiment (see Baillet et al., 2001; Micheyl et al., 2004; Hallez
et al., 2007 for reviews). With such a process, there are multiple
solutions for any particular component and stimulus condition.
Consequently, the source estimate represents the solution that
accounts for the greatest amount of variance in the data rather
than a direct recording of electrical activity. Although this does
offer a limitation in terms of localizing component sources, the
dipole-fitting method used in the present study was sufficient to
spatially resolve responses from primary and secondary auditory
cortices (as represented by the P1 and N1 components). More-
over, it was sufficient to show highly significant differences within
auditory areas across stimulus types (e.g., differences in both P1
and N1 sources for IRN compared to complex harmonic stimuli).

Thus, finding a common source location for the MMN compo-
nent across stimulus types is unlikely due to insufficient spatial
resolution.

The pitch salience of the stimuli in the current experiment
was perceptually equated, but there were minor differences in the
spectral content as the white noise masker in the complex har-
monic condition contained energy at low frequencies that was not
present in the IRN stimulus. However, it has been demonstrated
previously that pitch-related areas of auditory cortex respond to
the salience of the perceived pitch rather than to other stimulus
differences. For example, Penagos et al. (2004) contrasted fMRI
responses to stimuli that differed either in spectral content alone
or in both spectral content and pitch saliency and found that spec-
tral inequality did not result in any differential activation in lateral
Heschl’s gyrus. Moreover, based on the tonotopic organization of
auditory cortex, one would expect slight differences in spectral
content to shift source estimates of the P1 and N1 components
mediolaterally (Humphries et al., 2010), rather than dorsoven-
trally as observed in the current study. Thus, the differences in P1
and N1 sources revealed in the present study most likely reflect dif-
ferential processing of sound features, such as the relative salience
of different pitch cues, rather than minor differences in spectral
content.

There is some evidence that the right auditory cortex is special-
ized for the processing of pitch. Lesion studies suggest that patients
with surgical excisions of the right, but not left auditory cor-
tex show deficits in perceiving the missing fundamental (Zatorre,
1988), in processing complex spectral structure (Sidtis and Volpe,
1988) and in discriminating melodic pitch patterns (Zatorre, 1985,
1988). These findings have been supported by recent functional
imaging studies demonstrating that the auditory areas in the
right hemisphere are selectively activated in both pitch percep-
tion (Hyde et al., 2008) and production tasks (Perry et al., 1999).
Zatorre (2002) has suggested that this functional asymmetry may
represent a tradeoff in processing such that the auditory corti-
cal systems in the two hemispheres have evolved complementary
specializations. Our study did not demonstrate any appreciable
hemispheric differences, which at first glance seems discordant
with these findings. However, there are two important experimen-
tal parameters that warrant consideration here: the difficulty of the
discrimination and the complexity of the task. In an fMRI study
of pitch processing, Hyde et al. (2008) demonstrated a right hemi-
sphere advantage in discriminating pitch changes between 6.25
and 200 cents. However, they noted that BOLD response in the left
PT increased for the larger pitch changes. Hyde et al. suggested that
both hemispheres likely contribute to pitch discrimination, with
the right hemisphere advantage being most evident for fine fre-
quency discriminations. Thus, the finding in the present study of
a bilateral response is consistent with Hyde et al., as we used a rela-
tively large pitch change (167–200 Hz represents a change of more
than 300 cents). It is also possible that the right hemisphere advan-
tage in pitch processing is task dependant. For example, Johnsrude
et al. (2000) found that patients with excisions that encroached
on lateral Heschl’s gyrus in the right hemisphere were impaired in
detecting the direction of a pure tone frequency change, but simple
frequency discrimination for those same stimuli was unaffected in
these patients. The passive pitch discriminations measured in our
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experiment did not require detection of the direction of pitch
change, and therefore likely would have diminished any right
hemisphere advantage.

Modern theories of pitch extraction typically include both spec-
tral and temporal pitch cues, but the details of how and when the
two pitch codes are combined into a common representation of
the percept are still largely unknown. Temporal integration win-
dows widen throughout the ascending auditory pathway (Walker
et al., 2011) and, accordingly, it has been demonstrated that the
conversion of temporal pitch cues into a more stable code occurs
at or before the level of primary auditory cortex (Griffiths et al.,
1998), possibly in the inferior colliculus (Langner and Schreiner,
1988). On the other hand, spectral pitch cues are well represented
in the tonotopic organization of the auditory system that exists at
least into primary auditory cortex (Humphries et al., 2010). While
fMRI is well-suited to localize pitch-responsive areas of cortex
with good spatial resolution, it can tell us little about the temporal

sequence involved in pitch processing. In the present study, we
have used EEG to show that early cortical processing of different
sound features, such as the relative salience of different pitch cues,
is accomplished in somewhat different areas in primary and sec-
ondary auditory cortex, while at a later stage (about 150 ms after
stimulus onset), an integrated pitch percept appears to emerge in a
common processing area. In future studies it would be interesting
to use measures with good temporal resolution such as EEG or
MEG in order to compare the extraction of pitch percepts across
a wide range of stimuli that contain a variety of cues to pitch.
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