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The presence of outliers can very problematic in data analysis, leading statisticians to
develop a wide variety of methods for identifying them in both the univariate and multivari-
ate contexts. In case of the latter, perhaps the most popular approach has been Mahalanobis
distance, where large values suggest an observation that is unusual as compared to the
center of the data. However, researchers have identified problems with the application
of this metric such that its utility may be limited in some situations. As a consequence,
other methods for detecting outlying observations have been developed and studied. How-
ever, a number of these approaches, while apparently robust and useful have not made
their way into general practice in the social sciences. Thus, the goal of this study was to
describe some of these methods and demonstrate them using a well known dataset from
a popular multivariate textbook widely used in the social sciences. Results demonstrated
that the methods do indeed result in datasets with very different distributional character-
istics. These results are discussed in light of how they might be used by researchers and
practitioners.
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INTRODUCTION
The presence of outliers is a ubiquitous and sometimes prob-
lematic aspect of data analysis. They can result from a variety
of processes, including data recording and entry errors, obtain-
ing samples from other than the target population, and sampling
unusual individuals from the target population itself (Kruskal,
1988). Based on the standard definition of outliers, it is entirely
possible that a dataset may not have any such cases, or it might
have many. Given that they can arise from very different processes,
outliers should not all be treated in the same manner. For example,
those caused by data collection problems are likely to be removed
from the sample prior to analysis, while those that are simply
unusual members of the target population would be retained for
data analysis. Finally, Kruskal noted that in some cases understand-
ing the mechanism that caused outliers is the most important
aspect of a given study. In other words, outliers can themselves
provide useful information to researchers, and are not necessar-
ily problematic in the sense of being bad data. The focus of this
manuscript is not on the mechanism giving rise to outliers, but
rather on methods for detecting them once they are present in the
sample.

A number of authors have sought to precisely define what
constitutes an outlier (e.g., Evans, 1999), and methods for detect-
ing and dealing with them once detected remain an active area
of research. It is well known that outliers can have a dra-
matic impact on the performance of common statistical analyses
such as Pearson’s correlation coefficient (Marascuilo and Ser-
lin, 1988), univariate, and multivariate means comparisons (Kirk,
1995; Huberty and Olejnik, 2006), cluster analysis (Kaufman and
Rousseeuw, 2005), multivariate means comparisons, and factor
analysis (Brown, 2006), among others. For this reason researchers
are strongly encouraged to investigate their data for the presence of

outliers prior to conducting data analysis (Tabachnick and Fidell,
2007).

In the multivariate context, the most commonly recommended
approach for outlier detection is the Mahalanobis Distance (D2).
While this approach can be an effective tool for such purpose,
it also has weaknesses that might render it less than effective
in many circumstances (Wilcox, 2005). The focus of this manu-
script is on describing several alternative methods for multivariate
outlier detection; i.e., observations that have unusual patterns
on multiple variables as opposed to extreme scores on a sin-
gle variable (univariate outliers). In addition, these approaches
will be demonstrated, along with D2, using a set of data taken
from Tabachnick and Fidell (2007). The demonstration will utilize
functions from the R software package for both outlier detec-
tion and data analysis after removal of the outliers. It should
be noted that the focus of this manuscript is not on attempt-
ing to identify some optimal approach for dealing with outliers
once they have been identified, which is an area of statistics itself
replete with research, and which is well beyond the scope of
this study. Suffice it to say that identification of outliers is only
the first step in the process, and much thought must be given
to how outliers will be handled. In the current study, they will
be removed from the dataset in order to clearly demonstrate
the differential impact of the various outlier detection meth-
ods on the data and subsequent analyses. However, it is not
recommended that this approach to outliers be taken in every
situation.

IMPACT OF OUTLIERS IN MULTIVARIATE ANALYSIS
Outliers can have a dramatic impact on the results of common
multivariate statistical analyses. For example, they can distort cor-
relation coefficients (Marascuilo and Serlin, 1988; Osborne and
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Overbay, 2004), and create problems in regression analysis, even
leading to the presence of collinearity among the set of predictor
variables in multiple regression (Pedhazur, 1997). Distortions to
the correlation may in turn lead to biased sample estimates, as out-
liers artificially impact the degree of linearity present between a
pair of variables (Osborne and Overbay, 2004). In addition, meth-
ods based on the correlation coefficient such as factor analysis
and structural equation modeling are also negatively impacted
by the presence of outliers in data (Brown, 2006). Cluster analy-
sis is particularly sensitive to outliers with a distortion of cluster
results when outliers are the center or starting point of the analy-
sis (Kaufman and Rousseeuw, 2005). Outliers can also themselves
form a cluster, which is not truly representative of the broader
array of values in the population. Outliers have also been shown
to detrimentally impact testing for mean differences using ANOVA
through biasing group means where they are present (Osborne and
Overbay, 2004).

While outliers can be problematic from a statistical perspective,
it is not always advisable to remove them from the data. When these
observations are members of the target population, their presence
in the dataset can be quite informative regarding the nature of the
population (e.g., Mourão-Miranda et al., 2011). To remove out-
liers from the sample in this case would lead to loss of information
about the population at large. In such situations, outlier detection
would be helpful in terms of identifying members of the target
population who are unusual when compared to the rest, but these
individuals should not be removed from the sample (Zijlstra et al.,
2011).

METHODS OF MULTIVARIATE OUTLIER DETECTION
Given the negative impact that outliers can have on multivari-
ate statistical methods, their accurate detection is an important
matter to consider prior to data analysis (Tabachnick and Fidell,
2007; Stevens, 2009). In popular multivariate statistics texts, the
reader is recommended to use D2 for multivariate outlier detec-
tion, although as is described below, there are several alternatives
for multivariate outlier detection that may prove to be more effec-
tive than this standard approach. Prior to discussing these methods
however, it is important to briefly discuss general qualities that
make for an effective outlier detection method. Readers interested
in a more detailed treatment are referred to two excellent texts by
Wilcox (2005, 2010).

When thinking about the impact of outliers, perhaps the key
consideration is the breakdown point of the statistical analy-
sis in question. The breakdown point can be thought of as the
minimum proportion of a sample that can consist of outliers
after which point they will have a notable impact on the sta-
tistic of interest. In other words, if a statistic has a breakdown
point of 0.1, then 10% of the sample could consist of outliers
without markedly impacting the statistic. However, if the next
observation beyond this 10% was also an outlier, the statistic
in question would then be impacted by its presence (Maronna
et al., 2006). Comparatively, a statistic with a breakdown point
of 0.3 would be relatively more impervious to outliers, as it
would not be impacted until more than 30% of the sample was
made up of outliers. Of course, it should be remembered that
the degree of this impact is dependent on the magnitude of the

outlying observation, such that more extreme outliers would have
a greater impact on the statistic than would a less extreme value.
A high breakdown point is generally considered to be a positive
attribute.

While the breakdown point is typically thought of as a charac-
teristic of a statistic, it can also be a characteristic of a statistic in
conjunction with a particular method of outlier detection. Thus,
if a researcher calculates the sample mean after removing outliers
using a method such as D2, the breakdown point of the combina-
tion of mean and outlier detection method will be different than
that of the mean by itself. Finally, although having a high break-
down point is generally desirable, it is also true that statistics with
higher breakdown points (e.g., the median, the trimmed mean) are
often less accurate in estimating population parameters when the
data are drawn from a multivariate normal distribution (Genton
and Lucas, 2003).

Another important property for a statistical measure of loca-
tion (e.g., mean) is that it exhibit both location and scale equi-
variance (Wilcox, 2005). Location equivariance means that if
a constant is added to each observation in the data set, the
measure of location will be increased by that constant value.
Scale equivariance occurs when multiplication of each obser-
vation in the data set by a constant leads to a change in the
measure of location by the same constant. In other words, the
scale of measurement should not influence relative compar-
isons of individuals within the sample or relative comparisons
of group measures of location such as the mean. In the context
of multivariate data, these properties for measures of location
are referred to as affine equivariance. Affine equivariance extends
the notion of equivariance beyond changes in location and scale
to measures of multivariate dispersion. Covariance matrices are
affine equivariant, for example, though they are not particu-
larly robust to the presence of outliers (Wilcox, 2005). A viable
approach to dealing with multivariate outliers must maintain
affine equivariance.

Following is a description of several approaches for outlier
detection. For the most part, these descriptions are presented
conceptually, including technical details only when they are vital
to understanding how the methods work. References are pro-
vided for the reader who is interested in learning more about the
technical aspects of these approaches. In addition to these descrip-
tions, Table 1 also includes a summary of each method, including
fundamental equations, pertinent references, and strengths and
weaknesses.

MAHALANOBIS DISTANCE
The most commonly recommended approach for multivariate
outlier detection is D2, which is based on a measure of multivari-
ate distance first introduced by Mahalanobis (1936), and which
has been used in a wide variety of contexts. D2 has been suggested
as the default outlier detection method by a number of authors
in popular textbooks used by researchers in a variety of fields
(e.g., Johnson and Wichern, 2002; Tabachnick and Fidell, 2007).
In practice, a researcher would first calculate the value of D2 for
each subject in the sample, as follows:

D2
i = (xi − x̄)′ S−1 (xi − x̄) (1)
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Table 1 | Summary of outlier detection methods.

Method Equation Reference Strengths Weaknesses

D2
i (xi − x̄)′ S−1 (xi − x̄) Mahalanobis (1936) Intuitively easy to understand;

easy to calculate; familiar to

other researchers

Sensitive to outliers; assumes

data are continuous

MVE Identify subset of data contained within the

ellipsoid that has minimized volume

Rousseeuw and

Leroy (1987)

Yields mean with maximum

possible breakdown point

May remove as much as 50%

of sample

MCD Identify subset of data that minimizes the

determinant of the covariance matrix

Rousseeuw and van

Driessen (1999)

Yields mean with maximum

possible breakdown point

May remove as much as 50%

of sample

MGV Calculate MAD version of D2 as∑n
j=1

√∑p
l=1

(
xjl−xil
MADl

)2
to identify most central

points; calculate variance of this central set as

additional observations are added one by one;

examine this generalized variance and retain

those with values less than the adjusted median

MG +
√

χ2
0.975.p(q3 − q1)

Wilcox (2005) Typically removes fewer

observations than either MVE or

MCD

Generally does not have as

high a breakdown point as

MVE or MCD

P1 Identify the multivariate center of data using

MCD or MVE and then determine its relative

distance from this center (depth); use the MGV

criteria based on this depth to identify outliers

Donoho and Gasko

(1992)

Approximates an affine

equivariant outlier detection

method; may not exclude as

many cases as MVE or MCD

Will not typically lead to a

mean with the maximum

possible breakdown point

P2 Identify all possible lines between all pairs of

observations in order to determine depth of

each point

Donoho and Gasko

(1992)

Some evidence that this method

is more accurate than P1 in

terms of identifying outliers

Extensive computational

time, particularly for large

datasets

P3 Same approach as P1 except that the criteria for

identifying outliers is MD +
√

χ2
0.975.p(

MADi
0.6745 )

Donoho and Gasko

(1992)

May yield a mean with a higher

breakdown point than other

projection methods

Will likely lead to exclusion of

more observations as outliers

than will other projection

approaches

where

xi = Vector of scores on the set of p variables for subject i

x̄ = Vector of sample means on the set of p variables

S = Covariance matrix for the p variables

A number of recommendations exist in the literature for identify-
ing when this value is large; i.e., when an observation might be an
outlier. The approach used here will be to compare D2

i to the χ2

distribution with p degrees of freedom and declare an observation
to be an outlier if its value exceeds the quantile for some inverse
probability; i.e., χ2

p(0.005) (Mahalanobis).

D2 is easy to compute using existing software and allows for
direct hypothesis testing regarding outlier status (Wilcox, 2005).
Despite these advantages, D2 is sensitive to outliers because it is
based on the sample covariance matrix, S, which is itself sensitive
to outliers (Wilcox, 2005). In addition, D2 assumes that the data
are continuous and not categorical so that when data are ordinal,
for example, it may be inappropriate for outlier detection (Zijlstra
et al., 2007). Given these problems, researchers have developed
alternatives to multivariate outlier detection that are more robust
and more flexible than D2.

MINIMUM VOLUME ELLIPSOID
One of the earliest of alternative approach to outlier detection was
the Minimum Volume Ellipsoid (MVE), developed by Rousseeuw

and Leroy (1987). In concept, the goal behind this method is to
identify a subsample of observations of size h (where h < n) that
creates the smallest volume ellipsoid of data points, based on the
values of the variables. By definition, this ellipsoid should be free of
outliers, and estimates of central tendency and dispersion would be
obtained using just this subset of observations. The MVE approach
to dealing with outliers can, in practice, be all but intractable to
carry out as the number of possible ellipsoids to investigate will
typically be quite large. Therefore, an alternative approach is to
take a large number of random samples of size h with replacement,
where

h = n
2 + 1, (2)

and calculate the volume of the ellipsoids created by each. The
final sample to be used in further analyses is that which yields
the smallest ellipsoid. An example of such an ellipsoid based on
MVE can be seen in Figure 1. The circles represent observations
that have been retained, while those marked with a star represent
outliers that will be removed from the sample for future analyses.

MINIMUM COVARIANCE DETERMINANT
The minimum covariance determinant (MCD) approach to out-
lier detection is similar to the MVE in that it searches for a portion
of the data that eliminates the presence and impact of outliers.
However, whereas MVE seeks to do this by minimizing the vol-
ume of an ellipsoid created by the retained points, MCD does it by
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FIGURE 1 | Scatterplot of observations identified as outliers based on
the MVE method.

minimizing the determinant of the covariance matrix, which is an
estimate of the generalized variance in a multivariate set of data
(Rousseeuw and van Driessen, 1999). The dataset with the smallest
determinant will be the one least influenced by outliers and which
can then be used for future statistical analyses. Statistics calculated
on data to which MCD and MVE have been applied will typically
have high breakdown points (Rousseeuw and van Driessen, 1999).

As with MVE, the logistics of searching every possible sub-
set of the data of size h to find the one that yields the smallest
determinant are not practical in the vast majority of situations. As
a consequence Rousseeuw and van Driessen (1999) developed a
multiple step algorithm to approximate the MCD, obviating the
need to examine all possible subsets of the data. This approach,
known as Fast MCD involves the random selection of an initial
subsample from the data of size h, for which the values of D2

i are
calculated and ordered from smallest to largest. The h smallest D2

i
values (and thus the data points associated with them) are then
retained into a new subset of the data, after which individuals from
the full dataset are randomly added and the value of the determi-
nant calculated. The algorithm stops when it attains a subsample
(size h) of the full data that yields the smallest determinant. Vari-
ants of this algorithm involve the selection of multiple subsamples
in the initial step, and with several minimization procedures run-
ning parallel to one another simultaneously (Hardin and Rocke,
2004). Figure 2 includes a scatterplot identifying individuals as
outliers based on the MCD method. Again, outliers are marked
with a star.

MINIMUM GENERALIZED VARIANCE
One potential difficulty with both MVE and MCD is that they
tend to identify a relatively large number of outliers when the
variables under examination are not independent of one another
(Wilcox, 2005). A third approach for outlier detection that was

FIGURE 2 | Scatterplot of observations identified as outliers based on
the MCD method.

designed to avoid this problem is the Minimum Generalized Vari-
ance (MGV). MGV is based on a similar principle to MCD in that
the set of data with the smallest overall variance is identified. How-
ever, rather than relying on the random addition of observations to
the core data set to be retained, it includes those individuals whose
inclusion increases the generalized variance as little as possible.

As with MVE and MCD, MGV is an iterative procedure. In the
first step the p most centrally located points are identified using a
non-parametric estimate of Di which is calculated as

Di =

n∑
j=1

√√√√ p∑
l=1

(
xjl−xil

MADl

)2
, (3)

where

MADl = MED{[xi − M]}. (4)

In other words, MAD, the median absolute deviation, is the
median of the deviations between each individual data point and
the median of the data set, M. The most centrally located obser-
vations are those with the smallest value of Di as calculated above.
These points are then placed in a new data set, after which the
generalized variance associated with adding each of the remaining
observations not originally placed in this new data is calculated.
The observation with the smallest generalized variance is then
added to the new data set. For each data point remaining outside of
the new data set, the generalized variance is recalculated, account-
ing for the new observation that was just added. Once again, the
observation with the lowest generalized variance is then added to
the new data set. This process is repeated until all of the original
data points are included in the new data set; i.e., the new data set
is identical in terms of membership to the old one. However, now
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each observation has associated with it a value for the generalized
variance. Observations that are more distant from the bulk of the
data will have larger values of the generalized variance. For p= 2
variables, observations with a generalized variance greater than

q3 + 1.5(q3 − q1) (5)

would be considered outliers, where q1 and q2 are the lower and
upper quartiles, respectively,of the generalized variances. For more
than two variables, the generalized variances are compared with

MG +

√
χ2

0.975.p(q3 − q1), (6)

where M G is the median of the generalized variance values and
χ2

0.975.p . Figure 3 is a plot of X and Y, with outliers identified using
the MGV approach. In this graph, outliers are denoted by 0, which
is different than notation used in Figures 1 and 2. These graphs are
included here exactly as taken from the R software output, which
will be used extensively in the following examples.

PROJECTION-BASED OUTLIER DETECTION
Another alternative for identifying multivariate outliers is based
on the notion of the depth of one data point among a set of other
points. The idea of depth was described by Tukey (1975), and
later expanded upon by Donoho and Gasko (1992). In general,
depth can be thought of as the relative location of an obser-
vation vis-à-vis either edge (upper or lower) in a set of data.
In the univariate case, this simply means determining to which
edge a given observation more closely lies (i.e., maximum or
minimum value), and then calculating the proportion of cases
between that observation and its closest edge. The larger this
proportion, the deeper the observation lies in the univariate

FIGURE 3 | Scatterplot of observations identified as outliers based on
the MGV method.

data. While mathematically somewhat more challenging, con-
ceptually projection methods of multivariate outlier detection
work in much the same way. However, rather than determin-
ing the proximity to a single edge, the algorithm must identify
the proximity to the edge of the multivariate space. This process
is carried out using the method of projection that is described
below.

For the purposes of this explanation, we will avoid presenting
the mathematical equations that underlie the projection-based
outlier detection approach. The interested reader is encouraged
to refer to Wilcox (2005) for a more technical treatment of this
methodology. Following is a conceptual description of two com-
monly used approaches to carrying out this technique when p= 2.
In the first method, the algorithm begins by identifying the mul-
tivariate center of the data using an acceptable approach, such as
the multivariate mean after application of MCD or MVE. Next,
for each point (Xi) the following steps are carried out:

(1) A line is drawn connecting the multivariate center and point
Xi.

(2) A line perpendicular to the line in 1 is then drawn from each
of the other observations, Xj.

(3) The location where the line in 2 intersects with the line in 1 is
the projected depth (dij) of that data point for the line.

(4) Steps 1–3 are then repeated such that each of the n data points
is connected to the multivariate center of the data with a line,
and corresponding values of dij are calculated for each of the
other observations.

(5) For a given observation, each of its depth values, dij, is com-
pared with a standard (to be described below). If for any single
projection the observation is an outlier, then it is classified as
an outlier for purposes of future analyses.

As mentioned earlier, there is an alternative approach to the
projection method, which is not based on finding the multivari-
ate center of the distribution. Rather, all (n2

− n)/2 possible lines
are drawn between all pairs of observations in the dataset. Then,
the approach outlined above for calculating dij is used for each
of these lines. Thus, rather than having n−1 such dij values, each

observation will have (n2
−n)
2 − 1 indicators of depth. In all other

ways, this second approach is identical to the first, however. Prior
research has demonstrated that this second method might be more
accurate than the first, but it is not clear how great an advantage
it actually has in practice (Wilcox, 2005). Furthermore, because it
must examine all possible lines in the set of data, method 2 can
require quite a bit more computational time, particularly for large
datasets.

The literature on multivariate outlier detection using the
projection-based method includes two different criteria against
which an observation can be judged as an outlier. The first of these
is essentially identical to that used for the MGV in Eq. 6, with the
exception that M G is replaced by MD, the median of the dij for that
projection. Observations associated with values of dij larger than
this cut score are considered to be outliers for that projection. An
alternative comparison criterion is

MD +

√
χ2

0.975.p

(
MADi
0.6745

)
(7)

www.frontiersin.org July 2012 | Volume 3 | Article 211 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Finch Modern methods for the detection of multivariate outliers

where MADi is the median of all |dij−MD|. Here, MADi is scaled
by the divisor 0.6745 so that it approximates the standard deviation
obtained when sampling from a normal distribution. Regardless
of the criterion used, an observation is declared to be an outlier in
general if it is an outlier for any of the projections.

GOALS OF THE CURRENT STUDY
The primary goal of this study was to describe alternatives to D2 for
multivariate outlier detection. As noted above, D2 has a number
of weaknesses in this regard, making it less than optimal for many
research situations. Researchers need outlier detection methods
on which they can depend, particularly given the sensitivity of
many multivariate statistical techniques to the presence of out-
liers. Those described here may well fill that niche. A secondary
goal of this study was to demonstrate, for a well known dataset,
the impact of the various outlier detection methods on measures
of location, variation and covariation. It is hoped that this study
will serve as a useful reference for applied researchers working
in the multivariate context who need to ascertain whether any
observations are outliers, and if so which ones.

MATERIALS AND METHODS
The Women’s Health and Drug study that is described in detail
in Tabachnick and Fidell (2007) was used for demonstrative pur-
poses. This dataset was selected because it appears in this very
popular text in order to demonstrate data screening and as such
was deemed an excellent source for demonstrating the methods
studied here. A subset of the variables were used in the study,
including number of visits to a health care provider (TIMEDRS),
attitudes toward medication (ATTDRUG) and attitudes toward
housework (ATTHOUSE). These variables were selected because
they were featured in Tabachnick and Fidell’s own analysis of the
data. The sample used in this study consisted of 465 females aged
20–59 years who were randomly sampled from the San Fernando
Valley in California and interviewed in 1976. Further description
of the sample and the study from which it was drawn can be found
in Tabachnick and Fidell.

In order to explore the impact of the various outlier detec-
tion methods included here, a variety of statistical analyses were
conducted subsequent to the application of each approach. In par-
ticular, distributions of the three variables were examined for the

FIGURE 4 | Continued
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FIGURE 4 | Boxplots.

datasets created by the various outlier detection methods, as well
as the full dataset. The strategy in this study was to remove all
observations that were identified as outliers by each method, thus
creating datasets for each approach that included only those not
deemed to be outliers. It is important to note that this is not typi-
cally recommended practice, nor is it being suggested here. Rather,
the purpose of this study was to demonstrate the impact of each
method on the data itself. Therefore, rather than take the approach
of examining each outlier carefully to ascertain whether it was truly
part of the target population, the strategy was to remove those cases
identified as outliers prior to conducting statistical analyses. In this
way, it was hoped that the reader could clearly see the way in which
each detection method worked and how this might impact result-
ing analyses. In terms of the actual data analysis, the focus was on
describing the resulting datasets. Therefore, distributional char-
acteristics of each variable within each method were calculated,
including the mean, median, standard deviation, skewness, kur-
tosis, and first and third quartiles. In addition, distributions of

the variables were examined using the boxplot. Finally, in order
to demonstrate the impact of these approaches on relational mea-
sures, Pearson’s correlation coefficient was estimated between each
pair of variables. All statistical analyses including identification
of outliers was carried out using the R software package, version
2.12.1 (R Foundation for Statistical Computing, 2010). The R code
used to conduct these analyses appears in the Appendix at the end
of the manuscript.

RESULTS
An initial examination of the full dataset using boxplots appears
in Figure 4. It is clear that in particular the variable TIME-
DRS is positively skewed with a number of fairly large values,
even while the median is well under 10. Descriptive statistics for
the full dataset (Table 2) show that indeed, all of the variables
are fairly kurtotic, particularly TIMEDRS, which also displays a
strong positive skew. Finally, the correlations among the three
variables for the full dataset appear in Table 3. All of these
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Table 2 | Descriptive statistics.

Variable Mean

Full (N = 465) D2 (N = 452) MCD (N = 235) MVE (N = 235) MGV (N = 463) P1 (N = 425) P2 (N = 422) P3 (N = 425)

TIMEDRS 7.90 6.67 2.45 3.37 7.64 5.27 5.17 5.27

ATTDRUG 7.69 7.67 7.69 7.68 7.68 7.65 7.64 7.65

ATTHOUSE 23.53 23.56 23.36 23.57 23.50 23.54 23.54 23.54

MEDIAN

TIMEDRS 4.00 4.00 2.00 3.00 2.00 2.00 2.00 2.00

ATTDRUG 8.00 8.00 8.00 8.00 7.00 7.00 7.00 7.00

ATTHOUSE 24.00 24.00 23.00 23.00 21.00 21.00 21.00 21.00

Q1

TIMEDRS 2.00 2.00 1.00 2.00 2.00 2.00 2.00 2.00

ATTDRUG 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00

ATTHOUSE 21.00 21.00 21.00 21.00 21.00 21.00 21.00 21.00

Q3

TIMEDRS 10.00 9.00 4.00 5.00 9.50 7.00 7.00 7.00

ATTDRUG 9.00 8.25 8.00 8.00 8.00 8.00 8.00 8.00

ATTHOUSE 27.00 26.25 26.00 26.00 26.50 26.00 26.75 26.00

STANDARD DEVIATION

TIMEDRS 10.95 7.35 1.59 2.22 10.23 4.72 4.58 4.72

ATTDRUG 1.16 1.16 0.89 0.81 1.15 1.56 1.52 1.56

ATTHOUSE 4.48 4.22 3.67 3.40 4.46 4.25 4.26 4.25

SKEWNESS

TIMEDRS 3.23 2.07 0.23 0.46 3.15 1.12 1.08 1.12

ATTDRUG −0.12 −0.11 −0.16 0.01 −0.12 −0.09 −0.09 −0.09

ATTHOUSE −0.45 −0.06 −0.03 0.06 −0.46 −0.03 −0.03 −0.03

KURTOSIS

TIMEDRS 15.88 7.92 2.32 2.49 15.77 3.42 3.29 3.42

ATTDRUG 2.53 2.51 2.43 2.31 2.54 2.51 2.51 2.51

ATTHOUSE 4.50 2.71 2.16 2.17 4.54 2.69 2.68 2.69

are below 0.15, indicating fairly weak relationships among the
measures. However, it is not clear to what extent these correla-
tions may be impacted by the distributional characteristics just
described.

Given these distributional issues, the researcher working with
this dataset would be well advised to investigate the possibility that
outliers are present. For this example, we can use R to calculate D2

for each observation, with appropriate program code appearing in
the Appendix. In order to identify an observation as an outlier, we
compare the D2 value to the chi-square distribution with degrees
of freedom equal to the number of variables (three in this case),
and α= 0.001. Using this criterion, 13 individuals were identified
as outliers. In order to demonstrate the impact of using D2 for
outlier detection, these individuals were removed, and descriptive
graphics and statistics were generated for the remaining 452 obser-
vations. An examination of the boxplot for the Mahalanobis data
reveals that the range of values is more truncated than for the orig-
inal, particularly for TIMEDRS. A similar result is evident in the
descriptive statistics found in Table 1, where we can see that the
standard deviation, skewness, kurtosis and mean are all smaller in
the Mahalanobis data for TIMEDRS. In contrast, the removal of
the 13 outliers identified by D2 did not result in great changes for
the distributional characteristics of ATTDRUG or ATTHOUSE.

The correlations among the three variables were comparable to
those in the full dataset, if not slightly smaller.

As discussed previously, there are some potential problems with
using D2 as a method for outlier detection. For this reason, other
approaches have been suggested for use in the context of multivari-
ate data in particular. A number of these, including MCD, MVE,
MGV, and three projection methods, were applied to this dataset,
followed by generation of graphs and descriptive statistics as was
done for both the full dataset and the Mahalanobis data. Boxplots
for the three variables after outliers were identified and removed
by each of the methods appear in Figure 4. As can be seen, the
MCD and MVE approaches resulted in data that appear to be the
least skewed, particularly for TIMEDRS. In contrast, the data from
MGV was very similar to that of the full dataset, while the three
projection methods resulted in data that appeared to lie between
MCD/MVE and the Mahalanobis data in terms of the distributions
of the three variables. An examination of Table 1 confirms that
making use of the different outlier detection methods results in
datasets with markedly different distributional characteristics. Of
particular note are differences between MCD/MVE as compared
to the full dataset, and the Mahalanobis and MGV data. Specifi-
cally, the skewness and kurtosis evident in these two samples was
markedly lower than that of any of the datasets, particularly the full
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Table 3 | Correlations.

Variable TIMEDRS ATTDRUG ATTHOUSE

FULL DATA SET (N=465)

TIMEDRS 1.00 0.10 0.13

ATTDRUG 0.10 1.00 0.03

ATTHOUSE 0.13 0.03 1.00

MAHALANOBIS DISTANCE (N=452)

TIMEDRS 1.00 0.07 0.08

ATTDRUG 0.07 1.00 0.02

ATTHOUSE 0.08 0.02 1.00

MCD (N=235)

TIMEDRS 1.00 0.25 0.19

ATTDRUG 0.25 1.00 0.26

ATTHOUSE 0.19 0.26 1.00

MVE (N=235)

TIMEDRS 1.00 0.33 0.05

ATTDRUG 0.33 1.00 0.32

ATTHOUSE 0.05 0.32 1.00

MGV (N=463)

TIMEDRS 1.00 0.07 0.10

ATTDRUG 0.07 1.00 0.02

ATTHOUSE 0.10 0.02 1.00

PROJECTION 1 (N=425)

TIMEDRS 1.00 0.06 0.10

ATTDRUG 0.06 1.00 0.03

ATTHOUSE 0.10 0.03 1.00

PROJECTION 2 (N=422)

TIMEDRS 1.00 0.04 0.11

ATTDRUG 0.04 1.00 0.03

ATTHOUSE 0.11 0.03 1.00

PROJECTION 3 (N=425)

TIMEDRS 1.00 0.06 0.10

ATTDRUG 0.06 1.00 0.03

ATTHOUSE 0.10 0.03 1.00

and MGV datasets. In addition, probably as a result of removing
a number of individuals with large values, the mean of TIME-
DRS was substantially lower for the MCD and MVE data than
for the full, Mahalanobis, and MGV datasets. As noted with the
boxplot, the three projection methods produced means, skewness,
and kurtosis values that generally fell between those of MCD/MVE
and the other approaches. Also of interest in this regard is the rel-
ative similarity in distributional characteristics of the ATTDRUG
variable across outlier detection methods. This would suggest that
there were few if any outliers present in the data for this variable.
Finally, the full and MGV datasets had kurtosis values that were
somewhat larger than those of the other methods included here.

Finally, in order to ascertain how the various outlier detection
methods impacted relationships among the variables we estimated
correlations for each approach, with results appearing in Table 3.
For the full data, correlations among the three variables were all
low, with the largest being 0.13. When outliers were detected and
removed using D2, MGV and the three projection methods, the
correlations were attenuated even more. In contrast, correlations
calculated using the MCD data were uniformly larger than those

of any method, except for the value between TIMEDRS and
ATTDRUG, which was larger for the MVE data. On the other
hand, the correlation between TIMEDRS and ATTHOUSE was
smaller for MVE than for any of the other methods used here.

DISCUSSION
The purpose of this study was to demonstrate seven methods of
outlier detection designed especially for multivariate data. These
methods were compared based upon distributions of individual
variables, and relationships among them. The strategy involved
first identification of outlying observations followed by their
removal prior to data analysis. A brief summary of results for
each methodology appears in Table 4. These results were markedly
different across methods, based upon both distributional and
correlational measures. Specifically, the MGV and Mahalanobis
distance approaches resulted in data that was fairly similar to
the full data. In contrast, MCD and MVE both created datasets
that were very different, with variables more closely adhering to
the normal distribution, and with generally (though not univer-
sally) larger relationships among the variables. It is important to
note that these latter two methods each removed 230 observa-
tions, or nearly half of the data, which may be of some concern
in particular applications and which will be discussed in more
detail below. Indeed, this issue is not one to be taken lightly.
While the MCD/MVE approaches produced datasets that were
more in keeping with standard assumptions underlying many sta-
tistical procedures (i.e., normality), the representativeness of the
sample may be called into question. Therefore, it is important
that researchers making use of either of these methods closely
investigate whether the resulting sample resembles the population.
Indeed, it is possible that identification of such a large proportion
of the sample as outliers is really more of an indication that the
population is actually bimodal. Such major differences in perfor-
mance depending upon the methodology used point to the need
for researchers to be familiar with the panoply of outlier detec-
tion approaches available. This work provides a demonstration of
the methods, comparison of their relative performance with a well
known dataset, and computer software code so that the reader can
use the methods with their own data.

There is not one universally optimal approach for identifying
outliers, as each research problem presents the data analyst with
specific challenges and questions that might be best addressed
using a method that is not optimal in another scenario. This study
helps researchers and data analysts to see the range of possibilities
available to them when they must address outliers in their data.
In addition, these results illuminate the impact of using the vari-
ous methods for a representative dataset, while the R code in the
Appendix provides the researcher with the software tools neces-
sary to use each technique. A major issue that researchers must
consider is the tradeoff between a method with a high breakdown
point (i.e., that is impervious to the presence of many outliers)
and the desire to retain as much of the data as possible. From this
example, it is clear that the methods with the highest breakdown
points, MCD/MVE, retained data that more clearly conformed to
the normal distribution than did the other approaches, but at the
cost of approximately half of the original data. Thus, researchers
must consider the purpose of their efforts to detect outliers. If they
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Table 4 | Summary of results for outlier detection methods.

Method Outliers

removed

Impact on distributions Impact on

correlations

Comments

D2
i 13 Reduced skewness and kurtosis when

compared to full data set, but did not fully

eliminate them. Reduced variation in

TIMEDRS

Comparable correlations

to the full dataset

Resulted in a sample with somewhat less skewed and

kurtotic variables, though they did remain clearly

non-normal in nature. The correlations among the

variables remained low, as with the full dataset

MVE 230 Largely eliminated skewness and greatly

lowered kurtosis in TIMEDRS. Also reduced

kurtosis in ATTHOUSE when compared to

full data. Greatly lowered both the mean and

standard deviation of TIMEDRS

Resulted in markedly

higher correlations for

two pairs of variables,

than was seen with the

other methods, except

for MCD

Reduced the sample size substantially, but also yielded

variables with distributional characteristics much more

favorable to use with common statistical analyses; i.e.,

very little skewness or kurtosis. In addition, correlation

coefficients were generally larger than for the other

methods, suggesting greater linearity in relationships

among the variables

MCD 230 Very similar pattern to that displayed by MVE Yielded relatively higher

correlation values than

any of the other

methods, except MVE,

and no very low values

Provided a sample with very characteristics to that of

MVE

MGV 2 Yielded distributional results very similar to

those of the full dataset

Very similar correlation

structure as found in the

full dataset and for D2

Identified very few outliers, leading to a sample that did

not differ meaningfully from the original

P1 40 Resulted in lower mean, standard deviation,

skewness, and kurtosis values for TIMEDRS

when compared to the full data, D2, and

MGV, though not when compared to MVE

and MCD. Yielded comparable skewness and

kurtosis to other methods for ATTDRUG and

ATTHOUSE, and somewhat greater variation

for these other variables, as well

Very comparable

correlation results to the

full dataset, as well as D2

and MGV

Appears to find a “middle ground” between MVE/MCD

and D2/MGV in terms of the number of outliers

identified and the resulting impact on variable

distributions and correlations

P2 43 Very similar results to P1 Very similar results to P1 Provided a sample yielding essentially the same results

as P1

P3 40 Identical results to P1 Identical results to P1 In this case, resulted in an identical sample to that of P1

are seeking a “clean” set of data upon which they can run a variety
of analyses with little or no fear of outliers having an impact, then
methods with a high breakdown point, such as MCD and MVE are
optimal. On the other hand, if an examination of outliers reveals
that they are from the population of interest, then a more careful
approach to dealing with them is necessary. Removing such out-
liers could result in a dataset that is more tractable with respect
to commonly used parametric statistical analyses but less repre-
sentative of the general population than is desired. Of course, the
converse is also true in that a dataset replete with outliers might
produce statistical results that are not generalizable to the popu-
lation of real interest, when the outlying observations are not part
of this population.

FUTURE RESEARCH
There are a number of potential areas for future research in the
area of outlier detection. Certainly, future work should use these
methods with other extant datasets having different characteris-
tics than the one featured here. For example, the current set of
data consisted of only three variables. It would be interesting to
compare the relative performance of these methods when more

variables are present. Similarly, examining them for much smaller
groups would also be useful, as the current sample is fairly large
when compared to many that appear in social science research. In
addition, a simulation study comparing these methods with one
another would also be warranted. Specifically, such a study could
be based upon the generation of datasets with known outliers
and distributional characteristics of the non-outlying cases. The
various detection methods could then be used and the resulting
retained datasets compared to the known non-outliers in terms of
these various characteristics. Such a study would be quite useful in
informing researchers regarding approaches that might be optimal
in practice.

CONCLUSION
This study should prove helpful to those faced with a multi-
variate outlier problem in their data. Several methods of outlier
detection were demonstrated and great differences among them
were observed, in terms of the characteristics of the observations
retained. These findings make it clear that researchers must be
very thoughtful in their treatment of outlying observations. Sim-
ply relying on Mahalanobis Distance because it is widely used
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might well yield statistical results that continue to be influenced
by the presence of outliers. Thus, other methods described here
should be considered as viable options when multivariate out-
liers are present. In the final analysis, such an approach must
be based on the goals of the data analysis and the study as a

whole. The removal of outliers, when done, must be carried
out thoughtfully and with purpose so that the resulting dataset
is both representative of the population of interest and use-
ful with the appropriate statistical tools to address the research
questions.
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APPENDIX
library(MASS)
mahalanobis.out < -mahalanobis(full.data,colMeans(full.data),
cov(full.data))
mcd.output < -cov.rob(full.data,method=“mcd,” nsamp=
“best”)
mcd.keep < -full.data[mcd.output$best,]
mve.output < -cov.rob(full.data,method=“mve,” nsamp=
“best”)
mve.keep < -full.data[mve.output$best,]
mgv.output < -outmgv(full.data,y=NA,outfun= outbox)
mgv.keep < -full.data[mgv.output$keep,]
projection1.output < -outpro(full.data,cop= 2)
projection1.keep < -full.data[projection1.output$keep,]
projection2.output < -outpro(full.data.matrix,cop= 3)
projection2.keep < -full.data[projection2.output$keep,]
projection3.output < -outpro(full.data,cop= 4)
projection3.keep < -full.data[projection3.output$keep,]

∗Note that for the projection methods, the center of the distrib-
ution may be determined using one of four possible approaches.
The choice of method is specified in the cop command. For this
study, three of these were used, including MCD (cop= 2), median
of the marginal distributions (cop= 3), and MVE (cop= 4).
∗∗The functions for obtaining the mahalanobis distance

(mahalanobis) and MCD/MVE (cov.rob) are part of the MASS
library in R, and will be loaded when it is called. The out-
mgv and outpro functions are part of a suite of functions
written by Rand Wilcox with information for obtaining them
available at his website (http://dornsife.usc.edu/cf/faculty-and-
staff/faculty.cfm?pid= 1003819&CFID= 259154&CFTOKEN=
86756889) and his book, Introduction to Robust Estimation and
Hypothesis Testing.
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