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We examine theories of simple choice as a race among evidence accumulation processes.
We focus on the class of deterministic race models, which assume that the effects
of fluctuations in the parameters of the accumulation processes between-choice trials
(between-choice noise) dominate the effects of fluctuations occurring while making a
choice (within-choice noise) in behavioral data (i.e., response times and choices). The lat-
ter deterministic approximation, when combined with the assumption that accumulation
is linear, leads to a class of models that can be readily applied to simple-choice behavior
because they are computationally tractable. We develop a new and mathematically simple
exemplar within the class of linear deterministic models, the Lognormal race (LNR). We
then examine how the LNR, and another widely applied linear deterministic model, Brown
and Heathcote’s (2008) LBA, account for a range of benchmark simple-choice effects in
lexical-decision task data reported by Wagenmakers et al. (2008). Our results indicate that
the LNR provides an accurate description of this data. Although the LBA model provides a
slightly better account, both models support similar psychological conclusions.
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INTRODUCTION
Humans and other organisms often have to respond to stim-
uli under time pressure that requires them to make choices in
a few seconds or less. In contrast to complex choices requiring an
extended period of deliberation during which a long series of cog-
nitive operations are completed, rapid choices are usually assumed
to have a simple cognitive architecture consisting of three stages:
stimulus encoding, response selection, and response execution.
Response selection in simple choice is almost universally modeled
by evidence accumulation, that is, by a process that accumulates
evidence until the amount favoring one of the choices is sufficient
to exceed an evidence boundary. Evidence accumulation has the
disadvantage that it becomes increasingly time consuming when
the evidence boundary is high. However, increasing response cau-
tion by increasing the boundary is also assumed to have utility
because it ameliorates the effects of various types of noise that
can cause choice errors. This assumption, and the task of pro-
viding a quantitative account of the relationship between speed
and accuracy (speed-accuracy trade-off), has been pivotal for the
development of models of simple choice.

Since the earliest proposals (e.g., Stone, 1960), it has usually
been assumed that fluctuations in evidence occurring during the
accumulation process (i.e., within-choice noise) are the dominant
cause of both choice errors and of variations in response time
(RT) from choice-to-choice. However, it soon became evident
that within-choice noise is not by itself sufficient to enable mod-
els to provide a comprehensive account of choice behavior. In
seminal work, Laming (1968) and Ratcliff (1978) demonstrated
that accounting for not only the frequency with which different
choices are made but also the distribution of RT for every type
of choice requires the addition of effects due to choice-to-choice
fluctuations (i.e., between-choice noises).

In a departure from the usual assumption, Brown and Heath-
cote (2005a) asked whether between-choice noises alone could
provide a comprehensive account of simple-choice behavior.
Although acknowledging that a range of extrinsic (e.g., stimulus)
and intrinsic (e.g., neural) factors can cause within-choice noise,
they proposed that the attendant behavioral effects might some-
times be small enough to neglect. In support of this simplifying
approximation, which they described as “ballistic,” they demon-
strated that a model with no within-choice noise could provide
a detailed account of a broad range of benchmark simple-choice
behaviors. Their model, the ballistic accumulator (BA),was further
simplified by Brown and Heathcote (2008) into the linear ballistic
accumulator (LBA). The LBA was shown to provide an account of
benchmark phenomena on par with the BA while gaining consid-
erably in ease of application because of greater mathematical and
computational tractability.

Here we extend Brown and Heathcote’s (2005a, 2008) line of
argument by developing an even more mathematically tractable
evidence accumulation model that shares with the LBA the
assumptions that accumulation is linear and deterministic. We
first set the context for this development by reviewing the roles
of different types of noise in evidence accumulation models and
by defining a framework within which the LBA, and our new
proposal, the Lognormal race (LNR), are special cases.

Next we motivate the LNR model’s Lognormal distribution
assumption, derive mathematical results, and show that the LNR
model, because of its simplicity, is required to explain speed-
accuracy trade-offs in an unconventional way, via changes in
evidence accumulation. Finally, we test and compare the LBA and
LNR models by fitting them to behavioral data from a lexical-
decision task (i.e., classifying a letter string as either a word or a
non-word) reported by Wagenmaker et al.’s (2008, Experiment 1).
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We focused on Wagenmaker et al.’s (2008) experiment because
it produced a very large speed-accuracy trade-off using instruc-
tions that emphasized either response speed or response accuracy.
Fitting methods developed by Donkin et al. (2011a) enabled us
to systematically explore a large variety of LBA and LNR model
parameterizations that instantiate different ways to quantitatively
explain the speed-accuracy trade-off. We show that LNR model is
able to provide an accurate description of the frequency of each
choice and its associated RT distribution. We also show that the
LBA model is only able to provide the same accurate description
if it explains a large part of the observed speed-accuracy trade-off
in the same unconventional way as the LNR.

SOURCES OF NOISE IN EVIDENCE ACCUMULATION MODELS
Early evidence accumulation models – random walks and their
continuous analog, a diffusion process (e.g., Stone, 1960) –
assumed only within-choice noise. However, such simple models
are inadequate because they predict correct and error choices
have identical RT distributions, whereas empirically correct and
error RT differ in regular and often replicated ways. For example,
when decision accuracy is stressed errors are slower than cor-
rect responses, but when decision speed is stressed this difference
decreases and can even reverse (e.g., Ratcliff and Rouder, 1998).
These limitations can be remedied by the addition of two sources
of between-choice noise.

First, Laming (1968) showed that variability in the starting
point of a random walk process causes fast errors. As the starting
point determines the amount of evidence required for each choice,
there is an attendant between-choice fluctuation in response bias.
Second, Ratcliff (1978) accounted for the more commonly occur-
ring slow errors in a diffusion model by allowing the mean rate
of evidence accumulation to differ between trials. Between-choice
noise in the mean rate of evidence accumulation also allows these
models to escape a prediction that is clearly false for many choice
tasks; that perfect accuracy can be achieved by a sufficient increase
in the amount of evidence required to make a choice.

What are the causes of these types of between-choice noise?
In Ratcliff ’s (1978) application – episodic recognition memory –
mean rate variation could plausibly be attributed to substantial dif-
ferences in memorability between test items (words), as responses
to different words were aggregated within experimental condi-
tions. Subsequent research has shown that mean rate variation is
also required to fit behavioral data from paradigms using homoge-
nous test items within each experimental condition. This suggests
there may be other causes of mean rate variations not related to
item effects, such as choice-to-choice fluctuations in attention and
arousal. Shadlen and Newsome (1998) provide a potential neural
cause; they showed that correlations among the firing of neurons
coding the same stimulus also cause choice-to-choice variations
in mean spike-rates.

Sequential effects are the most commonly proposed cause of
between-choice noise in the starting points of evidence accumu-
lation (i.e., in the amount of evidence required for each choice).
Simple-choice paradigms typically require participants to make a
series of closely spaced decisions, so residual effects from previ-
ous decisions have been proposed as a source of start-point noise
in cognitive (e.g., Brown et al., 2008) and neurophysiological (e.g.,

Gao et al., 2009) process models. Van Maanen et al. (2011) recently
reported evidence that model-based estimates of choice-to-choice
fluctuations in the amount of evidence required for a response are
correlated with changes in hemodynamic responses in areas asso-
ciated with response caution, the pre-supplementary motor area
and anterior cingulate (see also Huettel et al., 2002).

The most widely and successfully applied evidence accumula-
tion model, the Ratcliff diffusion model (RDM, see Ratcliff and
McKoon, 2008, for a summary), owes its ability to provide a
comprehensive account of decision behavior to the inclusion of
between-choice noise in both start points and mean rates. More
recently, a third type of between-choice noise, in the time to com-
plete encoding and response production processes (denoted Ter).
Ter noise was required by Ratcliff et al. (2004) to be able to enforce
the assumption that word frequency selectively influences the rate
of evidence accumulation in a lexical-decision task, as otherwise
they could not account for systematic effects of word frequency
on fast responses.

Race models constitute a second important class of evidence
accumulation models (see Marley and Colonius, 1992, for an
overview). In a race model each choice is represented by a sep-
arate accumulator, with the choice made corresponding to the
first accumulator to hit its evidence boundary, and RT to the time
required to do so. Like the diffusion model, early race models
(e.g., Vickers, 1979) assumed a dominant role for within-choice
noise and linear accumulation (i.e., equal weighting of samples
taken earlier vs. later in the accumulation process). These simple
assumptions were shown to be problematic because they pre-
dicted that the distribution of RT became more symmetric as
overall RT slowed. Empirically, RT distributions show strong pos-
itive skew for all but the simplest and most rapid decisions (Luce,
1986).

This problem with race models was overcome by non-linear
accumulation in Usher and McClelland’s (2001) Leaky Compet-
itive Accumulator (LCA) model. Their model’s non-linear accu-
mulation mechanisms were inspired by the fact that single-cell
neural dynamics are commonly found to be “leaky” (i.e., firing
rates return to baseline in the absence of input) and competi-
tive (i.e., increased firing in one neuron can suppress firing in
another). The interplay between these two types of non-linearity
(i.e., either one or the other dominating) can result either in late-
arriving evidence being more influential on the eventual choice
(due to leakage) or in early arriving evidence being more influ-
ential (due to competition). Non-linear accumulation has also
been proposed in a generalization of the class of diffusion mod-
els, an Ornstein–Uhlenbeck process, as part of Busemeyer and
Townsend’s (1993) Decision Field Theory (DFT). Ratcliff and
Smith (2004) claimed that this generalization was not required
based on an analysis that estimated the degree of non-linearity
from fits to data. However, more recent work by Leite and Ratcliff
(2010), using the same type of analysis, found leakage to be neces-
sary in non-competitive race models dominated by within-choice
noise.

Brown and Heathcote’s (2005a, 2008) BA and LBA are race
models that have their roots in models from both cognitive
psychology and decision neuroscience. The BA is a race model
identical in architecture and deterministic non-linear dynamics
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to Usher and McClelland’s (2001) LCA, but with only between-
choice (start point and rate) noise. The LBA model removes two
further components of the LCA, leakage in accumulation, and
competition between accumulators. As a result accumulation is
linear in the LBA and the level of evidence in one accumulator is
independent of the level in other accumulators until one hits its
boundary. At that time all other accumulators are inhibited, so that
only one response is made. The overall architecture of the LBA is
identical to Logan and Cowan’s (1984) horse-race model of the
stop-signal paradigm. The LBA model’s assumption that inhibi-
tion plays a role after, rather than during, accumulation is largely
consistent with Boucher et al.’s (2007) neurobiological findings in
the stop-signal task.

The LBA’s assumption that accumulation is linear and deter-
ministic, and that the rate characterizing this linear accumulation
varies among choices according to a normal distribution, are
shared with Carpenter’s (1981) LATER model. The LATER model
has been widely applied to behavioral and neuroscience studies
where responding is via eye-movements and the focus is on mod-
eling (i.e., non-choice) RT. Ratcliff (2001) pointed out that LATER
is unable to account for effects related to error responses in choice
paradigms. The LBA differs from LATER in assuming that the
distance from the starting point of accumulation to the bound-
ary varies between trials according to a uniform distribution. This
added assumption allows the LBA to account for error related phe-
nomena, such as systematic differences between correct and error
responses and speed-accuracy trade-offs.

As pointed out by Ratcliff (2001), within-choice noise mod-
els account for speed-accuracy trade-off because accumulation
integrates out moment-to-moment fluctuations in evidence. In
the LBA speed-accuracy trade-off can occur because accumula-
tion integrates out response bias due to between-choice start-point
noise. In both model classes between-choice rate noise also serves
to limit the accuracy that can be achieved by increasing response
caution. This provides one explanation of the observation that
even very slow decisions can be inaccurate in some tasks.

It is important to clarify the meaning of the term “ballistic” as
employed by Brown and Heathcote (2005a, 2008), as it is non-
standard. It does not imply that, like a projectile fired from a
cannon, the trajectory of evidence accumulation is entirely deter-
mined when initiated. Rather, it indicates a lack of within-choice
noise. To illustrate this point, consider Brown and Heathcote’s
(2005b) experiment using stimuli that briefly (e.g., for 90 ms)
favored one choice, then switched to favor an alternative choice.
They conceived of the rate of evidence accumulation as being able
to change as a function of the stimulus change during a trial. Inter-
ference paradigms, such as the flanker task (e.g., Gratton et al.,
1988), provide another case where it is likely that the input to the
accumulation process is non-stationary (i.e., changes over time).
Naturally, sensitivity to stimulus change is limited by the low-pass
filtering imposed by sensory processes, and such sensitivity will
also vary depending on attention-mediated selection of task rele-
vant vs. irrelevant features. An example is provided by the global vs.
local motion classification task with random-dot kinematogram
stimuli used by Ho et al. (2009); they reported a successful appli-
cation of a stationary-rate LBA model to global motion choices
based on their rapidly time-varying stimuli.

THE LINEAR DETERMINISTIC ACCUMULATION FRAMEWORK
In this section we articulate a general framework for linear deter-
ministic accumulation models. Within this framework particular
models differ in the assumptions they make about the distribu-
tions followed by each type of between-choice noise. We begin
by outlining the general framework, using the LBA model as an
illustration, and then we develop a new model that makes different
distributional assumptions, the LNR.

The LBA assumes a uniform distribution of start-point noise
and normal distribution for rate noise. These assumptions were
made both as a matter of convention (e.g., the same assumptions
are made by the RDM) and mathematical convenience. Mathe-
matically, they enable computationally tractable solutions for the
density and cumulative density functions describing the distribu-
tion of times at which the evidence total first hits the boundary of
a single accumulator. These two functions can then be easily com-
bined to determine the likelihood of any given response at any
given time from a set of one or more potential responses (i.e., for
a race amongst any number of accumulators). A likelihood, which
is not easily computed for alternative models such as the LCA and
RDM, enables efficient model estimation, and so has facilitated
applications of the LBA (see Donkin et al., 2011a, for a tutorial).

Equation 1 characterizes the time, T, for a single evidence total
to accumulate to a boundary without the specific commitments
to distributional assumptions made by Brown and Heathcote’s
(2008) LBA.

T =
D

V
(1)

The numerator of the ratio in (1), D≥ 0, indicates the dis-
tance between the starting point of evidence accumulation and the
boundary, and (1) assumes that T is undefined if V ≤ 0. For the
LBA, D ∼B+U (0, A), where “∼” means “is distributed as,” U (0,
A) indicates the uniform start-point distribution on the interval
from 0 to A(A≥ 0), and B(B≥ 0) is the distance from the upper
bound of the start-point distribution to the evidence boundary.
The denominator, V, is the rate (velocity) of evidence accumula-
tion. The LBA rate distribution is normal with a mean of v and
standard deviation sv : V ∼N (v, sv).

A LEXICAL-DECISION TASK EXAMPLE
Figure 1 illustrates an LBA model of a lexical-decision task, in
which participants have to decide if a string of letters makes up a
word. Figure 1 illustrates a trial in which the stimulus is a word,and
so the rate distribution for the true (i.e., word) accumulator has a
higher mean than the rate distribution for the false (i.e., non-word)
accumulator. In this illustration the sampled rates (indicated by the
slope of the dotted line) follow the same order as the mean rates,
but a choice error (i.e., a non-word response) is made because
the non-word accumulator hit its boundary first. The error occurs
because the non-word accumulator starts with a higher level of
evidence.

One way in which a speed-accuracy trade-off can be explained is
illustrated by considering what would happen if the boundary were
sufficiently increased in Figure 1; the higher rate of the word accu-
mulator would eventually overcome the initial response bias in
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FIGURE 1 | A schematic illustration of an LBA model for the
lexical-decision task with a word stimulus.

favor of the non-word accumulator and an accurate word response
would be made. Past applications of the BA and LBA (Brown and
Heathcote, 2005a, 2008) have assumed that this response caution
based mechanism explains speed-accuracy trade-off caused by
speed vs. accuracy emphasis instructions. However, it might also be
explained by a change in the upper boundary of start-point noise
distribution, A. If A decreased under accuracy emphasis respond-
ing would slow, as the average distance from start-point to bound-
ary would increase, and become more accurate, as bias favoring
the false accumulator would become weaker on average. The same
is true of other accumulator models, such as LCA and DFT.

The overlap of the two rate distributions in Figure 1 illustrates
why responding may not always be entirely accurate even with a
very high boundary. On some trials a higher rate will be sampled
for the incorrect (non-word) accumulator. In this case, if a quick
correct response is not caused by response bias, an error will occur
no matter how high the boundary is set. Although they have not
conventionally done so, evidence accumulation models might also
explain the effects of speed vs. accuracy emphasis through changes
in mean rates and the level of rate noise (e.g., between-choice noise
in the LBA and both within-choice and between-choice noise
in the RDM, LCA, and DFT models). For example, if accuracy
emphasis caused v and sv parameters to decrease equally for all
accumulators, RT would slow (as it would take longer to hit an evi-
dence boundary) and errors would decrease (due to a reduction
in the overlap of the rate distributions).

Given that Wagenmakers et al. (2008) manipulated speed vs.
accuracy emphasis between trial blocks participants may have had
time to make global changes in factors like attention and arousal
that might plausibly affect accumulation rates (Kleinsorge, 2001).
Hence, rather than imposing one particular way of explaining the
effects of emphasis, we took a more exploratory approach in fit-
ting in Wagenmakers et al.’s data. That is we fit all of the different
possible ways of explaining the effect of emphasis by allowing
appropriate variation in the LBA’s B, A, v, and sv parameters.

MULTIPLE AND CONTINGENT CHOICE
The two-choice case illustrated in Figure 1 can be generalized to
choice between any numbers of alternatives, where one accumula-
tor corresponds to each alternative. Suppose the densities of T at
time t for each of i= 1. . .N accumulators are denoted by fi(t ) and
the survivor functions (i.e., the complements of the cumulative
densities) by Si(t ). If the corresponding Di and V i are assumed
independent between accumulators, as is the case for the LBA, the
likelihood of response i at time t, where Π denotes a repeated
product, is:

Td (i, t ) = fi (t )
∏

j 6=i
Sj (t ) (2)

The expression for decision time (T d) in (2) describes what is
sometimes called a defective density, a curve that integrates to a
value less than or equal to one, where that value corresponds to
the probability that response i wins the race.

Even more general, yet still computationally tractable, models
can be derived based on race equations such as (2). For example,
Eidels et al. (2010) describe a model in which binary responses are
made contingent on logical relations between two stimuli as com-
puted by four linear deterministic accumulators. This illustrates
the considerable power and generality afforded by independent
race models. As we discuss below, the LNR model extends the
power of this approach by providing a tractable approach to
including correlations between the inputs to accumulators.

RESIDUAL TIME
It is necessary to make one further addition to the framework to
describe observed behavior, an account of the “residual” compo-
nent of RT not accounted for by decision time. This non-decision
time is conventionally annotated “Ter,” an acronym for time (T )
for encoding (e) and response (r). As illustrated in Figure 1, RT
is typically assumed to be the sum of decision time and a resid-
ual time that does not vary as a function of either the stimulus
or response. This invariance is reasonable in typical rapid choice
paradigms where the difficulty of stimulus encoding and response
production is fairly homogenous, but it need not always apply. For
example, Karayanidis et al. (2009) reported large differences in
residual time for fits of a diffusion model in a cued-task-switching
paradigm as a function of whether the cue indicated a repeat or
switch in task.

A second consideration related to residual time concerns
whether it is a constant or whether it is variable. Although some
variation in the processes causing residual time is highly likely,
a constant will provide a reasonable approximation if that vari-
ation is small relative variation associated with decision time.
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For example, Smith (1995) reports evidence consistent with the
standard deviation of motor production time in button-pressing
tasks being of the order of 10 ms, which would mean it accounts
for less than 1% of the overall variability in RT in even quite rapid
choices. However, between-choice variability in residual time, in
particular the sum of a constant and a uniform random devi-
ate, has become standard in recent applications of the RDM (e.g.,
Ratcliff et al., 2004). We assume a constant residual time in the
model tests described later, as that provides a substantial advan-
tage in terms of computational speed for both the LBA and LNR.
Although that suited the exploratory aims of these tests it does not
indicate a commitment to residual time always being a constant in
the general linear deterministic framework.

THE LOGNORMAL RACE MODEL
We make two observations that provide some motivation for the
LNR. First, as Brown and Heathcote (2008) note, it is possible
for an LBA to fail to respond where no sampled rate is posi-
tive, although they found the probability of a non-response to
be negligible in fits to data. However, non-responding is not a
necessary characteristic of the general class of linear deterministic
accumulators. Non-responding does not occur in the LNR model
because the logarithm of the rate is assumed to have a normal
distribution, and hence the rate for every accumulator has a (nec-
essarily positive) Lognormal distribution. The same would be true
of any other linear deterministic model that assumes a positive
rate distribution.

Second, it turns out that the independence between accumula-
tors assumed in (2) is not necessary to derive a computationally
tractable expression for the LNR likelihood. Although widely
made, we argue that the assumption of independence between
accumulator inputs and/or between accumulator distances may be
questionable in at least some circumstances, such as when evidence
for each response alternative is derived from the same stimu-
lus characteristics. In such circumstances, it is natural to assume
choice-to-choice variations in stimuli will cause the inputs to dif-
ferent accumulators to be correlated to some degree, even if the
input to each accumulator also contains some stimulus indepen-
dent sources of noise. The Lognormal distributional assumption
allows us to avoid the independence assumption without greatly
increasing the computational cost of estimation.

The LNR model derives from the work of Ulrich and Miller
(1993), who proposed that RT dynamics could be approximated
by simple version of a “continuous flow” or “partial outputs” sys-
tem (Schweikert, 1989; Townsend and Fikes, 1995). They examined
a system that is time invariant (autonomous), in the sense that its
rate of change does not depend directly on time, and that has no
memory, in the sense that its rate of change is independent of its
current state (activation). The latter property distinguishes this
system from perhaps the most well known partial outputs model,
McClelland’s (1979) cascade process. Ulrich and Miller derived the
prediction of approximately Lognormal RT for a flow with stages
characterized by a constant rate of change (i.e., linear accumula-
tors). In the next section we briefly summarize their development
and show how it can be used to model simple (i.e., non-choice) RT
tasks (e.g., press a button when a light comes on). We then expand
the development to account tasks where participants must choose
between two or more responses.

SIMPLE RESPONSE TIME
Suppose a flow is made up of S linear accumulator stages, with
associated rates vs, s= 1..S, the activation, x, of the terminal stage
as a function of time, t, is given by xS= tV, where V =Πs=1..Svs.
The flow can be approximated as being “lumped,” in the sense that
transmission occurs instantaneously from the initial to a termi-
nal stage with any delay confined to a time, t 1, between stimulus
presentation and the time at which that presentation begins to
effect activation in the flow. Without loss of generality it can also
be assumed that the sensory input to the first stage is x0= 1, as
any differences in input magnitude can be absorbed in to the
rate of the first stage. The terminal stage is a unit that repre-
sents a response, in the sense that a response is initiated when the
activation of a terminal unit travels a distance D from its initial
state.

The time taken to traverse that distance from the time that sen-
sory processing commences has the same form, T =D/V, as (1)
from the general framework. Ulrich and Miller’s (1993) system is
sufficient to model simple RT given the specification of the time
required for response production, t 2. They assumed stage rates
vary from choice-to-choice with distributions, Z s, that are positive,
independent and identically distributed, with finite first and sec-
ond moments, µs and σ2

s . It follows from the central limit theorem
that the rate distributionV ∼ exp(Σs=1..S Z s) can be approximated
by LN(µV, σ2

V), where LN indicates a Lognormal distribution with
a mean, µV, and variance, σ2

V that equal the sums of the first and
second central moments, respectively, of the Z s.

We define the LNR as a model made up of one or more racing
Lognormal accumulators (i.e., accumulators for which T ∼ LN).
Of course, when there is only one accumulator there is not really a
race, but the single accumulator model is useful for modeling sim-
ple RT. Whether motivated by Ulrich and Miller’s (1993) flow argu-
ment, or simply made as an ad hoc assumption, a Lognormal dis-
tribution for the rate of evidence accumulation is very mathemat-
ically convenient in the linear deterministic accumulation frame-
work. This is so because both the inverse of a Lognormal variable,
and the product of independent Lognormal variables, also have a
Lognormal distribution. If one assumes, as did Ulrich and Miller,
that the distance D is a constant, it follows that T ∼ LN(µ, σ2),
where µ= ln(D)−µV and σ2

= σ2
V.Consequently, simple RT is

predicted to have a shifted Lognormal distribution, where the shift,
which defines the lower bound of the distribution, equals t 1+ t 2.
Note that if accumulators in which T ∼ LN are embedded in a race
architecture, choice RT is also predicted to be Lognormal in the
limit of high accuracy. This occurs because when accuracy is high
the race has no effect on RT distribution because one accumulator
(representing the correct response) always wins.

Consistent with these predictions, the shifted Lognormal has a
long history of use to describe simple and choice RT distributions
(e.g., Woodworth and Schlosberg, 1954), which it does with an
accuracy that has been found to be on par with the most widely
used descriptive model, the ExGaussian distribution (Ratcliff and
Murdock, 1976). The Lognormal distribution is bounded below
by zero (x > 0) with density:

f (x , µ, σ) =
1

xσ
√

2π
e
−

1
2

(
1n(x)−µ

σ

)2

(3)
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FIGURE 2 | Examples of independent Lognormal distributions, all with
shift θ=0.4 s. Solid lines represent the true (correct response) accumulator
distribution, dashed lines the false (error response) accumulator
distribution. The left panel represents a speed-emphasis condition, the right
panel an accuracy emphasis condition. For the speed condition the (µ, σ2)
parameters for each density are: solid line (−1.2, 0.2), dashed line (−0.5,
0.9). The corresponding mean RTs for correct and error responses are 0.7
and 0.64 s (fast errors) with 75% accuracy. For the accuracy condition the
(µ, σ2) parameters for each density are: solid line (−1, 0.2), dashed line (0,
0.4). The corresponding mean RTs for correct and error responses are 0.78
and 0.84 s (slow errors) with 90% accuracy.

The Lognormal survivor function (S) can be expressed in terms
of the standard normal cumulative distribution, Φ, which has
rapidly computable approximations:

S (x , µ, σ) = 1−Φ

(
1n (x)− µ

σ

)
(4)

To allow for a lower bound greater than zero a shift parameter,
0 < θ < min(x), can be added by substituting (x − θ) for x in (3)
and (4). Figure 2 shows four examples of the shifted Lognormal
density.

It is important to observe that this Lognormal form is not
uniquely predicted by assuming that distance is a constant. It also
follows if distance is a random variable that also has a Lognor-
mal distribution. That is, if D ∼ exp(Z D), where Z D ∼N (µD, σ2

D),
then T ∼ LN(µ, σ2), where µ=µD−µV and σ2

= σ2
D+σ2

V. Sim-
ilarly, if V is a constant and D ∼ exp(Z D) T ∼ LN(µ, σ2), where
µ=µD− ln(V ) and σ2

= σ2
D. These observations indicate that

it is not possible to determine which of D of V are constant or
Lognormal, or whether both are Lognormal, based only on the
form of the distribution of T.

In contrast, a Lognormal distribution for T does not follow
when D has alternative distributional forms. This is true even when
the two cases discussed so far are combined, so that D has a shifted
Lognormal form, D ∼ d + exp(N (µD,σ2

D)), where d is a constant.
Allowing distance to have a shifted Lognormal distribution would
provide similar flexibility to the LBA, where the analogous condi-
tion is that there is some distance greater than zero between the top
of the start-point distribution and the boundary (i.e., B > 0). This
type of flexibility is necessary for the LBA to be able to account
for responding under accuracy emphasis. That is, good fits of the
LBA can be obtained with small values of B under speed emphasis
(Brown and Heathcote, 2008), but in most other situations esti-
mates of B are substantially greater than zero. The fits of the LNR
model reported below enable us to test whether it fails because it

lacks similar flexibility (i.e., it does not allow distance to be both
variable and to have a minimum value greater than zero).

CHOICE RESPONSE TIME
As in the LBA, the LNR model of N -choice paradigms assumes
a race among n= 1. . .N linear accumulators. The winning unit
triggers its corresponding response production process and effec-
tively inhibits all other choice units instantaneously, so only one
response is made. In this section we explicitly derive the likeli-
hood for a two-choice LNR model and point out the relatively
straightforward extension required for the N -choice case. We do
so with a quite general characterization of the sets of rate and dis-
tance parameters defined over choice units in terms of arbitrary
finite variance-covariance matrices. We do, however, assume that
distance and rate variation can be approximated as independent,
which is plausible given they originate from different sources. We
also explicitly develop results for an LNR model in which both

distances and rates have Lognormal distributions, D ∼ eN (µd ,σ2
d )

andV ∼ eN (µv ,σ2
v ), an so:

T =
D

V
∼ eN

(
µd−µv ,σ2

d+σ2
v

)
= eN(µ,σ2) (5)

Note that in (5) and in the following, results for the case where
distance is a constant are obtained by assuming parameters related
to variability in distance (e.g., σd) are set to zero.

Consider a race between two accumulators, so we now have
two-vectors of random variable for distances and rates. Distances
might be correlated between the accumulators and rates might be
correlated between the accumulators, but distances and rates are
assumed not to be correlated within an accumulator, or between
accumulators. Given MVN (µ,Σ) denotes a multivariate normal
random variable with mean vector µ and variance-covariance
matrix Σ:

d ∼ eMVN(µd−Σd ),
∑

d
=

[
σ2

d1 σ2
d1.d2

σ2
d1.d2 σ2

d2

]
(6)

v ∼ eMVN(µv−Σv ),
∑

v
=

[
σ2

v1 σ2
v1.v2

σ2
v1.v2 σ2

v2

]
(7)

Using the fact that a difference between two independent mul-
tivariate normal random variables is also multivariate normal,
where the mean vector of the difference is the difference of the
mean vectors, and the variance/covariance matrix of the difference
is the sum of the variance/covariance matrices, we can write:

T ∼ eMVN(µ,Σ), µ = µd − µv ,∑
=

[
σ2

d1 + σ2
v1 σ2

d1.d2 + σ2
v1.v2

σ2
d1.d2 + σ2

v1.v2 σ2
d2 + σ2

v2

]
=

[
σ2

1 σ2
1.2

σ2
1.2 σ2

2

]
(8)

In order to get the likelihood that, say, accumulator 2 wins the
race at time x (i.e., hits its boundary at T = x and accumulator
1 has not yet hit its boundary) we need to multiply the marginal
density of accumulator 2 by the conditional survivor function
of accumulator 1. The marginal distribution of accumulator 2
is Lognormal, exp[N (µ2,σ2

2)], as is the conditional distribution
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of accumulator 1. That is, the distribution of T 1 conditional on
T 2= x is Lognormal. Denoting the correlation ρ = σ2

12/(σ1σ2) :

T1| (T2 = x) ∼ eN (µ1 + (σ1/σ2) ρ (ln (x)− µ2) ,
(
1− ρ2) σ2

1

)
(9)

For the case of N > 2 accumulators the required conditional is
multivariate Lognormal. In the N = 2 accumulator case:

L2 (x) = f (x , µ2, σ2)S

(
x , µ1 +

σ1

σ2
ρ (ln (x)− µ2) ,

(
1− ρ2) σ2

1

)
(10)

The likelihood that accumulator 1 finishes first at time T = x is
obtained by exchanging indices in (10).

CORRECT AND ERROR-RESPONSE SPEED
Consistent with many other studies (e.g., Ratcliff and Rouder,
1998), Wagenmaker et al.’s (2008) speed vs. accuracy emphasis
manipulation systematically affected the relative speed of correct
and error responses; error responses were slower than correct
responses under accuracy emphasis and equal or faster under
speed emphasis. In order to understand the LNR and LBA fitting
results that we report in the next section, it is useful to illustrate
how each model can produce fast and slow errors. This illustra-
tion particularly focuses on the variability parameters, which play
a more important role in the LNR than have analogous variability
parameters in previous applications of the LBA.

The LBA predicts fast errors when the distance B (see Figure 1)
is smaller. Errors are fast in this case because incorrect responses
mostly occur when there is a strong initial bias toward the wrong
response. This bias can occur on some trials due to random varia-
tion in the starting points of the accumulators. Hence, even if the
error accumulator has a slow rate it can quickly achieve its bound-
ary, and so produce a fast response. No similar characterization
of fast errors is possible for the LNR model as bias (distance) and
rate effects combine additively to determine distribution shape.

However, the LNR model can still produce fast errors, as illus-
trated by the left panel of Figure 2, which simulates results from
a speed-emphasis condition. In this panel the variance parameter
for the false (error response) accumulator is twice that of the true
(correct response) accumulator. Despite having a much slower
mean, and consequently only winning 25% of races (i.e., a 25%
error rate), its greater variance causes the false accumulator to
produce fast responses when it wins the race. This can be seen as
the higher density for the false accumulator (dashed line) than the
true accumulator (solid line) on the left of the RT distributions.
As a result, when errors occur they tend to be faster than correct
responses (0.64 vs. 0.7 s in the example). The right-hand panel of
Figure 2 shows that greater false than true accumulator variance
does not always produce fast errors. In this example performance
is slower overall and more accurate (10% errors) with the mean
for error responses being greater than for correct responses (0.84
vs. 0.78 s in the example).

These considerations suggest that the LNR will require dif-
ferent variances for true and false accumulators in order to fit
manipulations that affect the relative speed of correct and error

responses. Clearly these differences must arise from differences in
rate variance, as whether an accumulator represents a correct or
error response is determined by the stimulus. We consider how
such differences might arise after reporting the results of model
fitting in the next section.

Note that fast errors could also occur in the LBA if the sv
(rate standard deviation) parameter is greater for false than true
accumulators. This possibility has not been tested before because
previous applications of the LBA have either assumed a fixed value
of sv (e.g., unity), or that the same estimated value applies for all
accumulators and experimental conditions. These assumptions
about sv were motivated by the fact that an accumulation-related
LBA parameter must be fixed in order for the model to be iden-
tifiable. However, in a design such as was used by Wagenmakers
et al. (2008) identifiability requires only that one parameter value
be fixed for one accumulator in one condition (see Donkin et al.,
2009b). The next section reports fits of LBA models that only place
this minimal constraint on sv so that we can examine all potential
explanations for fast errors.

MODEL TESTING
We fit the LBA and LNR models to data from Wagenmaker et al.’s
(2008) experiment one, where participants made decisions about
whether a string of letters constituted a word. These lexical deci-
sions were made about four types of stimuli, non-words (nw) and
high-frequency (hf), low-frequency (lf), and very low-frequency
(vlf) words. Participants made decisions either under speed or
accuracy emphasis instructions in different experimental blocks.
Accuracy blocks were preceded by the message “Try to respond
accurately”and“ERROR”was displayed after each wrong response.
Speed blocks were preceded by the message “Try to respond accu-
rately” and “TOO SLOW” was displayed after each response slower
than 0.75 s. We report analyses of data from 17 participants (31,412
data points) in their Experiment 1, including the 15 participants
analyzed in Wagenmakers et al. (2008) and two extras (we thank
Eric-Jan Wagenmakers for supplying this data).

FITTING METHODS
As we examined a large number of parameterizations of each
model that varied widely in the number of estimated parame-
ters, we compared fits both within and between model types using
the AIC and BIC model selection criteria (Myung and Pitt, 1997).
These criteria measure badness-of-fit using twice minus the log-
likelihood, which we will call the deviance (D). A model is selected
from amongst a set of models if it has the lowest AIC or BIC. Both
criteria add to the deviance a penalty that increases with the num-
ber of parameters estimated to obtain a fit. Hence, better fitting
models (i.e., with a smaller D) that have a larger numbers of para-
meters may not be selected if the extra parameters do not produce
a sufficiently large improvement in fit (i.e., reduction in D). We
consider both AIC and BIC criteria as they have different merits
flowing from the underlying quantities that they approximate (see
Burnham and Anderson, 2004; Vrieze, 2012), with BIC generally
preferring simpler models.

Our LNR models assumed there were no correlation
among rates or among distances, so fits were obtained using
the correspondingly simplified from of (10) corresponding
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to (2), i.e., F1(x) = f (x , µ1, σ1)S(x , µ2, σ2) and F2(x) =

f (x , µ2, σ2)S(x , µ1, σ1). Although we argued correlations are
plausible, in this initial exploration we fixed them at zero for three
reasons: (1) to make understanding the LNR model easier, (2) to
determine if correlation is necessary to accommodate the bench-
mark effects present in Wagenmaker et al.’s (2008) data, and (3)
to make the LNR and LBA models more comparable.

As well as the standard LBA model described by Brown and
Heathcote (2008) we also fit two variations that guaranteed a
response on every trial. In the first variation rates for all accumu-
lators were guaranteed to be positive on every trial by sampling
them from univariate normal distributions truncated below at
zero, and in the second at least one sampled rate was guaranteed
to be positive on every trial by sampling the rates from a trun-
cated multivariate normal distribution1. All of these LBA models
produced similar fits and parameter estimates, so we report fits
from the second variant for two reasons: (1) it is most directly
comparable to the LNR model, which also has positive rates for
all accumulators on every trial and (2) it is of interest in itself
as an alternative to the LNR for solving the issue of potential
non-responding in the original LBA model.

As it is not our focus here we do not provide a direct compari-
son with fits of the RDM reported by Wagenmaker et al.’s (2008).
Note, however, that Donkin et al. (2011b) found similar quality
fits to this data for Ratcliff diffusion and LBA models with similar
numbers of parameters. In this comparison both parameteriza-
tions were strongly constrained based on past findings about these
models. In contrast, because past findings are not available for the
LNR model, and our aim here is exploratory, our most complex
LNR model was very flexibly parameterized. It freely estimated
both µ (mean) and σ2 (variance) parameters over a false vs. true
accumulator factor (C), a stimulus type factor (W ) with four lev-
els (hf, lf, vlf, and nw), and an instruction emphasis factor (E)
with two levels (speed vs. accuracy), so in total there are poten-
tially 2× 4× 2= 16 estimates of each type. Note that C factor
represents whether, for a given stimulus, a parameter corresponds
to the accumulator for the correct (true) response (i.e., the word
accumulator for a word stimulus or the non-word accumulator
for a non-word stimulus) or for an error (false) response (i.e.,
the word accumulator for a non-word stimulus or the non-word
accumulator for a word stimulus).

In order to allow similar flexibility for the LBA, and so that
we can compare effects on analogous parameters, we report fits
of an LBA model with a less constrained parameterization than
is conventional. The LBA B and A parameters were allowed to
vary with a word vs. non-word response accumulator factor (lR,
standing for“latent response”), in order to accommodate response
bias. We also allowed these parameters to vary as a function of the
speed vs. accuracy emphasis factor (E), as the analogous quantity
in the LNR model, the mean and variance of distance, have the
same freedom to vary as components of the Lognormal mean and
variance parameters. LBA rate mean (v) and variability (sv) were

1Density and cumulative density functions for the first “positive LBA” are obtained
by dividing the corresponding expressions in Brown and Heathcote (2008) by
Φ(v/sv). Heathcote and Hayes (2012) give details of the second, which introduces a
dependency between rates for different accumulators.

allowed to vary with C, E, and W as the analogous LNR quantities,
the rate mean and variance, are components of the LNR mean and
variance parameters.

We also allowed residual time to vary with emphasis instruc-
tions (E) for both models as this was favored by AIC and BIC
model selection in most cases (see Rinkenauer et al., 2004, for evi-
dence supporting an effect of emphasis instructions on response
production). We denote residual time as t 0, as it corresponds to
the lower bound of the distribution of RT. We used this nota-
tion rather than by the conventional Ter notation because, at least
in the flow interpretation of the LNR, stimulus-encoding time
might be seen as part of the accumulation process, in which case
t 0 should be thought of as the sum of response production time
and the “dead-time” between stimulus onset and the first stimulus
contingent change in the firing rates of sensory neurons.

In summary, there were 34 estimated LNR parameters (16 each
for µ and σ2 and two residual time parameters) compared to 41
LBA parameters (16 v, 15 sv, 4 B and 4A, and two residual time
parameters). Note that we fixed the intercept of sv estimates at
one (for the false accumulator in the accuracy condition for high-
frequency words) to make the LBA model identifiable, so there are
15 rather than 16 estimated sv parameters. In order to compactly
refer to models we useR (R Development Core Team, 2012) linear
model notation adapted to our multiple parameter-type setting.
For example the notation B ∼ lR∗E indicates estimation of the
main effects of lR and E, and their interaction (lR× E). Similarly
v ∼ E∗W ∗C indicates estimation of the three main effects, three
two-way interactions (E ×C, E ×W, and W ×C), and one three-
way interaction (E ×W ×C). Using“&”to indicate a join between
parameterizations for different parameter types, we denote the 34
parameter LNR model as µ∼ E∗W ∗C & σ2∼E∗W ∗C & t 0∼ E
and the 41 parameter LBA model as B ∼ lR∗E & A ∼ lR∗E &
v ∼ E∗W ∗C & sv ∼ E∗W ∗C & t 0∼ E.

The models were fit to each participant’s data separately using
the exact maximum-likelihood-based methods described in detail
in Donkin et al. (2011a)2. This method fits a hierarchy of sim-
plified models that are special cases of the most complex (“top”)
model (i.e., the 34 parameter LNR model and the 41 parameter
LBA model). The simplest LNR model in the hierarchy esti-
mated the same parameters of each type for all conditions, except
that it allowed different mean rate parameters for true and false
accumulators (i.e., model µ∼C & σ2 ∼ 1 & t 0∼ 1, where “∼1”
indicates an intercept-only estimate). Similarly, the simplest LBA
model allowed only mean rate to differ between true and false
accumulators (B ∼ 1 & A ∼ 1 & v ∼C & sv ∼ 1 & t 0∼ 1).

Best fitting parameters for the simplest models were used as
starting points when searching for best fits of models that esti-
mated the effect of one extra factor for one type of parameter. Best
fits for these models were used in turn as starting points for fits of

2We limited the influence of outlying observations, which can be problematic for
exact maximum-likelihood methods (Ratcliff and Tuerlinckx, 2002), by placing
a floor on the likelihood of an observation corresponding to the assumption of
a small (10−5) probability that participant’s data was contaminated by unbiased
guesses with an RT drawn from a uniform distribution over the range from 0.3 to
2.5 s beyond which Wagenmakers et al. (2008) censored their data. We experimented
with contamination probabilities up to 1% and obtained similar results.
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models that estimated one additional factor, and so on up to the
most complex model. For example the simplest LNR model,µ∼C
& σ2 ∼ 1 & t 0∼ 1, provides a start point for six models: µ∼W ∗C
& σ2 ∼ 1 & t 0∼ 1, µ∼ E∗C & σ2 ∼ 1 & t 0∼ 1, µ∼C & σ2 ∼C &
t 0∼ 1, µ∼C & σ2 ∼W & t 0∼ 1, µ∼C & σ2 ∼ E & t 0∼ 1, and
µ∼C & σ2 ∼ 1 & t 0∼ E. One or more of these (nested) models
then provided start points for further (nesting) models with three
free factors and so on up to the top model.

The aim of fitting nesting models from immediately nested
models is to avoid getting stuck in local minima and so to obtain
true maximum-likelihood fits for more complicated models by
fitting them from a variety of plausible starting points. We cannot
prove that the method always achieves its aim but have found it
does so in simulation studies fitting model of similar complexity
to those examined here when using similar sample sizes to the
data examined here. In contrast, we have found other less thor-
ough methods often fail badly, and although hand tuning can
often remedy such problems that is not feasible when exploring
large sets of models. For example, here we fit all possible combi-
nations of factors for different parameters, resulting in 64 LNR
model and 1024 LBA models per participant (i.e., 18,496 models
in total over 17 participants) and this was done for a number of
variants (e.g., different types of LBA models and different levels of
response contamination).

In total the results reported here were based on 193 LNR fits per
participant and 5121 LBA fits per participant (90,338 fits in total).
The R (R Development Core Team, 2012) optim function was used
for each fit with default settings. It was repeatedly applied (start-
ing each time from the previous solution) until the log-likelihood
increased by less than 0.1. All model hierarchies were checked to
ensure that nested models had an equal or higher deviance (within
numerical tolerance) than nesting models, and any exceptions
corrected by refitting.

MODEL SELECTION
Table 1 reports badness-of-fit (deviance) and AIC and BIC model
selection results relative to the best model according to that sta-
tistic (i.e., the model with a zero in the corresponding column of
Table 1). The table reports model selection results for three hier-
archies. The first two are the full hierarchies below the top LBA
(B ∼ lR∗E & A ∼ lR∗E & v ∼ E∗W ∗C & sv ∼ E∗W ∗C & t 0∼ E)
and LNR (µ∼ E∗W ∗C & σ2 ∼ E∗W ∗C & t 0∼ E) models. The
third hierarchy consists of all models nested within an LBA model
that enforces the conventional assumption that speed vs. accu-
racy emphasis does not influence evidence-rate-related parameters
(i.e., v and sv): B ∼ lR∗E & A ∼ lR∗E & v ∼W ∗C & sv ∼W ∗C &
t 0∼ E. We call this set of models the“conventional LBA”hierarchy,
although it is still somewhat more flexible than most previous LBA
applications as it allows changes in the A as well as the B parameter
with emphasis.

Table 1 reports results for the most flexible model in each hier-
archy its upper section, results for the best (smallest) AIC model
in each hierarchy in the middle section, and results for the best
(smallest) BIC model in each hierarchy in its lower section. Within
each section the first two models are from the full LBA and LNR
hierarchies, respectively, and the last model is from the conven-
tional LBA hierarchy. As might be expected, the full LBA model,

with the largest number of parameters, has the best fit (lowest
deviance). Models from this same LBA hierarchy were also selected
by AIC and BIC. Note that this is not because the selected models
are more flexible as indexed by number of parameters; the best
overall models have the same number parameters, or fewer, than
the best models from the other hierarchies. Selection between the
conventional LBA and LNR hierarchies is more equivocal, the LNR
clearly wins on AIC but just looses on BIC.

The AIC and BIC results from the full LBA hierarchy are con-
sistent in selecting the v ∼W ∗C and sv ∼ E∗C parameterization
for rate-related parameters. That is, there is a selective influence of
stimulus type on mean rate and selective influence of emphasis on
rate variability, with true and false accumulators differing on both
types of parameter. The conventional explanation of emphasis
effects in terms of the boundary (B) is also consistently supported.
However, an effect of emphasis on start-point noise (A) receives
support only from AIC, indicating it has a weaker effect. The same
is true of response bias (lR) effects on B, and there is no support for
any effect of response bias on A. Support for an effect of emphasis
on residual time (t 0) was also inconsistent.

Model selection for the conventional LBA hierarchy produces
results largely consistent with those for the full hierarchy. Stimulus
type has a selective influence on mean rate (v), with true and false
accumulators differing on both types of rate parameter. Both cri-
teria support an effect of emphasis on the B, A, and t 0 parameters,
consistent with these parameters making up some of the fit pro-
vided by the sv parameter in the full hierarchy. Stronger response-
bias effects, particularly on the B parameter, are also evident.

Within the LNR hierarchy both AIC and BIC pick the same
model, which drops only the effect of stimulus type on variance
relative to the full model. These results are largely consistent with
effects selections for analogous parameters in the full LBA hierar-
chy (i.e., neglecting distance effects µ is analogous to −ln(v) and
σ to sv), in that stimulus type selectively influences µ and both µ

and σ differ between true and false accumulators. Two differences
are that emphasis affects both µ and σ, not just the variability
parameter as in the LBA, and it also consistently affects t 0.

In summary, for the LBA, model selection results indicate that,
in contrast to the conventional assumption, the speed vs. accuracy
emphasis effect is best explained when rate variability changes with
emphasis. Model selection also supports a role for the conventional
boundary-based mechanism, but less so for the start-point based
mechanism. Further, in contrast to previous applications where
only the mean rate has been allowed to differ between correct
and false accumulators, there was clear support for a difference
in rate variability between accumulators. These results show that
the LBA, at least to some degree, uses the same mechanism as the
LNR to explain differences in the relative speed of correct and
error responses, differences in the variability associated with true
and false accumulators. The classes of models differ, at least in
terms of the AIC and BIC selected models, in that the LNR mean
parameter also has a role in explaining the emphasis effect.

MODEL FIT
We focus on the fit of the model selected by both AIC and BIC from
the full LNR hierarchy and by AIC for the LBA hierarchy in order
to determine how well these relatively simple models capture the
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Table 1 | Model selection statistics for the LBA and LNR top models and the conventional LBA top model (upper section) and the best AIC

(middle section) and BIC (bottom section) model in each hierarchy.

Model NP ∆D ∆AIC ∆BIC

B ∼ lR*E & A∼ lR*E & v ∼E*W*C & sv ∼E*W*C & t0∼E 41 0 15 210

µ∼E*W*C & σ2 ∼E*W*C & t0∼E 34 19 20 156

B ∼ lR*E & A∼ lR*E & v ∼W*C & sv ∼W*C & t0∼E 25 68 51 112

B ∼ lR*E & A∼E & v ∼W*C & sv ∼E*C & t0∼E 19 29 0 11

µ∼E*W*C & σ2 ∼E*C & t0∼E 22 36 13 49

B ∼ lR*E & A∼ lR*E & v ∼W*C & sv ∼C & t0∼E 19 79 50 61

B ∼E & A∼1 & v ∼W*C & sv ∼E*C & t0∼1 15 59 22 0

µ∼E*W*C & σ2 ∼E*C & t0∼E 22 36 13 49

B ∼ lR*E & A∼E & v ∼W*C & sv ∼C & t0∼E 17 83 51 45

NP, number of parameters per participant; ∆D, D−min(D), where D indicates deviance; ∆BIC, BIC−min(BIC); ∆AIC, AIC−min(AIC). D, BIC, and AIC values are

summed over participants then divided by number of participants.

pattern of effects on correct RT and error rates (Figure 3) and error
RT (Figure 4). The ability of the models to capture RT distribution
is indicated by displaying results for the 10th, 50th, and 90th per-
centiles3 of RT distribution. Fits to intermediate percentiles are
of similar quality to the percentiles shown, and are omitted for
display clarity.

The goodness-of-fit figures average corresponding observed
and predicted values over participants. Predicted values corre-
sponding to each observed RT were obtained by simulating 100
times as many values as were observed. For example, if there were
100 correct and 9 error responses, 10,000 correct and 900 error
RTs were simulated and predictions obtained from the order sta-
tistics of the simulated data (e.g., the fastest of the 90 error RTs
was assumed to correspond to the 10th percentile of the simu-
lated sample; in general the ith ordered observation from N was
equated with the i/(N + 1) quantile of the simulated data). Pro-
portion correct was calculated from the full set of samples required
to obtain the predicted RT values. Observed and predicted values
were treated in the same way to get the averages in the figures; RT
averages were calculated omitting missing values.

Figure 3 shows that the best LNR and AIC-best LBA models
accurately capture correct RT distribution. The simpler BIC-best
LBA model, whose results are not shown, provided an equally
accurate account of correct RT to the AIC-best LBA model. The
word frequency manipulation provides a strong test of the simpli-
fying assumption, which we made in fitting both the LNR and LBA
models, that residual time is a constant, given the Ratcliff diffusion
requires variable residual time to account for the effect of word fre-
quency on fast correct responses (i.e., the 10th percentile). Clearly
neither model requires variation in residual time to provide a very
accurate account of fast correct responses.

3Models were not fit to these or any other set of percentiles; percentiles are only used
to summarize goodness-of-fit. In contrast, the Ratliff diffusion model is usually fit
to the 10th, 30th, 50th, 70th, and 90th percentiles, as that requires only calculation
of the CDF, which is much quicker to compute for the RDM than the likelihood. We
used exact maximum likelihood because this allows us to compute exact AIC and
BIC values rather than relying on a multinomial-maximum-likelihood approxima-
tion (see Heathcote and Brown, 2004; Speckman and Rouder, 2004) required for
percentile methods.

Figure 3 shows that the best LNR model accurately captures
error rates, although it slightly under-predicts the accuracy-speed
effect for high-frequency words, although overall it captures 94%
of the average difference. The AIC-best LBA model does not
perform quite as well, capturing 83% of the average difference.
Although this might be attributed to the AIC-best LBA model
being simpler (19 parameters) than the best LNR model (22 para-
meters), the more complicated top LBA model (41 parameters)
does not do much better (86%). The simpler BIC-best LBA model
(15 parameters), which drops the effect of emphasis on A, does
considerably worse (67%). We also included in the comparisons
in Figure 3 the top model from the conventional LBA hierarchy.
This model is more complicated (25 parameters) than either of
the comparison models, and clearly it is able to accurately capture
the correct RT distribution. However, it captures only 20% of the
average speed-accuracy difference in error rates.

Figure 4 shows that the best LNR model and AIC-best LBA
model captures the overall pattern in error RT in the speed-
emphasis condition. In the accuracy emphasis condition there are
fewer errors, particularly in for high-frequency words and non-
words, so RT estimates are noisy. However, both models appear
to systematically underestimate overall variability, resulting either
in overestimation of the 10th percentile or underestimation of the
90th percentile. As was the case for correct RT, the simpler BIC-
best LBA model, whose results are not shown, provides a similar
account of error RT to the AIC-best LBA model.

Figure 5 focuses on the relative speeds of (median) correct and
error RT, with confidence intervals omitted to make the pattern of
results clearer. Both the best LNR and best LBA models capture
the general pattern of slower error than correct responses under
accuracy emphasis and faster error than correct responses under
speed emphasis.

DISCUSSION
Our fits show that the LNR model is able to provide
quite an accurate descriptive account of all of the effects in
Wagenmaker et al.’s (2008) first experiment. Recall that the LNR
model we fit is simplified in two senses; it assumes no variability in
residual time, and it assumes inputs and distances are uncorrelated
across accumulators. It is also without the LBA model’s freedom to
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combine trial-to-trial variability in distance with a distance greater
than zero. That none of these restrictions caused a bad fit is not,
by itself, evidence that these restrictions might not have to be
relaxed in other situations. However, it does encourage the wider
application of this simple and tractable form of the LNR model.

Figure 6 shows average mean (µ) and variance (σ2) parame-
ter estimates for the best LNR model (i.e., the model selected
by both AIC and BIC). The false accumulator (i.e., the accumu-
lator corresponding to the error response) has a greater mean
parameter than the true accumulator. Note that this results in
an increase in both the mean and variance of boundary-crossing
times for the false accumulator, because the µ parameter affects

both. We also found that the false accumulator had a greater
variance than the true accumulator, consistent with the exam-
ple given in Figure 2. Again, this results in an increase in both
the mean and variance of boundary-crossing times for the false
accumulator, because the parameter σ parameter also affects both.
These differences in µ and σmight arise, due to differences in
the distributions of evidence accumulation rates for true and
false accumulators. To provide a concrete example, suppose a
template-matching process produces evidence for each response.
If poorer matches produce outputs that at not only weaker on
average but also more variable than outputs for strong matches
the pattern displayed in Figure 6 could be found. In support

FIGURE 3 | Continued
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FIGURE 3 | Observed RT distributions (10th, 50th, and 90th percentiles,
left column) and error rates (right column) for Wagenmaker et al.’s
(2008) Experiment 1 with bias-corrected within-subject 95%
confidence intervals (Morey, 2008), and fits averaged over participants
for the best (selected by AIC and BIC) LNR (µ∼E ∗W∗C & σ2 ∼E ∗C &

t0∼E ) and best (selected by AIC) LBA (B∼ lR∗E & A∼E & v∼W∗C &
sv∼E ∗C & t0∼E ) models and the top conventional LBA (B∼ lR∗E &
A∼ lR∗E & v∼W∗C & sv∼W∗C & t0∼E ) model: hf, high-frequency
words; lf, low-frequency words, vlf, very low-frequency words; nw,
non-words.

FIGURE 4 | Observed error-response RT distributions (10th, 50th, and
90th percentiles) Wagenmaker et al.’s (2008) Experiment 1 with
bias-corrected within-subject 95% confidence intervals (Morey, 2008),
and fits averaged over participants for the best (selected by AIC and

BIC) LNR (µ∼E ∗W∗C & σ2∼E ∗C & t0∼E ) and best (selected by AIC)
LBA (B∼ lR∗E & A∼E & v∼W∗C & sv∼E ∗C & t0∼E ) models: hf,
high-frequency words; lf, low-frequency words; vlf, very low-frequency
words; nw, non-words.

of this possibility, there was a high positive correlation (r = 0.80,
p < 0.001) between the mean and variance estimates for the top
LNR model.

For both the LNR mean and variance, Figure 6 shows that the
increase from speed to accuracy conditions is larger for false than
true accumulators. This uneven increase cannot be explained by a
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FIGURE 5 | Observed and predicted median RTs for correct and error
responses in Wagenmaker et al.’s (2008) Experiment 1 and fits averaged
over participants for the best (selected by AIC and BIC) LNR µ∼E ∗W∗C &

σ2 ∼E∗C & t0∼E ) and best (selected by AIC) LBA (B∼ lR∗E & A∼E &
v∼W∗C & sv∼E ∗C & t0∼E ) models: hf, high-frequency words; lf,
low-frequency words, vlf, very low-frequency words; nw, non-words.

selective influence of speed vs. accuracy emphasis on distance (i.e.,
the LNR analog of a boundary effect), as that must cause an equal
effect on false and true accumulators (see Eq. 8). That is, accumu-
lators are only “false” and “true” with respect to the stimulus, so
the interactions evident in Figure 6 indicate that emphasis directly
affects the mean and variability of the rate at which information
is extracted from a stimulus. Clearly this conclusion is at odds
with the way that speed-accuracy trade-off has traditionally been
accounted for by evidence accumulation models. Note, however,
that these results do not rule out some change in distance under
accuracy emphasis, as long as this change is accompanied by
appropriate changes in rates to yield the total effect in Figure 6.

Perhaps more surprisingly,model selection failed to support the
traditional boundary-only account for the LBA; the best model
according to both AIC and BIC included emphasis effects on
the LBA sv parameter. Figure 7 shows the rate-related parameter
estimates for the AIC-best LBA model (BIC-best estimates were
almost identical). The sv estimates were greater for the true than
false accumulator, and vice versa for the v estimates, consistent
with the findings for the analogous LNR parameters. In contrast
to the LNR model, speed emphasis affected false accumulator vari-
ability in the opposite direction, increasing it greatly in the speed
condition. Regardless, of this difference, clearly neither LBA nor
LNR results are in line with conventional assumptions.
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FIGURE 6 | Best LNR (µ∼E ∗W ∗C & σ2 ∼E ∗C & t0∼E ) µ (Mean), and σ2

(Variance) parameter estimates averaged over participants, with
bias-corrected within-subject 95% confidence intervals (Morey, 2008).

FALSE, error-response accumulator; TRUE, correct-response accumulator; hf,
high-frequency words; lf, low-frequency words; vlf, very low-frequency words;
nw, non-words.

FIGURE 7 | AIC-best LBA (B∼ lR∗E & A∼E & v∼W∗C & sv∼E ∗C &
t0∼E ) v (mean rate) and sv (rate standard deviation) parameter
estimates averaged over participants, with bias-corrected within-subject

95% confidence intervals (Morey, 2008). FALSE, error-response
accumulator; TRUE, correct-response accumulator; hf, high-frequency words;
lf, low-frequency words; vlf, very low-frequency words; nw, non-words.

Our analysis of model fit indicated that effects of empha-
sis on the LBA boundary (B) and start-point noise (A) para-
meters, as well as on the sv parameter, were required to
describe the large effects on error rate shown in Figure 3.
Figure 8 plots these parameter estimates for the AIC-best
LBA model. Speed emphasis caused a decrease in B, and to
a lesser degree an increase in A. Figure 8 also plots results
for the top conventional LBA model, which does not allow
emphasis to affect any rate parameters. The pattern is similar,

except that the effects are larger and the overall level of is
B lower.

In summary, when free do to so, the LBA does not attribute the
speed-accuracy trade-off induced by instructions in Wagenmaker
et al.’s (2008) experiment purely to a change in response caution.
Although changes affecting the level of errors caused by start-point
noise (i.e., changes in the A and B parameters) could in principle
accommodate the large observed differences in error rate, they are
not able to do so while also providing an accurate account of RT
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FIGURE 8 | Emphasis effects on AIC-best (B∼ lR∗E & A∼E & v∼W∗C &
sv∼E ∗C & t0∼E ) and top conventional LBA model (B∼ lR∗E & A∼ lR∗E
& v∼W∗C & sv∼W∗C & t0∼E ) start-point noise (A) and boundary (B)

parameter estimates averaged over participants, with bias-corrected
within-subject 95% confidence intervals (Morey, 2008). NW, non-word
accumulator; W, word accumulator.

distribution in this data. In particular, the strength of start-point
noise in the LBA is limited because if it is too strong it can produce
a more uniform RT distribution than is observed. Instead, the LBA,
like the LNR, explains much of the speed-accuracy trade-off effect
by an increase in the overlap of false and true distributions under
speed emphasis.

GENERAL DISCUSSION
In this paper we have articulated framework for modeling simple-
choice behavior using linear deterministic evidence accumulation.
Within this framework the evidence is approximated as determin-
istic during accumulation, and the time for an evidence accu-
mulator to reach its boundary is characterized by a ratio of two
variables, one or more of which can vary randomly between-choice
trials (“between-choice noise”). The numerator variable is the dif-
ference between the level of evidence at the start of accumulation
and the boundary (“distance”) and the denominator variable is
the rate of accumulation. Accumulators participate in a race that
is non-interactive in the sense that that the state of one accumula-
tor does not directly affect the state of other accumulators during
accumulation. Response selection and RT are determined by the
times at which evidence totals first cross one or more accumulator
boundaries.

Different types of models within the linear deterministic frame-
work correspond to different assumptions about the distributional
forms of the variables in the ratio. Two previously proposed mod-
els that fall within the framework, Carpenter’s (1981) LATER
model and Brown and Heathcote’s (2008) LBA model assume
normally distributed rates; LATER also assumes distance is a con-
stant whereas the LBA assumes it is uniformly distributed. Model
types can also differ in three other ways: in how the random vari-
ables are related across accumulators, in the number of racers, and
in how boundary crossings determine response selection. In the
setup used in most previous applications of the LBA the random
variables are uncorrelated, there is a one-to-one mapping of rac-
ers to responses, and the winning racer (i.e., the first to cross its
boundary) triggers the corresponding response. However, it is also

possible to have more racers than responses, to have responding
contingent on more than one boundary crossing (see Eidels et al.,
2010, for an LBA based example), and to have correlations among
the random variables for different accumulators.

In this paper we proposed a new type of linear deterministic
model, the LNR, and compared it to a slight variant of previous
LBA models through fits of both models to Wagenmaker et al.’s
(2008) speed-accuracy trade-off experiment. The version of the
LNR that we focused on is mathematically simple because the
random-variable ratio has the same distributional form as its con-
stituents, a Lognormal distribution. A Lognormal ratio also results
if the numerator (distance) is a constant and only the denomi-
nator (rate) is a Lognormal random variable or vice versa. The
Lognormal form makes it tractable to allow rates and boundaries
to be correlated over accumulators. However, in our initial explo-
ration we assumed no correlation to see if this simple form of the
LNR could still provide adequate fits. The LBA variant that we fit
has a normal rate distribution truncated at zero, so on every trial
all accumulators have a rate greater than zero. The latter property
also applies to the LNR, as the Lognormal distribution is positive,
so in both cases a response must eventually be selected on every
choice trial.

The findings reported in this paper – both theoretical results
related to the LNR and empirical results from fitting the LNR and
LBA – bear most directly on the deterministic assumption made
by our framework. On the theoretical front, the “flow” motivation
of the LNR has implications for the division between stimulus
encoding and response selection stages, and the effect of assuming
a Lognormal distance has implications for the way in which deter-
ministic models explain speed-accuracy trade-off by integrating
out start-point noise. On the empirical front, our results point
to the utility of the LNR as a tractable descriptive model and also
highlight the issue of whether speed vs. accuracy emphasis instruc-
tions have effects beyond changes in the evidence boundary. Before
addressing these implications, we first discuss the other funda-
mental assumption made by our framework, that accumulation
is linear. As exemplified by the BA model (Brown and Heathcote,
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2005a), there is no necessary relationship between the determin-
istic and linear assumptions, but linearity is closely related to
another assumption, that accumulation is non-interactive.

LINEAR ACCUMULATION
The nervous system is pervaded by non-linear dynamics,
caused by factors such as imperfect (“leaky”) neural integration
and recurrent self-excitation and lateral inhibition. Behavioral
evidence for non-linear evidence accumulation has been sought
using stimuli with non-stationary discriminative information, that
is, stimuli that can briefly switch between the choices they support
during the time course of accumulation. Usher and McClelland’s
(2001) seminal experiments investigated the influence of the time
within a stream of information favoring one response at which
a brief pulse of contradictory information occurred. They found
strong differences between participants ranging from leaky inte-
gration (i.e., a greater influence for late pulses occurring before
response selection) through linear integration (sometimes abbre-
viated TSI for “time-shift invariance”) to results consistent with
recurrent interactions (i.e., a greater influence of early pulses).

Huk and Shadlen (2005) performed a similar experiment on
temporal integration of motion information in the lateral intra-
parietal (LIP) area of two rhesus monkeys. They found a greater
influence for late pulses and concluded, based on modeling assum-
ing within-choice noise, that: “. . . the time course of the pulse
effects is consistent with the hypothesis that LIP reflects approxi-
mately linear integration that stops when the accumulation reaches
a bound.” (p. 10443). Wong et al. (2007) simulated integra-
tion by a recurrent circuit perturbed by within-choice noise and
found it displayed a: “violation of . . . TSI, similar to the viola-
tion observed in the Huk and Shadlen (2005) experiment.” (p.
8). Zhou et al. (2009) provide an insightful discussion of diffi-
culties in distinguishing different types of integration using pulse
paradigms.

Individual differences, and potential confounding of inferences
about the nature of integration, might occur in these experiments
if some participants noticed the pulse and employ compensatory
strategies such as delaying the onset of sampling (to avoid being
mislead by an early pulse) or prematurely terminating sampling (to
avoid being mislead by a late pulse). Usher and McClelland (2001)
attempted to minimize such problems using fairly brief pulses, as
did Huk and Shadlen (2005) by making the pulse unrelated to
rewards, but the success of these measures was not directly tested.
Brown and Heathcote (2005b) attempted to avoid these problems
using a very brief pulse (90 ms) that was meta-contrast masked.
Masking was shown to be effective as detection of trials with a
pulse was at chance levels for most participants. At the start of the
experiment later arriving evidence had greater weight than earlier
arriving evidence (i.e., accumulation was leaky), but as subjects
practiced at the task integration quickly became linear.

One possible interpretation of why practice might promotes
linear integration, is that it makes decision-making more efficient
when evidence is stationary. That is, when early arriving evidence
is no better guide to the correct choice than late-arriving evidence
it is best to weigh each equally. In many simple-choice tasks where
stimuli remain available until a choice is made, evidence is likely
stationary, particularly as rapid responding means the stimulus

is sampled for a relatively brief period of time. Stationarity does,
however, require that sampling not begin prematurely (i.e., before
stimulus information first becomes available), although Laming
(1968) suggested the effects of premature sampling might be mim-
icked by start-point variability. When the stimulus is only available
briefly evidence will be non-stationarity unless it is sampled from
a mnemonic representation of the stimulus (e.g., Smith and Rat-
cliff, 2009). Of course, this type of non-stationary is different to the
effects of non-linearity intrinsic to some evidence accumulation
models, although they might mimic it.

More recently Tsetsos et al. (2011) introduced an innovative
new multiple-pulse paradigm that manipulates temporal corre-
lations among the evidence for three alternatives. In agreement
with Usher and McClelland (2001), they found strong individual
differences, and their analysis supported the LCA over two other
within-choice noise models (a race and diffusion model). Over-
all, then, it appears that models that can accommodate all types of
integration by adjusting the balance of leaky and recurrent dynam-
ics best accommodate the full range of pulse-paradigm data. Such
models include not only the LCA but also Wong et al.’s (2007)
model, DFT (Busemeyer and Townsend, 1993), and Brown and
Heathcote’s (2005a) BA. Even so, models assuming linear accu-
mulation, such as the LBA and Ratcliff diffusion, often provide a
good fit to data from the simple-choice paradigms used to evalu-
ate evidence accumulation models. A potential reason is that large
numbers of responses are collected in these paradigms in order
to facilitate model fitting, and so participants are afforded sub-
stantial practice. Brown and Heathcote’s (2005b) results suggest
that practice might cause an adjustment of recurrent interactions
so they balance leakage, resulting in efficient integration that is
approximately linear.

DETERMINISTIC ACCUMULATION
That the deterministic assumption can support a comprehensive
account of simple-choice behavior (i.e., of benchmark findings
about the choices made and the times to make them) is perhaps
surprising. The nervous system is not deterministic at the level of
individual cell activity and most evidence accumulation models
assume a dominant role for within-choice noise, although they
can only provide a comprehensive account by also assuming a
role for between-choice noise. The success of the deterministic
assumption maybe less surprising, however, if it is kept in mind
that it is an assertion about the importance of different types of
noise for explaining choice responding. Importantly, this charac-
terization as an approximation targeting behavioral measurement
entails the implication that the deterministic assumption may not
be appropriate for explaining other measurements of choice (e.g.,
single-cell firing rates). Even so, progress in science has often relied
on developing approximations appropriate for different levels of
description (e.g., the diffusive micro-scale behavior of gas mole-
cules vs. the macro-level interactions between pressure, volume,
and temperature captured by the gas laws).

The mechanism by which macro-scale deterministic behav-
ior might emerge from the micro-scale variability intrinsic to
the nervous system remains to be determined. Local averaging
mechanisms have been argued not to be sufficient because of cor-
relations between the activities of nearby cells that share inputs
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(Zohary et al., 1994). One possible explanation is that global rather
than local brain dynamics determine behavior, and that it is these
global dynamics emerging from the interaction of a variety of
widely distributed areas that are deterministic. For example, Ho
et al. (2009) suggested that activity consistent with evidence accu-
mulation recorded in a variety of sensorimotor regions reflects a
modality independent downstream input from right insula. Sim-
ilarly, Forstmann et al. (2008) found that activity in the striatum
and pre-SMA serves to implement the response boundary envi-
sioned by evidence accumulation models. In both cases LBA model
parameters provided a coherent link between observed behavior
and neuroimaging measures.

Whatever the mechanism that achieves deterministic accumu-
lation at the scale that determines behavior, it seems clear that
deterministic accumulation could potentially give an organism
a great adaptive advantage. Optimal methods of integrating out
within-choice noise via accumulation have been of great inter-
est on adaptive grounds (e.g., Gold and Shadlen, 2007). On these
ground it might be even more desirable to remove noise intrinsic
to the nervous system before accumulation (i.e., if accumulation
was effectively deterministic), although in doing so there might be
some trade-off with the level of between-choice noise. Regardless,
given that no serious contender as a model of choice behav-
ior can do without between-choice noise, it would seem to be
desirable that optimality analyses take account of the effects of
between-choice noise.

Our specific proposal that between-choice noise in the rate
of linear accumulation has a Lognormal distribution has a novel
implication for the conventional division between stimulus encod-
ing and response selection stages in models of simple choice. This
proposal can be derived from Ulrich and Miller’s (1993) idea that
a cascade or “flow” of linear accumulation that characterizes all
stages of processing from sensory processing up to and includ-
ing response selection. A Lognormal distribution emerges as a
Central Limit Theorem approximation when the rates of units in
each stage are identically and independently distributed and vary
independently between-choices, as assumed by Ulrich and Miller
(1993), without strong assumptions on the form of that variation.
If stimulus encoding does continuously feed activation into the
response selection process, estimates of residual time might not,
at least in part, reflect the time for stimulus encoding as is conven-
tionally assumed. Instead, they would largely reflect the response
execution stage, with only a small contribution from an initial
“dead-time” before sensory neurons begin to respond.

Our mathematical results for an LNR with a Lognormal dis-
tance distribution might appear to show that not all linear
deterministic models can explain speed-accuracy trade-off by inte-
grating out random biases due to differences in the distance from
starting point to boundary between accumulators. In the LBA the
tendency for differences in rates to overcome random biases can
be increased by an equal increase in the parameter controlling
the position of the boundary (b) for all accumulators, resulting
in slower but more accurate responses. An analogous effect is not
obtained by increasing the LNR parameter determining the mean
of the log-distance distribution, µD, while holding the variance
in log-distance, σ2

D, constant. This is because and increase in µD

increases not only the mean distance (MD = eµD+σ2
D/2) but also

the variability in distance (VD = (eσ2
D−1)e2µD+σ2

D ), and hence the
magnitude of random bias. However, as pointed out by a reviewer,
a change in M D while holding V D constant, although the effect
is not exactly analogous to a change the bin the LBA (as it also
changes the shape of the distance distribution), does result in a
speed-accuracy trade-off in the LNR.

Future research could fruitfully explore not only different LNR
parameterizations (such as in terms of M D and V D) but also a

wider variety of distributional assumptions. A range of positive
distributions similar to the Lognormal, such as the Gamma dis-
tribution and extreme-value distributions such as the Weibull and
Gumbel (see Heathcote et al., 2004), are plausible candidates for
rate distributions. As they are positive, these distributions ensure
that a response will be selected on every trial. Combinations
of these rate distributions with different distance distributions
(notably the analytically tractable shifted uniform distribution
used in the LBA) will then help to provide a better understanding
of the general strengths and limitations of the linear deterministic
framework. A second area for further exploration concerns cor-
relations in parameters across accumulators. The LNR model is
particularly suited to such exploration, both because an LNR with
such correlations remains tractable.

Our model fits show that the LNR can provide an accurate and
comprehensive account of behavioral data from a simple-choice
experiment. If this finding generalizes to other data sets the LNR
could provide a useful descriptive model of simple-choice data. It
is suited to this role because it sacrifices little of the tractability of
distributions commonly applied to simple and correct-choice RTs
(e.g., the Wald and ExGaussian, see Ratcliff and Murdock, 1976;
Heathcote et al., 1991; Heathcote, 2004; Matzke and Wagenmak-
ers, 2009), and is better able to describe differences in correct and
error RT than the tractable EZ and EZ2 simplifications of the RDM
(Wagenmakers et al., 2007; Grasman et al., 2009). Although both
LBA and LNR likelihoods are easy to compute, the LNR has one
distinct advantage: it is also easy to obtain full conditional like-
lihoods (i.e., likelihoods based on fixing all but one parameter).
This is particularly useful for Bayesian approaches as it enables effi-
cient Gibbs sampling steps rather than the less efficient methods
required for the LBA (see Donkin et al., 2009a).

Our model fitting results could have the implication that,
contrary to Brown and Heathcote’s (2005a, 2008) assertions,
between-choice noise alone is insufficient to provide a comprehen-
sive account of simple-choice behavior. This implication follows
from the assumption that instruction manipulations cannot influ-
ence the rate of evidence accumulation. The LBA with this selective
influence assumption has previously provided a comprehensive
account of emphasis manipulations producing smaller effects on
accuracy (e.g., Forstmann et al., 2008, 2010, 2011). In contrast,
we found that this type of LBA was clearly unable to fit the
changes in accuracy of up to almost 15% in Wagenmaker et al.’s
(2008) data.

Although this selective influence assumption is conventional,
recently there has been increasing evidence that instructions do
influence drift rates, particularly in applications of the RDM. The
RDM has always assumed that the relative values of the mean rates
for stimuli associated with different responses are determined by
a drift criterion parameter (Ratcliff and McKoon, 2008). Changes
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in the drift criterion and evidence boundaries both affect response
bias but in different ways (e.g., Criss, 2010; Starns et al., 2012),
and the drift criterion can be influenced by instructions (Leite
and Ratcliff, 2011). Factors affecting attentional focus have also
been argued to affect drift rates. For example, in White et al.’s
(2011) RDM model of the flanker task drift rates change due to
changes in “attentional focus” brought about by manipulating the
proportion of trials involving response conflict. Arguably speed
vs. accuracy emphasis instructions might also affect attentional
focus, and hence the rate of information accumulation. Finally,
Kleinsorge (2001) demonstrated that, given sufficient warning,
participants can, in response to instructions, mobilize an extra
effort that genuinely improves performance in a way that cannot be
accounted for by a speed-accuracy trade-off. Given Wagenmakers
et al. (2008) manipulated speed vs. accuracy instructions between
blocks of trials participants had plenty of time to focus attention
and/or make an extra effort that could affect performance through
changes in drift rates.

On the basis of these recent findings, and the fact that the LBA
and LNR did provide an accurate and comprehensive account of
Wagenmaker et al.’s (2008) data when emphasis was allowed to
affect drift rates, we believe it would be premature to reject the
deterministic approximation. However, further research on this

point is clearly called for. Neuroscience methods that can provide
fairly direct evidence about the effect of instruction manipulations
on the statistical characteristics (e.g., mean and variance) of
evidence extracted from a stimulus will likely be particularly useful
in this regard (see Ho et al., in press). Our results, and the others
just reviewed, also suggest that it may also be fruitful to revisit tra-
ditional assumptions about the effects of a variety of instruction
and expectancy (e.g., for a particular response or type of sensory
information) manipulation in order to determine whether they
can have multiple effects. That is, can these manipulations cause
changes not only evidence accumulation parameters traditionally
associated with strategic factors (e.g., boundaries and systematic
bias) but also on rate means and on the variability of rates and
biases?
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