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Interference resolution is improved for stimuli presented in contexts (e.g., locations) asso-
ciated with frequent conflict.This phenomenon, the context-specific proportion congruent
(CSPC) effect, has challenged the traditional juxtaposition of “automatic” and “controlled”
processing because it suggests that contextual cues can prime top-down control settings in
a bottom-up manner.We recently obtained support for this “priming of control” hypothesis
with functional magnetic resonance imaging by showing that CSPC effects are mediated
by contextually cued adjustments in processing selectivity. However, an equally plausi-
ble explanation is that CSPC effects reflect adjustments in response caution triggered by
expectancy violations (i.e., prediction errors) when encountering rare events as compared
to common ones (e.g., incongruent trials in a task context associated with infrequent con-
flict). Here, we applied a quantitative model of choice, the linear ballistic accumulator (LBA),
to distil the reaction time and accuracy data from four independent samples that performed
a modified flanker task into latent variables representing the psychological processes under-
lying task-related decision making.We contrasted models which differentially accounted for
CSPC effects as arising either from contextually cued shifts in the rate of sensory evidence
accumulation (“drift” models) or in the amount of evidence required to reach a decision
(“threshold” models). For the majority of the participants, the LBA ascribed CSPC effects
to increases in response threshold for contextually infrequent trial types (e.g., congruent
trials in the frequent conflict context), suggesting that the phenomenon may reflect more a
prediction error-triggered shift in decision criterion rather than enhanced sensory evidence
accumulation under conditions of frequent conflict.
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INTRODUCTION
The ability to focus attention on information relevant to the task
at hand while simultaneously ignoring myriad potential sources
of distraction in the environment is critical for purposeful, goal-
directed behavior. The efficiency at which the brain supports this
ability to filter relevant stimuli from irrelevant noise can be gauged
by “interference” effects in performance of classic selective atten-
tion/response conflict paradigms such as the Stroop color-word
naming task (Stroop, 1935; MacLeod, 1991) or the Eriksen flanker
task (Eriksen and Eriksen, 1974). In the flanker task, for instance,
interference effects are expressed as reliably slower reaction times
(RT) and decreased accuracy on trials in which a central target
stimulus is flanked by incongruent distracters (e.g., HHSHH or
(< > >) relative to trials in which the target is flanked by con-
gruent ones (e.g., HHHHH or < < < < <). Interference (or
“conflict”; defined as concurrent activation of mutually incompat-
ible stimulus or response representations) is commonly thought
to arise from involuntary, “automatic” processing of irrelevant
information based on well-learned stimulus-response associations
that are triggered in bottom-up fashion. Accordingly, the abil-
ity to resolve interference/conflict is thought to be dependent
on effortful, “controlled” processing that employs internal goal
representations to intentionally overcome habitual associations

in a top-down manner (Cohen et al., 1990; Botvinick et al.,
2001).

Recent research using selective attention/response conflict tasks
has challenged the traditional distinction between automatic and
controlled processing, however, implying that this juxtaposition
may in fact represent a false dichotomy. Specifically, several stud-
ies have suggested a melding of bottom-up associative processing
and top-down attentional control settings by showing that when
stimuli are presented in contexts (e.g., locations, colors, or sensory
modalities) paired with frequent conflict, interference resolution
is significantly improved (i.e., congruency effects are reduced; Cor-
ballis and Gratton, 2003; Crump et al., 2006, 2008; Lehle and
Hübner, 2008; Wendt et al., 2008; Vietze and Wendt, 2009; Wendt
and Kiesel, 2011; D’Angelo and Milliken, 2012; for review, see
Bugg and Crump, 2012). Interestingly, these so-called context-
specific proportion congruent (CSPC) effects occur even though
observers are unaware of any systematic contextual variation in
conflict frequency (Crump et al., 2008; Heinemann et al., 2009;
Sarmiento et al., 2012). For example, using a modified Stroop
task, Crump et al. (2006) showed that interference effects were
reduced for stimuli presented in contexts (e.g., above central fixa-
tion) in which 75% of trials were incongruent (i.e., low proportion
congruent/frequent conflict context) relative to those for stimuli
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presented in contexts (e.g., below fixation) in which 75% of tri-
als were congruent (i.e., high proportion congruent/infrequent
conflict context). The context-specificity and implicit nature of
CSPC effects suggests that they are driven by bottom-up stim-
ulus features. A purely associative explanation can be ruled out,
however, because the context-specific improvement in interference
resolution generalizes to frequency-unbiased stimuli (Crump and
Milliken, 2009; Heinemann et al., 2009). Building on these pre-
vious findings, King et al. (2012) obtained neural evidence of
bottom-up contextual priming of top-down control in a func-
tional magnetic resonance imaging (fMRI) experiment. In partic-
ular, we found that the behavioral expression of CSPC effects in
a flanker task variant using trial-unique stimuli (Figure 1A) was
mirrored in contextual variation of hemodynamic activity associ-
ated with conflict processing in a region of the medial superior
parietal lobule (mSPL) broadly implicated in top-down atten-
tional selection (Yantis, 2008; Chiu and Yantis, 2009; Esterman
et al., 2009; Greenberg et al., 2010; Shomstein, 2012) and that this
activity explained modulation of stimulus-driven processing in
task-relevant regions of sensory cortex.

Extant data pertaining to CSPC effects support the hypothe-
sis that they reflect contextually cued adjustments in perceptual
processing selectivity (e.g., Crump et al., 2006; Lehle and Hüb-
ner, 2008; Wendt et al., 2008; Crump and Milliken, 2009). That is,
presentation of a stimulus in a context associated with frequent
conflict appears to promote more efficient segregation of relevant
from irrelevant stimulus information, facilitating faster responses
to incongruent stimuli (but slower responses to congruent ones)
relative to a context of infrequent conflict. However, an equally
plausible alternative explanation is that the phenomenon is attrib-
utable to adjustments in response caution triggered by the relative
frequency of events within each stimulus context. Specifically, a
rare, contextually unlikely stimulus may induce a shift toward a
more conservative response criterion, granting the observer more
time for reaching a reliable perceptual decision. Thus, the char-
acteristic pattern of CSPC effects (Figure 1B) could either reflect
enhanced processing selectivity for stimuli presented in the fre-
quent conflict context as suggested by several behavioral studies
(e.g., Crump et al., 2006; Lehle and Hübner, 2008; Wendt et al.,
2008; Crump and Milliken, 2009) and corroborated by our neu-
roimaging findings (King et al., 2012), or instead indicate a relative
increase in response threshold when encountering unexpected,
rare events (e.g., incongruent trials in the infrequent conflict con-
text) as compared to expected or common ones (e.g., incongruent
trials in the frequent conflict context). Neither conventional analy-
ses of mean RT and error rates, nor our fMRI analyses could clearly
disambiguate between these two possibilities. The purpose of the
current study was to use a formal quantitative model of decision
making to adjudicate between competing accounts of CSPC effects
which differentially attribute the phenomenon to (1) contextu-
ally cued enhancement in processing selectivity or (2) shifts in
response caution triggered by violations of expectancy regarding
stimulus congruency (i.e., prediction error) within each context.

Quantitative sequential sampling models of decision making
are increasingly being used to decompose the cognitive processes
and neural mechanisms underlying choice RTs (for review, see
Forstmann et al., 2011; Mars et al., 2012), such as those made in

selective attention/response conflict paradigms (e.g., White et al.,
2011). Several “evidence accumulation” models of choice have
been developed (e.g., Smith and Vickers, 1988; Ratcliff and Rouder,
1998; van Zandt, 2000; Usher and McClelland, 2001; Brown and
Heathcote, 2008), all of which vary in their assumptions regarding
the precise nature of the constituent cognitive processes involved in
rapid decision making and computational efficiency. Nonetheless,
these models share the same basic notion that when participants
make a decision about a stimulus, they continuously sample infor-
mation from the environment and that this information serves
as evidence for one of the possible responses. When evidence
in favor of a potential response reaches a threshold, a decision
is made and the associated response is given. In predicting per-
formance, evidence accumulation models take into account the
interaction between response speed and accuracy to estimate four
central parameters: (1) an a priori bias for one or the other decision
(“starting-point”), (2) the rate of evidence accumulation in favor
of a particular decision (“drift rate”), (3) the amount of evidence
that is necessary for triggering a particular decision (“response
threshold”), and (4) the time involved in stimulus encoding and
response execution (“non-decision time”). Here, we applied an
established model of decision making, the linear ballistic accumu-
lator (LBA) model (Brown and Heathcote, 2008; Donkin et al.,
2009, 2011b; for examples of recent applications with comparable
trial-per-condition numbers as in the current experiments, see e.g.,
Forstmann et al., 2008, 2010; Ho et al., 2009; Ludwig et al., 2009;
van Maanen et al., 2011; McVay and Kane, 2012) to behavioral data
collected from four independent samples during performance of
the flanker task depicted in Figure 1A. Our objective was to test
whether CSPC effects can be better accounted for as contextually
cued shifts in the rate of evidence accumulation about the target
stimulus (i.e., drift rate) or in the amount of evidence required
to reach a decision (i.e., response threshold). Figure 1C illustrates
how decisions regarding targets in this task are represented in the
LBA. We predicted that if CSPC effects reflect contextually cued
adjustments in processing selectivity, a model in which the rate of
evidence accumulation (drift rate parameters) was allowed to vary
across context and congruency conditions would provide the most
parsimonious account of the empirical data (“drift” model). Alter-
natively, we expected that if CSPC effects reflect shifts in response
caution triggered by unexpected, contextually unlikely stimuli, a
model in which response threshold was allowed to vary across
conditions would provide the best fit to the observed performance
(“threshold” model).

MATERIALS AND METHODS
PARTICIPANTS
The data reported here were collected from a total of 87 par-
ticipants belonging to four independent samples that performed
the identical flanker task (Figure 1A) in (1) the fMRI experi-
ment described in King et al. (2012; n= 25; data set I), (2) a
behavioral pilot study designed to test the adequacy of the par-
adigm for the magnetic resonance scanner environment (n= 19;
data set II) and two follow-up behavioral studies designed to
explore whether CSPC effects in this task, (3) are mediated by spa-
tial stimulus-response compatibility effects (n= 25; data set III),
or (4) vary as a function of awareness regarding the contextual
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FIGURE 1 | Experimental paradigm, CSPC effects, and the LBA model.
(A) The face-viewpoint flanker task used to collect all four data sets was
identical. Each trial began with the presentation of four novel (trial-unique)
flanker faces, followed by an identical target face in the center of the
array. Participants had to classify the viewpoint direction of the target face
with a button press. Target and flanker face-viewpoint direction was
congruent in half of all trials (shown here in the first trial) and incongruent
in the other half (shown here in the second trial). The proportion of
congruent to incongruent stimuli (conflict frequency) was manipulated in
a context-specific manner according to stimulus location: one side of
fixation was associated with 75% congruent trials (low-conflict context)
and the other side with 75% incongruent trials (high-conflict context). For
further details, see Section “Materials and Methods.” (B) Mean RTs and

error rates (±SEM) are plotted for flanker congruent and incongruent trials
as a function of the contextual conflict-frequency manipulation, illustrating
the critical context× congruency interactions (i.e., CSPC effects). (C) The
LBA model as applied to a typical decision in the face-viewpoint flanker
task. One accumulator corresponds to the response that the target face
is pointing left (solid arrow), while the other accumulator corresponds to a
rightward response (dashed arrow). A response is triggered as soon as an
accumulator reaches the response threshold, b (horizontal dotted line).
Each accumulator begins with a starting amount of evidence drawn
randomly from the range indicated by the gray-shaded rectangle
(between 0 and A), and the accumulation rate (i.e., drift) for each
response is drawn from a normal distribution with an appropriate mean,
v, and SD, s.

conflict-frequency manipulation (n= 18; data set IV), respec-
tively. All studies were conducted according to protocols approved
by the Duke University Health System Institutional Review Board.
For a detailed description of the sample contributing to data

set I, see King et al. (2012). For data set II, a total of 21 vol-
unteers with normal or corrected-to-normal vision participated.
The data of two participants were excluded from further analysis
due to chance level performance. The final sample (10 females, 9

www.frontiersin.org September 2012 | Volume 3 | Article 358 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Cognition/archive


King et al. Modeling context-specific conflict-control

males; mean age= 27.3 years; range= 22–37 years) included nine
members of the Duke University Center for Cognitive Neuro-
science (two research assistants, three doctoral students, three
post-doctoral researchers, and one assistant professor) and 10
individuals recruited from the greater Durham, NC community
by an advertisement on the Duke University Center for Cogni-
tive Neuroscience Research Participation website who received
$10 their participation. For data set III, a total of 26 undergrad-
uates participated for class credit. The data of one participant
was excluded from further analysis due to chance level perfor-
mance. The final sample consisted of 17 females and 8 males
(mean age= 20 years; range= 18–24 years). For data set IV, a total
of 20 undergraduates participated for class credit. The data of two
participants were excluded for chance level performance. The final
sample consisted of 11 females and 7 males (mean age= 19.7 years;
range= 18–23 years).

APPARATUS, STIMULI, AND PROCEDURE
Task programming, stimulus presentation, and behavioral record-
ing were carried out with Presentation software (Neurobehavioral
Systems; Albany, CA, USA). Face stimuli for the flanker experi-
ment were generated with FaceGen software (Singular Inversions;
Toronto, ON, Canada) to produce an equal number of left- and
right-looking male and female faces (137 each; viewpoint angle:
∼45–50˚) with unique identities from various age- and ethnic-
groups. A total of 448 face images were used, one for each face
trial of the experiment. Further details regarding stimulus gener-
ation are provided in King et al. (2012). For the fMRI experiment
(data set I), stimuli were presented against a black background
on a back projection screen, which participants viewed in a mir-
ror mounted to the head coil; simulating a viewing distance of
∼80 cm. Given these viewing conditions, individual face stimuli
within flanker arrays extended ∼0.72˚ horizontally and 1.1˚ verti-
cally and were presented at ∼2.9, 3.8, 4.7, 5.6, and 6.5˚ horizontal
visual angle to the left and right of central fixation. For the behav-
ioral experiments (data sets II–IV), participants sat in a dimly lit
room and viewed stimuli displayed against a black background on
a 19′′ LCD monitor at a distance of ∼80 cm, approximating the
viewing conditions in the scanner.

In each trial of the flanker task (Figure 1A), a novel stimulus
array (row of five identical trial-unique face images) was presented
pseudorandomly either to the left or right of fixation. Participants
were instructed to rapidly and accurately classify with a button
press the viewpoint direction of the face in the center of the array
(target) and ignore the flanker faces (distracters). For data sets I,
II, and IV, responses were given with a right-hand index or mid-
dle finger button press. For data set III, responses were given with
the index fingers of both hands. Stimulus-response mapping was
counterbalanced across participants for all experiments. The target
face was presented for 320 ms; its onset was delayed by 80 ms from
the onset of the flanker faces, which were shown for 400 ms. Target
and flanker face-viewpoint direction was congruent in half of all
trials and incongruent in the other. Proportion congruency (i.e.,
conflict frequency) was manipulated according to stimulus loca-
tion by defining one side of fixation as a high-conflict context (i.e.,
low proportion congruent; 25% congruent/75% incongruent tri-
als) and the other as a low-conflict context (i.e., high proportion

congruent; 75% congruent/25% incongruent trials; counterbal-
anced across participants). Inter-stimulus intervals were jittered
between 3 and 5 s as randomly drawn from a pseudoexponential
distribution, where 50% of intervals lasted 3 s, 25% lasted 3.5 s,
12% lasted 4 s, 6% lasted 4.5 s, and 6% lasted 5 s, resulting in a
mean interval of ∼3.5 s. To counteract potential spatial stimulus-
response compatibility effects in the fMRI experiment (data set
I), participants responded on a response box (Current Designs,
Philadelphia, PA, USA) that was vertically oriented on the partic-
ipant’s chest (i.e., in plane with the length of their body). For the
same reason, responses were given on the ↑ (8) and ↓ (2) buttons
of the numeric keypad on a QWERTY US keyboard in the behav-
ioral pilot experiment (data set II) and the experiment designed to
test the influence of awareness of contextual variation in conflict
frequency on CSPC effects (data set IV). Given that the purpose of
data set III was to test whether CSPC effects might be mediated by
potential stimulus-response compatibility effects, we asked partic-
ipants to respond in a lateralized manner using the z and m keys on
a QWERTY US keyboard. We explored the influence of awareness
of the contextual conflict-frequency manipulation on CSPC effects
in data set IV by informing the participants which side of fixation
was associated with mostly congruent stimuli (low-conflict con-
text) and mostly incongruent stimuli (high-conflict context) and
encouraging them to use this information to their advantage. This
manipulation was successful in that all 18 subjects that contributed
to this data set reported that they noticed the location-based vari-
ation in congruency frequency in a post-test questionnaire, while
only one out of 25 participants that contributed to data set I (King
et al., 2012) reported explicit knowledge of the contextual conflict-
frequency manipulation. Trials occurred in four blocks in the fMRI
experiment (data set I; 112 trials each) and in seven blocks in the
behavioral experiments (data sets II, III, and IV; 64 trials each). Par-
ticipation in fMRI experiment lasted ∼75 min including a 64-trial
training session, anatomical scanning, performance of an inde-
pendent localizer task, and completion of a post-test survey (see
King et al., 2012, for further details). Participation in the behavioral
experiments lasted ∼40 min, including a 64-trial training session.

CONVENTIONAL ANALYSIS OF RESPONSE LATENCY AND ACCURACY
Prior to exploring the performance data with conventional
analyses, we excluded the first trial of each block and all tri-
als with excessively fast or slow responses (<150 ms/>2000 ms;
1.2% of all trials). We tested for contextual variation in
interference effects [i.e., CSPC effects; (incongruent-congru-
ent)low-conflict context− (incongruent-congruent)high-conflict context]
and their possible modulation as a function of spatial stimulus-
response compatibility and/or awareness of the contextual
conflict-frequency manipulation by submitting mean correct trial
RTs (excluding post-error correct trials) and error rates to 2 (con-
text: high conflict vs. low-conflict)× 2 (spatial stimulus-response
compatibility: compatible vs. incompatible)× 2 (flanker congru-
ency: congruent vs. incongruent) repeated-measures ANOVAs,
using experimental session (data sets I–IV) as a between-subjects
factor. Our previous fMRI study (data set I) revealed that CSPC
effects varied as a function of context transitions. Specifically,
they were only present for context repetitions, but absent for
switches between contexts (e.g., from the low- to the high-conflict
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context; King et al., 2012). A supplementary 2 (context transition:
repetition vs. switch)× 2 (context)× 2 (congruency) ANOVA
using experimental session as a between-subjects factor explored
whether this pattern was stable across data sets.

MODEL FITTING
The primary objective of the current study was to explore whether
the LBA model attributes CSPC effects to contextually cued adjust-
ments in processing selectivity (as indexed by the rate of evidence
accumulation, i.e., drift) or to shifts in response caution triggered
by unexpected stimuli within each context (as indexed by the
amount of evidence required to make a decision, i.e., response
threshold). These hypotheses were tested by fitting the perfor-
mance data from each individual participant from each of the
four data sets with models whose parameterizations reflected
these differing assumptions about the influence of implicit con-
textual information on conflict processing. Support for each of
the hypotheses comes from how well the respective models can fit
the data. Readers unfamiliar with the methods involved in fitting
sequential sampling models to choice RT data or the techniques
involved in model selection (see the following section) are referred
a tutorial paper which focuses specifically on the LBA, but is gen-
erally applicable to other evidence accumulation models (Donkin
et al., 2011a).

We report the results of four models of CSPC effects in detail.
The first two models (Models V1 and V2) assumed that CSPC
effects arise from the influence of context on evidence accumula-
tion rate (v ; see Figure 1C). Both of these“drift”models accounted
for CSPC effects by predicting the difference in v for congruent
and incongruent stimuli to be larger in the low-conflict context
than in the high-conflict context, but they did so in different ways.
In Model V1, there was no constraint placed on v, and a separate
parameter was estimated for each of the four experimental con-
ditions (i.e., v Incon-Low, vCon-Low, v Incon-High, and vCon-High). In
contrast, Model V2 assumed that the increase in v (i.e., faster rate)
as we move from low- to high-conflict contexts for incongruent
stimuli (recall that people get better at responding to incongruent
stimuli in high-conflict contexts) is of the same magnitude as the
decrease in v (i.e., slower rate) from low- to high-conflict contexts
for congruent stimuli (people are worse for congruent stimuli in
high-conflict contexts). As such, three rate parameters were esti-
mated: v Incon-Low, vCon-Low, and ∆v, while accumulation rates in
the high-conflict context were v Incon-Low+∆v for incongruent
trials and vCong-Low−∆v for congruent trials. In other words,
Model V2 assumed the absolute difference in v resulting from
a shift between contexts to be equal for congruent and incon-
gruent trials. To illustrate, whereas a shift from the low- to the
high-conflict context should lower v for congruent trials, it should
increase v for incongruent trials to the same degree. In both drift
models, response threshold was held constant across the high- and
low-conflict contexts.

The latter two models (Models B1 and B2) assumed that CSPC
effects arise from the influence of context on response threshold
(b; see Figure 1C). Both of these “threshold” models accounted
for CSPC effects by predicting that there would be differences
in the distance from the top of the start-point distribution to
response threshold, b−A. In particular, it was assumed that the

difference between thresholds in the congruent and incongruent
stimuli would be larger in the low-conflict than in the high-
conflict context. However, as in the drift models outlined above,
the threshold models also accounted for CSPC in different ways.
In Model B1, as in Model V1, no constraint was placed on the
way that response thresholds would change according to the con-
text and congruency conditions, and so four threshold parameters
were estimated (bIncon-Low−A, bCon-Low−A, bIncon-High−A, and
bCon-High−A). In contrast, Model B2 was constrained in man-
ner equivalent to Model V2 such that the absolute difference in
response threshold for congruent and incongruent stimuli was
equal between the low- and high-conflict contexts. That is, the
reduction in thresholds as we move from low- to high-conflict
contexts for incongruent stimuli is of the same magnitude as
the increase in thresholds from low- to high-conflict contexts for
congruent stimuli. In particular, three threshold parameters were
estimated: bIncon-Low−A, bCon-Low−A, and ∆b, while thresholds
in the high conflict were bIncon-Low−A+∆b for incongruent
trials and bIncon-Low−A−∆b for congruent trials. In both thresh-
old models, evidence accumulation rate was allowed to vary as a
function of stimulus congruency, but not across the two contexts.

In all models, the SD of the distribution of drift rate across
trials, s, the maximum of the uniform between-trial distribution
of start-point, A, and non-decision time, t 0, were fixed across the
congruency and context conditions. Though no restrictions were
made about the sign of ∆b and ∆v parameters, Models V2 and B2
were parameterized such that positive values of ∆b and ∆v would
produce the standard CSPC effects.

Models were fit to each of the individual participants from
each of the four data sets. The likelihood of the response time
and response choice on each trial (the number of valid trials per
participant after excluding response omissions ranged from 408
to 448; mean= 445 trials; SD= 5.8 trials) was calculated using the
formulas outlined in Brown and Heathcote (2008). Particle swarm
optimization was used to find best-fitting parameters by searching
for the maximum of the sum of the likelihoods across all trials for
each individual.

In addition to the models outlined above, we fit a number
of other model parameterizations following standard practice
(Donkin et al., 2011a) that we do not report here. For exam-
ple, we fit one model in which both evidence accumulation rate
and response thresholds were allowed to vary concurrently and
another in which the CSPC effect was assumed to reflect a shift
in non-decision time, t 0. None of these models outperformed any
of the models we report in detail, with probabilities generally not
greater than about 5%. As such, we refrain from further discussion
of these models.

MODEL SELECTION
The four models were compared using the commonly employed
Akaike and Bayesian Information Criterion (AIC, Akaike, 1974;
BIC, Schwarz, 1978, respectively). BIC was calculated using the
standard formula

BIC = k ln N − 2 ln L,

where L is the likelihood of the parameters given the data, N is the
number of data points used to calculate the likelihood value, and
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k is the number of free parameters used to fit the data. Similarly,
AIC was calculated using

AIC = 2k − 2 ln L.

Note that for our data, AIC has a smaller complexity term
whenever ln N > 8.

To aid interpretability, AIC and BIC values were converted into
AIC and BIC weights using the method outlined in Wagenmak-
ers and Farrell (2004). In short, the information criterion (IC)
values are transformed in ∆IC values by subtracting the smallest
IC value from the IC for each model. ∆IC are then turned into
weights using the following

wi (IC) =
e−

1
2 ∆i (IC)∑

k e−
1
2 ∆k (IC)

where wi is the weight for the ith model. AIC and BIC weights
reflect the probability that a particular model is true.

RESULTS
CONVENTIONAL ANALYSES OF RESPONSE LATENCY AND ACCURACY
For the combined sample (n= 87), overall performance was high
(93.5% correct) and characterized by typical flanker interference
effects. RTs were slower for incongruent stimuli (700 ms) than for
congruent arrays [596 ms; F(1,83)= 668.8; p < 0.0001]. Similarly,
error rates were elevated on incongruent (9.2%) relative to con-
gruent trials [3.0%; F(1,83)= 80.0; p < 0.0001]. Interestingly, a
reversed spatial stimulus-response compatibility effect emerged in
RTs. Responses were generally slower when the viewpoint direction
of target faces (e.g., left) corresponded (i.e., were compatible) with
the location of stimulus array (e.g., left of fixation; 655 ms) rela-
tive to when the viewpoint direction of targets did not correspond
(i.e., were incompatible) with the stimulus position (641 ms).
The magnitude of this effect varied across experimental sessions
[F(3,83)= 2.9; p < 0.05] such that it was most pronounced in
data set IV (22 ms), but virtually absent in data set I (3 ms). In
any event, spatial stimulus-response compatibility effects did not
interact with flanker congruency, stimulus context, or their combi-
nation [all F(3,83) < 3.3; n.s.] and therefore have no implications
for the interpretation of the CSPC effects at the focus of interest
in this study. The contextual manipulation of flanker conflict fre-
quency did not have any general effect on RTs [F(1,83)= 0.3; n.s.],
but error rates were elevated in the low- (6.5%) vs. high-conflict
context [5.6%; F(1,83)= 9.1; p < 0.005]. A main effect of exper-
imental session was present in RTs [F(3,83)= 11.3; p < 0.0001],
with responses being slower in the fMRI session (729 ms) than
those in the three other experiments combined (620 ms).

More importantly, CSPC effects were clearly evident both in
RTs [F(1,83)= 53.9; p < 0.0001] and error rates [F(1,83)= 11.4;
p < 0.001] and were of comparable magnitude across experimen-
tal sessions [both F(3,83) < 1.8; n.s.]. Flanker interference effects
were reduced for stimuli presented in the high-conflict location
(RTs: 88 ms; error rates: 5.1%) relative to those in the low-conflict
context (RTs: 121 ms; error rates: 7.2%; Figure 1B). Indicating
that neither the lateralized response procedure introduced in data

set III, nor informing participants about the contextual conflict-
frequency manipulation in data set IV had any effect on CSPC
effects, context× flanker congruency effects did not interact with
the stimulus-response compatibility factor, experimental session,
or their combination either in the RT or error rate data [all
F(3,83) < 1.7; n.s.]. Replicating the finding that CSPC effects vary
as a function of context transitions (King et al., 2012), they clearly
occurred in context repetitions (47 ms), but were absent in context
switches [19 ms; F(3,83)= 17.5; p < 0.0001]. Indicating the relia-
bility of this effect, it did not vary across data sets [F(3,83)= 1.2;
n.s.], even after excluding the data of our previous study [data set
I; F(2,59)= 0.01; n.s.].

Together, the results of the conventional analyses of RTs and
accuracy rates illustrate the robustness of CSPC effects on the
one hand and an important boundary condition on the other,
namely, that they appear to occur only in context repetitions.
Additionally, they show that they are not confounded by spatial
stimulus-response compatibility effects in the current paradigm
and occur independently of participants’ awareness of the con-
textual conflict-frequency manipulation. However, these data do
not speak to our motivating question whether CSPC effects reflect
contextually cued adjustments in processing selectivity or shifts
in response caution triggered by the infrequent events within
each stimulus context. To address this issue, we turn now to the
modeling data.

MODELING DATA
The average parameter values for each of the four data sets for each
of the four LBA models are shown in Table 1. Looking at the para-
meter values, it is apparent that, in general, the drift Models V1 and
V2 accounted for CSPC effects by assuming that evidence accu-
mulation rates were larger (i.e., faster) in the high-conflict context
than in the low-conflict context on incongruent trials and smaller
(i.e., slower) in the high-conflict context than in low-conflict con-
texts on congruent trials. The threshold Models B1 and B2, on the
other hand, accounted for CSPC effects through the equivalent set-
ting of response thresholds: larger thresholds in the high-conflict
context than in the low-conflict context on congruent trials, and
vice versa for incongruent trials.

OBSERVED AND PREDICTED RT DISTRIBUTIONS
The quality of agreement between the models and the data from
each of the four data sets are plotted in Figures 2A–D (one figure
per data set). The figure shows RT distributions for correct and
erroneous responses on congruent and incongruent trials in the
high- and low-conflict contexts (columns), along with model pre-
dictions from the four models (rows), as cumulative distribution
function plots. Each plot is made up of quantile estimates from cor-
rect and incorrect RT distributions. The quantile estimates show
the RT below which 10, 30, 50, 70, and 90% of the responses in that
distribution fall. The positions of the quantiles on the x-axis reflect
the speed at which responses are made, so that slower distributions
stretch further to the right. The heights of the quantiles indicate,
separately for correct and incorrect trials, the absolute cumulative
proportion of responses with RTs below the quantile cutoff.

The plots in Figure 2 demonstrate that the predictions from all
four models (circles) match the observed data (diamonds) well.
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Table 1 | Parameter values for Models V1 and V2 (“drift” models) and Models B1 and B2 (“threshold” models) averaged across participants in

data sets I, II, III, and IV.

Data set s A bC-L bI-L bC-H bI-H ∆b t0 vC-L v I-L vC-H v I-H ∆v

Model V1 I 0.18 0.14 0.48 – 0.14 0.79 0.64 0.77 0.66 –

II 0.15 0.09 0.36 – 0.13 0.78 0.63 0.75 0.65 –

III 0.13 0.09 0.37 – 0.08 0.73 0.58 0.71 0.60 –

IV 0.17 0.15 0.46 – 0.08 0.77 0.62 0.75 0.64 –

Model V2 I 0.18 0.14 0.48 – 0.14 0.79 0.64 – – 0.02

II 0.15 0.09 0.36 – 0.13 0.78 0.63 – – 0.02

III 0.13 0.10 0.37 – 0.08 0.73 0.59 – – 0.02

IV 0.17 0.15 0.46 – 0.08 0.77 0.62 – – 0.02

Model B1 I 0.19 0.16 0.43 0.48 0.41 0.47 – 0.19 0.77 0.70 – – –

II 0.17 0.10 0.32 0.36 0.33 0.35 – 0.17 0.76 0.70 – – –

III 0.14 0.10 0.36 0.37 0.37 0.37 – 0.11 0.73 0.61 – – –

IV 0.19 0.18 0.42 0.47 0.43 0.47 – 0.13 0.77 0.69 – – –

Model B2 I 0.19 0.17 0.43 0.48 – – 0.01 0.20 0.78 0.70 – – –

II 0.17 0.10 0.32 0.37 – – 0.01 0.17 0.76 0.69 – – –

III 0.14 0.11 0.36 0.37 – – 0.01 0.12 0.75 0.62 – – –

IV 0.18 0.20 0.43 0.47 – – 0.01 0.14 0.79 0.70 – – –

C, Con, I, Incon; H, High, L, Low; s, standard deviation; A, upper limit of the start-point distribution; b, response threshold; t0, non-decision time; v, drift rate. In Model

B2, bIncon-High =bIncon-Low +∆b and bCon-High =bCon-Low −∆b. In Model V2, vIncon-High = vIncon-Low −∆v and vCon-High = vCon-Low +∆v.

The LBA model appears to give a good account of the full RT
distributions for correct responses. All models appear to struggle
somewhat to account for the speed of incorrect responses, espe-
cially in data sets III and IV (the lower function in each row of the
second and fourth columns in Figures 2C,D). Differences between
the models in their ability to fit the data are small, but perhaps most
pronounced in their account of correct responses in low-conflict
incongruent trials (the second column in each panel of Figure 2),
particularly for data sets I and II. Models V1 and V2 (drift mod-
els) appear to systematically predict faster correct responses than
were observed, while Models B1 and B2 (threshold models) also
show this misfit, particularly for data sets III and IV, but to a lesser
degree.

To help distinguish between the models, we turn to their pre-
dictions for mean RT. Figure 3 contains the predictions for mean
RT for Models V2 and B2 (the predictions of Models V1 and B1 are
very similar, and the overall pattern of misfits the same). Model
predictions (open circles) are close to the observed data (filled
squares) for both models. Model B2 does appear to outperform
Model V2 for all but Data Set IV, for which both models appear to
provide an equivalent account.

MODEL SELECTION
Table 2 contains AIC and BIC weights for each of the models for
each of the four data sets. Additionally, the table presents the num-
ber of participants best fit by each model (in parentheses). The
AIC weights suggest that Model B1 is most often the true model
across participants and data sets (42.5% of the time), followed by
Model B2 (38% of the time; threshold models), then Model V2
and finally V1 (the drift models “won” only roughly 20% of the
time). The results are different using BIC, where we see that Model
B2 is preferred more often than Model B1 (roughly 47 vs. 14% of
the time). Notice also, however, that for data sets III and IV, the

difference in model probabilities for Model B2 and V2 is less clear.
The differences in conclusions drawn from BIC and AIC reflect the
fact that BIC has a larger penalty for complexity, and that Model
B2 has one fewer free parameter than Model B1, and because the
response threshold models use one more free parameter than their
respective drift models.

The AIC and BIC weights can be used to compare the“B”model
class, the response threshold models, to the models assuming that
CSPC effects are due to changes in the evidence accumulation rate,
the “V” model class (i.e., Models B1 and B2 vs. Models V1 and
V2). The rows labeled “B vs. V” in Table 2 report how much more
likely a response threshold model is the true model than a drift
model. Averaged across data sets, a model assuming a response
threshold-based explanation for CSPC effects is 1.87 times more
likely to be the true model than the drift model according to BIC
and four times more likely according to AIC. Thus, contrary to
the hypothesis that CSPC reflect contextually cued adjustments
in perceptual processing selectivity (e.g., Crump et al., 2006; Lehle
and Hübner, 2008; Wendt et al., 2008; King et al., 2012), the current
results obtained with the LBA model suggest that this phenome-
non might be better attributed to shifts in response caution primed
by infrequent events within each stimulus context.

DISCUSSION
We applied the LBA model to performance from four independent
flanker task data sets to adjudicate between (1) the hypothesis that
CSPC effects reflect adjustments in processing selectivity cued by
contextual information associated with conflict frequency (Cor-
ballis and Gratton, 2003; Crump et al., 2006, 2008; Lehle and
Hübner, 2008; Wendt et al., 2008; Crump and Milliken, 2009;
Heinemann et al., 2009; Vietze and Wendt, 2009; Wendt and Kiesel,
2011; Bugg and Hutchison, 2012; D’Angelo and Milliken, 2012;
King et al., 2012; Sarmiento et al., 2012; for review, see Bugg and
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FIGURE 2 | Cumulative distribution function plots for data
averaged over participants in each of the four data sets (A–D).
Observed data (diamonds) and model predictions (circles) from Models
V1 and V2 (“drift” models) and B1 and B2 (“threshold” models) are
shown in the rows of each panel. For each condition (low- vs.

high-conflict context, congruent vs. incongruent stimulus), the upper
function presents results for correct response, and the lower function
presents results for incorrect responses. For each condition, the
observed and predicted proportion of correct responses are shown
using p and p̂, respectively.

Crump, 2012) and (2) an alternative account which attributes
the phenomenon to shifts in response caution triggered by the
occurrence of contextually unexpected events (e.g., incongruent
trials in the low-conflict context). We predicted that if context-
specific improvements in interference resolution index priming
of attentional focus in favor of target stimuli, a model in which
the rate of evidence accumulation (i.e., drift) was allowed to vary

across context and congruency conditions would provide the best
fit to the observed performance. In contrast, if contextual vari-
ation in the efficiency of conflict-control is attributable to shifts
in response caution triggered by violations of expectancy about
stimulus congruency (i.e., prediction errors), we assumed a model
in which the amount of sensory evidence required to reach a deci-
sion (i.e., response threshold) varied according to event frequency
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FIGURE 3 | Observed (filled squares) and predicted (open circles) mean RT for each of the four data sets. Note: RTs were calculated in a manner similar
to that in Figure 1B, with the exception that the first trial of each block was not excluded.

Table 2 | AIC and BIC weights for Models V1 and V2 (“drift” models) and B1 and B2 (“threshold” models) for each of the four data sets.

Data sets Σ

I II III IV

AIC Model V1 0.059 (0) 0.050 (0) 0.185 (4) 0.152 (2) 6.9%

Model V2 0.106 (4) 0.094 (2) 0.119 (3) 0.116 (2) 12.6%

Model B1 0.412 (8) 0.498 (9) 0.468 (12) 0.419 (8) 42.5%

Model B2 0.422 (13) 0.358 (8) 0.228 (6) 0.313 (6) 38.0%

B vs. V 5.06 5.94 2.29 2.73

BIC Model V1 0.027 (0) 0.015 (0) 0.129 (3) 0.085 (1) 4.6%

Model V2 0.313 (8) 0.221 (5) 0.389 (10) 0.337 (7) 34.5%

Model B1 0.123 (3) 0.255 (4) 0.216 (4) 0.153 (1) 13.8%

Model B2 0.537 (14) 0.509 (10) 0.267 (8) 0.425 (9) 47.1%

B vs. V 1.94 3.24 0.934 1.37

The row labeled B vs. V shows how much more likely that either of Models B1 or B2 is the true model compared to Model V1 or V2 according to AIC and BIC. The

values in parentheses represent the number of participants best fit by each model in each data set. The sum column (Σ) shows the percentage of participants for

which each model provided best fit.

within each context would deliver the best explanation of the
empirical data. We implemented two “drift” and “threshold” mod-
els to account for CSPC effects. The results showed that while
both classes of models captured the observed performance well (at
least for correct trials), models explaining CSPC effects as result-
ing from shifts in response caution (i.e., the threshold models)
accounted for the data better than those attributing the phenome-
non to adjustments in processing selectivity (i.e., the drift models).
Although evidence indicating that the threshold models provided
better fit than the drift models ranged from only relatively weak
(as expressed in BIC) to moderately strong (as expressed in AIC),

the differences in the model selection parameters between the two
classes of models were fairly consistent across the four data sets.
Together, these findings provide preliminary evidence that the cur-
rently dominant view of the mechanisms underlying CSPC effects
may need to be reconsidered.

Previous behavioral investigations of CSPC effects have sug-
gested that the presentation of a stimulus in a context associated
with frequent conflict primes the retrieval and execution of con-
textually appropriate conflict-control settings, facilitating interfer-
ence resolution by enhancing processing selectivity (Corballis and
Gratton, 2003; Crump et al., 2006, 2008; Lehle and Hübner, 2008;
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Wendt et al., 2008; Crump and Milliken, 2009; Heinemann et al.,
2009; Vietze and Wendt, 2009; Wendt and Kiesel, 2011; D’Angelo
and Milliken, 2012; Sarmiento et al., 2012). Our recent fMRI study
corroborated this “priming of control” hypothesis by showing that
CSPC effects were mediated by activity in a region of the mSPL
demonstrated to be involved in attentional control (e.g., Yantis,
2008; Shomstein, 2012) and that this activity explained top-down
modulation of task-related sensory processing in visual cortex
(King et al., 2012). The current modeling results qualify these pre-
vious interpretations, however, because they suggest that CSPC
effects may reflect more a consequence of a shift in decision crite-
rion triggered by contextually unexpected events than adjustments
in attentional focus driven by conflict frequency.

Further insight into the putative origin of CSPC effects can be
gained by considering the current results vis-à-vis those obtained
by analyzing CSPC effects as a function of context transitions
(i.e., context switches vs. repetitions) in our previous fMRI study.
Specifically, we found in that study that while CSPC effects were
observable in mSPL activation immediately upon a switch between
contexts, they were observable in behavior only after context
repetitions (a finding replicated here across all four data sets), sug-
gesting that contextually appropriate control settings are rapidly
retrieved in a highly flexible manner and mediate behavioral adap-
tation on the following trial(s) in that context (King et al., 2012).
Although an analogous analysis with the LBA could not be con-
ducted here due to an inadequate number of trials after splitting
up the context and congruency conditions according to the context
transition factor, it can be assumed that the mechanism suggested
to mediate CSPC effects by the current modeling results (i.e., pre-
diction error-triggered adjustments in response threshold) is also
driven by context repetitions and not by context changes, in partic-
ular because CSPC effects were present only when context repeated
in all experiments. It thus seems reasonable to speculate that
adjustments in response threshold triggered by unexpected events
would require at least one context repetition in order for a pre-
diction regarding upcoming stimulus congruency to be in place.
This view implies that contextual conflict-control settings entail
predictions regarding upcoming congruency such that the relative
performance gain for contextually likely stimuli (e.g., incongruent
trials in the high-conflict context) and the relative performance
decrement for contextually unlikely stimuli (e.g., incongruent
trials in the low-conflict context) which comprise CSPC effects
reflect fulfillment and violation of expectations, respectively. Such
a proposition would be generally in line with the notion that the
cognitive system promotes processing efficiency and goal-directed
performance by continuously generating models of the environ-
ment according to current contextual demands and information
stored in memory to predict future stimulus input (Friston, 2005).
In any event, this novel perspective on the putative origin of CSPC
effects would not have been possible from traditional analyses of
behavior or functional neuroimaging alone.

It should be noted, however, that the present results provide
only tentative evidence for notion that CSPC effects reflect predic-
tion error-triggered adjustments in response caution, and some
caveats should be kept in mind when interpreting our data. First,
even though the LBA provided reliably good fit to the current
empirical data, the model was not originally conceived to account

for behavior on tasks in which the information being accumulated
changes in quality over time. Many of the current theories for the
flanker task assume, however, that an attentional window narrows
in on the target stimulus either gradually (Eriksen and St James,
1986; Cohen et al., 1992) or abruptly (Hübner et al., 2010) over
the course of a trial, thus improving the quality of evidence as time
progresses. This is in direct contrast to the fundamental assump-
tion of the LBA that evidence accumulation rate is constant over
time (Brown and Heathcote, 2008). Second, the current modeling
effort is at odds with another basic assumption of sequential sam-
pling models, namely, that response threshold is already set prior
to evidence accumulation. By contrast, both of the favored Mod-
els B1 and B2 captured CSPC effects by letting response threshold
be adjusted according to stimulus congruency. This leads to the
theoretically problematic proposition that congruency is already
“known” before the start of evidence accumulation. Nevertheless,
it could be argued that these models are in principle feasible, in
particular because the stimuli in the present studies do not need
to be analyzed to a high degree in order to distinguish congruent
from incongruent trials, given the pronounced perceptual differ-
ence between congruent and incongruent arrays at a Gestalt level
(cf. Baylis and Driver, 1992). Moreover, the detection of stimulus
congruency (or of a stimulus as being perceptually surprising) as
such is of no help in deciding whether the target face is oriented
to the left or right. Therefore, the assumption that congruency or
stimulus Gestalt can be detected (and affect threshold settings)
before the decision-making process regarding target face orien-
tation has been completed is not implausible. In sum, shifts in
response threshold could feasibly be driven by a fast perceptual
oddball detection occurring immediately following initial encod-
ing of lower-level stimulus attributes, but prior to any in-depth
stimulus processing or categorization according to a higher-level
criterion such as target face orientation.

In future research, we aim to explore whether results similar
to those reported here would be delivered by recent adaptations
of sequential sampling models that were designed specifically to
accommodate decision making in flanker tasks and avoid the issues
outlined above, such as the spotlight diffusion model (White et al.,
2011). We did not use White et al.’s model in the current analysis
simply because it was not practically possible for us to achieve opti-
mal model fits to the near 100 individual participants for all model
parameterizations within a reasonable time period. The advantage
of a time-varying rate of evidence accumulation in White et al.’s
model is clear, but since it must be simulated (involving under
optimal computing conditions several hours per model per sub-
ject), we opted to use the more computationally efficient LBA
model (requiring less than a minute per model per subject) for the
current project. One might speculate that a diffusion-like model
in which drift rate can rapidly accelerate or decelerate within-trials
as a function of fulfillment or violation of contextual expectancies
regarding stimulus congruency would provide a better account of
CSPC effects than the favored threshold models as revealed here
with the LBA.

It is promising nonetheless that despite the LBA’s possible mis-
specification, the model provided good fit to the observed RTs
across data sets, at least on correct trials. Although we cannot rule
out that the relative misfit for error trial RT distributions was not
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a consequence of the violations outlined above, we speculate that
it may be attributable to the overall high performance/relatively
low error rates and fast error RTs in the current experiments. That
is, since the fast error RTs did not occur in all subjects or data sets,
it is unclear to what extent they are reliable and should be used
to discount the applicability of a model like the LBA. Future stud-
ies using similar protocols might create conditions that are more
error prone, for instance, by reducing the stimulus presentation
time. Such data would help determine whether the misfits here are
simply an artifact of the fitting method, or reveal a true misfit of
the model.

If we take the present results at face value, however, they
provide initial support for an intriguing alternative account of
CSPC effects. According to this new hypothesis, subjects implic-
itly encode the stimulus statistics (i.e., frequency of different trial
types) associated with each context, just like in the currently dom-
inant view of the phenomenon. However, instead of selectively
enhancing their attentional focus to stimuli presented in the high-
conflict context, they may form perceptual expectations for the
frequent trial types in both the high- and low-conflict contexts
(presumably to optimize perceptual inference and/or response
selection). When expectations in a given context are violated,
perceptual prediction errors in visual cortex may then be used
as a control signal, indicating the need to raise response thresh-
olds, such that sufficient evidence can be accumulated about the
unexpected stimulus and a correct response can be selected. The
notion that visual processing underlying perceptual inference is
strongly driven by expectations and prediction error signals has
garnered much empirical support in recent years (Summerfield
and Koechlin, 2008; Summerfield et al., 2008; Egner et al., 2010;
Jiang et al.,2012), thus supporting the basic neural feasibility of this
hypothesis. Convergent electroencephalographic and fMRI evi-
dence suggests that a subcortical-frontomedial network including
the anterior mid-cingulate cortex, a region traditionally thought
to be centrally involved conflict- and error monitoring (Botvinick
et al., 2001; Ridderinkhof et al., 2004), may drive the type of adap-
tation investigated here by responding, more generally than to
conflicts or errors per se, to any unexpected event and evaluating
whether adjustments are needed (Wessel et al., 2012), confirm-
ing the core predictions of recent computational modeling work
(Alexander and Brown, 2011; Silvetti et al., 2011; see also Egner,
2011). Note that, under this new perspective, CSPC effects can still
be argued to constitute a reflection of “priming of control” (Spapé
and Hommel, 2008; Verguts and Notebaert, 2008, 2009; King et al.,
2012), but the nature of the primes and control processes dif-
fer from previous assumptions, in that they represent a shift in
response caution primed by contextually surprising stimuli rather
than shifts in attentional focus primed by contextual cues.

In a related literature on item-specific proportion congruent
(ISPC) effects (Jacoby et al., 2003; Blais et al., 2007), there has

been some debate about whether improved interference resolu-
tion for mostly incongruent items reflects a selective conflict-
control mechanism that enhances processing for specific items, or
merely an associative, contingency-based process by which partic-
ipants learn associations between salient distracter features and
responses (Schmidt and Besner, 2008; Bugg et al., 2011; Bugg
and Hutchison, 2012). Crump and Milliken (2009) and Heine-
mann et al. (2009) both demonstrated that CSPC effects are
immune to a purely associative account, because they general-
ize to frequency-unbiased “transfer” items. The CSPC effects in
the current experiments underline these previous findings and
provide further support for a control account, because they were
obtained using trial-unique stimuli (i.e., the identity of the faces
in the flanker array was novel on each trial) and neither stimulus
congruency nor conflict-frequency context were predictive of a
specific response.

Validation of the current results and their potential impact
on theories of conflict-control will involve various lines of future
research. First, although our modeling results were more or less
consistent across all four data sets, it remains to be seen whether a
“threshold” model would also provide a better account for CSPC
effects than a “drift” model in other interference paradigms, such
as the Stroop task. Second, as detailed above, both the experimen-
tal tasks and computational modeling approaches have scope for
additional optimization for further addressing the question asked
here. Additionally, new empirical protocols could be developed
to provide a direct test of the notion that CSPC effects reflect
increased response caution elicited by prediction errors.

In conclusion, this study suggests that CSPC effects may not
necessarily reflect contextually cued attentional focus as com-
monly conceived, but rather shifts in response caution triggered
by contextually surprising stimuli. While generally in line with
the “priming of control” hypothesis (Spapé and Hommel, 2008;
Verguts and Notebaert, 2008, 2009; King et al., 2012), it should
be reiterated that this is the first attempt to use a model of
choice and RT distributions to account for CSPC effects and
more research with specialized modeling techniques that avoid
the potential drawbacks of our LBA-based approach is needed
to corroborate this novel perspective. If valid, the notion that
expectancy violations can drive conflict adaptation effects, regard-
less of whether they are context-specific as in the current study, or
on an item-specific (e.g., Blais et al., 2007) or sequential level (e.g.,
Egner, 2007), would bring important insight on the mechanisms
underlying conflict-control.
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