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This article highlights some of the benefits of computational modeling for theorizing in
cognition. We demonstrate how computational models have been used recently to argue
that (1) forgetting in short-term memory is based on interference not decay, (2) forgetting
in list-learning paradigms is more parsimoniously explained by a temporal distinctiveness
account than by various forms of consolidation, and (3) intrusion asymmetries that appear
when information is learned in different contexts can be explained by temporal context
reinstatement rather than labilization and reconsolidation processes.
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Textbooks are replete with competing explanations of why for-
getting occurs. Most of these explanations are based on verbal
descriptions such as “memory traces (in the phonological loop)
decay over a period of a few seconds, unless revived by articulatory
rehearsal” (Baddeley, 2000; p. 419). Much imaginative experimen-
tal work has gone into these verbal theories, and they have been
highly influential.

Despite their success, however, verbal theories by definition
remain underspecified (Lewandowsky and Farrell, 2011). They
can produce testable qualitative hypotheses (such as “recall from
verbal short-term memory must decline when rehearsal is pre-
vented”), but because verbal theories cannot be quantitatively
tested, progress is necessarily limited.

Ultimately, cognitive science needs models that make quanti-
tative rather than qualitative predictions (cf. Lewandowsky, 1993;
Farrell and Lewandowsky, 2010). If we strive for precise, specific,
and falsifiable theories, if we want to understand how exactly the-
orized processes lead to an observable outcome, then we must rely
on computational models.

The advantages of computational modeling are manifold and
have been reviewed elsewhere (Cavagnaro et al., in press; Fum
et al., 2007; Lewandowsky and Farrell, 2011). Perhaps most impor-
tant, computational models “force” the theorist to be specific and
explicit on how their theory actually works, avoiding the vague-
ness, and conceptual gaps that verbal theories allow. For example,
in a verbal theory such as the phonological loop, virtually any
amount of forgetting (or lack thereof) can be explained by the
“right” combination of decay and rehearsal. Whenever forgetting
is absent, rehearsal was able to counteract decay, and whenever for-
getting is present, there was insufficient rehearsal. In other words,
unless one specifies the rate of decay and the shape of its func-
tion, almost any outcome can be explained by the same model.
Moreover, even when such quantitative constraints are sought,
they turn out to be difficult to implement: The phonological loop,

for example, can be implemented in at least 144 different com-
putational models – depending on decisions about how decay
and rehearsal operate – which produce a wide range of predic-
tions (Lewandowsky and Farrell, 2011). All of those difficulties are
avoided when a theory is instantiated in a computational model.

We underscore the value of computational modeling for the-
orizing in cognition with three recent examples from the area of
memory and forgetting.

FORGETTING IN SHORT-TERM SERIAL RECALL: DECAY VS.
INTERFERENCE
The “standard” model of short-term memory (cf. Nairne, 2002)
assumes that information held in short-term memory is quickly
forgotten unless it is constantly rehearsed or refreshed. This is
because information is thought to decay over time. Baddeley’s
working memory theory is one of the theories emphasizing decay-
based forgetting (Baddeley and Hitch, 1974; Baddeley, 1986, 2000);
Barrouillet’s time-based resource-sharing theory (TBRS; discussed
below; Barrouillet et al., 2004, 2007) is another. Decay is assumed
to be a constant force, meaning that in the absence of rehearsal or
refreshing1, a certain amount of time equates to a certain amount
of trace decay.

Other models of forgetting, in contrast, have stressed that it is
not time (viz. decay) per se that produces forgetting, but activi-
ties that – when they occur – require time to execute, where those
activities interfere with retrieval of the memoranda (cf. Under-
wood, 1957; Anderson and Neely, 1996; Wixted, 2004). Recent
examples of this kind of theory include Oberauer and Kliegl’s
theory of working memory capacity limitations (Oberauer and

1For the purposes of the present paper one can focus on the similarities between
rehearsal and refreshing, even though these are conceptually and neuropsy-
chologically separable processes (cf. Hudjetz and Oberauer, 2007; Raye et al.,
2007).
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Kliegl, 2006), Farrell and Lewandowsky’s (2002); Lewandowsky
and Farrell (2008) theory of serial recall (implemented in the
computational model SOB, discussed below), as well as temporal
distinctiveness theory (implemented in the computational model
SIMPLE, also discussed below; Brown et al., 2007).

These two rival accounts of forgetting – decay and interference –
have long co-existed (cf. Wixted, 2004). While some researchers
have recently concluded that a solid case has been made against
decay (Berman et al., 2009; Lewandowsky et al., 2009; Jalbert
et al., 2011), the notion of decay continues to be popular (Alt
and Spaulding, 2011; Barrouillet et al., 2011). Enter computational
modeling.

Oberauer and Lewandowsky (2008) compared computational
instantiations of decay- vs. interference-based theories, apply-
ing them to data from a series of experiments that controlled
rehearsal and featured distractor stimuli in addition to the mem-
oranda (mostly complex-span tasks, which intersperse encoding
of memory items and some secondary processing task). Oberauer
and Lewandowsky found that the two decay-based models they
tested – the “primacy model” (an implementation of the phono-
logical loop; Page and Norris, 1998) and a“positional decay model”
(cf. Burgess and Hitch, 1999; Daily et al., 2001) – invariably under-
estimated the effects of distractors but consistently overestimated
the effects of temporal delays. That is, the data suggested that the
actual amount of forgetting left unexplained by factors other than
time is smaller than must be assumed by decay models.

In contrast, a model implementing interference-based forget-
ting (SOB; Farrell and Lewandowsky, 2002; Lewandowsky and
Farrell, 2008) accounted well for the data. SOB is an associative
network model that binds distributed item and positional-context
representations, with no role of time in forgetting. Forgetting in
SOB is instead interference-based: Because items are associated to
overlapping context markers, they tend to over-write each other
during encoding into the common associative network.

More recently, Oberauer and Lewandowsky (2011) computa-
tionally implemented one of the most successful verbal theories
of complex-span performance, the TBRS (Barrouillet et al., 2004,
2007). This theory attributes forgetting to decay, which occurs
during distractor processing during the complex-span task. Decay
is counteracted by attentional refreshing, which like articulatory
rehearsal restores memory traces during gaps in between dis-
tractors. One of the main predictions of TBRS is that forgetting
depends on cognitive load, viz. the balance of the time for decay
and refreshing.

The computational instantiation of TBRS – called TBRS∗ – was
able to handle most benchmark findings from the complex-span
paradigm, which at first glance provides both a validity check and
a sufficiency proof for the verbal theory: The theory is coherent,
its implementation (largely) produces the expected predictions,
and it can explain a wide variety of empirical findings. However,
the computational implementation also revealed some unexpected
departures from the verbally derived predictions: Specifically, in
contrast to the verbally derived prediction of the TBRS, the mod-
eling demonstrated that the number of distractors in between
pairs of memoranda can affect memory performance even when
cognitive load is held constant. This is because when cognitive
load is high – that is, when there is more time for decay (during

processing of a distractor) than for refreshing (after processing of a
distractor) – refreshing will no longer be able to completely reverse
the effects of decay, and this will be aggravated by increasing the
number of distractors.

A recent study (Oberauer et al., 2012) compared TBRS∗ with
the most recent version of the SOB model in their application to a
range of benchmark phenomena in the complex-span paradigm.
Oberauer et al. examined phenomena including serial position
curves, the distribution of recall errors, and the effects of cogni-
tive load and of the number and similarity of distractors. Across
a range of simulations, SOB’s fit to the data was equivalent or
superior to the fit of TBRS∗.

In summary, the modeling with TBRS∗ demonstrated that
TBRS is a solid and useful theory, but it also revealed shortcomings
and discrepancies between the theory’s actual behavior and ver-
bally derived predictions. None of those would have been obtained
by verbal theorizing alone.

FORGETTING IN THE LONG-TERM: CONSOLIDATION-FAILURE
VS. TEMPORAL DISTINCTIVENESS
In the field of neuroscience, much research on forgetting invokes
the idea of consolidation. Consolidation is a post-encoding neural
process that is thought to inoculate memory traces against forget-
ting. Forgetting is thus facilitated when consolidation is disrupted
by events within a certain post-encoding window, for example
a brain lesion (cf. Squire and Alvarez, 1995), certain drugs (cf.
McGaugh, 2000), or some taxing mental activity requiring much
cognitive resources (cf. Wixted, 2004). Generally, any period of
relative inactivity following learning – that is, any period allowing
consolidation to fully unfold its protective effects – will benefit
memory. The hallmark of all behavioral data offered in support
of consolidation is hence an improvement of memory as time
between encoding and disruption increases. Consolidation has
been used to explain the beneficial effects of 30-min post-encoding
rest (Cowan et al., 2004), a night’s sleep (e.g., Walker et al., 2003),
and also the fact that memory impairments in dementia and ret-
rograde amnesia depend on recency, with more recent memories
most affected (i.e., the Ribot gradient; e.g., Squire, 1992).

However,much like verbal views of decay-based forgetting from
working memory, consolidation as a process remains underspeci-
fied (but see below). The rate of consolidation, its functional form,
and in particular its time-scale remain unclear. This must be of
concern because – just like with decay and refreshing or rehearsal –
in principle any empirical result can be explained with the “right”
combination of forgetting and consolidation.

Consolidation theorists differentiate between a short-term
synaptic consolidation process and a longer-term system con-
solidation process, although the exact time-scale of both these
processes is unclear. Estimates for the former process range from
milliseconds to hours, and for the latter from minutes to decades
(Dudai, 2004; Miller and Matzel, 2006). One of the obvious ques-
tions is: How can a process be finalized in one case after, say, 28 days
(cf. Dudai, 2004; Figure 1), but not be finalized after many years in
another (as suggested by the Ribot gradient in retrograde amne-
sia; e.g., Squire, 1992)? One obvious putative answer is that system
consolidation itself may not be a unitary process, and a further
differentiation may be needed (as suggested by, e.g., Meeter and

Frontiers in Psychology | Cognition October 2012 | Volume 3 | Article 400 | 2

http://www.frontiersin.org/Cognition
http://www.frontiersin.org/Cognition/archive


Ecker and Lewandowsky Computational models and forgetting

Murre, 2004). While this differentiation may be necessary and
plausible, it does open the door to a potentially infinite regress in
which more and more distinct types of consolidation are needed
to explain the data, depending on the particular time-scale of the
experiment. The other possible response, therefore, is the more
radical suggestion that a consolidation process may not be needed
at all to explain the data.

As discussed by G. Brown and Lewandowsky (2010) and
demonstrated by Lewandowsky et al. (2012), much of the behav-
ioral data used to support consolidation theory – for example, the
temporal gradient of retroactive interference – can be parsimo-
niously accounted for by a computational model of memory (SIM-
PLE; Brown et al., 2007) that is based on the principle of temporal
distinctiveness and contains no consolidation mechanism.

SIMPLE assumes that memory items are represented in a mul-
tidimensional mental space. One of these dimensions represents
time, and time-of-encoding can be used as a retrieval cue, in
particular if encoding is recent. The more an item is isolated in psy-
chological time – the greater its temporal distinctiveness – the less
interference there is from neighboring items, and the more readily
it is therefore retrieved. Hence, although SIMPLE predicts mem-
ory performance from temporal parameters, forgetting is assumed
to be caused by interference with no causal role of time itself (i.e.,
decay). SIMPLE can explain much of the behavioral data taken to
support consolidation by the fact that the period of mental inac-
tivity during which consolidation purportedly takes place renders
the preceding memoranda more temporally isolated, and hence
more retrievable.

One important aspect of this model is its time-scale invariance.
This means that absolute time is irrelevant for the model; what
matters is relative time. The model will predict equivalent recall
if two encoding events are spaced 1 min apart and the retention
interval is 10 min, or if the events are spaced 1 h apart and the
retention interval is 10 h. It follows that forgetting across various
time-scales can be explained more parsimoniously by the single
principle of temporal distinctiveness without reference to multiple
types of consolidation (see Lewandowsky et al., 2012).

The fact that SIMPLE can explain some of the results often cited
in support of consolidation does not speak against the existence
of consolidation2 – however, it creates a quantitative benchmark
against which any notion of consolidation must be evaluated. At
present, consolidation is used as a ubiquitous explanans without
being adequately constrained. In consequence, the consolidation
notion has been over-extended to situations in which a parsimo-
nious alternative explanation exists (cf. also Rickard et al., 2008).

Attempts to implement consolidation into computational
models of forgetting are therefore particularly relevant. For exam-
ple, McClelland et al. (1995) as well as Meeter and Murre (2004,
2005); Murre (1996) have used connectionist models to imple-
ment long-term system consolidation, in particular the pre-
sumed process by which memories become independent of the
hippocampus over time. These models implement system consoli-
dation as a gradual learning process, strengthening“intra-cortical”

2In fact, there is a range of neuroscientific evidence for the impact of consolidation
on memory, which goes far beyond the purview of SIMPLE (e.g., the differential
effects of specific sleep phases; cf. Born et al., 2006).

connections guided by a “hippocampal” trace reinstatement
process.

Both models suggest several constraints on consolidation theo-
rizing: (1) System consolidation must be slow and (2) interleaved
with presentation of new activation patterns, in order to avoid“cat-
astrophic interference” with existing memories (McClelland et al.,
1995). This explains why system consolidation must operate on
a long time-scale. Also (3) the selection of a pattern for consoli-
dation cannot solely rely on the pattern’s strength-of-activation
in “neocortex” (e.g., it could also depend on the “hippocam-
pal” input) in order to avoid excessive and exclusive consolida-
tion of the strongest “intra-cortical” memory traces (“runaway
consolidation”; Meeter and Murre, 2005).

These models offer insights into the neuropsychological mech-
anisms that might govern system consolidation, and have been
successfully applied to data from amnesic patients. However, to the
best of our knowledge, this work has not been used to systemati-
cally constrain consolidation theorizing in non-clinical forgetting
and on shorter time-scales. In particular, those models do not
contain the scale invariance that imbues SIMPLE with its ability
to handle the data from numerous interference experiments on
different time-scales.

MEMORY UPDATING: RECONSOLIDATION VS. TEMPORAL
DISTINCTIVENESS
A similar case about over-extension can be made in the context of
reconsolidation, a presumed manifestation of consolidation not
at initial encoding but during a later episode at which an ear-
lier event is retrieved. Neuroscientists have proposed the processes
of labilization and reconsolidation to explain the fact that mem-
ories can still be updated, distorted, or even erased after they
have been consolidated for considerable time. The theory goes
that a memory trace (after initial consolidation) reenters a labile
state when it is retrieved, and that this labilization is a prerequi-
site for any modification of the memory trace (e.g., updating).
The labilized memory trace must then be reconsolidated in order
to restabilize it in its updated form (see Hardt et al., 2010, for
a review, and Osan et al., 2011, for a neural network model of
reconsolidation).

One of the suggestions made by advocates of reconsolidation
theory has been that reminders of the initial study context can
serve to activate and hence labilize memories, making them prone
to distortion (Hupbach et al., 2007, 2009). In these studies, peo-
ple consecutively studied two lists of items in different contexts
(e.g., in different rooms using different set-ups). Reminding peo-
ple of the first context (e.g., by mentioning a particular apparatus
used during study 1 in context-1) before study of the second list
impaired memory for the first list – presumably because list-1
memory was labilized by the context-1 reminder, making it sus-
ceptible to change, and hence leading to list-2 intrusions into recall
of list-1, but not vice versa.

The question arises whether the explanation of this curious
intrusion asymmetry requires reconsolidation theory. As noted
by Sederberg et al. (2011), there are a number of sophisti-
cated computational models that can explain many fundamental
properties of episodic memory, none of which make any reference
to reconsolidation.
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Sederberg et al. (2011) applied the Temporal Context Model
(TCM; Howard and Kahana, 2002; Sederberg et al., 2008) to the
data of Hupbach et al. (2007, 2009), in order to ascertain if there
was a viable alternative explanation for the asymmetry, or con-
versely, whether the TCM model might have to be amended to
include a reconsolidation mechanism.

TCM is a connectionist model with two layers: an item-layer,
coding for the memory items and some contextual information
(e.g., spatial information, other items present at encoding), and
a temporal context layer. Temporal context is conceptualized as
item-layer information that has been abstracted over time; that
is, temporal context information is a recency-weighted running
average of the item-layer information. In simple words, episodic
encoding in TCM involves binding items to their temporal encod-
ing context. Retrieval involves cueing with a temporal context,
which then reinstates a memory item (which will then lead to fur-
ther reinstatement of the item’s temporal study context, which in
turn can be used as a cue for the retrieval of additional items, and so
on). There is no implementation of labilization or restabilization
processes in TCM.

Sederberg et al. (2011) found that the asymmetric pattern of
intrusions reported by Hupbach et al. (2007) falls naturally out of
TCM because context-1 is not only associated with list-1 but also
list-2 (because of the reminder), whereas context-2 is only associ-
ated with list-2. In TCM terms, the list-1 reminder will reinstate
the list-1 temporal context. List-2 items will then be associated
with both list-1 and list-2 context features. Cueing recall with
list-1 context will hence lead to reinstatement of both list-1 and
list-2 items, whereas list-2 context will only trigger list-2 recall.
TCM achieved an excellent quantitative fit of the data of Hupbach
et al. (2007), demonstrating that the intrusion asymmetry can be
parsimoniously explained by item-context binding and contextual
reinstatement, without any of the assumptions of reconsolidation
theory.

Support for reconsolidation has also been drawn from proce-
dural/implicit memory experiments employing dual study events.
Unlike Hupbach et al. (2007, 2009), these studies did not give
subtle context reminders before the second study event, but reex-
posed their participants directly to the initially studied content.
For example, participants in Walker et al., 2003; Experiments 5–8)
performed a learned finger-tapping sequence before studying a
second sequence, and participants in Schiller et al. (2010) were

reexposed to a conditioned stimulus pairing before extinction of
that conditioned association. In both cases did the reexposure
impair memory for the initial study content. An application of
a TCM will be less straightforward in these instances, so these
results provide stronger prima facie support for reconsolidation.
However, to the extent that any reexposure to a distinct stud-
ied content will reinstate its study context, alternative explana-
tions within a temporal context framework may also be feasible,
although the precise details remain to be worked out by future
research.

CONCLUSION
For a cognitive model to be maximally useful, it has to be compu-
tationally precise and it must quantitatively predict performance
across a wide range of tasks. Modeling can thus be very beneficial
for theorizing in cognition. Verbal theories of cognition can only
lead to true progress in our understanding of the mind if they are
ultimately specified to a degree that allows their computational
implementation.

While verbal theorists may argue that computational models
do not incorporate all of the strategies or metacognitive knowl-
edge that a person can use during retrieval, this does not by itself
endorse the use of verbal theorizing. Any aspect of a verbal the-
ory should – in principle – be specifiable in a computational
model, and this includes strategies and metacognitive knowledge
or indeed any other construct. Without such specification, it will
necessarily remain unclear how any given aspect of a verbal theory
contributes to its explanatory power.

At the other extreme, researchers who create models at the neu-
ronal level may argue that computational models of cognition will
need to implement not only psychological constructs but also the
exact underlying neuronal processes. We argue that this would
indeed be a valuable long-term goal and creating such “multi-level
models” of cognition is certainly an exciting area of research (cf.
Forstmann et al., 2011; Criss et al., in press).
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