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Number notations can influence the way numbers are handled in computations; however,
the role of notation itself in mental processing has not been examined directly. From a
mathematical point of view, it is believed that place-value number notation systems, such
as the Indo-Arabic numbers, are superior to sign-value systems, such as the Roman num-
bers. However, sign-value notation might have sufficient efficiency; for example, sign-value
notations were common in flourishing cultures, such as in ancient Egypt. Herein we com-
pared artificial sign-value and place-value notations in simple numerical tasks. We found
that, contrary to the dominant view, sign-value notation can be applied more easily than
place-value notation for multi-power comparison and addition tasks. Our results are con-
sistent with the popularity of sign-value notations that prevailed for centuries. To explain
the notation effect, we propose a natural multi-power number representation based on the
numerical representation of objects.
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INTRODUCTION
Numbers can be represented in many ways. Indo-Arabic num-
bers and Roman numerals are only two well-known examples,
while dozens of other notations were invented throughout the his-
tory of human culture (Ifrah, 1999; Chrisomalis, 2010). Although
the structure of the notation might have an effect on how those
numbers are processed, the cognitive properties of this effect are
hardly known. More importantly, knowing the finer details of the
notational effect might shed light on the mental representation
of multi-power natural numbers. The main aim of the present
study is to investigate the effect of number notations on simple
numerical processes.

In a complex notational system, numbers are decomposed
into multiples of powers. For example, a specific number could
be denoted as the sum of 1s, 10s, 100s, etc. Different cultures
applied different methods to utilize this power decomposition.
Many methods used two common structures to denote numbers:
sign-value and place-value notations (Table 1). In sign-value nota-
tion, powers are denoted by symbols, and the quantity of that
power is represented by repeating those symbols. For example,
in the Roman notation C, X, and I symbols represent 100, 10,
and 1, respectively, and 20 is denoted with the repetition of sym-
bol X twice: XX. Unlike a simple sign-value notation, the Roman
notation known today includes also quintuples of the powers of
tens, for example “V” as 5 or “L” as 50, and the Roman notation
includes subtraction, for example, IV means 5–1. However, some
less known notations use the sign-value notation structure more
strictly. For example, in the ancient Egyptian hieroglyphic system
a stroke (|) was used to denote number 1 and a heel bone (∩) to
denote 10. In this notation only the powers of 10 could be symbols,
and the numbers were denoted by the sum of these symbols: for
example, 23 could be denoted as∩∩|||. In contrast, in a place-value

system, the power is noted by the position in the string, while the
quantity is represented by the symbol. For example, in the Indo-
Arabic 23, the tens are denoted on the second position from the
right, and the quantity of tens is noted by the symbol 2.

Understanding the role of notation in numerical processing
relies on at least two factors: first, how multi-power numbers are
represented mentally, and second, how the specific notation is
transcoded to those mental representations. Regarding the first
question, research in recent decades has revealed that humans
may represent the very same number in different forms; how-
ever, there is no consensus on the nature of multi-digit number
representation. In an initial model, McCloskey (1992) proposed
an abstract mental structure for multi-digit numbers (e.g., 5070
can be represented as {5} 10EXP3 {7} 10EXP1). In this model,
numbers from all notations, such as Arabic numerals or number
words, are transcoded to this abstract representation. Alternatively,
according to one of the most influential models by Dehaene (1992,
1997), numbers are stored in three different representations: in an
imprecise analog magnitude system (i.e., the size of the signal
is proportional to the value of the number), in an Arabic visual
number form (e.g., 307), and in a verbal form (e.g., 235). While
the magnitude system is incapable of storing the exact values of
numbers, the Arabic visual number form and verbal representa-
tion might handle multi-digit numbers (Dehaene et al., 1993, 1999;
Spelke and Tsivkin, 2001).

Turning to the second question, the role of transcoding in han-
dling different number notations has been examined in only a
handful of studies. The mental use of the aforementioned abstract
multi-power number representation was tested with the utilization
of Roman number notation (Gonzalez and Kolers, 1982). Using
both Roman and Indo-Arabic notations in numerical tasks simul-
taneously (e.g., is the V+ 3=VII equation true; is 5 equal to V), it
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Table 1 | Number notation in sign-value and place-value notations.

Sign-value notation Place-value notation

Roman example: XXIII Indo-Arabic example: 23

Noting the powers

(e.g., 1, 10, 100 in a

base 10 system)

Symbol Position
X means ten �_ (left position) means

tens

I means one _� (right position) means

ones

Noting the quantity

within a specific

power

Quantity of symbols Symbol
•••Means three 3 Means three

••Means two 2 Means two

was found that the more Roman numbers were used in a task, the
more slowly the participants solved it. Gonzalez and Kolers (1982)
originally proposed that the reaction time difference related to
different notations reflected notation-dependent representations,
which goes against the abstract multi-power number represen-
tation model. In contrast, others interpreted the same data that
both notations used the same abstract mental number represen-
tation and it was the transcoding process that caused the slower
response latency in Roman notation (Sokol et al., 1991; McCloskey,
1992). To specify this transcoding process, Noël and Seron (1992)
proposed that transcoding Roman numerals to the abstract rep-
resentation depends on four factors: (a) the first numbers (I, II,
and III) work as one-to-one notations and (b) some other sym-
bols (V and X) map numbers directly. These first two processes
are fast. On the other hand, other numbers are treated with slower
arithmetic tools, as in (c) addition (e.g., VI, VII, and VIII) and (d)
subtraction (e.g., IV and IX).

It is not only cognitive scientists who find multi-power repre-
sentation and number notation important. Mathematicians and
historians also provide relevant considerations; however, state-
ments about the efficiency of sign-value vs. place-value notations
seem somewhat paradoxical. On one hand, there is a strong
consensus in the literature that the place-value system is highly
efficient (Cajori, 1924; Menninger, 1992; Zhang and Norman,
1995; Dehaene, 1997; Ifrah, 1999), and numerical tasks can be
solved only with serious difficulty in a sign-value system, such
as with Roman numbers. However, at least two considerations
oppose that bold statement. First, sign-value systems were popu-
lar in many cultures even when alternative place-value notation
was present (Ifrah, 1999; Chrisomalis, 2010). Second, some less
frequently cited theoretical studies suggest that sign-value nota-
tions can be easily applied for mathematical purposes, sometimes
proposing an even easier method for calculations than the meth-
ods applied with place-value systems (Anderson, 1956; Lazarides,
1970; Detlefsen et al., 1976; Kennedy, 1981; Schlimm and Neth,
2008). Thus, some historical and computational considerations
question the superiority of place-value notation in all computa-
tions. One might ask, if Indo-Arabic numbers are so efficient, why
did people not recognize their advantages for such a long time? Is
the early popularity of sign-value systems simply an accident, or
does it reflect a preference for the representation of numbers in
the human mind?

To summarize, the literature on number notations has diverse
findings. While we have solid knowledge of multi-power number
representation (Dehaene, 1992, 1997; McCloskey, 1992; Dehaene
et al., 1999; Spelke and Tsivkin, 2001), and some initial results
about some specific notations (Gonzalez and Kolers, 1982; Sokol
et al., 1991; McCloskey, 1992; Noël and Seron, 1992, 1997), the
influence of number notation on mental numerical processing is
hardly understood. Furthermore, while most mathematicians and
historians suppose that place-value notations are more efficient
than sign-value notations (Cajori, 1924; Menninger, 1992; Zhang
and Norman, 1995; Dehaene, 1997; Ifrah, 1999), some other theo-
rists emphasize the efficiency with which sign-value systems could
be used (Anderson, 1956; Lazarides, 1970; Detlefsen et al., 1976;
Kennedy, 1981; Schlimm and Neth, 2008). Thus, it is difficult to
conclude how number notation influences number processing.

In the present study, we investigated the cognitive effect of
number notations on mental number processing. More specifi-
cally, based on historical considerations (i.e., sign-value numbers
were popular even when place-value alternatives were available)
and computational considerations (e.g., Roman numbers can be
used easily to make calculations), we addressed the simple but
fundamental problem of whether place-value notation is more
complex for human numerical processing, or if, in contrast, it is
the sign-value notation that is more complex for human calcula-
tion as suggested by the majority of cognitive and mathematical
literature (Cajori, 1924; Menninger, 1992; Zhang and Norman,
1995; Dehaene, 1997; Ifrah, 1999). It is difficult to build on former
experiments while exploring this issue. Although a few studies
have investigated Roman notation (Gonzalez and Kolers, 1982;
Sokol et al., 1991; McCloskey, 1992; Noël and Seron, 1992, 1997;
Duyck et al., 2008), they rarely explored the role of number nota-
tions per se. From the viewpoint of the present study, based on
these reports, it is difficult to contrast sign-value and place-value
notation processing. First, most of these studies used a paradigm in
which Indo-Arabic and Roman numerals were used concurrently
in the same trial, such as addition tasks with mixed notations
(V+ 3=VII), transcription tasks (is V equal to 4), or processing
Roman numbers with Indo-Arabic distracters. Thus, any mea-
sured effects might be caused by processing either one notation
or the other. Second, if our goal is to compare number nota-
tions, then the structure and rules of those notations should be
matched as strictly as possible. The Roman numbers and Indo-
Arabic numbers that were used in those studies are not matched
in this sense because (a) while Indo-Arabic numbers use only the
power of the base number (i.e., 1, 10, 100, etc.), Roman numer-
als use both the power of the base number and quintuple of the
powers (i.e., 5, 50, 500, etc.), and (b) Roman notation includes sub-
traction which might make the notation shorter and thus more
readable for experts (Kaufman et al., 1949; Mandler and Shebo,
1982), but at the same time makes Roman notation more com-
plex. Finally, (c) the symbols used in a notational system and
the length of the numbers were not controlled in those stud-
ies. Third, different representations might be used in different
stages of development and expertise (see some specific exam-
ples in Gelman and Gallistel, 1978; Siegler, 1999; Delazer et al.,
2003), and comparing a well-known place-value system (i.e., Indo-
Arabic system) with a less-practiced sign-value system (i.e., Roman
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numbers) is suboptimal. Thus, the knowledge collected regard-
ing the multi-power number representation and the transcoding
processes translating number notations to those representations
provide no straight predictions regarding the effects of sign-value
and place-value number notations on numerical processing.

To overcome the methodological issues described above,
two structurally comparable artificial number notations were
designed, and participants solved simple multi-power compari-
son and addition tasks in the new notations. We hypothesized
that, contrary to the conventional view, sign-value notation might
be more appropriate for number processing than place-value
notation. This hypothesis is based on the relative popularity of
sign-value notation in the history of culture (Menninger, 1992;
Ifrah, 1999; Chrisomalis, 2010) and on efficient sign-value nota-
tion algorithms (Anderson, 1956; Lazarides, 1970; Detlefsen et al.,
1976; Kennedy, 1981; Schlimm and Neth, 2008).

EXPERIMENT 1
In the first experiment, participants compared numbers in a new
artificial number system. A comparison task was chosen as one
of the simplest numerical tasks that also had high importance in
ancient cultures (Ifrah, 1999).

METHODS
Artificial number notations
To mitigate potentially unavoidable interference with the well-
known Indo-Arabic numbers, the new notational systems were as
different from our usual notations as possible. Base 4 systems with
new characters were designed. All characters had similar vertical
and horizontal extent and position, and all of them were visually
complex: 0- , 1- , 2-Ð, 3- , 4- , and 16- (Figure 1).

The two notational systems should differ only in their structure
(sign-value vs. place-value), but not in other aspects. First, in con-
trast with some Roman numbers, such as IV or IX, the sign-value
notational system used here did not include subtraction, because
subtraction is a deviation from the simplest form of sign-value
notation, and it is also a deviation from the place-value structure
applied here. Second, the number of symbols a user learns and the
length of the numbers should be approximately equal in the two
notations. The number of different symbols and the length of the
numbers are determined by the base of the number system and
the largest power that can be expressed in the task (see Table 2

for a short summary of the relationship between these factors).
The number of symbols a user should learn can be equal in the
two number notations if the base of the system and the largest
power expressed in the numbers are equal (e.g., base three system
with the largest number being 33

−1, i.e., 26). The length of the
numbers in the two notations are closer to each other if the base
number and the largest power are small, although it is difficult to
perfectly control this aspect of the number systems. Considering
these viewpoints, in the present experiment, the base 4 system and
three powers were chosen. Thus, the number of symbols was 3 in
the sign-value system and 4 in the place-value system. The average
length of a number was 4.57 digits in the sign-value notation, and
2.71 in the place-value system.

Incorrect strategies in the comparison task
The comparison tasks can be solved by incorrect strategies. For
example, one can count the number of symbols in a sign-value
notation; utilizing this strategy to compare III vs. XX in Roman
notation, one would produce an erroneous solution, stating that III
is larger than XX, as the first number includes three symbols, while
the second number includes only two. Notably, these alternative
incorrect strategies give a correct answer for most of the specific
number pairs. For example, applying the above mentioned num-
ber of symbols, strategy would state that Roman XXX is larger
than XX, which in fact is true, although not because XXX includes
more digits than XX; rather, the sum of the values in XXX give a
larger number than the values of X plus X.

We identified seven strategies that could offer an alternative
solution in the comparison task. Some of them might sound
bizarre, but we wanted to be confident that the occasionally con-
fused participants were not using any alternative strategies that
could fill the gap made by their uncertainty. Some strategies could
be applied in only one notation. The seven strategies were:

1. Misinterpreting the values of the symbols: Obviously, if someone
forgets the value of a symbol, then number processing will fail.

2. Counting the number of digits: In sign-value notation, count-
ing the digits instead of summing them up might result in
incorrect processing. Conversely, in place-value notation, this
strategy always gives the correct result. For example, in Indo-
Arabic notation, a three-digit number is always larger than a
two-digit number, independent of the specific values.

� ��� 7�	�0�� ��	��� �

�<	�#�������0�0�� YYVVV� ZYYVVV�

@�����	 � ���%�

��������0�0��
=�?O=�?O=�?O=�?O=�?P��� =�*?O=�?O=�?O=�?O=�?O=�?P�1�

�
�

/�	�7�	�0�� ��	��� �

�<	�#�������0�0�� WX� VWX�

@�����	 � ���%�

��������0�0��
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FIGURE 1 | Examples of numbers in the new notational systems. These
specific examples show the notation of 11 (left), which consists of 2 fours and
3 ones in a base 4 system, and 27 (right), which consists of 1 sixteen, 2 fours,

and 3 ones. The correct interpretation of the numbers is visible in the
meaning row (participants could not see this explanation). Numbers in
parenthesis represent the meanings of the symbols.

www.frontiersin.org October 2012 | Volume 3 | Article 463 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Cognition/archive


Krajcsi and Szabó The role of number notation

Table 2 |The number of symbols and the length of the numbers depend on the base numbers and the largest expressed powers in sign-value

and place-value numbers.

Sign-value system Place-value system

Number of symbols Largest power: e.g., in a base 10 system, if the largest

power is hundred, i.e., 103, three different symbols are used

Base of the system: e.g., the digits from 0 to 9

in base 10

Length of a number Determined by the base and the power together: e.g., for all

powers, within the power, the length can be between 0 and

the base number

Largest power: e.g., in a base 10 system if the

largest power is hundred, i.e., 102, then the

longest number can consist of three digits

3. Summing the values of the digits: In place-value notation, sum-
ming up the values of the digits instead of first multiplying
them with their place value gives an incorrect interpretation of
that number. However, in sign-value notation, this method is
the correct interpretation of the number. In other words, it is an
error to handle a place-value number as a sign-value number.

4. Number of types of symbols: Counting the types of digits might
give an incorrect result; for example, Indo-Arabic 333 vs. 24
could be interpreted as 333 being smaller, as it only includes
the symbol 3, while 24 includes 2 and 4. This strategy can be
applied in both sign-value and place-value notation.

5. Decision not based on the largest differing power : In a multi-
power comparison, the largest differing power will specify
which number is the larger; therefore, smaller powers are not
relevant. However, one might choose a power arbitrarily and
make a decision based on that power. For example, comparing
Indo-Arabic 24 vs. 53, one might think that, as 4 is larger than 3,
24 is more than 53. This strategy can be used in both sign-value
and place-value notations.

6. The smaller number might be shifted in position when it includes
leading zeros: In place-value notation, if the two numbers have
different numbers of powers, one might incorrectly shift the
position of the smaller number and make a decision based on
this wrong interpretation. For example, in the case of Indo-
Arabic 231 vs. 42, one might find that the largest powers are
2 in 231, and 4 in 42, thus making 42 the bigger number. In
other words, this solution shifts number 42 to 420. This error is
irrelevant in sign-value notation, as the position of the symbols
is not informative: (10)+ (1) is the same as (1)+ (10). Consid-
ering this strategy not as shifting position but as shifting power,
the strategy is quite improbable in sign-value notation, as shift-
ing powers requires changing all digits; for example, Roman
number XXIII should be changed to CCXXX.

7. Interpreting numbers in base 10: Finally, we considered a sev-
enth possible problem, which actually cannot be tested in a
comparison task. One might think that the numbers are not
denoted in base 4, but in base 10. Actually, in a comparison
task, interpreting numbers in base 10 will give exactly the same
result as interpreting them in base 4.

As mentioned above, in many cases these incorrect strategies
will give the correct solution; thus, only the number pairs in
which a specific incorrect strategy gives an erroneous result are
informative. It would be appealing to find number pair stimuli
in which only one incorrect strategy would propose the wrong

solution, and the correct strategy, along with all the other wrong
strategies, would give the correct answer, as failing these trials
would reveal that the specific wrong strategy was used. Unfortu-
nately, this is impossible in some cases. For example, in sign-value
notation, when the number of digits would suggest a wrong solu-
tion (Strategy 2), the utilization of the“not largest differing power”
strategy (Strategy 5) also offers an incorrect response. There are
no cases where Strategy 2 gives the wrong solution and Strategy
5 gives the correct result. Thus, whenever it was not possible to
choose a number pair where only a single incorrect strategy would
propose the wrong answer, we chose an“overlapping”number pair
stimulus, in which only two wrong strategies support the wrong
result: one is the critical one that we wish to test, and the other is a
strategy that could be tested by itself (i.e., there are other number
pairs in which the latter incorrect strategy is the only strategy that
gives an incorrect result).

Participants
Thirty Hungarian undergraduate students from Eötvös Loránd
University participated in the study for partial course credit. All
participants had normal or corrected to normal vision. The data of
24 subjects were analyzed (two males, age range from 20 to 27) after
excluding six participants with a higher than 50% error rates in any
of the tested incorrect strategies (see incorrect strategies above and
the procedure below). These participants were excluded to ensure
that all of the remaining participants understood the structure and
logic of both the sign-value and place-value notations. Among the
excluded participants, five subjects applied a strategy that counted
the number of symbols instead of adding up their values in sign-
value notation. Another participant added up the values of the
digits in place-value notation (i.e., the place-value numbers were
handled as if they were sign-value numbers).

Stimuli and procedure
In a comparison task, two multi-power numbers were visible on
the left and right sides of the screen, and participants chose the
larger number (see Figure 1). In one condition, the numbers were
constructed in sign-value notation, while in the other condition,
place-value structure was applied.

The presented numbers were between 1 and 63; i.e., numbers
that have a maximum of three powers in a base 4 system. The
numbers were presented in white against black background. The
stimuli were visible until the response button was pressed. A blank
screen appeared for 500 ms between trials.

The tasks were presented in two blocks: sign-value and place-
value notation blocks. In a block, first, participants learned the
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symbols; an instruction introduced the new symbols used in the
notation. Then, the participants saw one symbol at a time in the
middle of the screen and had to press the associated response but-
ton. After the response, auditory feedback was given depending on
whether the response was correct or not (higher and lower beeps).
All new digits were presented twice in a block. The participant per-
formed this practice phase until a block was completed without
any error and at least four blocks were accomplished. For most of
the participants four blocks of practice was enough to identify the
symbols accurately.

Second, the multi-power notation was introduced. To ensure
that participants understood that the incorrect strategies described
above were erroneous, practice trials tested whether the par-
ticipants applied these critical strategies. All possible incorrect
strategies of the notation were tested with five trials. After
each erroneous practice trial, the notation was explained by the
experimenter. The trials in the practice phase were randomized.

Finally, participants completed the comparison task. To ensure
that participants continued to avoid incorrect strategies, test tri-
als continuously monitored the use of possible wrong strategies
while solving the comparison tasks. The incorrect strategies could
be verified only with these test trials, as the main trials included
numbers that could be solved correctly with any of the incorrect
strategies (i.e., all incorrect strategies gave correct solutions to the
main trials). An incorrect strategy was followed if more than two
errors out of five trials were made in that strategy type.

Former studies on multi-digit Indo-Arabic number compar-
ison have found that (a) the number of digits are used as a
shortcut for a decision (i.e., longer numbers are always larger in a
place-value system; Hinrichs et al., 1982), and (b) multi-digit com-
parison is solved with a power-by-power comparison, starting with
the largest power (Hinrichs et al., 1982; Poltrock and Schwartz,
1984). To explore the presence of these comparison processes
with the present artificial notation, another independent variable
included number difference type, with five conditions (Table 3):
(a) three-power vs. two-power numbers, e.g., (2)(1)(3) vs. (1)(3)
in place-value notation; (b) three-power vs. one-power numbers,
e.g., (2)(1)(3) vs. (3); (c) three-power numbers with difference on
16s, e.g., (2)(1)(3) vs. (3)(1)(3); (d) with difference on 4s, e.g.,
(2)(1)(3) vs. (2)(0)(3); and (e) with difference on 1s, (2)(1)(3) vs.
(2)(1)(2).

The full factorial within-subjects design included notation
(sign-value and place-value) and the number difference type with
five levels, as described above. Each cell of the design included
15 trials. The stimuli were presented in two notation blocks and

Table 3 | Example stimuli in the two notations (sign-value and

place-value numbers) and in number difference types.

Sign-value number Place-value numbers

One leading zero

Two leading zeros

Difference in 16s

Difference in 4s

Difference in 1s

the order of the notation was counterbalanced across subjects. In
a block, the order of the trials with the number difference con-
ditions and the incorrect strategy trials were randomized. The
specific number pairs presented were generated online with the
appropriate constrains of the conditions: all stimuli were chosen
randomly from the set of number pairs that satisfy the appropri-
ate constrains. Presentation of the stimuli and measurement of RT
were managed by PsychoPy software, version 1.61 (Peirce, 2007).

RESULTS AND DISCUSSION
Error rates and response latencies were analyzed with a 2 (nota-
tion: sign- vs. place-value)× 5 (number difference: one leading
zero vs. two leading zeros vs. difference in 16s vs. in 4s vs. in
1s)× 2 (order of notation: sign-value notation first vs. place-value
notation first) ANOVA with notation and number difference as
within-subjects and order of notation as between-subjects fac-
tor. Order of notation neither had a main effect nor interacted
with any other factors. We found that comparison in place-
value notation was more erroneous and slower than comparison
in sign-value notation; F(1,22)= 19.774, MSE= 0.001, p < 0.001
and F(1,22)= 45.393, MSE= 207,517, p < 0.001, respectively (see
Figure 2 for the notation main effects). This result contrasts with
the frequently articulated advantage of the place-value system.

Further analysis explored the presence of comparison strate-
gies formerly observed in multi-digit Indo-Arabic comparison
tasks (Hinrichs et al., 1982; Poltrock and Schwartz, 1984). The
previous ANOVA on error rates revealed a main effect of num-
ber difference; F(4,88)= 19.511, MSE= 0.0023 p < 0.001. The
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FIGURE 2 | Error rates and response latencies as a function of number
notation in the comparison task. Error bars represent confidence interval
(95%).
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interaction between the number difference and notation factors
was not significant. The previous ANOVA on response latencies
showed a main effect of number difference; F(4,88)= 179.876,
MSE= 53,081, p < 0.001. The interaction of the number dif-
ference and notation factors also proved to be significant; F(4,
88)= 36.988, MSE= 34,024, p < 0.001: in leading zero conditions
the response latencies did not differ between the two notations
(Figure 3).

These behavioral data are consistent with the formerly known
multi-digit Indo-Arabic number processing. First, response laten-
cies show a relatively fast solution for trials with leading zeros
(Hinrichs et al., 1982). Similarly, in the present data, if the largest
powers of the two numerals differ, then the number with the
larger power is quickly chosen (see the lower error rate and faster
reaction time in the leading zero conditions in Figure 3). In
place-value numbers, the longer number is the larger, and the
decision might be made by simple perceptual procedure, with-
out processing the numbers. In sign-value notation, although the
length of the stimuli correlates with the leading zeros, such an
unambiguous relation is not present. Thus, in sign-value nota-
tion the first symbols of the two numbers should be compared.
Second, in the three-power number pairs, the larger the differ-
ing power is, the faster the comparison is (see the increasing
error rate and response latency in the difference in 16s, 4s, and
1s conditions in Figure 3). This result might reflect a distance
effect (Dehaene et al., 1990), or it can also be interpreted that
participants started the comparison with the largest power and
continued it until the difference between the two numbers was
found (Poltrock and Schwartz, 1984). This serial decomposing
interpretation is strengthened by the fact that more than two-digit
Indo-Arabic comparison might be processed serially, as non-serial
holistic or parallel processing of the powers is plausible only with
familiar numbers, such as frequently observed two-digit num-
bers (Dehaene et al., 1990; Verguts and de Moor, 2005; but see
also Korvorst and Damian, 2008). Furthermore, children who
have fewer experiences with multi-digit numbers tend to perform
comparisons serially (Nuerk et al., 2004), which also strengthens
the serial processing hypothesis.

To investigate the performance improvement over time, the
trials were grouped into four blocks. A 2 (notation)× 4 (blocks)
repeated measures ANOVA on error rates revealed only a main
effect of notation, but not a main effect of blocks or interaction. A
similar 2× 4 ANOVA on the response latencies (Figure 4) showed
a main effect of notation, a main effect of blocks, F(3,69)= 6.12,
MSE= 56,889, p= 0.001, but no interaction.

EXPERIMENT 2
The comparison tasks, in a strict sense, could have been solved
by ordering the symbols without considering their values. To rule
out this potential problem, we utilized the more complex task of
addition. Moreover, in the comparison task, participants might
have misunderstood the base 4 system and could have interpreted
the multi-power numbers as base 10 numbers, as both interpre-
tations implied the same solution. However, in the addition task,
misunderstanding the base would cause a carry error, for example,
2+ 3 is 5 in a base 10 system, but the result is (1)(1) in a base
4 notation. Third, addition was also a vital procedure in ancient
times, as complex notations were frequently applied for addition,
such as for summing assets or taxes (Ifrah, 1999).

METHODS
Participants
Twenty-two Hungarian undergraduate students from Eötvös
Loránd University participated in the study for partial course
credit. Nineteen subjects were analyzed (four males, age range
from 20 to 23) after excluding participants with more than 20%
overall error rate. In contrast with the comparison task, no incor-
rect strategies test trials were needed in the addition task, as
the aforementioned incorrect strategies would result in wrong
solutions in the addition tasks. Consequently, exclusion of the
participants was not based on incorrect strategy test trials, but on
the overall performance in the addition task.

Stimuli and procedure
The same artificial notational system was applied as in the pre-
vious experiment. In a trial, a multi-power addition was visible
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FIGURE 3 | Error rates (left) and response latencies (right) in the two notations as a function of difference between the two numbers. Error bars
represent confidence interval (95%).
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in the middle of the screen, and a proposed solution appeared
at the bottom of the screen (see Figure 5). Participants decided
whether the proposed result was correct or not. Stimuli were vis-
ible until the response button was pressed. Between the trials,
a blank screen appeared for 500 ms. Both the operands and the
results were three-power numbers larger than 15; no leading zeros
were included.

To compare the present artificial number-learning paradigm
with the formerly known multi-digit Indo-Arabic addition, two
manipulations of the stimuli were applied. To investigate ser-
ial power-by-power processing (Deschuyteneer et al., 2005),
the incorrect result could differ in the 1s [e.g., (3)(2)(3) vs.
(3)(2)(0) in a place-value notation], in the 4s [e.g., (3)(2)(3)
vs. (3)(1)(3)], and in the 16s [e.g., (3)(2)(3) vs. (1)(2)(3)].
Second, to test whether performance of a task with carry
is worse than without carry (Deschuyteneer et al., 2005),
the trials included no carrying [e.g., (2)(1)(2)+ (1)(0)(1)],
one carry [e.g., (2)(1)(2)+ (1)(0)(3)], or two carries [e.g.,
(2)(1)(1)+ (1)(2)(3)].

The tasks were presented in two blocks: sign-value and place-
value notation. In each block, participants first learned the new
symbols with the same procedure as in the first experiment,
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FIGURE 4 | Response latencies in the two notations as a function of
time. Error bars represent confidence interval (95%).

then practiced the addition in the new notation. To ensure that
participants understood the task, the following types of addi-
tions were practiced: (1) in sign-value notation, two one-digit
addends; (2) in place-value notation, two one-digit addends with
no carry; (3) in both notations, multi-power addition with-
out carry; (4) in both notations, multi-power addition with
one carry; and (5) with two carries. After each erroneous prac-
tice trial, the rules of addition were explained by the experi-
menter.

In the main part of the experiment, half of the trials showed
a correct result, and the other half showed an incorrect sum. In
a notation block, 120 trials were presented. In both notations,
a factorial design included erroneous power and carry factors,
with 20 trials in each erroneous condition, 60 trials in the cor-
rect result condition, and 30 trials in each carrying condition
(see the detailed distribution of the trials in the design cells in
Table 4). The order of the notation block was counterbalanced
across subjects. In a notation block, the order of the trials was
randomized.

RESULTS AND DISCUSSION
A 2 (notation: sign-value vs. place-value notation)× 4 (erroneous
power: no error vs. error in 16s vs. error in 4s vs. error in 1s)× 4
(carry: no carries vs. carry from 1s vs. carry from 4s vs. carry
from 1s to 4s) repeated measures ANOVA was applied to analyze
error rates and median response latencies of correct responses. We
found that, consistent with the comparison task, addition with
place-value notation was slower than addition with sign-value
notation [F(1,18)= 47.787, MSE= 23,833,720, p < 0.001], while
the error rate did not differ significantly between the two notations
(Figure 6).

Further analysis explored the effects formerly known
from multi-digit Indo-Arabic addition (Deschuyteneer et al.,
2005). The previous ANOVA on error rates revealed no
effect of notation in the main effect or in the interac-
tions. However, carry and erroneous power main effects
were significant, F(3,54)= 4.335, MSE= 0.017, p= 0.008 and
F(3,54)= 6.337, MSE= 0.017, p= 0.001, respectively (Figure 7).
Increasing the number of carries, the task became more dif-
ficult and errors on smaller powers of the stimuli resulted
in fewer erroneous responses. Moreover, carry× erroneous
power and notation× carry× erroneous power interactions
also proved to be significant; F(9,162)= 2.55, MSE= 0.016,
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FIGURE 5 | Example of sign-value (left) and place-value (right) stimuli in
the addition task. Both examples show the addition of 19+42, with the
correct result of 61. The bottom row shows the correct interpretations of the

numbers. Numbers in parentheses represent the symbols. Note that
participants did not have to transcode these base 4 numbers to a base 10
place-value notation; i.e., to Indo-Arabic notation to solve the task.

www.frontiersin.org October 2012 | Volume 3 | Article 463 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Cognition/archive


Krajcsi and Szabó The role of number notation

Table 4 | Number of trials in the cells of the design within a specific

notation.

Erroneous result Correct result

Error

on 16s

Error

on 4s

Error

on 1s

No error

No carry-over 5 5 5 15

Carry-over from 1s 5 5 5 15

Carry-over from 4s 5 5 5 15

Carry-over from 1 to 4s 5 5 5 15

p= 0.009 and F(9,162)= 2.189, MSE= 0.013, p= 0.025, respec-
tively. In the carry× erroneous power interaction, the inter-
action component of the ANOVA model revealed that, in
the case of correct proposed solution, two carries increased
the error rate, while the no carry condition decreased the
error rate relative to the additions with erroneous proposed
results.

The previous ANOVA on response latencies (Figure 8) revealed
main effect of notation (as reported above), main effect of carry,
and main effect of erroneous power; F(3,54)= 47.272, MSE=
3,458,416, p < 0.001 and F(3,54)= 27.032, MSE= 6,041,738,
p < 0.001, respectively. Furthermore, all interactions became
significant: notation× carry, F(3,54)= 5.605, MSE= 2,723,516,
p= 0.002; notation× erroneous power, F(3,54)= 14.912, MSE=
6,522,541, p < 0.001; carry× erroneous power, F(9.162)= 2,342,
MSE= 2,570,820, p= 0.017; and notation× carry× erroneous
power, F(9,162)= 2.117, MSE= 1,765,930, p= 0.031. While carry
and erroneous power modify the notation effect, reflected in
the interactions, none of these factors reverse the notation
effect.

This more detailed analysis reflects a similar processing in
the addition task than was observed previously with multi-digit
Indo-Arabic notation (Deschuyteneer et al., 2005). First, the more
carries the addition included, the more difficult they proved to
be. Second, participants started addition with 1s and contin-
ued to higher powers until they found an error; otherwise, they
responded that the addition was correct. The more steps the
problem solver made until the response, the more likely it was
that they made an error and the more time was required. Con-
sequently, the easiest tasks were the trials with the erroneous
power in the 1s, while erroneous 4s and 16s were more diffi-
cult. The correct additions were as difficult as the trials with error
in the 16s, reflecting that, after checking all powers, participants
decided that the proposed addition was correct. The reason to
use this small-power-first strategy is to put a relatively low load
on working memory while computing carries (Deschuyteneer
et al., 2005). A carry would change the value of the neighboring
larger power, and starting addition from a large power occasion-
ally would cause modification of an already computed result.
However, in the sign-value notation, a different strategy is vis-
ible: the trials with errors in the 4s were slower than the trials
with errors in the 1s or in the 16s, suggesting that a compu-
tationally less efficient strategy was also applied, in which the
processing started from the largest power (16s) to the smallest
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FIGURE 6 | Error rates and response latencies as a function of number
notation in addition task. Error bars represent confidence interval (95%).

one. This phenomenon might have some root in the perceptual
nature of sign-value notation, although its exact nature is not yet
clarified.

To test the effect of the order of presentation a 2 (nota-
tion)× 2 (notation order) ANOVA was run with notation as a
within-subject and order of notation as a between-subject factor.
The ANOVA on error rates did not show a main effect nei-
ther for the notation nor for the order of the notation, while
the interaction was significant, F(1,17)= 7.435, MSE= 0.005,
p= 0.014. When sign-value notation was learned first, error
rate with sign-value notation was lower (7.3%) than with
place-value notation (10%). In contrast, when place-value nota-
tion was learned first, error rate with sign-value notation was
higher (9.5%) than with place-value notation (7.4%). Thus,
the notation learned first showed lower error rate. The same
ANOVA on response latency revealed a main effect of nota-
tion, F(1,17)= 35.568, MSE= 67,315,998, p < 0.001, while nei-
ther the main effect for notation order, nor the interaction was
significant.

To investigate the performance improvement over time, trials
were grouped into four blocks (see Figure 9). In a 2 (notation)× 4
(blocks) repeated measures ANOVA on error rates no signifi-
cant effect was observable. A similar 2× 4 ANOVA on response
latencies showed a main effect of notation, a main effect of
blocks, F(3,54)= 32.22, MSE= 1,084,409, p < 0.001, and a sig-
nificant interaction, F(3,54)= 9.17, MSE= 1,043,334, p < 0.001.
The interaction reflected a stronger improvement in place-value
notation than in sign-value notation.
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FIGURE 7 | Error rates as a function of carry (left) and as a function of erroneous power (right). Error bars represent confidence interval (95%).
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FIGURE 8 | Response latency in sign-value and place-value notations as a function of carry (left) and as a function of erroneous power (right). Error
bars represent confidence interval (95%).

EXPERIMENT 3
Adults can compare and add numbers better in sign-value nota-
tion than in place-value notation. One possible explanation for this
phenomenon is that adults have extensive experience with place-
value Indo-Arabic numerals, and this former knowledge about a
place-value system could cause interference in the newly acquired
place-value system, while the sign-value system is untouched by
such an influence. To investigate this possibility, the comparison
task was solved by preschool children who have less experience
with the place-value system and their performance shows higher
variance.

The previous results could have been attributed to the specific
symbol-value assignments. For example, the symbol meant 1,
although the symbol itself may remind some participants of the
digit 0. This interference might cause an artifact, and the results
described above could be attributed to this uncontrolled factor. To
control for this possible artifact the symbol-value assignment was
randomized for every participant. If the previous results are the
consequence of a specific symbol-value assignment artifact, then

the effects should disappear or at least diminish in the random
symbol-value assignment version.

METHODS
Participants
Forty-five preschool children participated in the study; 24 girls
and 21 boys; mean age 6–5, range 5–8 to 7–5.

Stimuli and procedure
The same comparison task was used as in Experiment 1, with the
following modifications. Each cell of the design included 10 trials
instead of 15 trials, to shorten the length of the experiment. The
same practice trials that were applied in the adult version were
repeated twice to support the learning process. The same symbols
were used as in Experiment 1; however, the values of those symbols
were randomized for every participant. For example, the symbol

could mean 1 for some participants, 2 for some others, etc.
Understanding the new artificial notation could be influenced

by former knowledge of other place-value and sign-value number
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FIGURE 9 | Response latencies in the two notations as a function of
time. Error bars represent confidence interval (95%).

notations. To control for the effect of the already learned Indo-
Arabic and Roman numbers, a number reading task was given.
Children had to read (a) single-digit Indo-Arabic, (b) multi-digit
Indo-Arabic, and (c) Roman numbers. The numbers were pre-
sented in the middle of the screen, and children read the number
out load. In the single-digit Indo-Arabic task all digits from 1 to 9
(0 excluded) were presented. In the multi-digit Indo-Arabic task,
10 numbers from 11 to 29 were presented; five even and five odd
numbers, and five numbers from the teens and five from the twen-
ties. In the Roman number task, all numbers from 1 to 9 were
presented.

RESULTS AND DISCUSSION
Understanding of the notations was measured with the error rates
in the incorrect strategy test trials (see the methods in Experiment
1). An incorrect strategy was successfully avoided by a child if the
error rate in that strategy was less than 50%; i.e., a maximum of two
errors were made out of the five trials. Learning the new number
notation in a single session was partially successful for preschool
children: 25 (56%) understood sign-value notation and 14 (31%)
could apply place-value notation appropriately in the task, result-
ing in nine children (20%) who could learn both notations. The
difference between the learning performance of the two notations
was significant [χ2(1, N = 45)= 4.762, p= 0.029). As in the case
of adults, in Experiment 1, the most frequent error sources were
that (a) children summarized the value of the digits in place-value
notation (i.e., place-value notations were handled as sign-value
notation; 25 children (56%) used this erroneous strategy); and
(b) they counted the number of the digits instead of summariz-
ing them in sign-value notation [17 children (38%) applied this
incorrect solution].

To control for former experiences with written number nota-
tions, knowledge about single- and multi-digit Indo-Arabic and
Roman numbers were measured. Preschool children were confi-
dent with the Indo-Arabic numerals, making only 4% errors on
average in reading single-digit Indo-Arabic numbers, and making

22% errors with multi-digit Indo-Arabic numbers. Roman num-
bers were not known by these children, as reflected in the 85% error
rate. While preschool children have definitely less experience with
Indo-Arabic numbers than adults, they still have some knowledge
about the multi-digit place-value notation. Therefore it is possi-
ble that this cultural influence might already have an effect on the
artificial number notation paradigm. To test this hypothesis, the
error rate of multi-digit Indo-Arabic number reading was corre-
lated with the error rate of both the sign-value and the place-value
comparison tasks. If knowledge about multi-digit Indo-Arabic
numbers causes bias on the new number notation learning, then
a positive correlation with place-value and a negative correla-
tion with sign-value notation is expected. Multi-digit Indo-Arabic
number reading error rates correlated positively with both sign-
value comparison error rate, r(45)= 0.356, p= 0.017 and place-
value comparison error rate, r(42)= 0.307, p= 0.048. The two
correlations did not differ significantly, Z =−0.3, p= 0.76. These
results reveal that experience with Indo-Arabic numbers measured
as multi-digit reading did not interfere with the learning of the new
artificial number systems.

Additional analysis
For further analysis, only the data of the children who understood
both sign-value and place-value notations, verified by the incorrect
strategy test trials, were used. The remaining nine children were
two girls and seven boys, mean age 6–8, range 6–1 to 7–4. Although
the children who understood both notations were somewhat older
than those who had difficulties with them (6–8 vs. 6–5 years), the
difference was not significant, t (43)=−1.329.

Error rates and median response latencies of the correct
responses were analyzed with a 2 (notation: sign- vs. place-
value)× 5 (number difference: one leading zero vs. two lead-
ing zeros vs. difference in 16s vs. in 4s vs. in 1s) repeated
measures ANOVA. While error rate did not differ between
the two notations, place-value notation comparisons were
slower to solve than sign-value tasks with marginal signifi-
cance, F(1,8)= 0.679, MSE= 0.015, p= 0.434 for error rate and
F(1,8)= 4.182, MSE= 1,062,876, p= 0.075 for RT (Figure 10).

As in Experiment 1, the comparison strategies were also investi-
gated (Figure 11). A 2 (notation: sign- vs. place-value)× 5 (num-
ber difference: one leading zero vs. two leading zeros vs. difference
in 16s vs. in 4s vs. in 1s) repeated measures ANOVA on error
rates revealed a main effect of number difference, with Huynh–
Feldt correction, F(4,32)= 4.043, MSE= 0.055, p= 0.047, while
the interaction was not significant. The response latencies in
a similar ANOVA showed a main effect of number differ-
ence; F(4,32)= 21.958, MSE= 765,188, p < 0.001. The interac-
tion of the two factors was also significant; F(4, 32)= 4.64,
MSE= 379,267, p= 0.05: in the leading zero conditions the
notation effect is missing.

The error rate and response latency patterns reflect the same
strategies that were observed in adults in Experiment 1 and in for-
mer studies (Hinrichs et al., 1982; Poltrock and Schwartz, 1984):
(a) comparisons with leading zeros are processed faster, and (b)
multi-power comparison starts with the largest power and con-
tinues with the smaller ones until a difference in the numbers is
found.
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The specific symbol-value assignment was randomized in this
experiment to control for the effect of specific symbols that might
cause interference with other known symbols. The pattern of the
errors and response latencies are basically the same as found in
Experiment 1, suggesting that the effects described above can not
be attributed to the specific symbols and their assignments utilized
in our study.

To summarize, for preschool children, sign-value notation is
easier to use than place-value notation in multi-power compari-
son tasks. This result did not depend on former experience with
other written number notations. Finally, preschool children used
the same strategies adults did.

EXPERIMENT 4
It is possible that the notation effect is based on some non-essential
properties of the notation system, rather than on the logic of the
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FIGURE 10 | Error rates and response latencies as a function of number
notation in comparison task. Error bars represent confidence interval
(95%).

notation. Since the number notations display the powers in an
ordered sequence (i.e., largest powers are on the left), in the case
of sign-value notation it is not necessary to learn the symbols
as strictly as in place-value notation, because the position of the
symbol also gives information about the value of the symbol (e.g.,
the leftmost symbols should be 16s). This feature of the sign-
value notation might contribute to the advantage of sign-value
notation, or according to a more extreme scenario, it is possible
that the whole notation effect is simply an artifact of the position
information in sign-value notation.

Additionally, in the previous experiments base 4 systems with 3
powers were used. This means that while participants had to learn
three symbols in sign-value notation, they had to learn four sym-
bols in place-value notation. Again, sign-value notations had an
advantage over place-value notations in the previous experiments.

To test the possible effect of position information and amount
of symbols to learn on notation effect, we designed a follow-up
experiment in which position information and the number of
symbols were controlled.

METHODS
Participants
Eighteen Hungarian undergraduate students from Eötvös Loránd
University participated in the study for partial course credit. All
participants had normal or corrected to normal vision. The data of
16 subjects were analyzed (two males, age range from 19 to 26) after
excluding two participants with a higher than 50% error rates in
any of the tested incorrect strategies (see incorrect strategies above
and the procedure below).

Stimuli and procedure
The same stimuli were used and the same procedure was followed
as in Experiment 1 with the following modifications.

To control for the number of symbols to be learned even more
strictly, base 3 number system (instead of base 4 in the previous
experiments) with three-power numbers were utilized. In this base
3 system, the powers could be 1, 3, and 9. Thus, the same num-
ber of symbols should be learned both in the sign-value notation
(symbols for 1, 3, and 9) and in the place-value notation (symbols
for 0, 1, and 2). The assignment of symbols and values were ran-
domized as in Experiment 3 to ensure that the notation effect is
not the result of some specific symbol processing.
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FIGURE 11 | Error rates (left) and response latencies (right) in the two notations as a function of difference between the two numbers. Error bars
represent confidence interval (95%).
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To test the effect of position information in the sign-value
notation, the position information should be removed. In the sign-
value notation the position information cannot be used when
some of the powers are missing in a number (which would be
denoted by zeros in a place-value notation), thus, for example
after 9s the participants cannot be sure whether the next symbols
denote 3 or 1. Leading zeros should not be used as test stim-
uli, because leading zeros in place-value notation are processed by
length shortcut as revealed in the first experiment. Thus, test num-
ber pairs had a x0x and xx0 power structure, in which x could be
any non-zero power, and the largest powers were equal, so thus the
task could be solved only on the medium power. In these tasks par-
ticipants cannot rely on position information, because in the two
numbers after the 9s different symbols show up, and to compare
the powers, the participant must recall the value of that digit.

The new test condition was added to the five conditions applied
in Experiment 1: (a) one leading zero, (b) two leading zeros, (c)
difference in 9s, (d) difference in 3s, and (e) difference in 1s.

RESULTS AND DISCUSSION
Error rates and median response latencies of the correct responses
were analyzed with a 2 (notation: sign- vs. place-value)× 6 (num-
ber difference: one leading zero vs. two leading zeros vs. difference
in 16s vs. in 4s vs. in 1s vs. the new test condition, x0x and
xx0 pairs)× 2 (order of notation: sign-value notation first vs.
place-value notation first) ANOVA with notation and number dif-
ference as within-subject and order of notation as between-subject
factors (see Figure 12 for the notation main effect; Figure 13
for the notation× number difference interaction). In the error
rates both notation and power condition factors were signifi-
cant, F(1,14)= 17.43, MSE= 0.06, p= 0.001 and F(5,70)= 4.512,
MSE= 0.019, p= 0.001, respectively. Place-value notation caused
more errors (4.3%) than sign-value notation (0.6%). According
to the post hoc LSD tests the difference in 3s, difference in 1s
were harder to solve than the difference in 9s and leading zeros
condition. The interaction of the two factors were also signifi-
cant, F(5,70)= 6.09, MSE= 0.015, p < 0.001, in which case the
place-value notation showed higher error rates than sign-value
notation in the difference in 3s and difference in 1s conditions.
A planned t -test in the new test condition did not show a sig-
nificant difference between the two notations. In the response
time analysis both main effects and the interaction was significant,
F(1,14)= 10.82, MSE= 11,222,159, p= 0.005 in the notation fac-
tor, F(5,70)= 56.95, MSE= 9,434,888, p < 0.001 in the power
condition factor, and F(5,70)= 8,79, MSE= 1,542,484, p < 0.001
in the interaction. A planned t -test investigated the notation effect
in the new test condition. The difference in the “x0x and xx0” con-
dition was significant, t (15)= 2.78, p= 0.014. The order of the
notation was not significant neither in error rates, nor in response
latency, and it did not interact with any other factors.

The notation effect did not disappear in the “x0x and xx0,” in
which the position information was unavailable for the partici-
pants in the sign-value notation. Thus, it is improbable that the
notation effect would be solely the artifact of this extra position
information in sign-value notation. To summarize, stricter control
for the number of symbols to learn and the position information
in the sign-value notation does not remove the notation effect.
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FIGURE 12 | Error rates and response latencies as a function of number
notation. Error bars represent confidence interval (95%).

GENERAL DISCUSSION
In the present study, participants could more easily compare and
add new base 4 (or base 3) artificial multi-power numbers in
sign-value notation than in place-value notation, the result of
which works against the conventional view of the overall supe-
riority of place-value system. This finding cannot be the result
of former experience with place-value Indo-Arabic system caus-
ing interference with the new artificial notations, since preschool
children showed the same notation effect in the comparison task
independently of their former Indo-Arabic number experiences.
The relative advantage of sign-value notation is consistent with
the popularity of sign-value notation in the history of culture
(Ifrah, 1999; Chrisomalis, 2010) and with the proposed simple
computation algorithms (Anderson, 1956; Lazarides, 1970; Detlef-
sen et al., 1976; Kennedy, 1981; Schlimm and Neth, 2008). These
results highlight the essential role of number notation in numerical
processing.

Why was sign-value notation easier to process than place-value
notation in simple numerical tasks? Representing multi-power
numbers requires a special representation, although its nature
is debated. According to former models, this representation is
assumed to be in a verbal form (Dehaene et al., 1999; Spelke and
Tsivkin, 2001), in an Arabic visual form (Dehaene, 1992), or in
an abstract structure (McCloskey, 1992). How can these models
explain the notation effect? The Arabic visual number form cannot
account for the results (Dehaene, 1992; Dehaene et al., 1993), as
this model utilizes a place-value representation that should have
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predicted a faster place-value notation processing, which was not
the case. Second, the notation effect might be also incompatible
with verbal number representation. Verbal representation stores
numbers in the form of number words, and number words are
neither sign-value nor place-value notations; rather, they are dis-
tinctive forms of notations. Importantly, there are no particular
considerations suggesting a preference for translating any of the
notations used here to verbal representation. Third, the abstract
representation stores both the power and the number of powers in
a symbolic form, which does not favor any of the notations used
here.

Because none of the three former number representation mod-
els accounts for the notation effect, we propose here an alternative
model, termed the natural multi-power number representation,
based on the numerical representation of objects and groups. This
number representation might represent numbers as specific num-
ber of objects, in which some type of objects may represent items,
while other types of objects can represent groups or higher powers
(see the middle column in Figure 14). We suggest that sign-value
systems can be processed more easily than place-value notation
because sign-value notation has a more similar structure to this
representation, and it might be transcoded more easily to this
natural multi-power number representation (Figure 14). The sim-
ilarity can be captured in at least four aspects. First, in sign-value
notation, comprehending a value in a selected power is performed
by quantifying the symbols, analogous to the object quantifica-
tion. In contrast, place-value denotes the quantity within a power
with symbols (second row of Figure 14). Second, in sign-value

notation, the powers are denoted by symbols which can be more
directly interpreted as a unit or a group (power), compared to
the place-value representation, in which the power is denoted by
the position (first row of Figure 14). Third, in the addition task,
addition within a specific power resembles the placing of objects
next to each other (e.g., + = ), while place-value addi-
tion is more abstract: adding a symbol to another symbol results
in a third arbitrary symbol (e.g., +Ð= , meaning 1+ 2= 3, as
in the previous example, although the meaning of this notation is
less transparent). Fourth, in sign-value addition, handling carries
is like exchanging some symbols for a “larger” symbol, which is the
meaning of that “larger” symbol (e.g., exchanging five Is for a V in
Roman notation), while in place-value addition, handling carries
results in the appearance of a small number (i.e., the number 1)
on a larger position. In other words, in place-value notation the
meaning of the symbol is mixed with its position.

To summarize, the analogous structure of natural multi-power
number representation and sign-value notation might make
transcoding fast, while processing the place-value notation with a
divergent structure requires more abstraction and causes difficul-
ties. It is important to stress that we do not imply that the abstract
code or the triple code model with the Arabic visual number form
and verbal number representation would be invalid; rather, we
propose a new complementary number representation that can be
seen as the base of representing exact multi-power numbers. The
hypothesis of natural multi-power number representation cannot
be constructed from our results in a strict sense, as the experi-
ment was not designed to explore detailed representational and
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transcoding issues; rather, the hypothesized representation seems
a reasonable possibility in light of the theoretical consideration
and in light of our result conflicting with previous assumptions
about the superiority of place-value notations.

We highlight that only simple numerical tasks were tested in the
present study, and all the presented artificial number systems were
base 4 or 3 systems with maximum three powers in use. It is not
entirely known how generalizable our results are. Changing the
base or the power of the system changes the number of symbols
a user should learn and changes the average length of the num-
bers. Both of these factors might influence the processing speed
and the error rates. While in the present study we controlled for
these factors to investigate only the effect of the structures of the
notations, for example, a base 10 system with values of different
order of magnitudes might be processed differently.

The data presented herein might explain why sign-value nota-
tion was popular for centuries, even when alternative place-value
notation was available (Ifrah, 1999; Chrisomalis, 2010): the sign-
value system is easy to learn and apply for numerical tasks that
were common in ancient times. Although these results might
have resolved one problem, they also raise another one: if the
sign-value notation is easy to learn and apply, why do most cul-
tures today use a place-value system, the Indo-Arabic numbers?
Indeed, sign-value notations have their drawbacks; many authors
emphasize that sign-value numbers are long and thus unmanage-
able (Cajori, 1924; Menninger, 1992; Zhang and Norman, 1995;
Dehaene, 1997; Ifrah, 1999). Furthermore, simulation shows that
arithmetical computations might require more steps in sign-value
than in place-value notation (Schlimm and Neth, 2008). Several
factors might influence the efficiency of the number notations.
First, expertise of the user can be essential. The sign-value system
might be applied more rapidly by novices, as in our experiment, or
in ancient cultures where the amount of experience with numbers
was limited. However long-term learning might reverse the advan-
tages of number notations making sign-value calculation slower
for expert users. We suggest that the complexity of the economy

and culture in general could reach a specific point where the expe-
rience of the individuals with numbers and calculations could be
high enough to motivate a change from sign-value notation to a
place-value system. Second, the number of symbols a user should
learn and the length of the numbers could vary with the base num-
ber and the largest power a system expresses. These factors might
influence the efficiency of use of a number notation. While in the
present study we controlled for many properties of the number
notations to ensure the structure of the notations were the only
difference between the presented notations, these parameters were
not controlled throughout the history of culture. For example, base
10 systems were used while probably applying only a few powers
(i.e., rarely using numbers in the order of thousands or larger).
Similarly, while most number users could be regarded as novices
centuries ago, and only a few experts used numbers frequently
enough to switch to advanced strategies, most of us today can be
considered experts by the standards of previous centuries. These
differences between our carefully controlled experiments and his-
torical conditions leave some questions open as to what specific
parameters might reverse the notation effect.

To summarize, our results reveal that if parameters other than
the notation itself are controlled, then sign-value notation is eas-
ier to apply than place-value notation in simple numerical tasks.
We propose that this notation effect can be explained with a
natural multi-power number representation based on object rep-
resentation. These results highlight the elementary role of number
notations in number representation and imply that the effects orig-
inating from the number representation and the effects originating
from the notation of numbers should be distinguished.
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