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Pearson’s correlation measures the strength of the association between two variables.
The technique is, however, restricted to linear associations and is overly sensitive to out-
liers. Indeed, a single outlier can result in a highly inaccurate summary of the data. Yet, it
remains the most commonly used measure of association in psychology research. Here
we describe a free Matlab(R) based toolbox (http://sourceforge.net/projects/robustcorrtool/)
that computes robust measures of association between two or more random variables:
the percentage-bend correlation and skipped-correlations. After illustrating how to use the
toolbox, we show that robust methods, where outliers are down weighted or removed
and accounted for in significance testing, provide better estimates of the true association
with accurate false positive control and without loss of power. The different correlation
methods were tested with normal data and normal data contaminated with marginal or
bivariate outliers. We report estimates of effect size, false positive rate and power, and
advise on which technique to use depending on the data at hand.
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INTRODUCTION
Robust statistical procedures have been developed since the 1960s
(Tukey, 1960; Huber, 1964) to solve problems inherent in using
classic parametric methods when assumptions are violated (Erceg-
Hurn and Mirosevich, 2008). Although many scientists are aware
of these techniques, and of their superiority in many cases, robust
statistics are not widely used or even part of the standard cur-
riculum. There are two reasons for this. First, no single method
is optimal in all situations. Although least squares is a technique
easy to compute in many situations, it is often disastrous and inap-
propriate (Wilcox, 2001) because assumptions are often not met
(e.g., Micceri, 1989); leaving us to have to choose among multiple
robust alternatives. Second, developers of statistical methods tend
to provide code that is not sufficiently user-friendly. As a con-
sequence, robust techniques remain underused and do not find
their way into commercial software packages (Stromberg, 2004).
Here, we present a free Matlab toolbox to perform robust corre-
lation analyses (http://sourceforge.net/projects/robustcorrtool/).
The toolbox contains several correlation techniques described in
Wilcox (2012a). These techniques can also be found in separate
R functions (R Development Core Team, 2011). In addition, the
toolbox provides graphical outputs and tests of assumptions.

Generally, a correlation refers to any of a broad class of statis-
tical relationships involving dependence. Correlation also refers
to a broad class of statistical measures aimed at characterizing
the strength of the association between two variables. Among
these latter measures, Pearson’s correlation is the most widely
used technique, despite its lack of robustness (Wilcox, 2012a,b).
Indeed, Pearson’s correlation is overly sensitive to outliers; it is also

affected by the magnitude of the slope around which points are
clustered, by curvature, by the magnitude of the residuals, by the
restriction of range, and by heteroscedasticity. Our toolbox com-
putes robust alternatives: the percentage-bend correlation (Wilcox,
1994) and skipped-correlations (Wilcox, 2004). These alternatives
have a practical value relative to the standard Pearson’s correla-
tion because they estimate linear relationships and often provide
better estimates of the true relationship between variables (Rous-
selet and Pernet, 2012). The percentage-bend correlation protects
against marginal outliers without taking into account the overall
structure of the data. Importantly, it estimates linear associations,
but does not estimate Pearson’s: the results are not comparable
across the [−1, +1] range. Skipped-correlations protect against
bivariate outliers by taking into account the overall structure of
the data, and Pearson’s skipped correlation is a direct reflection of
Pearson’s r.

TOOLBOX FEATURES
Alongside the computations of correlations, the toolbox includes
tools for visualization and basic assumption checking. The
corr_normplot.m function provides, in one figure, a scatterplot of
the data, the marginal (normalized) histograms with the match-
ing Gaussian curves, and the bivariate histogram (Figure 1, left
column). The joint_density.m function plots both a mesh of the
joint density and its isocontour. Although the joint density is
similar to the bivariate histogram, it provides a better visualiza-
tion of the bivariate space when there are many observations.
Visualization is indeed the first step before computing any cor-
relation: in some extreme situations, as in the case of split data
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FIGURE 1 | Visualization of the Anscombe’s quartet. Each pair is
illustrated by a scatter plot and with univariate and bivariate histograms
(left column). Outliers detected using the box-plot rule are plotted in
the two middle columns: column 2 shows univariate outliers in Y

(green) or in X and Y (black); column 3 shows bivariate outliers (red),
with the best line fitted to the remaining points. Histograms (right
column) show the bootstrapped variance differences. Vertical red lines
indicate 95% CIs.

clouds, a correlation analysis would be worthless (see e.g., Figure
1E in Rousselet and Pernet, 2012). Tests of correlations are sen-
sitive to different features of the data. For instance, Pearson’s

correlation is only meaningful for linear parametric models esti-
mated via least squares, whilst Spearman’s correlation deals with
monotonic associations in a more flexible manner. Both tests are
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however sensitive to heteroscedasticity (Wilcox and Muska, 2001).
The toolbox thus provides tools to compute conditional means
and variances (conditional.m) and to test variance homogeneity
based on a percentile bootstrap with adjustment for small sam-
ples (variance_homogeneity.m). The function outputs the 95%
confidence intervals (abbreviated CIs in the rest of the paper)
and the histogram of the bootstrapped estimates (Figure 1, right
column). In addition, because skewness can cause large devi-
ation in correlation estimates, we included the Henze–Zirkler
test for multivariate normality (HZmvntest.m). This function was
implemented by Trujillo-Ortiz et al. (2007) and is distributed
under DSB license with the toolbox. Finally, univariate and bivari-
ate outlier detection can be performed using several techniques:
box-plot rule, MAD-median rule, S-outliers (detect_outliers.m –
Figure 1, middle columns; Appendix). The toolbox also computes
Pearson’s (Pearson.m), Spearman’s (Spearman.m), percentage-
bend (bendcorr.m – Wilcox, 1994), and skipped-correlations
(skipped_correlation.m – Wilcox, 2004) with their 95% percentile
bootstrap CIs.

METHODS
CORRELATION MEASURES
We illustrate the use of the toolbox with the Anscombe’s (1973)
quartet (Figures 1 and 2). For each pair of variables, standard
Pearson’s and Spearman’s correlations were computed with their
skipped-correlation counterparts, as well as the 20% percentage-
bend correlation.

To compute skipped-correlations, first we estimate the robust
center of the data cloud. Because a single outlier can result
in the bivariate mean giving a poor reflection of the typ-
ical response, one relies here on the minimum covariance
determinant (MCD) estimator, which is a robust estima-
tor of multivariate location and scatter (Rousseeuw, 1984;
Rousseeuw and Van Drissen, 1999; Hubert et al., 2008). The
skipped_correlation.m function computes the MCD by calling
the LIBRA toolbox (Verboten and Hubert, 2005 – free access at
http://wis.kuleuven.be/stat/robust/LIBRA/LIBRA-home), which
is distributed with the correlation toolbox under an academic
public license. Second, outliers are identified using a projection
technique: data points are orthogonally projected onto lines join-
ing each data point to the robust estimate of location and outliers
among projected data points are detected using the box-plot rule,
which relies on the interquartile range (Frigge et al., 1989; Carling,
2000). Finally, Pearson’s and Spearman’s correlations and associ-
ated t -values are computed on the remaining data. The empirical
t -values are compared to a critical t -value determined via sim-
ulations (Wilcox, 2012a,b). The usual critical value is technically
unsound and should not be used because it does not take outlier
removal into consideration; the critical values implemented in the
toolbox ensure good control of the type I error rate.

To compute the percentage-bend correlation, a specified per-
centage of marginal observations deviating from the median are
down weighted. Pearson’s correlation is then computed on the
transformed data. A skipped correlation is a robust generaliza-
tion of Pearson’s r by measuring the strength of the linear asso-
ciation, ignoring outliers detected by taking into account the
overall structure of the data. In contrast, the percentage-bend

correlation only protects against outliers associated with the mar-
ginal distributions. Under normality, the percentage-bend and
Pearson’s correlations have very similar values, but these values
can differ markedly as soon as there is deviation from normality
(Wilcox, 1994).

The toolbox also computes percentile bootstrap 95% CIs for
each correlation. For Pearson’s, Spearman’s, and percentage-bend
correlations, pairs of observations are resampled with replacement
and their correlation values obtained. For skipped-correlations,
the data after outlier removal are resampled, before computing
correlation values1. Correlation values are then sorted and the 2.5
and 97.5 percentiles obtained to yield a 95% CI. CIs provide an
alternative way to test the null hypothesis. If the CI encompasses 0,
then the null hypothesis of independence cannot be rejected. This
is of particular interest when a correlation is declared significant
(e.g., p-value < 0.05), because the t -test assumes independence
between variables, which implies homoscedasticity. If there is het-
eroscedasticity, the t -test uses an incorrect estimate of the standard
error. The significance of a correlation can therefore be largely
affected by heteroscedasticity even though variables are not truly
correlated. The toolbox thus also provides a rejection of the null
hypothesis based the percentile bootstrap CI, because it is less
sensitive to heteroscedasticity than the traditional t -test.

MONTE-CARLO SIMULATIONS: FALSE POSITIVES, EFFECT SIZES, AND
POWER
To assess the sensitivity of the different correlation methods, we
ran several simulations in which we recorded the actual correla-
tion value (effect size) and the number of times the null hypothesis
of independence was rejected (false positive rate and power). In
the first simulation, a parent bivariate normal (N ∼ 0, 1) distri-
bution of 10 million data points was generated (Figure 3, left
column). For one Monte-Carlo run, 500 pairs of observations were
randomly selected from the parent distribution. Using these 500
pairs, Pearson’s, Spearman’s, 20% bend and skipped-correlations
were computed for sample sizes n= 10, 20, 30, 40, 50, 60, 80, 100,
150, 200, 250, 300, 400, and 500. The procedure was replicated
10,000 times (i.e., 10,000 independent samples of 500 pairs were
taken from the parent population). The whole process was then
repeated for parent populations in which the correlation values
ranged from 0 to 1 with steps of 0.1. To generate Gaussian data
with outliers, we generated one million data points from a par-
ent bivariate normal distribution with a correlation value that was
the negative of that in the first population. The center of this
second population was positioned such that observations would
be either marginal outliers for one variable (bivariate mean= [6,
0], Figure 3, middle column) or both (bivariate mean= [6, 6],
Figure 3, right column – in this case thus also bivariate outliers).
For each sample size, 10% of data were substituted by outliers
taken at random from the outlier population: 1 outlier out of 10,
2 outliers out of 20, and so on.

To investigate effect sizes, we first tested if the correlations
differed from the true population value. Differences between

1There are possible issues about the dependence among order statistics by removing
outliers and bootstrapping rather than bootstrapping and re-run the whole skipped
correlation. However, at the moment it is unclear which method is best.
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observed correlation values (r) and the true one (ρ) were com-
puted, and Bonferroni adjusted percentile CIs were obtained
(95% CI adjusted for the 14 sample sizes= 99.9964% CI). If
0 was not included in the 99.9964% CI, the method did not
estimate the true correlation value. Second, we compared (i) Pear-
son’s correlation against Spearman’s, a 20% bend, and skipped
Pearson’s correlations, and (ii) Spearman’s correlation against
skipped Spearman’s correlation. A percentile bootstrap on the
median differences was computed and adjusted for the 14 sample
sizes (α set to 0.05/14= 0.36%): the results from two correlations
differed significantly if the CI of median differences did not
contain zero.

To evaluate the false positive rate and power, the average num-
ber of times the null hypothesis was rejected was computed. The
different correlation techniques were then compared for each sam-
ple size based on their binomial distributions (accept/reject H0)
using a method for discrete cases with adjustment for multiple
comparisons (Kulinskaya et al., 2010).

RESULTS
ILLUSTRATION WITH THE ANSCOMBE’S QUARTET
As put forward by Anscombe (1973), plotting the data is an impor-
tant part of any statistical analysis (Figure 1, left column). For the
reader not aware of this data set, it is important to know that for
each of the four pairs of variables X and Y, the mean of X is 9,
the variance of X is 11, the mean of Y is 7.5, the variance of Y is
4.12, and Pearson’s correlation between X and Y is always 0.81.
Despite these identical first order statistical properties and iden-
tical correlation values, the nature of the relationships between X
and Y differs widely. For pair 1, inspection of the scatterplot and
distributions suggests close to normally distributed data with no
obvious outlier. Pair 2 shows a non-linear and non-monotonic
relationship and data are not normally distributed. Pair 3 shows
a strict linear relationship and 1 marginal outlier. Finally, pair 4
shows no relationship and 1 bivariate outlier.

The Henze–Zirkler test for multivariate normality confirmed
visual inspection: only pair 1 is normally distributed (HZ= 0.1,
p= 0.99), whilst the other pairs deviate from the bivariate nor-
mal distribution (pair 2 HZ= 0.6, p= 0.036; pair 3 HZ= 1.04,
p= 0.002; pair 4 HZ= 1.06, p= 0.002). The outlier detection
function implemented in the toolbox relies on three methods:
the box-plot rule, as used in the skipped correlation function,
the median absolute deviation (MAD)-median rule (Hall and
Welsh, 1985), and the S-estimator deviation (Rousseeuw and
Croux, 1993). Results from the box-plot rule show no univari-
ate or bivariate outliers in pairs 1 and 2, one univariate outlier pair
3, and one univariate and simultaneously bivariate outlier in pair
4 (Figure 1, middle columns). For pair 1, other methods gave the
same result. For pair 2, both the MAD-median rule and S-outlier
methods identified the first two points as univariate outliers in
Y. In addition, the MAD-median rule identified the first and last
points as bivariate outliers, whereas the S-outlier method iden-
tified the first and the last two points as bivariate outliers. This
illustrates the difficulty of spotting bivariate outliers because of
the trade off between specificity (true negatives) and sensitivity
(true positives – Appendix). For pairs 3 and 4, the MAD-median
rule and the S-outlier method also flagged the extreme points as

outliers. Finally, tests of variance homogeneity revealed that vari-
ances differed significantly in pairs 1 and 2, but not in pairs 3 and 4
(Figure 1, right column). Heteroscedasticity, rather than true asso-
ciation, could thus have caused significant correlations for pairs 1
or 2 (Wilcox, 1991; Wilcox and Muska, 2001). In comparison, Lev-
ene’s tests failed to reject the null hypothesis of homoscedasticity
for all pairs [pair 1 F(1,20)= 3.5, p= 0.07; pair 2 F(1,20)= 3.39,
p= 0.08; pair 3 F(1,20)= 4.15, p= 0.055; pair 4 F(1,20)= 0.17,
p= 0.68]. This is explained by Levene’s test lack of power: the test
is based on the distance between each point from the mean, which
by definition is affected by outliers.

As designed by Anscombe, Pearson’s correlation is fooled by
outliers and, for each pair, a significant correlation of r = 0.81
is observed (Table 1; Figure 2). Importantly, bootstrap CIs are
also sensitive to outliers and suggest significant correlations too.
Spearman’s correlations performed slightly better, showing no
association in pair 4. In addition, the bootstrap CI in pair 2 shows
no evidence for a significant correlation, suggesting that the obser-
vations are not linearly related but show dependence. The 20%
percentage-bend correlation gives better results than Pearson’s or
Spearman’s correlations. For normal data (pair 1), it performs sim-
ilarly to Pearson’s correlation. For a non-linear relationship (pair
2), like Spearman, the 20% percentage-bend correlation returns
significant results but the bootstrap CI does not. With a univariate
outlier (pair 3), it returns the exact correlation. Finally, it shows
no significant results for pair 4. Here the bootstrapped CI sug-
gests a significant result, which is explained by the use of valid
resamples (i.e., resamples cannot be composed of a unique value)
to compute CIs in our algorithm, that is, for each bootstrap, the
single outlier in Y was always present. Inspection of the data plot
nevertheless reveals that the bootstrap did not perform well. This
again illustrates that the bootstrap, on it’s own, does not protect
against outliers, although it can attenuate their effect. The skipped
correlation returned the same results as Pearson’s and Spearman’s
correlations because the box-plot rule did not detect the bivariate
outliers in pairs 1, 2, and 3. The skipped correlation failed to pro-
vide any output for pair 4, because, once the outlier is removed, the
remaining points are aligned with the same X value and it is thus
impossible to compute any correlation. We would indeed expect
robust analyses not to find any association for such data.

MONTE-CARLO SIMULATIONS
Figure 3 illustrates the populations used in the simulations. The
population in the top left subplot had a Pearson’s correlation of
0.5. It is important to see that outliers in the bivariate space (illus-
trated in red) can be observed even though univariate distributions
are perfectly normal (case 2). Outliers can be important for the
process under study, but given the goal of characterizing the bulk
of the data, they can result in misleading conclusions. As illus-
trated at the bottom of Figure 3, outliers can be present even in
data from a normal population, because the sample itself might
not be normal.

Zero-correlation and false positive error rate
Gaussian data. Zero-correlation was well estimated by all meth-
ods: all correlation values were close to 0 and the 99.99%
CIs of all methods included 0 (Figure 4). Comparisons of
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FIGURE 2 | Correlation results. From left to right are illustrated Pearson’s,
Spearman’s, 20% bend, and Pearson’s skipped-correlations with the 95%
bootstrapped CIs as pink shaded areas. The scale for Spearman’s correlations

differs from the others because ranked data are plotted. For the 20% bend
correlation, red indicates data bent in X, green in Y and black in both. No
skipped correlation is returned for pair 4.

methods showed no significant differences between Pearson’s
and Spearman’s (0.1 < p < 0.8) and the 20% percentage-bend
(0.24 < p < 0.99) correlations. Pearson’s correlations and skipped
Pearson’s correlations showed small (∼0.001) but significant

differences for n= 10–100 (p= 0) and did not differ for n > 100
(0.01 < p < 0.59). Similarly, the standard and skipped Spearman’s
correlations differed significantly for n= 10–100 (p= 0) and did
not differ for n > 100 (0.05 < p < 0.69). The false positive rate
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FIGURE 3 | Populations used in the simulations. Top: populations with effect sizes of 0.5. Middle: marginal histograms for these populations. Bottom:
examples of draws with sample sizes n=10, 50, 250, and 500. Red dots mark bivariate outliers identified using the box-plot rule on project data.
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Table 1 | Correlation results with their 95% CIs for the Anscombe’s quartet.

Pair 1 Pair 2 Pair 3 Pair 4

Pearson r =0.81, p=0.002 r =0.81, p=0.002 r =0.81, p=0.002 r =0.81, p=0.002

h=1, CI [0.59, 0.95] h=1, CI [0.48, 0.96] h=1, CI [0.71, 1] h=1, CI [0.75, 0.95]

Spearman r =0.81, p=0.002 r =0.69, p=0.01 r =0.99, p ∼0 r =0.5, p=0.1

h=1, CI [0.49, 0.97] h=0, CI [−0.009, 1] h=1, CI [0.99, 1] h=1, CI [0.5, 0.8]

20% bend r =0.81, p=0.002 r =0.8, p=0.0029 r =1, p=0 r =0.22, p=0.49

h=1, CI [0.43, 0.96] h=0, CI [−0.06, 0.99] h=1, CI [0.89, 1] h=1, CI [0.2, 0.79]

Skipped Pearson r =0.81, h=1 r =0.81, h=1 r =0.81, h=1 r =NaN, h=0

h=1, CI [0.54, 0.95] h=1, CI [0.51, 0.96] h=1, CI [0.74, 1] h=0, CI [NaN NaN]

Skipped Spearman r =0.81, h=1 r =0.69, h=0 r =0.99, h=1 r =NaN, h=0

h=1, CI [0.4, 0.97] h=1, CI [0, 1] h=1, CI [0.9, 1] h=0, CI [NaN NaN]

FIGURE 4 | Effect sizes and false positive error rates for Gaussian data
with zero-correlation. From left to right are displayed: the mean correlation
values; the 99.99% CIs (i.e., corrected for the 14 sample sizes) of the distance
to the zero-correlation in the simulated Gaussian population; the false positive

rate for Pearsons’ (blue), skipped Pearson’s (cyan), Spearman’s (red), skipped
Spearman’s (magenta), and 20% bend (green) correlations for each type of
simulation (Gaussian only, with univariate outliers, and with bivariate outliers).
The Y -axis scales are different for data with bivariate outliers.

was well controlled by all methods, with values close to the
5% nominal level. Across sample sizes, the average false posi-
tive error rate for Pearson’s correlation was 4.9% (min 4.7, max
5.2), for Spearman’s correlation 4.9% (min 4.5, max 5.6), for
the 20% percentage-bend correlation 4.9% (min 4.6, max 5.4),
for the skipped Pearson’s correlation 4.4% (min 3.6, max 5.6),

and for skipped Spearman’s correlation 4.1% (min 3.2, max
6). Comparison of the binomial distributions (significant/non-
significant results) found that Pearson’s correlations did not
differ significantly from Spearman’s (0.19 < p < 0.98) and from
the 20% percentage-bend (0.23 < p < 0.88) correlations. From
n= 10–100, the false positive rate was not different between
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standard- and skipped-correlations (Pearson 0.004 < p < 0.8;
Spearman 0.001 < p < 0.9). However, the false positive rates did
differ for larger sample sizes (Pearson 0.001 < p < 0.009; Spear-
man 0.001 < p < 0.002) such that skipped-correlations were more
conservative.

Marginal outlier data. Again, zero-correlation was well esti-
mated by all methods as all correlation values were close to 0.
The 99.99% CIs of all methods included 0 (Figure 4). Compari-
son of methods showed no significant differences between Pear-
son’s and Spearman’s (0.15 < p < 0.95), the 20% percentage-bend
(0.08 < p < 0.95), or the skipped Pearson’s (0.03 < p < 0.99) cor-
relations. No significant differences were observed between Spear-
man’s and skipped Spearman’s correlations (0.05 < p < 0.84). The
false positive rate was well controlled by Pearson’s correlation
(average false positive error rate 4.8%, min 4.7, max 5), Spearman’s
correlation (4.9%, min 4.5, max 5.3), and the 20% percentage-
bend correlation (4.9%, min 4.6, max 5.1). Skipped-correlations
were slightly conservative with an average false positive error rate,
for the skipped Pearson’s correlation, of 3.4% (min 3, max 4)
and, for skipped Spearman’s correlation, of 3.3% (min 3, max 4).
Comparison of the binomial distributions revealed that Pearson’s
correlation did not differ from Spearman’s (0.07 < p < 0.98) and
the 20% percentage-bend (0.27 < p < 0.99) correlations. How-
ever, for n > 20, the false positive rates were significantly smaller
for skipped-correlations (Pearson 0.001 < p < 0.004; Spearman
0.001 < p < 0.002).

Bivariate outlier data. Only skipped correlation methods esti-
mated well zero-correlation. On average, Pearson’s correlation
was r = 0.77 (min 0.76, max 0.079) and the 99.99 CIs never
included 0. Spearman and the 20% percentage-bend correla-
tions showed similar results with averaged correlations of 0.269
(min 0.268, max 0.273) and 0.275 (min 0.25, max 0.282), and
CIs included 0 for n= 10–60 only. In contrast, skipped Pearson’s
and Spearman’s correlations were close to 0 with average correla-
tions of 0.017 (min 0.014, max 0.026) and 0.011 (min 0.008, max
0.02). Their CIs always included 0. Pearson’s correlation estimates
were significantly larger than estimates from Spearman’s (p= 0),
20% percentage-bend (p= 0), and skipped Pearson’s correlations
(p= 0). Similarly, Spearman’s correlations were significantly larger
than their skipped counterparts (p= 0). The false positive error
rate was close to or equal to 100% for Pearson’s correlations. For
Spearman’s and the 20% percentage-bend correlation, it increased
from 8.53% for n= 10 to 100% for n= 250. In contrast, the false
positive error rate of skipped-correlations stayed close to the nom-
inal level of 5% (average rate for skipped Pearson’s correlations
4.3%, min 3.7, max 5.1; average rate for skipped Spearman’s corre-
lations 4%, min 3.5, max 5.2). Comparison of the binomial distri-
butions revealed that Pearson’s correlations differed significantly
from all of the other methods (p= 0.001), except Spearman’s and
the 20% percentage-bend correlations for n > 300, where they also
provided 100% of false positives.

Effect sizes and power
Gaussian data. Effect sizes for Gaussian data (Figure 5) were
well captured by all methods: the 99.99% CIs of the difference to

the true correlations all encompassed 0. Comparisons of methods
nevertheless revealed differences, with Pearson’s correlation being
the best method of all. Compared to Spearman’s correlation,
Pearson correlation was significantly higher (closer to the true
value) for 0.1 < ρ < 0.9 (p= 0), with differences from +0.004
to +0.03. The same pattern was observed when compared to
the 20% percentage-bend correlation (p= 0), except for ρ= 0.1
and n= 10 (p= 0.18), with differences from +0.001 to +0.02.
When compared to skipped Pearson’s correlation, significant dif-
ferences were observed from ρ > 6, n > 400 to ρ= 0.9, n > 100
(0 < p < 0.002 – differences ranging from +0.006 to +0.001).
For smaller correlation values and sample sizes there were no
significant differences (0.1 < p < 1). A similar pattern of results
was observed when comparing Spearman’s correlation to skipped
Spearman’s correlation. Significant differences were observed from
ρ > 3, n > 400 to ρ= 0.9, n= 80 (0 < p < 0.002 – from −0.001 to
+0.002). For smaller correlation values and sample sizes there were
no significant differences (0.1 < p < 1). For all comparisons, there
were no significant differences when ρ (the true correlation value)
was equal to 1.

Power analyses showed similar trends for all techniques, with
maximum power for Pearson’s correlations and minimum power
for skipped Spearman’s correlations. In general, power increased
up to 100% as a function of the sample size except for r = 0.1.
Comparison between methods revealed significantly stronger
power for Pearson’s correlation compared to Spearman’s corre-
lation (max +10%, 0.001 < p < 0.003), from high correlations
and small sample sizes (ρ > 0.3, n < 150), to low correlations
and large sample sizes (ρ < 0.2, n > 250). For small correla-
tion values and small sample sizes or large correlation values
and large sample sizes, the two methods had similar power
(0.004 < p < 0.99). The same results (with the exception of 6 com-
parisons out of 126) were observed when comparing Pearson’s
correlations to the 20% percentage-bend correlation (max differ-
ence +6.4%). Power comparison between Pearson’s correlation
and skipped Pearson’s correlation showed significant differences
(max difference +23% 0.003 < p < 0.003) for all effect sizes as
a function of the sample size. Pearson’s correlation was more
powerful than skipped Pearson’s correlation at increasing sam-
ple sizes as r decreased (ρ < 1, n= 30; ρ < 0.9, n= 40; ρ < 0.8,
n= 50; ρ < 0.7, n= 60; ρ < 0.6, n= 60; ρ < 0.5, n= 100; ρ < 0.4,
n= 150; ρ < 0.3, n= 250; ρ < 0.2, n= 300); however, for large
effect sizes and large sample sizes, the two techniques did not differ
(0.01 < p < 0.99). The same results (with the exception of 4 com-
parisons out of 126) were observed when comparing Spearman’s
correlations to the skipped Spearman correlation (max difference
+19%).

Marginal outlier data. Effect sizes for Gaussian data contami-
nated by 10% of marginal outliers (Figure 6) showed that Pearson’s
and Spearman’s correlations estimated poorly the true correla-
tions, whereas skipped estimators always estimated properly ρ

(all 99.99% CIs included 0). Pearson’s correlations underesti-
mated ρ most of time – the 99.99% CIs included 0 for only
30% of cases: for ρ= 0.1; ρ= 0.2, n < 250; ρ= 0.3, n < 100;
ρ= 0.6 n < 60; ρ= 0.5, n < 40; ρ= 0.6, n < 30; ρ= 0.7 and 0.8,
n < 20. This shows that the more the outliers deviated from the
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FIGURE 5 | Effect sizes and power for Gaussian data. From left to right are
displayed: the mean correlation values; the 99.99% CIs (i.e., corrected for the
14 sample sizes) of the distance to the correlation in the simulated Gaussian

population; the power for Pearson’s (blue), skipped Pearson’s (cyan),
Spearman’s (red), skipped Spearman’s (magenta), and 20% bend (green)
correlations for each effect size (from top r =0.1 to bottom r =1).
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FIGURE 6 | Effect sizes and power for Gaussian data contaminated by
10% of marginal outliers. From left to right are displayed: the mean
correlation values; the 99.99% CIs (i.e., corrected for the 14 sample sizes) of
the distance to the correlation in the simulated Gaussian population

contaminated by univariate outliers; the power for Pearson’s (blue), skipped
Pearson’s (cyan), Spearman’s (red), skipped Spearman’s (magenta), and 20%
bend (green) correlations for each effect size (from top r =0.1 to bottom
r =1). In column one, the scales of the mean correlation values differ.
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population, the less Pearson’s correlation could estimate the true
effect size. A similar pattern of results was observed for Spear-
man’s correlations although estimates were better, with 59% of
correct cases. The 99.99% CIs included 0 for ρ= 0.1, 0.2, and
0.3; ρ= 0.4, n < 400; ρ= 0.5, n < 200; ρ= 0.6, n < 150; ρ= 0.7,
n < 80; ρ= 0.8, n < 40; ρ= 0.9, n < 30; ρ= 1, n < 20. The 20%
percentage-bend correlation matched closely Spearman’s esti-
mates with 99.99% CIs including 0 in 60% of cases. How-
ever, remember that although the percentage-bend correlation is
restricted to linear relationships, it does not estimate ρ. Compar-
isons of methods revealed that Pearson’s correlations were always
lower than Spearman’s (p= 0), 20% percentage-bend (p= 0), and
skipped Pearson’s (p= 0) correlations. Similarly Spearman’s corre-
lations were always significantly different from skipped Spearman’s
correlations (p= 0).

Power curves revealed that when effect sizes were well esti-
mated, Spearman’s (0.001 < p < 0.002), 20% percentage-bend
(p= 0.001), and skipped Pearson’s (p= 0.001) correlations were
more powerful than the standard Pearson’s correlation. Sim-
ilarly, the skipped Spearman’s correlation was more power-
ful than the standard Spearman correlation in most cases
(0.001 < p= 0.003).

Bivariate outlier data. Effect sizes for Gaussian data contami-
nated by 10% of bivariate outliers (Figure 7) showed that Pear-
son’s and Spearman’s correlations estimated correlations poorly,
whereas skipped-correlations performed well. Pearson’s correla-
tion never estimated well ρ except for ρ= 0.9, 10 < n < 150 (in
total only 5% of cases). Spearman’s correlation was less sensitive
to bivariate outliers (in total 49% of cases were correct) and cor-
rect estimates were observed from small correlation values and
small sample sizes to high correlation values and larger sample
sizes (ρ= 0.1, n < 40; ρ= 0.2, n < 50; ρ= 0.3 and 0.4, n < 80;
ρ= 0.5 and 0.6, n < 150;ρ= 0.7, n < 200;ρ= 0.8, n < 300;ρ= 0.9,
n < 500; ρ= 1 n < 20). The 20% percentage-bend correlation did
not estimate well the population correlation either (in total 52%
of cases encompassed ρ), with again results very similar to those of
Spearman’s correlation. In contrast to standard methods, skipped
Pearson’s and Spearman’s correlations always properly estimated
ρ. Comparisons of methods revealed that Pearson’s correlations
were always significantly different from Spearman’s (p= 0), 20%
percentage-bend (p= 0), and skipped Pearson’s (p= 0) correla-
tions (higher for 0.1 < ρ < 0.9 and lower for ρ= 1). Similarly,
Spearman’s correlation always differed significantly from skipped
Spearman’s correlation (p= 0).

The power of Pearson’s correlation did not differ from that
of other methods for the few correct estimations (p > 0.003).
More interestingly, comparisons of Spearman’s versus skipped
Spearman’s correlations show that for low ρ, the standard Spear-
man approach was more powerful when estimates were correct
(p= 0.003).

DISCUSSION
When data were normally distributed, Pearson’s correlation was
the best method, estimating best the true effect sizes and show-
ing more power. Robust alternatives still estimated properly the
true effect sizes with slight differences (from −0.001 to −0.02

for the 20% percentage-bend correlation and from −0.006 to
−0.001 for the skipped Pearson’s correlation). Those results can
be explained by the fact that those robust techniques down-weight
or remove data points from the samples being drawn. As a con-
sequence, they also have less power (at most −6% for the 20%
percentage-bend correlation and −23% for the skipped Pearson’s
correlation). However, the assumption of normality rarely holds
(e.g., Micceri, 1989) and when it is not met, using Pearson’s or
Spearman’s correlations can lead to serious errors. In our simu-
lations, both techniques grossly overestimated or underestimated
the true effect sizes depending on the position of outliers relative
to the population, whereas their skipped counterparts performed
well in all the cases analyzed.

The first point to consider is the estimation of the true effect
sizes in the context of marginal and bivariate outliers. In our sim-
ulations, Pearson’s and Spearman’s correlations failed most of the
time but occasionally estimated properly ρ. These accurate esti-
mations should not be taken as an indication of the robustness of
the methods, but simply an illustration of the effect of the posi-
tion of outliers. In the case of univariate outliers, outliers were
located in such a way that there positions were between −0.3 and
−9.94˚ relative to the population of interest. As a consequence,
Pearson’s and Spearman’s correlations always underestimated ρ,
being attracted toward [6, 0], the center of the outlier population.
In the case of bivariate outliers, outliers were located in such a way
that there positions were between +0.4 and +13.4˚ relative to the
population of interest. As a consequence,Pearson’s and Spearman’s
almost always overestimated ρ (the exception being ρ= 0.9 where
the 2 population were aligned), being attracted toward [6, 6]. To
further illustrate this effect of the position of outliers, consider
the toy example in Figure 8. The data are similar in spirit to pair
3 from Anscombe’s quartet. We first created 10 points perfectly
aligned (Pearson’s r = 1) and then rotated the regression line by
steps of 10˚ and substituted the last point of the initial data by the
last point of the rotated data. Results show that, as the single out-
lier gets farther and father away from the initial value (i.e., father
away in the bivariate space), Pearson’s estimates become overly
sensitive to it. Estimation errors varied up to 1.5 unit, i.e., a single
outlier could reduce the correlation by 50% or completely reverse
it (equivalent to −150%). An extreme case in this toy example is
for Y = 0.2X and a 80˚ rotation of the last point; this data point
goes from [9, 1.8] to [9,−393] and r changes from r = 1 to−0.51.
Of course, anybody looking at the data would spot this point as an
outlier. Skipped-correlations detect and remove such data point
whilst accounting for the deletion when testing for significance.
Removing data points and running the analysis without account-
ing for the removal is not good practice because the standard error
estimates would be incorrect and can substantially alter a test sta-
tistic. Ignoring this issue when dealing with correlations can result
in poor control over the probability of a Type I error (Wilcox,
2012a). In our toy example, the outlier detection fails for small
deviations of the outlier in the bivariate space (10, 20, 150, 160,
and 170˚ – Figure 8) but identify correctly the outlier in all other
cases such that the final correlation is 1.

The second point to consider is the power of each method. It has
been argued that skipped correlation can lack power compared to
Pearson’s correlation (Schwarzkopf et al., 2012). Our simulations
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FIGURE 7 | Effect sizes and power for Gaussian data contaminated by
10% of bivariate outliers. From left to right are displayed: the mean
correlation values; the 99.99% CIs (i.e., corrected for the 14 sample sizes) of
the distance to the correlation in the simulated Gaussian population

contaminated by bivariate outliers; the power for Pearson’s (blue), skipped
Pearson’s (cyan), Spearman’s (red), skipped Spearman’s (magenta), and 20%
bend (green) correlations for each effect size (from top r =0.1 to bottom
r =1). In column one, the scales of the mean correlation values differ.
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FIGURE 8 | Illustration of the effect of a single outlier among 10
data points on Pearson’s correlation. At the top is illustrated the
outlier values (red circles in the left plot), their positions in the bivariate
space (the end of each red line in the polar plot) relative to the

regression line Y =0.1X, and the error in Pearson’s estimates
(1 – observed correlation). The middle row shows similar results for all
slopes (from 0.1 to 0.9). The bottom row shows the results from the
skipped correlation.

show that this is the case only if the data are perfectly normal. In
contrast, when data contain outliers, skipped Pearson’s correlation
can be more powerful. In our simulations, the only cases in which
Pearson’s correlation clearly outperformed the skipped Pearson’s
correlations was when the effect sizes were largely overestimated
due to outliers (see e.g., Figure 7), which of course make its use

inappropriate2. Because in many cases data do not conform to nor-
mality (e.g., Micceri, 1989), Pearson’s skipped-correlations seem to

2In Schwarzkopf et al. (2012) power is reported without formal tests of differ-
ences among methods and without considering effect sizes. It is thus unclear which
conditions differed in their simulations.
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provide a good alternative to classic techniques, particularly in the
presence of bivariate outliers. In case of departure from normal-
ity, Spearman’s correlation is often advocated as an alternative to
Pearson’s correlation. Our simulations showed that when outliers
contaminate data, Spearman’s correlation indeed performs better
than Pearson’s correlation and can have stronger power. Estimated
correlations can however also be strongly biased. An alternative to
Spearman’s correlation seems to be the (20%) percentage-bend
correlation. In our simulations it closely matched Spearman’s and
skipped Spearman’s correlations power in the presence of mar-
ginal outliers. Thus, although its coefficient cannot be interpreted
as a reflection of ρ, it provides an alternative to test the significance
of linear correlations, especially if outliers are not detected in the
bivariate space.

The last point to consider is the type I error rate. Schwarzkopf
et al. (2012) also suggested that skipped-correlations have an
inflated false positive rate. Results from our simulations show
otherwise: skipped-correlations are in fact slightly conservative
with normal data or data contaminated by marginal outliers and
achieve a type I error rate at the 5% nominal level when bivariate
outliers contaminate the data, which agrees with previous obser-
vations (Wilcox, 2004). It is however possible that the type I error
rate increases when outliers are in the margins of the population
of interest, thus leading to large variance, as in the simulation
by Schwarzkopf et al. (2012). We reproduced their simulation
for n= 10 and computed Pearson’s correlation, Pearson’s corre-
lation after removing outliers flagged by the MCD algorithms, and
skipped Pearson’s correlation using the box-plot rule (the method
used in the toolbox) or the MAD-median rule on projected data.
For two independent normal variables N ∼ (0, 1) and one uni-
variate outlier from N ∼ (0, 3), Pearson’s correlation showed a
type I error rate of 0.048. If outliers were removed using the MCD
algorithm, the type I error rate rose to 0.39. The standard skipped
correlation, however, had a type I error rate of 0.051, whereas using
the MAD-median rule led to a type I error rate of 0.14. When the
outlier was taken from a bivariate distribution with covariance
([3, 4.5; 4.5, 9]), Pearson’s correlation showed a type I error rate of
0.15. If outliers were removed using the MCD algorithm, the type
I error rate rose to 0.4. Again, the standard skipped correlation
had a type I error rate of 0.054, whereas using the MAD-median
rule led to a type I error rate of 0.16. Although our results are
slightly different from Schwarzkopf et al. (2012), they suggest that
the authors identified outliers using the MAD-median rule on
projected data, which indeed leads to a high false positive rate. If
the adjusted box-plot rule is used as in our toolbox and simula-
tions, the nominal level is achieved. These last results demonstrate
how critical it is to (i) properly identify and remove outliers, a job
well performed by the projection method compared to the output

from the MCD algorithm, (ii) use a method with high specificity
(removing only outliers), like the adjusted box-plot rule compared
to the MAD-median rule, and (iii) adjust the test of significance
to take into account the dependencies among data points after
removing outliers.

To conclude, we demonstrated that robust alternatives to stan-
dard correlation methods provide accurate estimates of the true
correlations for normal and contaminated data with no or mini-
mal loss of power and adequate control over the false positive rate.
Given the range of possible data configurations, all scenarios can-
not be tested but some recommendations can be drawn from our
results. First, before computing any relationship, plot the data and
run several outlier detection methods. If inspection of the scatter
plot suggests a non-linear relationship (e.g., pair 2 of Anscombe’s
quartet) or the marginal distributions suggest that the data are not
normally (or close to normally) distributed, one should choose
alternative methods to the ones considered in the present article.
Indeed, the skipped Pearson correlation and the percentage-bend
correlation are appropriate for linear relationships only, whereas
the skipped Spearman correlation is also appropriate for monot-
onic relationships. Alternatively, for non-linear relationships, a
generalization of Pearson’s correlation, called explanatory power,
coupled with smoothers (non-parametric regression methods)
provides a flexible approach to dealing with curvature (Wilcox,
2012a). Similarly, for non-Gaussian data, or non-linear relation-
ships, or both, copulas offer a generalized approach to test for
dependence (Sklar, 1959; Frees and Valdez, 1999): almost any
correlated joint distribution can be modeled via marginal dis-
tributions and their copula, i.e., their link function. Copulas
establish the dependence between variables and estimate the loca-
tion of this dependency. In contrast, correlations estimate only
average dependencies across the whole data range. Second, choose
among methods given the data at hand and not given their results.
For instance, use a percentage-bend correlation when univariate
outliers are identified (e.g., Ancombe’s pair 3), or use a skipped-
correlation when bivariate outliers are identified (e.g., Ancombe’s
pair 4). Third, if a correlation method returns a significant result,
check the variance homogeneity assumption using a bootstrap
CI. This helps confirm that a significant result is due to a linear
(or monotonic for Spearman’s correlation) association rather than
heteroscedasticity. Also, the bootstrap is particularly useful when
used in conjunction with robust estimators because resampling
data with outliers necessarily leads to CIs either too large or too
narrow. In the Anscombe’s quartet, bootstrapping the data still
leads to significant results for pair 2 (a non-linear association)
or pair 4 (no association) when used with Pearson’s correlation.
Finally, always interpret correlation results by taking into account
their effect sizes and bootstrap CIs.
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APPENDIX
There are various methods to detect outliers. In the context of
skipped-correlations, one relies on the detection of univariate out-
liers among projected data points (points orthogonally projected
onto lines joining each data point to the robust estimate of loca-
tion, see Methods). Outliers are detected using a modification of
the box-plot rule. Here, we show that this modification of the
box-plot rule offers very high specificity, whilst preserving good
sensitivity.

SIMULATIONS
A normal bivariate population of 100 data points [mu(0,0),
sigma([1, 0.5; 0.5, 1])] was generated and 10% of outliers added.
Outliers came from a similar bivariate population rotated by 90˚
and shifted along one dimension by 0, 2, 4, or 6 standard devi-
ations (SD) (Figure A1). For each type of outliers (=amount
of shift), 1000 Monte-Carlo were performed and the average
false positive and true positive rates computed for 11 different
methods. We used eight robust methods for which the outlier
detection is based on the deviation from the median of projected
data: the standard box-plot rule (deviation from the interquar-
tile range), the box-plot rule with Carling’s (2000) adjustment
or our own adjustment (as implemented in the skipped corre-
lation), the MAD-median rule (Hall and Welsh, 1985) with or
without correction for finite sample size, and adjusted or not, and
the S-outlier method (median of absolute deviations – Rousseeuw
and Croux, 1993). For comparisons, we also added three non-
robust methods for which the outlier detection is based on the
deviation from the mean: a simple empirical rule consisting of
removing data points located at ±3.29 SD from the mean in at
least one marginal distribution, and deviation from the Maha-
lanobis or bootstrap Mahalanobis distance (with 10,000 resamples,
Schwarzkopf et al., 2012), which rely on the bivariate mean(s).
The false positive rate corresponds to the number of data points
removed from the initial bivariate population; the true positive
rate corresponds to the number of data points removed among

the 10 added data points. We thus used a conservative definition
of outliers as data points originating from a different population.
In practice it is however difficult to identify such data points as
illustrated in our simulation for 0 shift. In that case, only a subset
of observations would appear to be inconsistent with the remain-
der of the data (Barnett and Lewis, 1994). Overall performance
was evaluated via Matthews correlation coefficients, which is the
ratio between the difference of contingency table diagonal product
[(true positive× true negative)− (false positive× false negative)]
and the square root of the products of marginal sums (Bakli et al.,
2000).

RESULTS
Techniques that rely on the mean performed the worst: they
showed high specificity because they failed to detect outliers (i.e.,
they have low sensitivity). In our simulations, the best method
only achieved 74.7% [73.6; 75.7] detection for outliers located at
4 SD from the population of interest, and 92.6% [91.99; 93.34]
detection for outliers located at 6 SD from the population of
interest. For such obvious outliers, robust methods showed 100%
or close to 100% detection rates. Among robust methods, the
box-plot rule with adjustment as implemented in the skipped cor-
relation function had the highest specificity, i.e., it removed very
few data points from the population of interest (Table A1) but
at the cost of lower sensitivity than other robust techniques, i.e.,
it identified fewer true outliers (Table A2). When outliers were
close to the population of interest, the box-plot rule with adjust-
ment performed poorly, but as outliers were farther away from
the population of interest, it outperformed techniques that had
higher false positive rates (see Matthews correlation coefficients,
Figure A1).
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Table A1 | False positive rate (average number of data points detected as outliers from the normal data) and 95% percentile CIs for the different

outlier detection methods.

Distance to the

center = 0

Distance to the

center = 2

Distance to the

center = 4

Distance to the

center = 6

Marginal means 0.10 [0.07, 0.13] 0.032 [0.01, 0.05] 0.01 [0.006, 0.028] 0.02 [0.007, 0.03]

Mahalanobis distance 2.96 [2.85, 3.08] 1.80 [1.71, 1.90] 1.0070 [0.9228, 1.091] 0.86 [0.79, 0.93]

Bootstrapped Mahalanobis distance 3.44 [3.31, 3.56] 2.20 [2.09, 2.31] 1.26 [1.17, 1.35] 1.07 [0.9942, 1.15]

Box-plot 6.40 [6.18, 6.63] 4.94 [4.73, 5.15] 3.9610 [3.78, 4.13] 3.67 [3.50, 3.85]

Box-plot with Carling’s adjustment 4.56 [4.36, 4.76] 3.45 [3.2873, 3.61] 2.7570 [2.6, 2.91] 2.56 [2.42, 2.69]

Box-plot adjusted for bivariate data 1.91 [1.78, 2.04] 1.28 [1.17, 1.39] 0.9570 [0.87, 1.04] 0.96 [0.87, 1.04]

MAD-median rule 15.41 [15.11, 15.71] 13.23 [12.94, 13.52] 11.7580 [11.47, 12.03] 11.3 [11.01, 11.58]

MAD-median rule adjusted for bivariate data 9.23 [8.97, 9.49] 7.60 [7.35, 7.85] 6.5610 [6.33, 6.78] 6.29 [6.07, 6.5]

MAD-median rule for finite samples 15.15 [14.85, 15.45] 13.01 [2.71, 13.32] 11.5460 [11.27, 11.82] 11.11 [10.82, 11.40]

MAD-median rule for finite samples adjusted

for bivariate data

9.04 [8.78, 9.30] 7.45 [7.20, 7.71] 6.4070 [6.18, 6.62] 6.13 [5.92, 6.35]

S-outliers 15.63 [15.34, 15.91] 13.61 [13.31, 13.90] 12.6660 [12.41, 12.92] 12.84 [12.55, 13.13]

Table A2 |True positive rate (average number of data points detected as outliers from the outlier data) and 95% percentile CIs for the different

outlier detection methods.

Distance to the

center = 0

Distance to the

center = 2

Distance to the

center = 4

Distance to the

center = 6

Marginal means 5.67 [5, 6.33] 6.91 [6.24, 7.57] 11.8900 [11.04, 12.73] 15.9400 [15.01, 16.86]

Mahalanobis distance 28.77 [27.72, 29.81] 43.96 [42.84, 45.07] 69.6500 [68.61, 70.68] 88.0900 [87.31, 88.86]

Bootstrapped Mahalanobis distance 30.55 [29.53, 31.56] 46.74 [45.55, 47.92] 74.7300 [73.68, 75.77] 92.6700 [91.99, 93.34]

Box-plot 38.65 [37.42, 39.87] 61.2400 [59.91, 62.56] 95.7900 [95.20, 96.37] 99.9800 [99.98, 100]

Box-plot with Carling’s adjustment 35.64 [34.45, 36.82] 56.8100 [55.47, 58.14] 94.0600 [93.37, 94.74] 99.96 [99.96, 100]

Box-plot adjusted for bivariate data 28.56 [27.33, 29.78] 46.5900 [45.19, 47.98] 87.5000 [86.55, 88.44] 99.8500 [99.69, 100]

MAD-median rule 49.5 [48.12, 50.87] 74.7800 [73.61, 75.94] 98.6800 [98.32, 99.03] 100

MAD-median rule adjusted for bivariate data 42.9700 [41.58, 44.35] 66.8700 [65.6, 68.13] 97.4800 [97, 97.95] 100

MAD-median rule for finite samples 49.19 [47.8, 50.57] 74.5800 [73.34, 75.81] 98.6200 [98.25, 98.98] 100

MAD-median rule for finite samples adjusted

for bivariate data

42.64 [41.3, 43.97] 66.5100 [65.22, 67.79] 97.3400 [96.8605, 97.81] 100

S-outliers 49.9 [48.58, 51.21] 75.1400 [73.89, 76.38] 98.8000 [98.50, 99.09] 100
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FIGURE A1 | Operating characteristics of outlier detection
methods. The left column illustrates the data generation process:
each row shows different types of outliers, identified in red, and
created by changing the amount of shift along the X direction. The
right column shows the false positive rate (1-specificity) as a function

of the true positive rate (sensitivity) for each method. Bottom right
show the Matthews correlation coefficients. Red to brown: box-plot
results; light green to dark green: MAD-median rule results; black: the
S-outlier results; light to dark blue: deviations from the mean(s)
results.
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