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In the last decade, there has been a gradual
consolidation of the idea that the pro-
cessing of time, space and quantity arise
from common neural mechanisms. This
model, formally described as “A Theory Of
Magnitude” (ATOM) (Walsh, 2003), sug-
gests that the mechanism underlying the
overlap in the neuro-cognitive processing
of magnitudes is mediated by the activ-
ity of a special pool of neurons localized
in the frontal and parietal cortices. These
neurons may work by making analogi-
cal inferences among magnitudes, prob-
ably by extracting their covariant factors
(Vicario and Martino, 2010).

While lesion (Critchley, 1953; Oliveri
et al., 2009), neuroimaging (Dehaene
et al., 1998; Rao et al., 2001) and
cognitive research (Fischer et al., 2003;
Vicario et al., 2007, 2008, 2009, 2011;
Loetscher et al., 2008; Loftus et al., 2008;
Oliveri et al., 2009; Renzi et al., 2011;
Vicario, 2011, 2012; see Bonato et al.,
2012 for a complete review) can be used
to support the ATOM model, genetic
conditions, such as Turner syndrome,
Fragile X syndrome, and Chromosome
22q11.2 deletion syndrome have received
relatively little attention. These condi-
tions are particularly interesting because
they all appear to affect mathemati-
cal cognition. For example, kindergarten
girls with Turner syndrome have diffi-
culty relative to their peers on aspects
of mathematics, such as the automatic-
ity of fact retrieval and timed calculations,
and make more procedural errors dur-
ing problem-solving (Rovet, 1993; Temple
and Marriott, 1998). Children with Fragile
X syndrome have more difficulties than
their peers on aspects of applied count-
ing, such as the ability to enumerate (e.g.,

one-to-one correspondence) and the iden-
tification of the nth item in a set (Murphy
et al., 2006). Finally, individuals with
Chromosome 22q11.2 deletion syndrome
are significantly slower at counting the
number of elements in a set and perform
more poorly than control participants on a
number comparison task (De Smedt et al.,
2006, 2009).

In addition to mathematical deficits,
these genetic conditions also affect a broad
range of cognitive abilities relating to the
perception and processing of space and
time. In relation to Turner syndrome,
females perform more poorly than con-
trols on tests of spatial ability. Deficits
were also reported for the serial pro-
cessing ability, which requires intact tem-
poral processing ability (Silbert et al.,
1977). These spatial and temporal deficits,
which have been replicated by subse-
quent researchers (Mazzocco et al., 2006;
Murphy and Mazzocco, 2008; Beaton et al.,
2010), also seem to extend to visuoatten-
tional functioning (Hart et al., 2006).

Abnormalities in spatio-temporal
visual processing have also been reported
in childhood Fragile X syndrome. For
instance, infants with Fragile X syndrome
show significantly reduced sensitivity to
the detection of texture-defined dynamic
stimuli, although they are capable of
detecting static patterns and luminance-
defined dynamic patterns at the same
level as age-matched controls (Farzin
et al., 2008). Studies using behavioral psy-
chophysics in adult males with Fragile
X syndrome corroborate this view by
reporting a reduced contrast sensitivity for
visual stimuli presented at high temporal
frequencies (Kogan et al., 2004). Moreover,
Farzin et al. (2011) have demonstrated a

drastically reduced resolution of temporal
visual attention in this syndrome, which
was directly linked to the extent of the
genetic trinucleotide repeat mutation in
the FMR1 gene.

In similar fashion, children with
Chromosome 22q11.2 deletion syndrome
show cognitive impairments in spatiotem-
poral processing and visuospatial attention
mechanisms (Simon, 2008). In the context
of this syndrome, it is interesting that
Simon (2008) noted that the impairment
of mathematical abilities in these children
arises from a decreased representational
resolution documented for both space and
time (Simon et al., 2005a,b), which he
named “spatiotemporal hypergranular-
ity” (Simon, 2008, p. 2). Spatiotemporal
hypergranularity implies that the mental
representations of spatiotemporal cogni-
tive functions in children with 22q11.2DS
have a coarser resolution, possibly as a
consequence of lower resolution of spa-
tial attention functions in this population
(Simon, 2008).

Data from brain imaging might help to
disclose the “fil rouge” binding these three
pathologies. The link in question could
be alterations in the frontal and parietal
regions of these patients.

Neuroanatomical studies on Turner
patients have consistently found decreased
gray matter volume in the bilateral parietal
lobes, parieto-occipital region, and sub-
cortical gray matter (Murphy et al., 1993;
Reiss et al., 1995; Brown et al., 2002; Good
et al., 2003; Kesler et al., 2003; Molko
et al., 2003). A study by Holzapfel et al.
(2006) has also documented lower frac-
tional anisotropy values in the deep white
matter of the left parietal-occipital region
extending anteriorly along the superior
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longitudinal fasciculus into the deep white
matter of the frontal lobe.

Evidence for disordered activity in the
fronto-parietal network in Fragile X syn-
drome has also been reported. Yang
et al. (2012) showed decreased parietal
P3 amplitude and diminished fronto-
central positivities with a delayed onset
(50 ms later than controls) during an audi-
tory oddball task requiring dual responses.
Moreover, two studies in females with
Fragile X have examined brain function
during working memory (Menon et al.,
2000) and mental arithmetic (Rivera et al.,
2002) tasks. These studies showed that, in
parallel with performance deficits, females
with Fragile X also had altered activity
in frontoparietal networks (in both hemi-
spheres) associated with these tasks.

Finally, different studies on children
affected by Chromosome 22q11.2 deletion
syndrome have reported reductions in gray
and white matter corresponding to pari-
etal (Eliez et al., 2000; Kates et al., 2001;
Simon et al., 2005a,b; Campbell et al.,
2006) and frontal lobes (Kates et al., 2004),
as well as an altered connectivity involving
the fronto-parietal network in this child-
hood disorder (Simon, 2008). Moreover,
Srivastava et al. (2012) reported atypi-
cal cortical gyrification, which was mainly
distributed along the medial aspect of
each hemisphere in 6–15-year-old children
with 22q11.2DS. Significantly, these corti-
cal areas included parietal structures that
are associated, in typical individuals, with
visuospatial and attentional functioning,
and numerical and temporal cognition.

While Turner Syndrome, Fragile
X Syndrome, and Chromosome 22q11.2
deletion syndrome are all childhood
genetic disorders, the different syndromes
do have very different genetic etiologies,
developmental trajectories, and phys-
ical manifestations. It is remarkable,
therefore, that the syndromes appear to
affect an overlapping set of cognitive
processes. Mathematical ability is most
probably one of the best known out-
comes of the genetic syndromes. From
the evidence reviewed in this paper,
however, it also clear that the children
suffer from a similar set of process-
ing problems related to time and space.
Although the link between mathemat-
ics and spatial/temporal processing is
a subject of debate, recent work with

children with developmental dyscalcu-
lia show that these children also have
problems with temporal (Sigmundsson
et al., 2010; Vicario et al., 2012) and spa-
tial attentional (Ashkenazi and Henik,
2010) processing. There is therefore tan-
talizing evidence suggesting a causal link
between mathematical ability and spa-
tial/temporal processing, which deserves
further investigation.

The association between the functions
most probably arises from damage to
a common set of neural mechanisms.
Turner Syndrome, Fragile X Syndrome,
and Chromosome 22q11.2 deletion syn-
drome all appear to affect circuits located
in the parietal and frontal cortices. Neural
circuits lying in these same regions are also
thought to play an important role in the
ATOM model (Walsh, 2003) and provide
a common code for numbers, space, and
time. Variations in the extent and exact
nature of the deficits may be related to the
specific structures affected by each of the
genetic disorders.

The current paper has provided a brief
overview of childhood genetic disor-
ders which affect the frontal and pari-
etal cortices. The children with these
various disorders also appear to suffer
from an overlapping set of cognitive dis-
turbances. While the overlap between
Turner syndrome, Fragile X syndrome,
and Chromosome 22q11.2 deletion syn-
drome is compelling, more work needs to
be done. A comparative test, applying the
same tests of temporal and spatial pro-
cessing ability, across the different genetic
conditions would allow more powerful
conclusions to be drawn.
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