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A personal trait, for example a person’s cognitive ability, represents a theoretical concept
postulated to explain behavior. Interesting constructs are latent, that is, they cannot be
observed. Latent variable modeling constitutes a methodology to deal with hypothetical
constructs. Constructs are modeled as random variables and become components of a
statistical model. As random variables, they possess a probability distribution in the popu-
lation of reference. In applications, this distribution is typically assumed to be the normal
distribution. The normality assumption may be reasonable in many cases, but there are
situations where it cannot be justified. For example, this is true for criterion-referenced
tests or for background characteristics of students in large scale assessment studies. Nev-
ertheless, the normal procedures in combination with the classical factor analytic methods
are frequently pursued, despite the effects of violating this “implicit” assumption are not
clear in general. In a simulation study, we investigate whether classical factor analytic
approaches can be instrumental in estimating the factorial structure and properties of the
population distribution of a latent personal trait from educational test data, when viola-
tions of classical assumptions as the aforementioned are present.The results indicate that
having a latent non-normal distribution clearly affects the estimation of the distribution of
the factor scores and properties thereof. Thus, when the population distribution of a per-
sonal trait is assumed to be non-symmetric, we recommend avoiding those factor analytic
approaches for estimation of a person’s factor score, even though the number of extracted
factors and the estimated loading matrix may not be strongly affected. An application to the
Progress in International Reading Literacy Study (PIRLS) is given. Comments on possible
implications for the Programme for International Student Assessment (PISA) complete the
presentation.

Keywords: factor analysis, latent variable model, normality assumption, factorial structure, criterion-referenced test,
large scale educational assessment, Programme for International Student Assessment, Progress in International
Reading Literacy Study

1. INTRODUCTION
Educational research is concerned with the study of processes of
learning and teaching. Typically, the investigated processes are not
observable, and to unveil these, manifest human behavior in test
situations is recorded. According to Lienert and Raatz (1998, p. 1)
“a test [. . .] is a routine procedure for the investigation of one or
more empirically definable personality traits” (translated by the
authors), and to satisfy a minimum of quality criteria, a test is
required to be objective, reliable, and valid.

In this paper we deal with factor analytic methods for assessing
construct validity of a test, in the sense of its factorial validity (e.g.,
Cronbach and Meehl, 1955; Lienert and Raatz, 1998). Factorial
validity refers to the factorial structure of the test, that is, to the
number (and interpretation) of underlying factors, the correlation
structure among the factors, and the correlations of each test item
with the factors. There are a number of latent variable models that
may be used to analyze the factorial structure of a test – for gen-
eralized latent variable modeling covering a plethora of models as
special cases of a much broader framework, see Bartholomew et al.

(2011) and Skrondal and Rabe-Hesketh (2004). This paper focuses
on classical factor analytic approaches, and it examines how accu-
rately different methods of classical factor analysis can estimate
the factorial structure of test data, if assumptions associated with
the classical approaches are not satisfied. The methods of classical
factor analysis will include principal component analysis (PCA;
Pearson, 1901; Hotelling, 1933a,b; Kelley, 1935), exploratory fac-
tor analysis (EFA; Spearman, 1904; Burt, 1909; Thurstone, 1931,
1965), and principal axis analysis (PAA; Thurstone, 1931, 1965).
More recent works on factor analysis and related methods are Har-
man (1976), McDonald (1985), Cudeck and MacCallum (2007),
and Mulaik (2009). Further references, to more specific topics in
factor analysis, are given below, later in the text.1

1For the sake of simplicity and for the purpose and analysis of this paper, we want
to refer to all of these approaches (PCA, EFA, PAA) collectively as classical factor
analysis/analytic methods. Albeit it is known that PCA differs from factor analy-
sis in important aspects, and that PAA rather represents an alternative estimation
procedure for EFA. PCA and EFA are different technically and conceptually. PCA
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A second objective of this paper is to examine the scope of
these classical methods for estimating the probability distribu-
tion of latent ability values or properties thereof postulated in
a population under investigation, especially when this distribu-
tion is skewed (and not normal). In applied educational contexts,
for instance, that is not seldom the practice. Therefore a critical
evaluation of this usage of classical factor analytic methods for
estimating distributional properties of ability is important, as we
do present with our simulation study in this paper, in which metric
scale (i.e., at least interval scale; not dichotomous) items are used.

The results of the simulation study indicate that having a non-
normal distribution for latent variables does not strongly affect
the number of extracted factors and the estimation of the load-
ing matrix. However, as shown in this paper, it clearly affects the
estimation of the latent factor score distribution and properties
thereof (e.g., skewness).

More precisely, the “estimation accuracy” for factorial struc-
ture of these models is shown to be worse when the assumption of
interval-scaled data is not met or item statistics are skewed. This
corroborates related findings published in other works, which we
briefly review later in this paper. More importantly, the empirical
distribution of estimated latent ability values is biased compared
to the true distribution (i.e., estimates deviate from the true val-
ues) when population abilities are skewly distributed. It seems
therefore that classical factor analytic procedures, even though
they are performed with metric (instead of non-metric) scale
indicator variables, are not appropriate approaches to ability esti-
mation when skewly distributed population ability values are to
be estimated.

Why should that be of interest? In large scale assessment
studies such as the Programme for International Student Assess-
ment (PISA)2 latent person-related background (conditioning)

seeks to create composite scores of observed variables while EFA assumes latent
variables. There is no latent variable in PCA. PCA is not a model and instead is
simply a re-expression of variables based on the eigenstructure of their correlation
matrix. A statistical model, as is for EFA, is a simplification of observed data that
necessarily does not perfectly reproduce the data, leading to the inclusion of an error
term. This point is well-established in the methodological literature (e.g.,Velicer and
Jackson, 1990; Widaman, 2007). Correlation matrix is usually used in EFA, and the
models for EFA and PAA are the same. There are several methods to fit EFA such
as unweighted least squares (ULS), generalized least squares (GLS), or maximum
likelihood (ML). PAA is just one of the various methods to fit EFA. PAA is a method
of estimating the model of EFA that does not rely on a discrepancy function such as
for ULS, GLS, or ML. This point is made clear, for instance, in MacCallum (2009). In
fact, PAA with iterative communality estimation is asymptotically equivalent to ULS
estimation. Applied researchers often use PCA in situations where factor analysis
more closely matches the purpose of their analysis. This is why we want to include
PCA in our present study with latent variables, to examine how well PCA results
may approximate a factor analysis model. Such practice is frequently pursued, for
example in empirical educational research, as we tried to criticize for the large scale
assessment PISA study (e.g., OECD, 2005, 2012). Moreover, the comparison of EFA
(based on ML) with PAA in this paper seems to be justified and interesting, as the
(manifest) normality assumption in the observed indicator variables for the ML
procedure is violated in the simulation study and empirical large scale assessment
PIRLS application.
2PISA is an international large scale assessment study funded by the Organisation
for Economic Co-operation and Development (OECD), which aims to evaluate
education systems worldwide by assessing 15-year-old students’ competencies in
reading, mathematics, and science. For comprehensive and detailed information,
see www.pisa.oecd.org.

variables such as sex or socioeconomic status are obtained as well
by principal component analysis, and that “covariate” information
is part of the PISA procedure that assigns to students their liter-
acy or plausible values (OECD, 2012; see also Section 3.1 in the
present paper). Now, if it is assumed that the distribution of latent
background information conducted through questionnaires at the
students, schools, or parents levels (the true latent variable distri-
bution) is skewed, based on the simulation study of this paper we
can expect that the empirical distribution of estimated background
information (the “empirical” distribution of the calculated com-
ponent scores) is biased compared to the true distribution (and is
most likely skewed as well). In other words, estimated background
values do deviate from their corresponding true values they ought
to approximate, and so the inferred students’ plausible values may
be biased. Further research is necessary in order to investigate the
effects and possible implications of potentially biased estimates of
latent background information on students’ assigned literacy val-
ues and competence levels, based on which the PISA rankings of
OECD countries are reported. For an analysis of empirical large
scale assessment (Progress in International Reading Literacy Study;
PIRLS) data, see Section 6.

The paper is structured as follows. We introduce the considered
classical factor analysis models in Section 2 and discuss the rele-
vance of the assumptions associated with these models in Section
3. We describe the simulation study in Section 4 and present the
results of it in Section 5. We give an empirical data analysis exam-
ple in Section 6. In Section 7, we conclude with a summary of the
main findings and an outlook on possible implications and further
research.

2. CLASSICAL FACTOR ANALYSIS METHODS
We consider the method of principal component analysis on the
one hand, and the method of exploratory factor and principal
axis analysis on the other. At this point recall Footnote 1, where we
clarified that, strictly speaking, principal component analysis is not
factor analysis and that principal axis analysis is a specific method
for estimating the exploratory factor analysis model. Despite this,
for the sake of simplicity and for our purposes and analyses, we
call these approaches collectively factor analysis/analytic methods
or even models. For a more detailed discussion of these methods,
see Bartholomew et al. (2011).

Our study shows, amongst others, that the purely computa-
tional dimensionality reduction method PCA performs surpris-
ingly well, as compared to the results obtained based on the
latent variable models EFA and PAA. This is important, because
applied researchers often use PCA in situations where factor analy-
sis more closely matches their purpose of analysis. In general, such
computational procedures as PCA are easy to use. Moreover, the
comparison of EFA (based on ML) with PAA (eigenstructure of
the reduced correlation matrix based on communality estimates)
in this paper represents an evaluation of different estimation pro-
cedures for the classical factor analysis model. This comparison
of the two estimation procedures seems to be justified and inter-
esting, as the (manifest) normality assumption in the observed
indicators for the ML procedure is violated, both in the simulation
study and empirical large scale assessment PIRLS application. At
this point, see also Footnote 1.
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2.1. PRINCIPAL COMPONENT ANALYSIS
The model of principal component analysis (PCA) is

Z = FL′,

where Z is a n× p matrix of standardized test results of n per-
sons on p items, F is a n× p matrix of p principal components
(“factors”), and L is a p× p loading matrix.3 In the estimation
(computation) procedure F and L are determined as F=ZC3−1/2

and L=C31/2 with a p× p matrix 3= diag{λ1, . . ., λp}, where
λl are the eigenvalues of the empirical correlation matrix R =
Z ′Z , and with a p× p matrix C= (c1, . . ., cp) of corresponding
eigenvectors cl.

In principal component analysis we assume that Z∈Rn×p,
F∈Rn×p, and L∈Rn×p and that empirical moments of the man-
ifest variables exist such that, for any manifest variable j = 1, . . .,
p, its empirical variance is not zero (s2

j 6= 0). Moreover we assume

that rk(Z)= rk(R)= p (rk, the matrix rank) and that Z, F, and L
are interval-scaled (at the least).

The relevance of the assumption of interval-scaled variables for
classical factor analytic approaches is the subject matter of various
research works, which we briefly discuss later in this paper.

2.2. EXPLORATORY FACTOR ANALYSIS
The model of exploratory factor analysis (EFA) is

y = µ+ Lf + e ,

where y is a p× 1 vector of responses on p items,µ is the p× 1 vec-
tor of means of the p items, L is a p× k matrix of factor loadings,
f is a k× 1 vector of ability values (of factor scores) on k latent
continua (on factors), and e is a p× 1 vector subsuming remaining
item specific effects or measurement errors.

In exploratory factor analysis, we assume that

y ∈ Rp×1, µ ∈ Rp×1, L ∈ Rp×k , f ∈ Rk×1, and e ∈ Rp×1,

y,µ, L, f, and e are interval-scaled (at the least),

E(f ) = 0,

E(e) = 0,

cov(e,e) = E(ee ′) = D = diag{v1, . . . , vp},

cov(f,e) = E(fe ′) = 0,

where νi are the variances of ei (i= 1, . . ., p). If the factors are
not correlated, we call this the orthogonal factor model; oth-
erwise it is called the oblique factor model. In this paper, we
investigate the sensitivity of the classical factor analysis model
against violated assumptions only for the orthogonal case (with
cov(f, f )= E(f f ′)= I= diag{1, . . ., 1}).

Under this orthogonal factor model, 6 can be decomposed as
follows:

6 = E
[
(y − µ)(y − µ)′

]
= E

[
(Lf + e)(Lf + e)′

]
= LL′ + D.

3For the sake of simplicity and without ambiguity, in this paper we want to refer to
component scores from PCA as “factor scores” or “ability values,” albeit components
conceptually may not be viewed as latent variables or factors. See also Footnote 1.

This decomposition is utilized by the methods of unweighted
least squares (ULS), generalized least squares (GLS), or maxi-
mum likelihood (ML) for the estimation of L and D. For ULS
and GLS, the corresponding discrepancy function is minimized
with respect to L and D (Browne, 1974). ML estimation is per-
formed based on the partial derivatives of the logarithm of the
Wishart (W ) density function of the empirical covariance matrix
S, with (n− 1) S∼W (6, n− 1) (Jöreskog, 1967). After estimates
for µ, k, L, and D are obtained, the vector f can be estimated by

f̂ = (L′D−1L)−1L′D−1(y − µ).
When applying this exploratory factor analysis, y is typically

assumed to be normally distributed, and hence rk(6)= p, where6
is the covariance matrix of y. For instance, one condition required
for ULS or GLS estimation is that the fourth cumulants of y must
be zero, which is the case, for example, if y follows a multivariate
normal distribution (for this and other conditions, see Browne,
1974). For ML estimation note that (n− 1)S∼W(6,n− 1) if
y ∼N(µ,6).

Another possibility of estimation for the EFA model is principal
axis analysis (PAA). The model of PAA is

Z = FL′ + E ,

where Z is a n× p matrix of standardized test results, F is a n× p
matrix of factor scores, L is a p× p matrix of factor loadings,
and E is a n× p matrix of error terms. For estimation of F and
L based on the representation Z′Z=R= LL′+D the principal
components transformation is applied. However, the eigenvalue
decomposition is not based on R, but is based on the reduced
correlation matrix Rh = R − D̂, where D̂ is an estimate for D.
An estimate D̂ is derived using h2

j = 1 − vj and estimating the

communalities hj (for methods for estimating the communalities,
see Harman, 1976).

The assumptions of principal axis analysis are

Z ∈ Rn×p , L ∈ Rp×p , F ∈ Rn×p , and E ∈ Rn×p ,

E(f ) = 0,

E(e) = 0,

cov(e,e) = E(ee ′) = D = diag{v1, . . . , vp},

cov(f,e) = E(fe ′) = 0,

cov(f,f ) = E(ff ′) = I ,

and empirical moments of the manifest variables are assumed
to exist such that, for any manifest variable j = 1, . . ., p, its
empirical variance is not zero (s2

j 6= 0). Moreover, we assume

that rk(Z)= rk(R)= p and that the matrices Z, F, L, and E are
interval-scaled (at the least).

2.3. GENERAL REMARKS
Two remarks are important before we discuss the assumptions
associated with the classical factor models in the next section.

First, it can be shown that L is unique up to an orthogonal trans-
formation. As different orthogonal transformations may yield
different correlation patterns, a specific orthogonal transforma-
tion must be taken into account (and fixed) before the estimation
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accuracies of the factor models can be compared. This is known as
“rotational indeterminacy”in the factor analysis approach (e.g., see
Maraun, 1996). For more information, the reader is also referred
to Footnote 8 and Section 7.

Second, the criterion used to determine the number of factors
extracted from the data must be distinguished as well. In practice,

not all k or p but instead k̂ < k or p factors with the k̂ largest eigen-
values are extracted. Various procedures are available to determine

k̂. Commonly used criteria in educational research are the Kaiser-
Guttman criterion (Guttman, 1954; Kaiser and Dickman, 1959),
the scree test (Cattell, 1966), and the method of parallel analysis
(Horn, 1965).

3. ASSUMPTIONS ASSOCIATED WITH THE CLASSICAL
FACTOR MODELS

The three models described in the previous section in particular
assume interval-scaled data and full rank covariance or correlation
matrices for the manifest variables. Typically in the exploratory
factor analysis model, the manifest variables y or the standardized
variables z are assumed to be normally distributed. For the PCA
and PAA models, we additionally want to presuppose – for compu-
tational reasons – that the variances of the manifest variables are
substantially large. The EFA and PAA models assume uncorrelated
factor terms and uncorrelated error terms (which can be relaxed
in the framework of structural equation models; e.g., Jöreskog,
1966), uncorrelatedness between the error and latent ability vari-
ables, and expected values of zero for the errors as well as latent
ability variables.

The question now arises whether the assumptions are critical
when it comes to educational tests or survey data?4

3.1. CRITERION-REFERENCED TESTS AND PISA QUESTIONNAIRE
DATA

From the perspective of applying these models to data of criterion-
referenced tests, the last three of the above mentioned assumptions
are less problematic. For a criterion-referenced test, it is important
that all items of the test are valid for the investigated content. As
such, the usual way of excluding items from the analysis when
the covariance or correlation matrices are not of full rank does not
work for criterion-referenced tests, because this can reduce content
validity of a test. A similar argument applies to the assumption of

4Note that, at the latent level, there is no formal assumption that the latent factors
(what we synonymously also want to call “person abilities”) are normally distrib-
uted. At the manifest level, maximum likelihood estimation (EFA) assumes that the
observed variables are normal; ULS and GLS (EFA), PAA (EFA), and PCA do not.
The latter two methods only require a non-singular correlation matrix (e.g., see
MacCallum, 2009). However, in applications, for example in empirical educational
research, one often assumes that the latent ability values follow a normal distribu-
tion in the population of reference. Moreover, Mattson (1997)’s method described
in Section 4.1 states that there is a connection between the manifest and latent distri-
butions in factor analysis. Hence the question is what implications one can expect if
this “implicit assumption” may not be justified. Related to the study and evaluation
of the underlying assumptions associated with these classical factor models, this
paper, amongst others, shows that the data re-expression method PCA performs
surprisingly well if compared to the results obtained based on the latent variable
approaches EFA and PAA. Moreover, ML and PAA estimation procedures for EFA
are compared with one another, for different degrees of violating the normality
assumption at the manifest or latent levels.

substantially large variances of the manifest variables. As Klauer
(1987) suggested and Sturzbecher et al. (2008) have shown for
the driving license test in Germany, the variances of the manifest
variables of criterion-referenced tests are seldom high, and in gen-
eral the data obtained from those tests may lead to extracting too
few dimensions. However, for the analysis of criterion-referenced
tests, the assumption of interval-scaled data and the assumption
of normality of the manifest test and latent ability scores are even
more problematic. Data from criterion-referenced tests are rarely
interval-scaled – instead the items of criterion-referenced tests are
often dichotomous (Klauer,1987). For criterion-referenced tests, it
is plausible to have skewed (non-symmetric) test and ability score
distributions, because criterion-referenced tests are constructed
to assess whether a desired and excessive teaching goal has been
achieved or not. In other words, the tested population is explicitly
and intensively trained regarding the evaluated ability, and so it is
rather likely that most people will have high values on the mani-
fest test score as well as latent ability (e.g., see the German driving
license test; Sturzbecher et al., 2008).

The assumption of interval-scaled data and the normality
assumption for the manifest test and latent ability scores may
also be crucial for the scaling of cognitive data in PISA (OECD,
2012; Chap. 9 therein). In PISA, the generated students’ scores are
plausible values. These are randomly drawn realizations basically
from a multivariate normal distribution (as the prior) of latent
ability values (person ability is modeled as a random effect, a
latent variable), in correspondence to a fitted item response theory
model (Adams et al., 1997) giving the estimated parameters of the
normal distribution. The mean of the multivariate normal distri-
bution is expressed as linear regression of various direct manifest
regressors (e.g., administered test booklet, gender) and indirect
“latent” or complex regressors obtained by aggregating over man-
ifest and latent context or background variables (e.g., indicators
for economic, social, and cultural status) in a principal component
analysis. The component scores used in the scaling model as the
indirect “latent” regressors are extracted, in the purely computa-
tional sense, to account for approximately 95% of the total variance
in all the original variables. The background variables may be cat-
egorical or dummy-coded and may not be measured at an interval
scale (nor be normally distributed). So as we said before, if one
can assume that the distribution of latent background informa-
tion revealed through questionnaires is skewed, we can expect that
the empirical distribution of background information computed
by principal component analysis is likely to be biased compared to
the true distribution. This is suggested by the results of our sim-
ulation study. The bias of the empirical distribution in turn may
result in biasing the regression expression for the mean. There-
fore, special caution has to be taken regarding possible violations
of those assumptions, and a minimum of related sensitivity analy-
ses are required and necessary in order to control for their potential
effects.

3.2. HISTORICAL REMARKS
The primary aim is to review results of previous studies focus-
ing on the impact of violations of model assumptions. As to our
knowledge, such studies did not systematically vary the distribu-
tions of the factors (in the case of continuous data as well) and
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primarily investigated the impact of categorical data (however,
not varying the latent distributions for the factors). Reviewing
results of previous simulation studies based on continuous indi-
cator variables that have compared different estimation methods
(including PCA) and have compared different methods for deter-
mining the number of factors, as to our knowledge, would have
not constituted reviewing relevant literature focusing primar-
ily on the violations of the assumptions associated with those
models.

Literature on classical factor models has in particular inves-
tigated violations of the assumption of interval-scaled data. In
classical factor analysis, Green (1983) simulated dichotomous data
based on the 3PL (three parameter logistic) model (Birnbaum,
1968) and applied PCA and PAA to the data, whereat Cattell’s
scree test and Horn’s parallel analysis were used as extraction cri-
teria. Although both methods were applied to the same data, the
results regarding the extracted factors obtained from the analyses
differed, and the true dimensionality was not detected. In gen-
eral, the models extracted too many factors. These findings are
in line with expectations. Green (1983) used the phi-coefficient φ
as the input data, and according to Ferguson (1941), the max-
imum value of φ depends on the difficulty parameters of the
items. Dependence of φ on item difficulty can in extreme cases
lead to factors being extracted solely due to the difficulties of the
items. Roznowski et al. (1991) referred to such factors as difficulty
factors.

Carroll (1945) recommended to use the tetrachoric correlation
ρtet for factor analysis of dichotomous data. The coefficient ρtet

is an estimate of the dependency between two dichotomous items
based on the assumption that the items measure a latent continu-
ous ability – an assumption that corresponds to the factor analysis
approach. Although one would expect that ρtet leads to less biased
results as compared to φ, Collins et al. (1986) were able to show
that φ was much better suited to capture the true dimensional-
ity than ρtet. In simulations, they compared the two correlation
coefficients within the principal component analysis, using a ver-
sion of the scree test as extraction criterion. The simulated data
followed the 2PL model with three latent dimensions, and in addi-
tion to item discrimination (moderate, high, very high), the item
difficulty and its distribution were varied (easy, moderate, diffi-
cult, and extreme difficult item parameters; distributed normal,
low frequency, rectangular, and bimodal). The coefficient ρtet led
to better results when the distribution of item difficulty was rec-
tangular. In all other cases,φ was superior to ρtet. But with neither
of the two methods it was possible to detect the true number of
factors in more than 45% of the simulated data sets. See Roznowski
et al. (1991) for another study illustrating the superiority of the
coefficient φ to the coefficient ρtet.

Clarification for findings in Green (1983), Collins et al. (1986),
and Roznowski et al. (1991) was provided by Weng and Cheng
(2005). Weng and Cheng varied the number of items, the fac-
tor loadings and difficulties of the items, and sample size. The
authors used the parallel analysis extraction method to determine
the number of factors. However, the eigenvalues of the correlation
matrices were computed using a different algorithm, which in a
comparative study proved to be more reliable (Wang, 2001). With
this algorithm, φ and ρtet performed equally well and misjudged

true unidimensionality only when the factor loadings or sample
sizes were small, or when the items were easy. This means that it
was not the correlation coefficient per se that led to inadequate
estimation of the number of factors but the extraction method
that was used.

Muthén (1978, 1983, 1984), Muthén and Christoffersson
(1981), Dolan (1994), Gorsuch (1997), Bolt (2005), Maydeu-
Olivares (2005), and Wirth and Edwards (2007) present alternative
or more sophisticated ways for dealing with categorical variables
in factor analysis or structural equation modeling. Muthén (1989),
Muthén and Kaplan (1992), and Ferguson and Cox (1993) com-
pared the performances of factor analytic methods under con-
ditions of (manifest) non-normality for the observed indicator
variables.

We will add to and extend this literature and investigate in
this paper whether the classical factor analysis models can reason-
ably unveil the factorial structure or properties of the population
latent ability distribution in educational test data (e.g., obtained
from criterion-referenced tests) when the assumption of normality
in the latency may not be justified. None of the studies men-
tioned above has investigated the “true distribution impact” in
these problems.

4. SIMULATION STUDY
A simulation study is used to evaluate the performances of the
classical factor analytic approaches when the latent variables are
not normally distributed.

True factorial structures under the exploratory factor analysis
model are simulated, that is, the values of n, k, L, f , and e are
varied.5 On the basis of the constructed factorial structures, the
matrices of the manifest variables are computed. These matrices
are used as input data and analyzed with classical factor analytic

methods. The estimates (or computed values) k̂, L̂, and f̂ (or F̂ ) are
then compared to the underlying population values. As criteria for
“estimation accuracy” we use the number of extracted factors (as
compared to true dimensionality), the skewness of the estimated
latent ability distribution, and the discrepancy between estimated
and true loading matrix. Shapiro-Wilk tests for normality of the
ability estimates are presented and distributions of the estimated
and true factor scores are compared as well.

Note that in the simulation study metric scale, not dichoto-
mous, items are analyzed. This can be viewed as a baseline infor-
mative for the dichotomous indicator case as well (cf. Section
6). The results of the simulation study can serve as a reference
also for situations where violations of normality for latent and
manifest variables and metric scale data are present. One may
expect the reported results to become worse when, in addition to
(latent) non-normality of person ability, data are discretized or
item statistics are skewed (manifest non-normality).

4.1. MOTIVATION AND PRELIMINARIES
The present simulation study particularly aims at analyzing and
answering such questions as:

5Obviously, PCA as introduced in this paper cannot be used as a data generating
probability model underlying the population. However, the simulation study shows
that PCA results can approximate a factor analysis (cf. also Footnote 1).
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• To what extent does the estimation accuracy for factorial struc-
ture of the classical factor analysis models depend on the
skewness of the population latent ability distribution?
• Are there specific aspects of the factorial structure or latent abil-

ity distribution with respect to which the classical factor analysis
models are more or less robust in estimation when true ability
values are skewed?
• Given a skewed population ability distribution does the esti-

mation accuracy for factorial structure of the classical factor
analysis models depend on the extraction criterion applied for
determining the number of factors from the data?
• Can person ability scores estimated under classical factor ana-

lytic approaches be representative of the true ability distribution
or properties thereof when this distribution is skewed?

Mattson (1997)’s method can be used for specifying the parame-
ter settings for the simulation study (cf. Section 4.2). We briefly
describe this method (for details, see Mattson, 1997). Assume the
standardized manifest variables are expressed as z=Aν, where ν is
the vector of latent variables and A is the matrix of model parame-
ters. Moreover, assume that ν=Tω, where T is a lower triangular
square matrix such that each component of ν is a linear combina-
tion of at most two components of ω, E(vv′)=6ν =TT′, andω is
a vector of mutually independent standardized random variables
ωi with finite central moments µ1i , µ2i , µ3i , and µ4i , of order up
to four. Then

E(z) = AT E(ω) = 0

and

E(zz ′)(= A6νA′) = AT E(ωω′)T ′A′ = ATT ′A′.

Or equivalently, E(zizj) = γ ′iγ j , where γ i = (a′iT )′ and a′i
is the i-th row of A. Under these conditions the third and fourth
order central moments of zi are given by

E(z3
i ) =

∑
m

γ 3
imµ3m and

E(z4
i ) =

∑
m

γ 4
imµ4m + 6

∑
m>2

m−1∑
o=1

γ 2
imγ

2
io .

Hence the univariate skewness
√
β1i and kurtosis β2i of any zi

can be calculated by

√
β1i =

E
(
z3

i

)[
E
(
z2

i

)]3/2
and β2i =

E
(
z4

i

)[
E
(
z2

i

)]2 .

In the simulation study, the exploratory factor analysis model
with orthogonal factors (cov( f , f )= I ) and error variables
assumed to be uncorrelated and unit normal (with standard-
ized manifest variables) is used as the data generating model. Let
A:= (L, Ip) be the concatenated matrix of dimension p× (k + p),
where Ip is the unit matrix of order p× p, and let v := ( f ′, e ′)′

be the concatenated vector of length k + p. Then we have z=Av
for the simulation factor model. Let T:= I(k+p)×(k+p) and ω:= ν,

then T and ω satisfy the required assumptions afore mentioned.
Hence the skewness and kurtosis of any zi are given by, respectively,

√
β1i =

∑k+p
m=1 a3

imµ3m

[a′iai]
3/2

and

β2i =

∑k+p
m=1 a4

imµ4m + 6
∑k+p

m=2

∑m−1
o=1 a2

ima2
io

[a′iai]
2 .

Mattson’s method is used to specify such settings for the sim-
ulation study as they may be observed in large scale assessment
data. The next section describes this in detail.

4.2. DESIGN OF THE SIMULATION STUDY
The number of manifest variables was fixed to p= 24 through-
out the simulation study. For the number of factors, we used
numbers typically found in large scale assessment studies such as
the Progress in International Reading Literacy Study (PIRLS, e.g.,
Mullis et al., 2006) or PISA (e.g., OECD, 2005). According to the
assessment framework of PIRLS 2006 the number of dimensions
for reading literacy was four, in PISA 2003 the scaling model had
seven dimensions. We decided to use a simple loading structure
for L, in the sense that every manifest variable was assumed to load
on only one factor (within-item unidimensionality) and that each
factor was measured by the same number of manifest variables. In
reliance on PIRLS and PISA in our simulation study, the numbers
of factors were assumed to be four or eight. We assumed that some
of the factors were well explained by their indicators while others
were not, with upper rows (variables) of the loading matrix gen-
erally having higher factor loadings than lower rows (variables).
Thus, the loading matrices employed in our study for the four and
eight dimensional simulation models were, respectively,

L =



0.9 0 0 0

0.8 0 0 0

0.7 0 0 0

0.6 0 0 0

0.5 0 0 0

0.4 0 0 0

0 0.8 0 0

0 0.7 0 0

0 0.6 0 0

0 0.5 0 0

0 0.4 0 0

0 0.3 0 0

0 0 0.6 0

0 0 0.6 0

0 0 0.5 0

0 0 0.4 0

0 0 0.4 0

0 0 0.3 0

0 0 0 0.6

0 0 0 0.5

0 0 0 0.5

0 0 0 0.4

0 0 0 0.3

0 0 0 0.3



and L =



0.9 0 0 0 0 0 0 0

0.8 0 0 0 0 0 0 0

0.7 0 0 0 0 0 0 0

0 0.8 0 0 0 0 0 0

0 0.8 0 0 0 0 0 0

0 0.7 0 0 0 0 0 0

0 0 0.8 0 0 0 0 0

0 0 0.7 0 0 0 0 0

0 0 0.6 0 0 0 0 0

0 0 0 0.7 0 0 0 0

0 0 0 0.7 0 0 0 0

0 0 0 0.7 0 0 0 0

0 0 0 0 0.7 0 0 0

0 0 0 0 0.6 0 0 0

0 0 0 0 0.6 0 0 0

0 0 0 0 0 0.6 0 0

0 0 0 0 0 0.6 0 0

0 0 0 0 0 0.5 0 0

0 0 0 0 0 0 0.5 0

0 0 0 0 0 0 0.4 0

0 0 0 0 0 0 0.4 0

0 0 0 0 0 0 0 0.4

0 0 0 0 0 0 0 0.4

0 0 0 0 0 0 0 0.3



.
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We decided to analyze released items of the PIRLS 2006 study
(IEA, 2007) to have an empirical basis for the selection of skewness
values for ω(= ν). We used a data set of dichotomously scored
responses of 7,899 German students to 125 test items. Figure 1
displays the distribution of the PIRLS items’ (empirical) skewness
values.6

We decided to simulate under three conditions for the distri-
butions of ω. Under the first condition, ωm (m= 1, . . ., k) are
normal with µ1m = 0,µ2m = 1,µ3m = 0, and µ4m = 3. Under the
second condition, ωm (m= 1, . . ., k) are slightly skewed with
µ1m = 0, µ2m = 1, µ3m =−0.20, and µ4m = 3. Under the third
condition, ωm (m= 1, . . ., k) are strongly skewed with µ1m = 0,
µ2m = 1, µ3m =−2, and µ4m = 9. The error terms were assumed
to be unit normal, that is, we specified µ1h = 0, µ2h = 1, µ3h = 0,
and µ4m = 3 for ωh (h= k + 1, . . ., k + p). Skewness and kurto-
sis of any zi under each of the three conditions were computed
using Mattson’s method (Section 4.1). The values are reported in
Tables 1 and 2 for the four and eight dimensional factor spaces,
respectively.

Under the slightly skewed distribution condition, the theoret-
ical values of skewness for the manifest variables range between
−0.060 and−0.005, a condition that captured approximately 20%
of the considered PIRLS test items. Under the strongly skewed dis-
tribution condition, the theoretical values of skewness lie between
−0.599 and −0.047, a condition that covered circa 30% of the
PIRLS items (cf. Figure 1). Based on these theoretical skewness
and kurtosis statistics, we can see to what extent under these model
specifications the distributions of the manifest variables deviate
from the normal distribution.

How to generate variates ωi (i= 1, . . ., k + p) such that they
possess predetermined moments µ1i , µ2i , µ3i , and µ4i? To sim-
ulate values for ωi with predetermined moments, we used the
generalized lambda distribution (Ramberg et al., 1979)

ωi = λ1 +
uλ3 − (1− u)λ4

λ2
,

6All figures of this paper were produced using the R statistical computing environ-
ment (R Development Core Team, 2011; www.r-project.org). The source files are
freely available from the authors.

where u is uniform (0, 1), λ1 is a location parameter, λ2 a scale
parameter, and λ3 and λ4 are shape parameters. To realize the
desired distribution conditions for the simulation study (normal,
slightly skewed, strongly skewed) using this general distribution
its parameters λ1, λ2, λ3, and λ4 had to be specified accordingly.
Ramberg et al. (1979) tabulate the required values for the λ para-
meters for different values of µ. In particular, for a (more or
less) normal distribution with µ1= 0,µ2= 1,µ3= 0, and µ4= 3
the corresponding values are λ1= 0, λ2= 0.197, λ3= 0.135, and
λ4= 0.135. For a slightly skewed distribution withµ1= 0,µ2= 1,
µ3=−0.20, and µ4= 3, the values are λ1= 0.237, λ2= 0.193,
λ3= 0.167, and λ4= 0.107. For a strongly skewed distribution
with µ1= 0, µ2= 1, µ3=−2, and µ4= 9, the parameter values
are given byλ1= 0.993,λ2=−0.108·10−2,λ3=−0.108·10−2, and
λ4=−0.041·10−3.

Remark. Indeed, various distributions are possible (see Matt-
son, 1997); however, the generalized lambda distribution proves
to be special. It performs very well in comparison to other dis-
tributions, when theoretical moments calculated according to the
Mattson formulae are compared to their corresponding empir-
ical moments computed from data simulated under a factor
model (based on that distribution). For details, see Reinartz et al.
(2002). These authors have also studied the effects of the use
of different (pseudo) random number generators for realizing
the uniform distribution in such a comparison study. Out of
three compared random number generators – RANUNI from
SAS, URAND from PRELIS, and RANDOM from Mathemat-
ica – the generator RANUNI performed relatively well or bet-
ter. In this paper, we used the SAS program for our simulation
study.7

Besides the number of factors and the distributions of the
latent variables, sample size was varied. In the small sample
case, every zi consisted of n= 200 observations, and in the
large sample case zi contained n= 600 observations. Table 3
summarizes the design of the simulation study. Overall there

7For the factor analyses in this paper, we used the SAS program and its PROC FAC-
TOR implementation of the methods PCA, EFA, and PAA. More precisely, variation
of the PROC FACTOR statements, run in their default settings, yields the performed
procedures PCA, EFA, and PAA (e.g., EFA if METHOD=ML).
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FIGURE 1 | Distribution of the skewness values for the 125 PIRLS test items.
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Table 1 |Theoretical values of skewness and kurtosis for z i (four

factors).

zi Latent variable

Normala Slightly

skewedb

Strongly

skewedc√
β1i β2i

√
β1i β2i

√
β1i β2i

z1 0 3 −0.060 3 −0.599 4.202

z2 0 3 −0.049 3 −0.488 3.914

z3 0 3 −0.038 3 −0.377 3.649

z4 0 3 −0.027 3 −0.272 3.420

z5 0 3 −0.018 3 −0.179 3.240

z6 0 3 −0.010 3 −0.102 3.114

z7 0 3 −0.049 3 −0.488 3.914

z8 0 3 −0.038 3 −0.377 3.649

z9 0 3 −0.027 3 −0.272 3.420

z10 0 3 −0.018 3 −0.179 3.240

z11 0 3 −0.010 3 −0.102 3.114

z12 0 3 −0.005 3 −0.047 3.041

z13 0 3 −0.027 3 −0.272 3.420

z14 0 3 −0.027 3 −0.272 3.420

z15 0 3 −0.018 3 −0.179 3.240

z16 0 3 −0.010 3 −0.102 3.114

z17 0 3 −0.010 3 −0.102 3.114

z18 0 3 −0.005 3 −0.047 3.041

z19 0 3 −0.027 3 −0.272 3.420

z20 0 3 −0.018 3 −0.179 3.240

z21 0 3 −0.018 3 −0.179 3.240

z22 0 3 −0.010 3 −0.102 3.114

z23 0 3 −0.005 3 −0.047 3.041

z24 0 3 −0.005 3 −0.047 3.041

aµ1m = 0, µ2m =1, µ3m =0, and µ4m =3.
bµ1m =0, µ2m =1, µ3m =−0.20, and µ4m =3.
cµ1m =0, µ2m =1, µ3m =−2, and µ4m = 9.

are 12 conditions and for every condition 100 data sets were
simulated.

Each of the generated 1,200 data sets were analyzed using all
of the models of principal component analysis, exploratory factor
analysis (ML estimation), and principal axis analysis altogether
with a varimax rotation (Kaiser, 1958).8 For any data set under
each model, the factors, and hence, the numbers of retained fac-
tors were determined by applying the following three extraction
criteria or approaches: the Kaiser-Guttman criterion, the scree test,
and the parallel analysis procedure.9

8Because of rotational indeterminacy in the factor analysis approach (e.g., Maraun,
1996), the results are as much an evaluation of varimax rotation as they are an
evaluation of the manipulated variables in the study. For more information, see
Section 7.
9The Kaiser-Guttman criterion is a poor way to determine the number of factors.
However, due to the fact that none of the existing studies has investigated the estima-
tion accuracy of this criterion when the latent ability distribution is skewed, we have
decided to include the Kaiser-Guttman criterion in our study. This criterion may

Table 2 |Theoretical values of skewness and kurtosis for z i (eight

factors).

zi Latent variable

Normala Slightly

skewedb

Strongly

skewedc√
β1i β2i

√
β1i β2i

√
β1i β2i

z1 0 3 −0.060 3 −0.599 4.202

z2 0 3 −0.049 3 −0.488 3.914

z3 0 3 −0.038 3 −0.377 3.649

z4 0 3 −0.049 3 −0.488 3.914

z5 0 3 −0.049 3 −0.488 3.914

z6 0 3 −0.038 3 −0.377 3.649

z7 0 3 −0.049 3 −0.488 3.914

z8 0 3 −0.038 3 −0.377 3.649

z9 0 3 −0.027 3 −0.272 3.420

z10 0 3 −0.038 3 −0.377 3.649

z11 0 3 −0.038 3 −0.377 3.649

z12 0 3 −0.038 3 −0.377 3.649

z13 0 3 −0.038 3 −0.377 3.649

z14 0 3 −0.027 3 −0.272 3.420

z15 0 3 −0.027 3 −0.272 3.420

z16 0 3 −0.027 3 −0.272 3.420

z17 0 3 −0.027 3 −0.272 3.420

z18 0 3 −0.018 3 −0.179 3.240

z19 0 3 −0.018 3 −0.179 3.240

z20 0 3 −0.010 3 −0.102 3.114

z21 0 3 −0.010 3 −0.102 3.114

z22 0 3 −0.010 3 −0.102 3.114

z23 0 3 −0.010 3 −0.102 3.114

z24 0 3 −0.005 3 −0.047 3.041

aµ1m =0, µ2m =1, µ3m =0, and µ4m =3.
bµ1m =0, µ2m =1, µ3m =−0.20, and µ4m = 3.
cµ1m =0, µ2m =1, µ3m =−2, and µ4m =9.

Table 3 | Summary of the simulation design and number of generated

data sets.

Sample

size

Number of

factors

Latent variable distribution

Normal Slightly skewed Strongly skewed

200 4 100 100 100

8 100 100 100

600 4 100 100 100

8 100 100 100

4.3. EVALUATION CRITERIA
The criteria for evaluating the performance of the classical fac-
tor models are the number of extracted factors (as compared to
true dimensionality), the skewness of the estimated latent ability

also be viewed as a “worst performing” baseline criterion, which other extraction
methods need to outperform, as best as possible.
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distribution, and the discrepancy between the estimated and the
true loading matrix. The latter two criteria are computed using
the true number of factors. Furthermore, Shapiro-Wilk tests for
assessing normality of the ability estimates are presented and
distributions of the estimated and true factor scores are compared.

For the skewness criterion, under a factor model and a simula-
tion condition, for any data set the factor scores on a factor were
computed and their empirical skewness was the value for this data
set that was used and plotted. For the discrepancy criterion, under
a factor model and a simulation condition, for any data set i= 1,
. . ., 100 a discrepancy measure Di was calculated,

Di =

∑p
x=1

∑k
y=1 | l̂ i;xy −lxy |

kp
,

where l̂ i;xy and lxy represent the entries of the estimated (vari-
max rotated, for data set i= 1, . . ., 100) and true loading matrices,
respectively. It gives the averaged sum of the absolute differences
between the estimated and true factor loadings. We also report the
average and variance (or standard deviation) of these discrepancy
measures, over all simulated data sets,

D =
1

100

100∑
i=1

Di and s2
=

1

100− 1

100∑
i=1

(Di − D)2.

In addition to calculating estimated factor score skewness val-
ues, we also tested for univariate normality of the estimated factor
scores. We used the Shapiro-Wilk test statistic W (Shapiro and
Wilk, 1965). In comparison to other univariate normality tests,
the Shapiro-Wilk test seems to have relatively high power (Seier,
2002). In our study, under a factor model and a simulation condi-
tion, for any data set the Shapiro-Wilk test statistic’s p-value was
calculated for the estimated factor scores on a factor and the dis-
tribution of the p-values obtained from 100 simulated data sets
was plotted.

5. RESULTS
We present the results of our simulation study.

5.1. NUMBER OF EXTRACTED FACTORS
Figure 2 shows the relative frequencies of the numbers of extracted
factors for sample size n= 200 and k = 4 as true number of factors.
If the Kaiser-Guttman criterion is used, the number of extracted
factors is overestimated (for PCA) or tends to be underestimated
(for EFA and PAA). With the scree test, four dimensions where
extracted in the majority of cases, but variation of the numbers
of extracted factors over the different data sets is high. High vari-
ation in this case can be explained by the ambiguous and hence
difficult to interpret eigenvalue graphics that one needs to visually
inspect for the scree test. Applying the parallel analysis method,
variation of the numbers of extracted factors can be reduced and
the true number of factors is estimated very well (e.g., for PCA).
There does not seem to be a relationship between the number of
extracted factors and the underlying distribution (normal, slightly
skewed, strongly skewed) of the latent ability values.

When sample size is increased to n= 600, variation of the esti-
mated numbers of factors decreases substantially under many

conditions (see Figure 3). Compared to small sample sizes, the
scree test and the parallel analysis method perform very well. The
Kaiser-Guttman criterion still leads to a biased estimation of the
true number of factors. Once again, there seems to be no relation-
ship between the distribution of the latent ability values and the
number of extracted factors.

Figure 4, for a sample size of n= 200, shows the case when
there are k = 8 factors underlying the data. The Kaiser-Guttman
criterion again leads to overestimation or underestimation of the
true number of factors. The extraction results for the scree test
have very high variation, and estimation of the true number of
factors is least biased when the parallel analysis method is used.

Increasing sample size from n= 200 to 600 results in a signifi-
cant reduction of variation (Figure 5). However, the true number
of factors can be estimated without bias only when the parallel
analysis method is used as extraction criterion. A possible rela-
tionship between the distribution of the latent ability values and
the number of extracted factors once again does not seem to be
apparent.

To sum up, we suppose that the“number of factors extracted” is
relatively robust against the extent the latent ability values may be
skewed. Another observation is that the parallel analysis method
seems to outperform the scree test and the Kaiser-Guttman cri-
terion when it comes to detecting the number of underlying
factors.

5.2. SKEWNESS OF THE ESTIMATED LATENT ABILITY DISTRIBUTION
Figure 6A shows the distributions of the estimated factor score
skewness values, for n= 200, k = 4, and µ3m = 0. The majority of
the skewness values lies in close vicinity of 0. In other words, for a
true normal latent ability distribution with skewnessµ3= 0, under
the classical factor models the estimated latent ability scores most
likely seem to have skewness values of approximately 0. An impact
of the factor model used for the analysis of the data on the skewness
of the estimated latent ability values cannot be seen under this sim-
ulation condition. However, the standard deviations of the skew-
ness values clearly decrease from the first to the fourth factor. In
other words, the true skewness of the latent ability distribution may
be more precisely estimated for the fourth factor than for the first.

When true latent ability values are slightly negative skewed,
µ3=−0.20, in our simulation study this skewness may only
be properly estimated for the first and second extracted factors
(Figure 6B). The estimated latent ability values of the third and
fourth extracted factors more give skewness values of approxi-
mately 0. The true value of skewness for these factors hence may
likely to be overestimated.

If true latent ability values are strongly negative skewed,
µ3=−2, unbiased estimation of true skewness may not be pos-
sible (Figure 6C). Even in the case of the first and second factors,
the estimation is biased now. True skewness of the latent ability
distribution may be overestimated regardless of the used factor
model or factor position.

To sum up, under the classical factor models, the concept of
“skewness of the estimated latent ability distribution” seems to be
sensitive with respect to the extent the latent ability values may be
skewed. It seems that, the more the true latent ability values are
skewed, the greater is overestimation of true skewness. In other
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FIGURE 2 | Relative frequencies of the numbers of extracted factors, for n= 200 and k =4. Factor models are principal component analysis (PCA, or PC),
exploratory factor analysis (EFA, or EA), and principal axis analysis (PAA, or PA). Kaiser-Guttman criterion (KG), scree test (ST), and parallel analysis (PL) serve as
factor extraction criteria.

words, strongly negative skewed distributions may not be esti-
mated without bias based on the classical factor models. Increasing
sample size, for example from n= 200 to 600, or changing the
number of underlying factors, say from k = 4 to 8, did not alter
this observation considerably. For that reason, the corresponding
plots at this point of the paper are omitted and can be found in
Kasper (2012).

We performed Shapiro-Wilk tests for univariate normality of
the estimated factor scores. As can be seen from Figure 7A, under
normally distributed true latent ability scores nearly all values of W
are statistically non-significant. In these cases, the null hypothesis
cannot be rejected.

A similar conclusion can be drawn when the true latent ability
values are not normally distributed but instead follow a slightly
skewed distribution (Figure 7B). Nearly all Shapiro-Wilk test sta-
tistic values are statistically non-significant. In other words, the
null hypothesis stating normally distributed latent ability values
is seldom rejected although the true latent distribution is skewed

and not normal. No relationship between the p-values and the used
factor model or factor position may be apparent (disregarding the
observation that the p-values for the fourth factor are generally
lower than for the other factors).

The case of a strongly skewed factor score distribution is
depicted in Figure 7C. Virtually all values of W are statistically
significant and the null hypothesis of normality of factor scores
is rejected. Similar conclusions or observations may be drawn for
increased sample size or factor space dimension and we do omit
presenting plots thereof.

Finally, Figure 8 shows the distribution of the estimated factor
scores on the fourth factor (for k = 4) in comparison to the true
strongly skewed ability distribution under the exploratory factor
analysis model for a sample size of n= 1,000. The unit normal
distribution is plotted as a reference. The estimated factor scores
have a skewness value of −0.47 compared to true skewness −2.
The estimated distribution deviates from the true distribution and
does not approximate it acceptably well.
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FIGURE 3 | Relative frequencies of the numbers of extracted factors, for n=600 and k =4. Factor models are principal component analysis (PCA, or PC),
exploratory factor analysis (EFA, or EA), and principal axis analysis (PAA, or PA). Kaiser-Guttman criterion (KG), scree test (ST), and parallel analysis (PL) serve as
factor extraction criteria.

5.3. DISCREPANCY BETWEEN THE ESTIMATED AND THE TRUE
LOADING MATRIX

In Table 4, the average and standard deviation coefficients D̄ and
s for the discrepancies are reported. The largest average discrep-
ancy values are obtained for the condition n= 200, k = 8, and the
strongly skewed latent ability distribution: 0.173, 0.157, and 0.143
for PCA, EFA, and PAA, respectively. Under this condition, the true
factor loadings are, mostly or clearly, overestimated or underesti-
mated. Minor differences between the estimated and true factor
loadings are obtained for n= 600, k = 4, and the normal latent
ability distribution: with average discrepancies 0.076, 0.063, and
0.066 for PCA, EFA, and PAA, respectively.

Deviations of the estimated loading matrix from the true load-
ing matrix can also be quantified and visualized at the level of indi-

vidual absolute differences | l̂ i;xy −lxy |. In this way not only overall
discrepancy averages can be studied but also the distribution of

absolute differences at the individual entry level. Figure 9 shows

the distributions of the absolute differences | l̂ i;xy −lxy | for the dif-
ferent sample sizes and numbers of underlying factors. In each
panel, 100pk absolute differences are plotted.

The majority of the absolute differences lies in the range from
0 to circa 0.20. Larger absolute differences between the estimated
and true factor loadings occurred rather rarely. It is also apparent
that the 36 distributions hardly differ. This observation suggests
that the effects or impacts of sample size, true number of factors,
and the latent ability distribution on the accuracy of the classical
factor models for estimating the factor loadings are rather weak.
In that sense, estimation of the loading matrix seems to be robust
overall. In our simulation study, we were not able to see a clear
relationship between the distribution of the latent ability values
and the discrepancy between the estimated and the true loading
matrix.
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FIGURE 4 | Relative frequencies of the numbers of extracted factors, for n= 200 and k =8. Factor models are principal component analysis (PCA, or PC),
exploratory factor analysis (EFA, or EA), and principal axis analysis (PAA, or PA). Kaiser-Guttman criterion (KG), scree test (ST), and parallel analysis (PL) serve as
factor extraction criteria.

6. ANALYSIS OF PIRLS 2006 DATA
In addition to the simulation study, the classical factor analytic
approaches are also compared on the part of PIRLS 2006 data that
we presented in Section 4.2. The booklet design in PIRLS implies
that only a selection of the items has been administered to each
student, depending on booklet approximately 23–26 test items per
student (Mullis et al., 2006). As a consequence, the covariance or
correlation matrices required for the factor models can only be
computed for the items of a particular test booklet. Since analy-
sis of all thirteen booklets of the PIRLS 2006 study is out of the
scope of this paper, we decided to analyze booklet number 4. This
booklet contains 23 items, and nine of these items (circa 40% of all
items) have skewness values in the range of −0.6 to 0. This skew-
ness range corresponds to the values considered in the simulation
study, and no other test booklet had a comparably high percentage
of items with skewness values in this range.

Note that in the empirical application dichotomized multi-
category items are analyzed. In practice, large scale assessment

data are discrete and not continuous. Yet, the metric scale indicator
case considered in the simulation study can serve as an informa-
tive baseline; for instance (issue of polychoric approximation) to
the extent that a product-moment correlation is a valid represen-
tation of bivariate relationships among interval-scaled variables
(e.g., Flora et al., 2012). In our paper, the simulation results
and the results obtained for the empirical large scale assessment
application are, more or less, comparable.

In PIRLS 2006, four sorts of items were constructed and used
for assigning “plausible values” to students (for details, see Martin
et al., 2007). Any item loads on exactly one of the two dimensions
“Literacy Experience” (L) and “Acquire and Use Information” (A)
and also measures either the dimension “Retrieving and Straight-
forward Inferencing”(R) or the dimension“Interpreting, Integrat-
ing, and Evaluating”(I). Moreover, all of these items are assumed to
be indicators for the postulated higher dimension “Overall Read-
ing.” In other words, PIRLS 2006 items may be assumed to be
one-dimensional if the “uncorrelated” factor “Overall Reading” is
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FIGURE 5 | Relative frequencies of the numbers of extracted factors, for n=600 and k =8. Factor models are principal component analysis (PCA, or PC),
exploratory factor analysis (EFA, or EA), and principal axis analysis (PAA, or PA). Kaiser-Guttman criterion (KG), scree test (ST), and parallel analysis (PL) serve as
factor extraction criteria.

considered (“orthogonal” case), or two-dimensional if any of the
four combinations of correlated factors {A, L}× {I, R} is postu-
lated (oblique case). In the latter case, “Overall Reading” may be
assumed a higher order dimension common to the four factors.
Booklet number 4 covers all these four sorts of PIRLS items.

A total of n= 526 students worked on booklet number 4.
We investigated these data using principal component analy-
sis, exploratory factor analysis, and principal axis analysis. For
determining the number of underlying dimensions, the Kaiser-
Guttman criterion, the scree test, and the method of parallel analy-
sis were used. The results of the analyses can be found in Table 5.

The situation at this point is comparable to what we have
reported in simulation in Figure 3. The scree test unveils uni-
dimensionality of the test data independent of factor model.
The numbers of factors extracted by the parallel analysis method
depend on the factor model that was used. For PCA, again as for
the scree test, unidimensionality is detected, however for the error
component models EFA and PAA, four dimensions are uncovered

(see also below). It seems that these“inferential”or“distributional”
factor models, to some degree,are sensitive to dependencies among
factors. According to the Kaiser-Guttman criterion, which per-
forms worst, there are six dimensions underlying the data for any
of the three factor models.

The varimax rotated loading matrices for the exploratory fac-
tor analysis and principal axis analysis models with four factors are
reported in Tables 6 and 7. Once again, the situation is comparable
to what we have obtained in simulation in Table 4 or Figure 9. The
estimated loading matrices under EFA and PAA are very similar.

Highlighted factor loadings l̂xy > 0.30, for instance, are identi-
cally located in the matrices. As can be seen from Tables 6 and
7, substantially different items in regard to their PIRLS contents
load on the same factors, and moreover, there are items of same
PIRLS contents that show substantial loadings on different factors.
We suppose that this may be a consequence of the factors, in this
example, most likely being correlated with a postulated common
single dimension underlying the factors.
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FIGURE 6 | Distributions of the estimated factor score skewness values as a “function” of factor model and factor position. Factor models are principal
component analysis (PCA, or PC), exploratory factor analysis (EFA, or EA), and principal axis analysis (PAA, or PA). Numbers 1, 2, 3, and 4 stand for 1st, 2nd, 3rd,
and 4th factors, respectively. The normal, slightly skewed, and strongly skewed distribution conditions are depicted in the panels A, B, and C, respectively.

7. CONCLUSION
7.1. SUMMARY
Assessing construct validity of a test in the sense of its factorial
structure is important. For example, we have addressed possible

implications for the analysis of criterion-referenced tests or for
such large scale assessment studies as the PISA or PIRLS. There
are a number of latent variable models that may be used to
analyze the factorial structure of a test. This paper has focused
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FIGURE 7 | Distributions of the p-values of the Shapiro-Wilk test statistic W as a “function” of factor model and factor position. Factor models are
principal component analysis (PCA, or PC), exploratory factor analysis (EFA, or EA), and principal axis analysis (PAA, or PA). Numbers 1, 2, 3, and 4 stand for 1st,
2nd, 3rd, and 4th factors, respectively. The normal, slightly skewed, and strongly skewed distribution conditions are depicted in the panels A, B, and C,
respectively.

on the following classical factor analytic approaches: principal
component analysis, exploratory factor analysis, and principal
axis analysis. We have investigated how accurately the factorial
structure of test data can be estimated with these approaches,
when assumptions associated with the procedures are not satis-
fied. We have examined the scope of those methods for estimating
properties of the population latent ability distribution, especially
when that distribution is slightly or strongly skewed (and not
normal).

The estimation accuracy of the classical factor analytic
approaches has been investigated in a simulation study. The study
has in particular shown that the estimation of the true number
of factors and of the underlying factor loadings seems to be rel-
atively robust against a skewed population ability or factor score
distribution (see Sections 5.1 and 5.3, respectively). Skewness and
distribution of the estimated factor scores, on the other hand,
have been seen to be sensitive concerning the properties of the
true ability distribution (see Section 5.2). Therefore, the classical
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FIGURE 8 | Distributions of the estimated (blue curve) and true (green curve) factor scores on the fourth factor under the exploratory factor analysis
model for sample size n=1,000, factor space dimension k =4, and true skewness µ3 =−2.The unit normal distribution is plotted as a reference (red curve).

Table 4 | Discrepancy averages and standard deviations D̄ and s, respectively.

n k Model Latent variable distribution

Normal Slightly skewed Strongly skewed

D̄ s D̄ s D̄ s

200 4 PCAa 0.143 0.156 0.143 0.156 0.158 0.173

EFAb 0.129 0.142 0.124 0.136 0.141 0.154

PAAc 0.128 0.139 0.124 0.136 0.137 0.150

600 4 PCA 0.076 0.087 0.075 0.086 0.091 0.106

EFA 0.063 0.072 0.062 0.072 0.080 0.095

PAA 0.066 0.075 0.064 0.074 0.082 0.096

200 8 PCA 0.165 0.169 0.162 0.166 0.172 0.176

EFA 0.154 0.157 0.152 0.155 0.156 0.159

PAA 0.135 0.138 0.134 0.138 0.143 0.146

600 8 PCA 0.119 0.123 0.118 0.123 0.125 0.130

EFA 0.106 0.112 0.107 0.112 0.115 0.120

PAA 0.097 0.101 0.095 0.099 0.102 0.105

aPCA, principal component analysis; bEFA, exploratory factor analysis; cPAA, principal axis analysis.

factor analytic procedures, even though they are performed with
metric scale indicator variables, seem not to be appropriate for
estimating properties of ability in the “non-normal case.” Sig-
nificance of this result on sensitivity of factor score estimation
to the nature of the latent distribution has been discussed for
the PISA study, which is an international survey with impact
on education policy making and the education system in Ger-
many (see Sections 1 and 3.1). In addition to that discussion,
the classical factor analytic approaches have been examined in
more detail on PIRLS large scale assessment data, corroborat-
ing the results that we have obtained from the simulation study
(see Section 6).

A primary aim of our work is to develop some basic under-
standing for how and to what extent the results of classical factor
analyses (in the present paper, PCA, EFA, and PAA) may be affected
by a non-normal latent factor score distribution. This has to be dis-
tinguished from non-normality in the manifest variables, which
has been largely studied in the literature on the factor analysis of
items (cf. Section 3.2). In this respect, regarding the investigation
of non-normal factors, the present paper is novel. However, this
is important, since it is not difficult to conceive of the possibil-
ity that latent variables may be skewed. Interestingly, moreover
we have seen that a purely computational dimensionality reduc-
tion method can perform surprisingly well, as compared to the
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FIGURE 9 | Distributions of the absolute differences
∣∣∣l̂i;xy − lxy

∣∣∣ as a

“function” of factor model and skewness of the latent ability
distribution. Factor models are principal component analysis (PCA, or
PC), exploratory factor analysis (EFA, or EA), and principal axis analysis

(PAA, or PA). Numbers 1, 2, and 3 stand for normal, slightly skewed,
and strongly skewed population latent ability values, respectively. The
panels are for the different sample sizes and numbers of underlying
factors.

results obtained based on latent variable models. This observation
may possibly be coined a general research program: whether gen-
uine statistical approaches (originally based on variables without a

measurement error) can work well, perhaps under specific restric-
tions to be explored, when latent variables are basically postulated,
seemingly more closely matching the purpose of analysis.
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Table 5 | Number of extracted dimensions for the PIRLS 2006 test

booklet number 4, German sample.

Extraction method Factor model

PCAa EFAb PAAc

Kaiser–Guttman criterion 6 6 6

Scree test 1 1 1

Parallel analysis method 1 4 4

aPCA, principal component analysis; bEFA, exploratory factor analysis; cPAA,

principal axis analysis.

Table 6 | Loading matrix for four factors exploratory factor analysis of

the PIRLS 2006 data for test booklet number 4, German sample.

Item Factor

1 2 3 4

R011A01CA,R 0.15 0.26 0.39 −0.05

R011A02MA,R 0.14 0.28 0.34 0.19

R011A03CA,R 0.16 0.24 0.09 0.03

R011A04CA,I 0.39 0.19 0.10 0.06

R011A05MA,R 0.22 0.08 0.19 0.21

R011A06MA,R 0.20 0.03 0.14 0.06

R011A07CA,R 0.50 0.20 0.22 0.15

R011A08CA,R 0.35 0.04 0.38 −0.09

R011A09CA,I 0.55 0.18 0.11 0.00

R011A10MA,I 0.28 0.27 0.22 0.11

R011A11CA,I 0.37 0.06 0.14 0.02

R021E01ML,R 0.08 0.45 0.19 −0.06

R021E02ML,R 0.02 0.49 0.09 0.24

R021E03ML,R 0.14 0.34 −0.02 0.02

R021E04ML,R 0.17 0.28 0.15 0.02

R021E05CL,R 0.22 0.23 0.32 0.12

R021E06ML,R 0.17 0.44 0.09 0.28

R021E07CL,I 0.13 0.06 0.48 0.22

R021E08ML,I 0.32 0.23 0.04 0.48

R021E09CL,I 0.45 0.24 0.02 0.20

R021E10CL,I 0.27 0.23 0.17 0.07

R021E11ML,I 0.00 0.01 0.06 0.40

R021E12CL,I 0.38 0.17 0.31 0.22

Factor loadings greater or equal 0.30 are highlighted.

A, Acquire and Use Information; L, Literary Experience; R, Retrieving and

Straightforward Inferencing; I, Interpreting, Integrating, and Evaluating.

7.2. OUTLOOK
We have discussed possible implications of the findings for
criterion-referenced tests and large scale educational assessment.
The assumptions of the classical factor models have been seen
to be crucial in these application fields. We suggest, for instance,
that the presented classical procedures should not be used, unless
with special caution if at all, to examine the factorial structure of
dichotomously scored criterion-referenced tests. Instead, if model
violations of the “sensitive” type are present, better suited or more
sophisticated latent variable models can be used (see Skrondal and

Table 7 | Loading matrix for four factors principal axis analysis of the

PIRLS 2006 data for test booklet number 4, German sample.

Item Factor

1 2 3 4

R011A01CA,R 0.15 0.26 0.40 −0.06

R011A02MA,R 0.14 0.29 0.33 0.18

R011A03CA,R 0.16 0.24 0.09 0.02

R011A04CA,I 0.38 0.20 0.10 0.06

R011A05MA,R 0.22 0.07 0.19 0.24

R011A06MA,R 0.19 0.02 0.14 0.07

R011A07CA,R 0.50 0.20 0.22 0.16

R011A08CA,R 0.36 0.03 0.38 −0.08

R011A09CA,I 0.54 0.19 0.12 0.00

R011A10MA,I 0.28 0.27 0.22 0.11

R011A11CA,I 0.38 0.07 0.13 0.02

R021E01ML,R 0.07 0.45 0.19 −0.06

R021E02ML,R 0.03 0.49 0.09 0.24

R021E03ML,R 0.14 0.33 −0.02 0.02

R021E04ML,R 0.17 0.26 0.16 0.04

R021E05CL,R 0.21 0.23 0.32 0.12

R021E06ML,R 0.17 0.44 0.08 0.27

R021E07CL,I 0.13 0.06 0.47 0.23

R021E08ML,I 0.32 0.24 0.05 0.46

R021E09CL,I 0.45 0.24 0.02 0.19

R021E10CL,I 0.27 0.24 0.17 0.06

R021E11ML,I 0.00 0.02 0.05 0.40

R021E12CL,I 0.38 0.17 0.30 0.22

Factor loadings greater or equal 0.30 are highlighted.

A, Acquire and Use Information; L, Literary Experience; R, Retrieving and

Straightforward Inferencing; I: Interpreting, Integrating, and Evaluating.

Rabe-Hesketh, 2004). Examples are item response theory paramet-
ric or non-parametric models for categorical response data (e.g.,
van der Linden and Hambleton, 1997). Furthermore, we would
like to mention item response based factor analysis approaches by
Bock and Lieberman (1970) or Christoffersson (1975, 1977). We
may also pay attention to tetrachoric or polychoric based struc-
tural equation models by Muthén (1978, 1983, 1984) and Muthén
and Christoffersson (1981).

As with factor analysis a general problem (e.g., Maraun, 1996),
we had to deal with the issue of rotational indeterminacy and
of selecting a specific rotation. We have decided to use varimax
rotation, due to the fact that this rotation is most frequently used
in empirical educational studies (for better interpretability of the
factors). Future research may cover other rotations (e.g., quarti-
max or equimax) or the evaluation of parameter estimation by
examining the communality estimates for each item (which are
not dependent on rotation, but are a function of the factor load-
ings). Moreover, the orthogonal factor model may not be realistic,
as factors are correlated in general. However, in the current study,
it may be unlikely that having non-zero population factor loadings
for correlated dimensions would substantially affect the findings.
In further research, we will have to study the case of the oblique
(non-orthogonal) factor model.
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The results of this paper provide implications for popular
research practices in the empirical educational research field. The
methods that we have utilized are traditional and often applied
in practice (e.g., by educational scientists), for instance to deter-
mine the factorial validity of criterion-referenced tests or to study
large scale assessment measurement instruments. In addition, to
consider other, more sophisticated fit statistics can be interesting
and valuable. For example, such model fit statistics as the root
mean square residual, comparative fit index, or the root mean
squared error of approximation may be investigated. Albeit these
fit statistics are well-known and applied in the confirmatory factor
analysis (CFA) context, they could be produced for exploratory
factor analysis (given that CFA and EFA are based on the same
common factor model).

We conclude with important research questions related to
the PISA study. In the context of PISA, principal component
analysis is used, in the purely computational sense. Other dis-
tributional, inferential, or confirmatory factor models, especially
those for the verification of the factorial validity of the PISA
context questionnaires, have not been considered. Interesting
questions arise: are there other approaches to dimensionality
reduction that can perform at least as well as the principal com-
ponent analysis method in PISA data (e.g., multidimensional

scaling; Borg and Groenen, 2005)? Is the 95% extraction rule in
principal component analysis of PISA data an “optimal” crite-
rion? How sensitive are PISA results if, for example, the parallel
analysis method is used as the extraction criterion? Answering
these and other related questions is out of the scope of the
present paper and can be pursued in more in-depth future analy-
ses. Nonetheless, the important role of these problems in the
PISA context is worth mentioning. The PISA procedure uses
not only manifest background information but also principal
component scores on complex constructs in order to assign lit-
eracy or plausible values to students. Future research is nec-
essary to investigate the effects and possible implications of
potentially biased estimates of latent or complex background
information on students’ assigned literacy values, and especially,
their competence levels, based on which the PISA rankings are
reported.
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