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During the course of history, the natural sciences have seen the development of increas-
ingly convenient short-hand symbolic devices for denoting physical quantities. These
devices ultimately took the form of physical algebra. However, the convenience of alge-
bra arguably came at a cost – a loss of the clarity of direct insights by Euclid, Galileo,
and Newton into natural quantitative relations. Physical algebra is frequently interpreted
as ordinary algebra; i.e., it is interpreted as though symbols denote (a) numbers and oper-
ations on numbers, as opposed to (b) physical quantities and quantitative relations. The
paper revisits the way in which Newton understood and expressed physical definitions
and laws. Accordingly, it reviews a compact form of notation that has been used to denote
both: (a) ratios of physical quantities; and (b) compound ratios, involving two or more kinds
of quantity. The purpose is to show that it is consistent with historical developments to
regard physical algebra as a device for denoting relations among ratios. Understood in the
historical context, the objective of measurement is to establish that a physical quantity
stands in a specific ratio to another quantity of the same kind. To clarify the meaning of
measurement in terms of the historical origins of physics carries basic implications for the
way in which measurement is understood and approached. Possible implications for the
social sciences are considered.
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According to definitions of measurement that have been adopted
in the social sciences, measurement involves the association or
assignment of numbers to entities. Definitions of this kind are
representational in nature. Perhaps the most influential is the def-
inition stated by Stevens (1946, p. 677): “measurement, in the
broadest sense, is defined as the assignment of numerals to objects
or events according to rules.” Michell (1999, pp. 15–19) has pro-
vided a compelling argument that,despite being incompatible with
the traditional conception of measurement in the natural sciences,
Stevens’ definition has been the model for many psychologists.
Accordingly, representational definitions have also been stated in
Item Response Theory, perhaps most notably by Lord and Novick
(1968).

The most elaborate attempt to connect measurement in the
social sciences to measurement in physics is found in the Founda-
tions of Measurement (Krantz et al., 1971) and preceding work. The
authors attempted to set out an axiomatic basis for measurement
that involves so-called representation theorems. In Volume 1 of
the Foundations of Measurement, Krantz et al. (1971, p. 1) charac-
terize measurement as follows: “When measuring some attribute
of a class of objects or events, we associate numbers . . . with
the objects in such a way that the properties of the attribute
are faithfully represented as numerical properties.” The Founda-
tions essentially takes the use of convenient short-hand symbolic
devices to an extreme whereby the symbols of physical algebra are
interpreted as though they refer only to numbers and their oper-
ations. The axioms of the representational theory refer either to
qualitative relations or numerical properties, but not directly to
quantitative attributes. In this way, the formal aspect of the the-
ory is kept distinct from reference to qualitative empirical content.

Consistent with this, Michell (1999, p. 208) has said of the repre-
sentational school: “For the most part, Suppes, Luce, and their
associates avoided (this concept of quantity) in treating mea-
surement.” Kyburg (1996) and Berka (1983) put forward related
observations and criticisms of the representational theory.

In contrast with representational theory, Michell has brought
attention to what he refers to as the classical theory of measure-
ment: “scientific measurement is properly defined as the estima-
tion or discovery of the ratio of some magnitude of a quantitative
attribute to a unit of the same attribute” (Michell, 1997, p. 358).
In this definition, quantitative attributes are given an ontological
status and a ratio between magnitudes of quantities is taken to be
a real number.

This classical theory is frequently assumed in physics and
metrology. In metrology, the Bureau of Weights and Measures
(BIPM) claims a mandate to maintain world-wide uniformity of
measurements and their traceability to the International System of
units (SI). The BIPM implicitly adopts the classical definition in its
definition of a unit: “Thus, a measurement unit is a scalar quantity,
defined and adopted by convention, with which any other quan-
tity of the same kind can be compared to express the ratio of the
two quantities as a number” [Bureau International des Poids et
Mesures , BIPM, p. 24].

Galileo, Newton, and other pioneers expressed physical rela-
tions as proportionalities among ratios of physical quantities. As
will be seen, the classical theory of measurement is more closely
connected with the origins of physics than is the representational
theory by virtue of its reference to the concept of ratio.

This paper is structured as follows. It begins with a focus on the
genesis of physics and, in particular, the Greek-inspired tradition
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of understanding physical relations in terms of proportion and
ratio. It then provides an overview of increasingly convenient
abbreviations that were used for proportionality statements, which
led to a subsequent divergence of thought in the form of the clas-
sical and representational views of measurement. It is argued that
the use of increasingly abstract and abbreviated statements came
at a cost to the directness of insights into natural relations. Next,
a compact form of notation is used to denote ratios, compound
ratios, and proportionalities among ratios; and this notation is
employed to show a parallel between algebra and proportionality
statements. The concept of a compound ratio is then explained
and it is shown that although compound ratios have a formal sim-
ilarity with multiplication, they have a distinct conceptual basis.
Lastly, the most basic implications for measurement in physics
are explained, and implications for the social sciences are briefly
considered.

PROPORTION AND RATIO IN GEOMETRY AND CLASSICAL
PHYSICS
Historically, the pioneers of classical physics, from Galileo to New-
ton and Faraday,expressed physical relations as the proportionality
of ratios of two or more kinds of quantities. Newton made exten-
sive use of geometrical lines to denote quantities such as forces
(Newton, 1846; Roche, 1998). In the Principia, he repeatedly
referred to quantities as being either proportional or inversely pro-
portional to one another in dynamical physical situations. Thus,
Newton said:

If in comparing indetermined quantities of different sorts
one with another, any one is said to be as any other directly
or inversely, the meaning is, that the former is augmented
or diminished in the same ratio with the latter, or with its
reciprocal (1846, p. 100).

As an example, if a force f is augmented to become f′, and the result-
ing acceleration of a body a is augmented to become a′, then f: f′

may be in the same ratio as a: a′. Newton here employs Euclid’s use
of “in the same ratio” to describe proportionality. Coulomb and
Faraday also referred in this way to quantities as being proportional
or inversely proportional to one another (Silsbee, 1962).

SYMBOLS FOR NUMBERS IN PHYSICO-MATHEMATICS
Proportion and ratio were central to Euclid’s Elements. In the
Greek-inspired tradition of proportion and ratio, ratios were not
conceived as being literally equal to numbers. Rather “[r]atio
belonged . . . to the category of relation and was not a simple quan-
tity or a single number” (Roche, 1998, p. 46). Ratios were therefore
not even conceived as being literally equal to one another. In his
historical analysis of Euclid, Grattan-Guinness (1996) observes:
“While he speaks of the equality of numbers and of magnitudes,
Euclid never says that ratios are “equal” to each other, only that
they are “in the same ratio”, or that one ratio “is as” the other in a
proportion proposition.

Not surprisingly, therefore, the idea that a ratio could be
denoted by a single number – referred to as either its exponent
or denomination – met with considerable resistance at a certain
time in history. In the long run, however, “[t]he slowly growing
claim to represent all ratios by numbers gradually brought about a

merging of the concept of ratio as a single number” (Roche, 1998,
p. 76). This merged concept is evident in the classical theory (or
definition) of measurement.

Because representational definitions predominate in the social
sciences, it is instructive to understand developments in physico-
mathematics that allowed these definitions to emerge. The route
from the origins of physics to the modern-day representational
conception appears to be roughly as follows. First, physical rela-
tions were expressed, in words and with geometric analogies, as
ratios and compound ratios. Newton followed in this tradition
and employed the notational identification of lines with physical
quantities, such that the lengths and directions of lines denoted the
magnitudes and directions of the quantities. Roche (1998, p. 89)
summarizes this and ensuing historical development as follows.

This was not a reduction of the physical to a line . . . But it
was the notational identification of the two concepts. It was
extremely convenient, of course, since all of the operations of
geometrical algebra could now be applied to these concepts
without the restrictions imposed by a proportionality sym-
bolism which referred directly to the natural quantity. This
identification eventually passed from lines to numbers and
even to the formal symbol itself which stood for the physical
quantity.

Later, Laplace interpreted symbols in physical equations as rep-
resenting “numbers abstracted from well-defined procedures of
measurement” (Roche, 1998, p. 138). This was a critical departure
because once numbers were seen as abstracted and independent
of the empirical world, it became possible to construe the pur-
pose of measurement as being to represent empirical entities with
numbers; i.e., it became possible for the representational view
to emerge. Michell (1993) details later developments and argues
that Russell’s (1903) was the first explicitly representational theory
of measurement. Representational theorists themselves provide a
largely different account with an emphasis on events that occurred
in the late eighteenth and early nineteenth centuries (Diez, 1997;
Luce and Suppes, 2002).

DIVERGENCE OF VIEWS OF MEASUREMENT
Roche (1998, p. 138) argues that the view that only “abstract
numbers can appear in the algebra of physics reflects, perhaps,
a response to the classical tradition of dealing with physical quan-
tities itself rather than its measure, and the need to distance the
algebra of physics from the manipulations of such quantities.” It
is perhaps not surprising then that there was subsequently a diver-
gence in the way in which the abstracted numbers were interpreted,
which continues today. In the classical view, as defined by Michell
(1993), ratios are numbers. This view preserves a key aspect of
the Greek tradition but incorporates the use of an abbreviation,
as explained to follow. In the representational view there is no
connection to ratios, as summarized in the following excerpt.

Essentially, then, there are two features dividing the classi-
cal and representational theories of measurement: the role
of ratios of quantities and the place of numbers. Accord-
ing to the classical theory, these two are logically connected:
ratios of quantities are numbers, and this fact is the basis
of measurement. According to the representational theory,
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numbers do not derive from ratios of quantities. They are
quite independent of them and the place of numbers in mea-
surement is determined by the structural similarity between
qualitative and quantitative systems. Hence, according to the
representational theory, numbers are assigned to empiri-
cal entities in measurement. According to the classical the-
ory, numbers are discovered as relations between empirical
entities in measurement (Michell, 1993, p. 190).

Despite the emergence of the representational view, the classical
view continues to exist in physics. Why did the abstract algebraic
view not supplant the classical one entirely? It would be somewhat
surprising if proportionality statements used in the conception of
physics were less apt to describe natural relations than algebra,
which was applied later. It seems more likely that the convenience
of short-hand devices was the principal reason for their increasing
usage. It has been argued, though, that the convenience of physical
algebra came at the cost of explicit attention to key features of
physical relations, as characterized in the following excerpt.

Several key features of this Greek-inspired tradition . . .

deserve careful attention. Pairs of like magnitudes are com-
pared with other pairs which are often physically different,
such as pairs of weights with pairs of distances in the theory of
the balance. This is very different from the modern algebraic
language of physics which compares single values of different
quantities. Furthermore, a proportionality statement seems
to be a little closer to describing the natural relation than does
the language of algebra (Roche, 1998, p. 47).

The two lines of thought continue to be evident today such that the
algebra and arithmetic of physics seem to be “interpreted formally
in some contexts and physically in others” (Roche, 1998, p. 222).

RECONCILING MODERN PHYSICAL NOTATION WITH ITS
ORIGINS
How, then, might we reconcile the modern reference to the equal-
ity of ratios and numbers in physics with its origins? Krantz
et al. (1971, p. 459) observed: “Most texts on dimensional analy-
sis appear to take (physical) algebra for granted, and they do not
attempt to formulate explicitly what is involved.”While this is true
enough, by using appropriate notation it is possible to explicitly
formulate proportionality statements in a way that shows a clear
and direct parallel with modern-day algebraic notation.

Newton’s statement of the second law of motion is used to illus-
trate this parallel. Newton (1846, p. 83) stated the second law as fol-
lows: “The alteration of motion is ever proportional to the motive
force impressed; and is made in the direction of the right line in
which the force is impressed.” Here, motion refers to what is now
commonly referred to as momentum. We may express Newton’s
second law as a formal proportionality statement, as follows:

f′ : f :: p′ : p, (1)

where f and p refer to the force impressed upon a body at a given
moment in time and the resulting momentum of the body, and
f′ and p′ refer to the force impressed at another moment on the
same body and its resulting momentum, respectively. In state-
ment (1) “::” means “is as” or “is proportional to.” The alteration

of momentum is therefore expressed by the ratio p′: p and is pro-
portional to the alteration to the motive force, f′: f. The notation
“::” was used by Wallis (1685). Given the objectives of the paper,
it ought to be noted that statement (1) is already an abbreviated
form of a proportionality statement that omits reference to key
elements of the full statement of the law by Newton in words, such
as the nature of causality through reference to a force impressed
upon a body.

As stated earlier, Euclid did not refer to ratios as being equal
to one another. Similarly, Newton did not refer to any equality in
his statement of the law. Accordingly, it is appropriate to refer to
(Eq. 1) as the statement of a physical law rather than an equation
because it does not state that terms are equal, numerically, or in any
other sense.

Clearly, though, physical algebra is now successfully used for
used for both applied and theoretical purposes; and modern equa-
tions must be compatible with their origins. The chosen example
can be used to show this compatibility.

Newton’s Second law is typically stated algebraically as:

F = m a, (2)

where p=m a or, as Newton (1846, p. 72) put it: “The quantity of
motion [momentum] is the measure of the same, arising from the
velocity and quantity of the matter conjointly.”

To see the parallel between statement (1) and Eq. 2, we can
express the terms as ratios between magnitudes and a unit as
follows:

f′ : [f] :: m′ : [m] · a′ : [a] , (3)

where F = f′:[f],m=m′:[m] and a= a′:[a]. Here [f], [m], and [a]
are taken to be a unit of force, mass, and acceleration respectively.
The term “.” signifies that the two ratios are compounded in the
sense of the term used by Euclid in geometry, and later by Galileo
(1638) to express complex physical relations. The concept of com-
pounding ratios to express complex ratios will be explained to
follow.

Clearly, Eq. 3 and statement (1) share a similar form, with “=”
in Eq. 3 substituted for “::” in statement (1) and algebraic multipli-
cation used in Eq. 3 in place of compounding in statement (1). The
additional step (which would not have been taken by Euclid) of let-
ting F = f′:[f], and so on, equates ratios with numbers. This step is
commonly invoked in metrology. Wallis (1670) made precisely this
step, from “::” to “=,” although Roche (1998, p. 99) states that “pas-
sages elsewhere in Wallis strongly suggest that he interpreted this
expression, not as a true algebraic equation, but as an abbreviated
ratio equation which related a compound ratio to a simple ratio.”

COMPOUND RATIOS IN PROPORTIONALITY STATEMENTS
It appears that the term compound ratio is not explicitly defined
historically in most sources, other than through reference to spe-
cific examples. Where two ratios are compounded, the second
quantity of the first ratio is the first quantity of the second ratio,
and the compounded ratio is that of the first to the last quantity.
The historical roots of compounding are likely in the physics of
music, where it is possible to compound two musical intervals to
obtain a given ratio (Grattan-Guinness, 1996).
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Galileo was able to use compound ratios by making one ratio
of lengths proportional to two speeds, and another ratio of lengths
proportional to two time intervals. By compounding the two ratios
of lengths (first to second with second to third) he demonstrated
that the distances of bodies, with different velocities traveled in
different time intervals,“bear to each other the compound ratio of
the speeds and time intervals” (Galileo, 1638, p. 194). Analogous
reasoning can be employed to demonstrate the proportionality in
Eq. 3 follows from Newton’s law. The following emulates Galileo’s
reasoning.

Consider a body A subjected to a force fA to accelerate the body
at aA . Consider also a body B subjected to a force fB to acceler-
ate the body at aB . The proposition to be demonstrated is that the
ratio of fA to fB is the compound ratio of masses and accelerations.
The proposition can be demonstrated in two stages with reference
to Newton’s law.

First, consider the proportionality

fA : F :: mA : mB . (4)

Since the ratio of forces required to accelerate two bodies at the
same acceleration is proportional to the ratio of the masses of
those bodies, and since fA moves body A with acceleration aA , it
follows that F is the force required to move body B having mass
mB with acceleration aA .

Second, consider also the proportionality

F : fB :: aA : aB . (5)

Since the ratio of forces required to accelerate a single body at two
differing accelerations is proportional to the ratio of those accel-
erations, and since F is the force required to move body B with
acceleration aA , it follows that fB is the force required to move
body B with acceleration aB .

It is thus shown that the proposition of a compound ratio holds.
The logic is as follows. Suppose we were to think of the change in
force from that required to accelerate body A at aA to that required
to accelerate body B at aB through an intermediate stage. In the
first stage, using Newton’s terminology, fA is augmented (or dimin-
ished) by a particular amount to become F and the alteration of
force is such that fA :F is proportional to mA :mB . In the second
stage, F is augmented (or diminished) to become fB and the alter-
ation of force is such that F:fB is proportional to aA :aB . That is, the
first and last forces stand in the ratio fA :fB and the combination
of stages is abbreviated as the compound ratio fA :F·F:fB . Com-
pounding thus refers to the relation between an initial and final
quantity through their relations with a common or intermediate
quantity.

The proportionality of the ratio of forces to the compound
ratio can be stated directly as follows:

fA : fB :: fA : F · F : fB . (6)

The proportionality of the ratio of forces can also be stated “indi-
rectly”in terms of the compound ratio of masses and accelerations,
as follows:

fA : fB :: mA : mB · aA : aB . (7)

In statement (7), again the force can be thought of as though it
changes through an intermediate stage. In the first stage, the alter-
ation of force (from fA to F) is proportional to mA :mB and in
the second stage the alteration of force (from F to fB) is propor-
tional to aA :aB . The combined alteration is from fA to fB . It is not
necessary, of course, that there is an actual process by which the
forces change through successive stages. Instead, statement (7) is
intended to summarize the complex set of relations among the
ratios of forces, masses, and accelerations. In effect, statement (7)
is no more or less than an abbreviation for the full line of reasoning
used to demonstrate that the proposition holds.

As such, “Euclid’s method of compounding ratios is not at all
the same as multiplication, although the two theories exhibit struc-
tural similarity” (Grattan-Guinness, 1996, p. 362). The structural
similarity is evident by comparing statement (7) with the equation
F =m× a given the modern tendency to think of ratios as single
numbers. Physical algebra is thus a further abbreviation for the
full line of reasoning. Provided a coherent system of units is used
there is a direct parallel between proportionality statements and
physical algebra, as discussed next.

METROLOGICAL RULES FOR MULTIPLYING QUANTITIES
It is common in metrology to treat ratios as pure numbers. If the
ratios in statement (7) are treated as numbers, multiplication of
measurements yields a result that agrees with the law, but only
if coherent units are used. A coherent system of units is one in
which units are defined so as to avoid introducing multiplica-
tive constants that are regarded as “superfluous” (e.g., constants
of the kind required to convert imperial to metric). Provided
that units from a coherent system of units are used, many of
the equations of physics can be understood as short-hand sym-
bolic devices for proportionality statements involving compound
ratios. In particular, it is possible to understand the equations
of physics that are invoked in definitions of SI units this way.
However, it is only by virtue of a coherent body of physical rela-
tions that a coherent system is possible in the first place (de Boer,
1994/95).

Following from this point, coherent units are defined using
these equations in combination with the metrological “rule” that
“the value of the product of the values of two concrete quantities,
in a given system of measurable quantities and units, is the prod-
uct of their numerical values and a unit of the new quantity, if
such a realizable quantity can exist” (Emerson, 2008, p.136). In the
past, the connection between this rule and its historical origins was
recognized. As stated by Roche (1998, p. 108): “Throughout the
seventeenth and eighteenth centuries the product or division of
physical quantities was often understood as an abbreviated state-
ment of a compound ratio.” The example of Newton’s second law
of motion therefore illustrates the general connection between
modern algebraic expression and the historical origins of physical
science.

It would be interesting to consider the ontological and empiri-
cal basis for the concept of the proportionality of ratios. However,
to do so is well beyond the scope of this paper. It suffices here to
emphasize that physical relations were first conceived as propor-
tionalities among ratios and that this conception therefore seems
to warrant careful consideration.
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MODERN-DAY MEASUREMENT IN PHYSICS
We are now in a position to consider the implications of the histor-
ical and conceptual analysis for the way in which measurement is
understood today. Direct measurement is considered first because
without it, there would be no indirect measurement. Indirect
measurement is then considered.

Direct measurement establishes the proportionality between
a ratio of continuous quantities and a ratio of discrete quanti-
ties. For example, we may establish that the ratio of a length L to
unit length [L] is proportional to the ratio of r wavelengths to a
single wavelength, as expressed in the following proportionality
statement:

L : [L] :: r < wl > : < wl > , (8)

where <wl> refers to wavelength and [L] is a unit of length.
[The use of <> to denote a discrete entity is notation adopted
by Cooper and Humphry (2012) to be compatible with the con-
vention in metrology of denoting units of continuous quantities
using square brackets]. In practice, for instance, it is possible to
establish the ratio of a distance to a single wavelength by using
an instrument, such as an interferometer, that makes it possible to
count the number of wavelengths of light spanning the distance
to be measured.

The above example of direct measurement is particularly rel-
evant to the SI because the base units of distance and time are
currently defined in terms of wave phenomena, and there is a
proposal to define the kilogram in terms of the Planck relation
in the future (Mills, 2010). The prototypical examples of direct
measurement used by Krantz et al. (1971) involve the formation
of a “standard series” as obtained, for example, by concatenating
rods of equal length. A standard series can be used to establish
a proportionality such as L:[L]::r<d>:<d>, where d refers to
a rod. It is stressed that there must be a clear substantive basis
for establishing that ratios of continuous quantities are propor-
tional to ratios of discrete quantities, such as the concatenation
of bodies to give a combined mass, or the mixing of volumes
of substances with different temperatures in a specific man-
ner to give an intermediate temperature (Kyburg, 1984; Sherry,
2011).

As we have seen, there was long ago a merging of the con-
cept of ratio and number. It is customary now to treat the ratio
r <wl>:1 <wl> as the number r. Following this trend, and using
“=” instead of “::,” statement (8) will typically be expressed as the
equation L:[L]= r, according to which the ratio of lengths is equal
to a real number. The classical theory is therefore premised on an
abbreviation of the manner in which proportionality of ratios of
continuous quantities to ratios of discrete quantities was originally
understood.

In metrology, most units within the International System (SI)
are defined in a way that involves laws and/or definitions, and with-
out directly involving relations between continuous quantities and
discrete quantities. Measurement approached in this manner was
referred to by Kyburg (1984) as indirect and/or systematic mea-
surement and is effectively what Campbell (1928) referred to as
derived measurement.

Indirect measurement is exemplified by the definition of the
unit of force. Maxwell (1876, art. SLVII) said that “the unit of
force is that force which, acting on the unit of mass for the unit of
time, generates the unit of velocity.” The SI unit of force, the new-
ton, is also defined in precisely this way. The definition is based on
Newton’s second law of motion, which can be expressed in terms
of SI units using the following proportionality statement:

f′ : N :: m′ : kg · a′ : a, (9)

where N is the newton, kg is the kilogram and a is the unit of
acceleration, 1 m per second, per second. Using indirect measure-
ment, it is possible to establish a ratio between a magnitude, such
as f′, and a unit, such as the newton, by using an instrument and
procedure designed for the purpose. Any such instrument must
be designed on the basis of physical relations that include, but
are not limited to, that relation used to indirectly define the unit.
In the chosen example, the instrument will typically be designed
such that a force acts on a mass to accelerate it under controlled
conditions.

IMPLICATIONS FOR THE SOCIAL SCIENCES
A detailed analysis of the possible implications for the social sci-
ences is beyond the scope of this paper. Nevertheless, it is possible
to touch on some pertinent considerations and to make some
preliminary observations.

One obvious question that might be asked is whether it is
possible to understand psychological phenomena in terms of pro-
portionality and ratio analogous to the manner in which physical
relations are understood. Do psychological attributes exist that are
proportional to one another under specific conditions? Do psycho-
logical attributes exist that are proportional to physical attributes
under specific conditions? If the answer to either question were
yes, it could provide a basis for the measurement of psychological
attributes through indirect measurement.

It may be more fertile to begin, however, by asking a rather dif-
ferent question: are there psychological faculties for recognizing
ratios and proportionality? It seems that such faculties must exist,
for physical ratios are grasped by perception through acquain-
tance with physical phenomena. It is not likely that human beings
could perceive ratios as a basic kind of relation, and successfully
develop physics on this basis, without any sort of sensory and
mental apparatus for doing so.

A simple example showing humans likely possess such a faculty
is the horizon-ratio relation, which applies to vertically extended
objects such as trees and poles. The horizon-ratio is the ratio of
the proportion of the object’s height seen above the horizon to
the proportion of the object’s height seen below the horizon. Irre-
spective of the distance from an observer, this ratio is the same
for any object of the same height (Sedgwick, 1973; Gibson, 1986;
Rookes and Willson, 2000). Thus, for example, if a series of light
poles of equal height extends toward the horizon, an observer will
see the same ratio of the proportion of height above to below the
horizon for each pole. There is evidence that people do draw upon
this relation, whether the actual horizon or an implicit horizon is
used as the reference (Bermanini et al., 1998). The more general
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prediction that can be made is that humans directly perceive and
respond to ratios, and proportionalities of ratios, in ways that are
relevant to functional and goal-oriented actions and responses.
This would be significant for psychophysics because it means
focusing on how humans perceive physical relations involved in
functional behavior as much as focusing on sensory responses to
stimuli, which has been the major focus of the discipline through
its history.

Although there is a complex divergence of views, historically
psychophysics has focused in particular on posited relationships
between physical stimuli and sensations, where the latter are taken
to be quantitative attributes. It was observed some time ago,
however, that a human capacity to directly perceive and esti-
mate ratios is a parsimonious explanation for empirical results
in psychophysics, as follows.

Why must we suppose that [a person] bases his estimates of
physical ratios on estimates of psychological ratios? Why is
the following explanation not sufficient? [The person’s] eyes
are normal and he has learned how rods look when they
stand in the ratio 1:2; hence when he looks at rods he can say
with some accuracy whether or not they stand in that ratio
(Savage, 1970, p. 383).

If humans possess faculties by which to perceive and function-
ally respond to physical ratios, another possible avenue becomes
available. It may be fruitful to study sensory and perceptual
apparatus much as we might study a complex set of measuring
instruments. Such an approach essentially occurred during the
course of early endeavors to measure the intensity of light. In
that context, a “central problem concerned the basing of stan-
dards of brightness on highly variable human observers, and on
the complex mechanism of visual perception.” (Johnston, 2001,
p. 7) Indeed, much existing psychophysics can be understood
from this perspective, without needing to refer either to sensory
magnitudes or the representation of psychological attributes by
numbers. It would, however, seem preferable to consider ways
in which estimates are implied by functional responses, for there
is no reason humans should have evolved the ability to verbally
report ratios of any given kind of quantity under a given set of
conditions.

DIRECT AND INDIRECT MEASUREMENT IN THE SOCIAL SCIENCES
The question considered earlier is whether it is possible to
understand psychological phenomena in terms of proportionality
and ratio. To be consistent with the origins of quantitative sci-
ence, the challenge is to either directly or indirectly measure a
posited quantitative psychological attribute by establishing such
proportionalities.

The possibility or otherwise of direct measurement in
psychology has been debated for some time, perhaps most notably
as part of the deliberations of the Ferguson Committee (Ferguson
et al., 1940). Stevens attempted to circumvent these implica-
tions. Krantz et al. (1971) sought to provide an axiomatic basis
for measurement that avoids the need for empirical concate-
nation operations. The axiomatic representational approach is
premised on the idea that a theory of measurement is required

to successfully measure an attribute in psychology. History shows,
however, that physics did not progress based on application of
representational measurement theory. The historical analysis in
this paper indicates that physical theory, originally expressed in
terms of proportionality and ratio, forms the foundation for
measurement. Consistent with this, it is clearly evident from
applied metrology that substantive theory is used to design instru-
ments and procedures (Hebra, 2010, p. 7). This dependence of
measurement in physics on substantive theory is also explicitly
reflected in the definitions of units in the SI (de Boer, 1994/95;
Massey, 1971; Emerson, 2004; Humphry, 2011a). Thus, Krantz
et al. (1971) advocated an approach to measurement in the social
sciences that differs from the approach taken in physics in that
they invoked “theories different from those that have worked in
physics” (p. 17).

Although the representational theorists allow that the measure-
ment of some quantities can be based on physical law, Krantz
(1972) claimed that the “measurement of physical quantities such
as length, mass, and duration is logically prior to the formu-
lation of the quantitative laws of physics.” It has been seen,
however, that the SI units of length and duration are defined in
terms of physical theory and law, and that there is a proposal
to define the unit of mass in terms of a physical relation. The
definitions of SI units are based on physical quantitative rela-
tions involving the relevant kinds of quantities, consistent with
the historical mode of expressions of relations in physical sci-
ence. These definitions have a related mise en pratique (a set of
applied instructions) for measuring in the units based on the def-
initions. This means it is possible to approach the measurement
of these quantities by using theory, definition, and law to design
measuring instruments and procedures. Even putting aside the
question of whether the measurement of quantities such as mass
can be approached in this fashion, the measurement of length
can be achieved based on wave phenomena without recourse to
concatenation operations. Length measurement was used as the
prototypical case in setting up the foundations. It is therefore
by no means clear whether the measurement of physical quan-
tities such as length based on concatenation operations is logically
prior to the formulation of quantitative laws. Instead, it remains
possible that the measurement of most, if not all, physical quan-
tities can be approached on the basis of understanding physical
relations.

Thus, it has been the case that in attempts to connect psychology
to fundamental measurement as defined by Campbell (1928, p.
14), direct measurement based on concatenation or an analo-
gous operation has received the most attention (without success,
at least to date). Much less attention has been given, at least
explicitly, to what Kyburg (1984, p. 143) referred to as “systematic
measurement” as a primary mode of approaching measurement.
Systematic measurement involves quantities that are systematically
related within a theoretical framework. It would be somewhat sur-
prising if a quantitative attribute existed in psychology that did not
have a relationship with any physical attribute. It seems more likely
instead that quantitative psychological attributes would be related
to (or an extension of) physical quantities, which would make it
reasonable to refer, as Berka (1983, p. 13) did, to “extraphysical
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measurement.” To the extent that this assumption is correct, sys-
tematic, and indirect measurement would seem more likely to
succeed.

It is simple enough to posit quantitative relations in the social
sciences that are analogous in purely formal terms with those that
form the basis for measurement in physics (see Humphry, 2011b).
Typically, though, one of a few problems exists. In some cases,
posited relations involve only continuous quantities and there is no
footing in direct measurement. In other cases, discrete quantities
are involved but there is no clear and transparent explanation for
the proportionality of ratios of continuous quantities and ratios
of discrete quantities (although possible exceptions exist in Psy-
chophysics and Economics). In other cases still, exponential and
logarithmic relations are invoked in a manner that entails a dis-
junction with the origins of physics. The challenge is to ascertain
whether there is a productive approach to systematic measurement
that avoids such problems.

SUMMARY AND CONCLUSION
It has been seen that following the Greek-inspired tradition, pio-
neers of physics such as Galileo, Newton, Coulomb, and Fara-
day explicitly stated physical relations as proportionalities among
ratios. In this tradition, ratios were seen as being in the category
of relation. Because it centers on this concept of ratio, the classical
definition of measurement is more congruent with the origins

of quantitative sciences than the representational theory. During
a certain period of history, though, numbers were used to rep-
resent ratios and lines and eventually it became commonplace
to interpret symbols in physical equations as numbers. Alge-
bra emerged as a short-hand abbreviation of proportionalities
among ratios. These and other developments paved the way for
the emergence of the representational view of measurement.

A compact form of notation was used to show the parallel
between the Greek-inspired tradition and modern algebra. This
parallel is seemingly the reason that the classical view of mea-
surement continues to exist alongside the representational view in
physical sciences. However, in the social sciences, representational
definitions predominate. The likely reason for this is the failure to
establish a basis for measurement that is directly connected to its
origins in physical science.

Understood in light of the origins of physico-mathematics, the
objective of measurement is to establish that quantities stand in a
specific ratio to one another. This objective can be approached by
a combination of direct and indirect measurement. If something
akin to indirect measurement is invoked, a basic challenge for the
social sciences is to establish a clear footing in direct measure-
ment. A more immediate avenue to approaching measurement in
the social sciences is to advance our understandings of the ways
in which humans perceive and functionally respond to ratios and
proportionalities among ratios.
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