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Several recent studies have demonstrated that addicts behave less flexibly than healthy
controls in the probabilistic reversal learning task (PRLT ), in which participants must grad-
ually learn to choose between a probably rewarded option and an improbably rewarded
one, on the basis of corrective feedback, and in which preferences must adjust to abrupt
reward contingency changes (reversals). In the present study, pathological gamblers (PG)
and cocaine dependent individuals (CDI) showed different learning curves in the PRLT. PG
also showed a reduced electroencephalographic response to feedback (Feedback-Related
Negativity, FRN) when compared to controls. CDI’s FRN was not significantly different
either from PG or from healthy controls. Additionally, according to Standardized Low-
Resolution Electromagnetic Tomography analysis, cortical activity in regions of interest
(previously selected by virtue of their involvement in FRN generation in controls) strongly
differed between CDI and PG. However, the nature of such anomalies varied within-groups
across individuals. Cocaine use severity had a strong deleterious impact on the learning
asymptote, whereas gambling intensity significantly increased reversal cost. These two
effects have remained confounded in most previous studies, which can be hiding important
associative learning differences between different populations of addicts.
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INTRODUCTION
Response-outcome association learning tasks have been widely
used to explore the cognitive and biological underpinnings of
neuropsychiatric disorders (e.g., Everitt et al., 2001; Clark et al.,
2004; Redish et al., 2007). The probabilistic reversal learning task
(PRLT ; Swainson et al., 2000) is a dynamic decision-making test
(Hastie and Dawes, 2009) in which participants must learn to
choose between two response options, one frequently rewarded
(and infrequently punished), and the other infrequently rewarded
(and frequently punished). Payoffs are administered in the form
of real or play money, or virtual points. Once preferences are sta-
ble, reward/punishment contingencies reverse, in such a way that
the advantageous option becomes disadvantageous, and vice versa,
and learners must retune their preferences in accordance with the
new contingencies.

Addicted individuals (and patients from other psychopatholog-
ical and neurological populations) have been observed to display
abnormal performance patterns in the reversal learning task. Some
types of patients are slower than normal to readjust their prefer-
ences after a reversal. This increased reversal cost has been inter-
preted as a sign of goal-disengaged, habit-driven, error-insensitive,
or perseverative behavior (Clarke et al., 2005, 2008). In other cases,
pre-reversal learning asymptote has been observed to be abnor-
mally low (e.g., Fernández-Serrano et al., 2012), or abnormally
high (e.g., Verdejo-García et al., 2010). Although in many studies
pre-asymptotic and asymptotic effects have not been dissociated

(see Tsuchida et al., 2010; Torres et al., submitted; for similar
arguments), there is broad consensus that the sort of dynamic
decision-making processes involved in reversal learning tasks is
crucial to understand the neuropsychology of addictive disorders
(Ersche et al., 2008; Camchong et al., 2011; Izquierdo and Jentsch,
2012; Leeman and Potenza, 2012; Lucantonio et al., 2012). As also
shown in this work, reversal learning tasks tackle on the type of bal-
anced feedback sensitivity and learning flexibility that are needed
for adaptive decision making in real life.

In spite of that, abnormal PRLT performance patterns do not
seem to fully generalize across addictions. Separate sources of evi-
dence seem to show that heavy gambling is preferentially linked
to the increase of reversal cost (de Ruiter et al., 2009), whereas
cumulative toxicity of cocaine generates more unspecific perfor-
mance deviations and, particularly, less accurate decision making
once asymptotic learning has been reached, prior to contingency
reversal (accompanied by working memory and planning dysfunc-
tion; Fernández-Serrano et al., 2012). In a recent review, Leeman
and Potenza (2012) have integrated these independent pieces of
evidence, and have concluded that increased reversal costs are
more frequent and robust in pathological gamblers (PG) than in
drug-dependent individuals (see also Ersche et al., 2008).

The present study focuses on the coincidences and divergences
between gambling and cocaine addiction, with regard to the anom-
alies they generate in reversal learning performance. A sample of
cocaine dependent individuals (CDI) was compared against one
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of pathological gamblers (PG), and a group of matched healthy
controls (HC) in a reversal learning task, at the behavioral and the
electroencephalographic levels. To our knowledge, only two stud-
ies have directly compared cocaine users against PG in a battery
of personality and neuropsychological tests (Albein-Urios et al.,
2012a; Torres et al., 2013). However, no studies have directly com-
pared matched groups of patients with the two disorders, between
them and against a group of HC, in the PRLT.

There are several reasons to jointly study PG and CDI samples,
but also to draw conclusions with some caution. First, parallelisms
between these two addictions have been known for a long time.
Some studies have found behavioral similarities, high comorbidity
rates, and a partially common neurobiological and genetic etiol-
ogy (see Hall et al., 2000; Potenza, 2008). For example, prospective
family studies have observed that the percentage of future gam-
blers among children of gamblers doubles the population baseline
(8 versus 4%). And, in parallel, children of gamblers tend to show
a preference for stimulant drugs, so that the proportion of future
cocaine users among children of gamblers doubles the population
baseline (10 versus 5%; Jacobs et al., 1989). Complementarily, in a
sample of 298 treatment-seeking cocaine abusers, Steinberg et al.
(1992) found a prevalence of pathological gambling approximately
10 times larger than the rate of gamblers found in community
samples.

As noted by Albein-Urios et al. (2012a),“the two disorders have
also notable similarities in terms of subjective effects, reinforcing
schedules, and temporal patterns of consumption [. . .]. In these
respects, cocaine addiction is arguably more similar to pathological
gambling than other forms of drug dependence.” Moreover, direct
experimental evidence shows that a game of chance can serve as
an alternative reinforcer to smoking cocaine (Vosburg et al., 2010).

Second, these similarities seem to indicate that a comparison
between PG and CDI could be helpful to disentangle vulnerability
and toxicity effects of cocaine use in group comparison studies.
This argument is based on the assumption that the neurobehav-
ioral anomalies observed in PG samples are equivalent to those
found in CDI samples minus the neurotoxic effects of cocaine.
Still, this rationale is problematic, as far as it assumes that gambling
does not have a cumulative impact on brain function (an assump-
tion that goes against current evidence; see Robinson and Berridge,
2003; van Holst et al., 2010). Mere between-groups comparisons
do not strictly allow such a type of conclusions.

And third, although only prospective and longitudinal stud-
ies can strictly discriminate vulnerability from cocaine/gambling
exposure factors, studies comparing samples of addicts against
HC can be informative if they meet some criteria. On the one
hand, although complete matching between samples is virtu-
ally unattainable, it is important to select samples carefully.
They must be completely separated in terms of key addic-
tive behaviors (gamblers do not use cocaine, cocaine users do
not gamble, and controls neither gamble nor use cocaine), and
matched in terms sociodemographic variables, intellectual func-
tioning, and absence of any other psychiatric disorders. And, on
the other hand, chronic exposure to cocaine/gambling must be
estimated on an individual basis. In this type of studies, the
degree of exposure can be measured only retrospectively, but
there exist interview-based methods to approximate it. These

methods allow for the estimation of exposure-dependent effects
on neurobehavioral anomalies (Verdejo-García et al., 2005). Esti-
mation of exposure-dependent effects can help us to identify
acquired individual differences caused by the progressive course
of the addictive processes, that is, by toxicity, neuroadaptation, or
sensitization.

In this work, we also recorded feedback-evoked electroen-
cephalographic activity during reversal learning. The analysis of
this activity is valuable in several senses. Evoked-related potentials
(ERP) are sometimes more sensitive to between-condition dif-
ferences than behavioral measures (see, for example, Karayanidis
et al., 2000; Hajcak et al., 2005b). Accordingly, convergent psy-
chophysiological and behavioral evidence is more conclusive than
behavioral results alone, especially when behavioral effects are sub-
tle. Furthermore, in the present case, there are also evidence-driven
hypotheses about the potential biological substrate of reversal
learning anomalies, and the candidate ERP components that best
reveal such anomalies. Our interest in the feedback-related neg-
ativity (FRN) and its potential relation with reversal costs, is
grounded on previous experimental evidence (Chase et al., 2011;
Bismark et al., 2012; Hampshire et al., 2012). Finally, our attempts
to identify the most likely anatomical origins of addiction-related
FRN anomalies can be useful to link such anomalies to the mal-
functioning of specific circuits in the brain (Schoenbaum et al.,
2006).

In summary, in the present work we analyze in detail some
dynamic features of reversal learning performance in PG and CDI,
matched in potentially confounding factors, and compared against
non-addicts. Our main aim is threefold: (1) To check for the exis-
tence of anomalies in reversal learning in both types of addicts. On
this regard, we expect reversal cost to be more evident in PG than
in cocaine users. (2) To explore the roles of gambling and cocaine
exposure on specific components of reversal learning (specifi-
cally, reversal costs and asymptotic learning levels). As measures of
chronic and acute exposure, severity (the estimation of the lifetime
total amount gambled, or the total quantity of cocaine consumed)
and intensity (mean amount of drug consumed/money gambled
per month) scores will be obtained for all participants in the clin-
ical groups. On the basis of the abovementioned evidence, we
expect learning anomalies in the CDI group to be attributable
to cocaine dosage exposure (and thus to correlate with cocaine
use severity). Whether or not reversal cost depends on gambling
intensity or severity remains an open question. And (3), to analyze
the electroencephalographical response to feedback in the three
groups. Although we can foretell the presence of FRN anomalies
in the clinical groups (and associated abnormal brain activations),
whether or not such anomalies differ across the clinical groups
also remains to be tested.

MATERIALS AND METHODS
PARTICIPANTS AND PROCEDURE
Cocaine dependent individuals (n= 20) were recruited from the
Proyecto Hombre rehabilitation centers in Granada and Málaga
(Spain) between January 2011 and December 2012. PG (n= 21)
were recruited from AGRAJER (Granadian Association of Gam-
blers in Rehabilitation,Granada,Spain) between October 2010 and
December 2012. Controls (n= 23) were recruited by incidental
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sampling, in such a way that their sociodemographic characteris-
tics were not far from the clinical groups.

The inclusion criteria were (i) meeting DSM-IV criteria for
cocaine dependence (CDI group) or pathological gambling (PG
group) – as assessed by the Structured Clinical Interview for DSM-
IV Disorders – Clinician Version (SCID; First et al., 1997); (ii)
having a minimum abstinence interval of 15 days for all substances
of abuse except nicotine, as determined by weekly urine toxicolog-
ical tests (CDI) or cross validated therapist- and self-reports (PG).
Exclusion criteria were: (i) the presence of any other Axis I or Axis
II comorbid disorders with the exception of nicotine dependence;
(ii) the presence of history of head injury or any diseases affect-
ing the central nervous system. The study counted with explicit
permission from the University of Granada’s Ethics Committee.
Prior to psychological and neuropsychological assessment, all par-
ticipants were informed about the objectives and characteristics of
the study, and signed an informed consent form. All of them were
compensated with 36C for their participation, independently of
performance.

In order to assess the degree of matching between-groups, par-
ticipants were also assessed using the Kaufman Brief Intelligence
Test (K-BIT), and were questioned about their age, and number
of education years. Table 1 displays main descriptive data for all
the relevant variables in the three groups. The three groups were
matched on sociodemographic variables, but not on usage of other
drugs. As shown in the table, the group differences in alcohol and
cannabis use were globally significant, with CDI being the group
with larger alcohol and cannabis consumption.

The procedure went as follows: upon consent, participants
were instructed about the general procedure, and then questioned
about the abovementioned sociodemographic variables. The K-
BIT, Interview for Research on Addictive Behavior (IRAB), and the
IRAB-equivalent gambling-related questions were administered
together, in a random order. A fourth psychometric instrument,

the UPPS-P questionnaire on impulsive behavior, was admin-
istered intertwined with these, also in a random position. The
PRLT and a second neuropsychological task (the Go/No-go motor
inhibition task) were administered together. Half the participants
performed the neuropsychological tasks first, in a random order,
followed by the psychometric instruments. The other half were
assessed with the psychometric tools first, and then performed the
two neuropsychological tasks.

The UPPS-P and Go/No-go tests were included in this pro-
cedure as part of a different study, carried out with the same
participants, on the role of impulsivity in addiction and motor
inhibition (Go/No-go). UPPS-P scores did not exert any effect on
reversal learning performance, either by itself or in combination
with group (minimum p= 0.22). In addition, UPPS-P scores are
confounded with addictive behaviors (addictive behaviors are by
definition impulsive) so, they were not taken into account for the
present study. Still, between-group differences in impulsivity, and
the impact of impulsivity on other decision-making tasks have
been reported in Torres et al. (2013).

INSTRUMENTS
Interview for research on addictive behaviors (Spanish version;
Verdejo-García et al., 2005)
As noted in the introduction, a key factor in the present study
is the degree of dosage-like exposure to cocaine and gambling
activities (in the CDI and PG groups, respectively). Psychometric
tools developed for clinical purposes do not measure exposure in
an isolated manner (disregarding craving intensity, perception of
lack of control over the addictive behavior, social and family prob-
lems, financial problems, and other symptoms and consequences
of addiction).

All of those side factors are irrelevant to the current study.
Actually, they would blur drug/gambling exposure effects. Hence,
information about lifetime amount and duration of use of the

Table 1 | Sociodemographic, psychometric, and drug use differences between healthy controls, HC; pathological gamblers, PG; and cocaine

dependent individuals, CDI.

Group

HC PG CDI

SOCIODEMOGRAPHIC VARIABLES

n 23 21 20

Proportion of females 0.09 0.10 0.00

Mean SD Mean SD Mean SD F p

Age 30.13 8.63 31.43 5.92 34.75 6.51 2.31 0.11

Education years 14.55 3.16 13.90 4.66 15.05 4.21 0.42 0.66

INTELLECTUAL PERFORMANCE

IQ (K-BIT) 106.25 10.22 101.10 9.07 105.35 9.39 1.77 0.18

DRUG USE PATTERNS

Alcohol monthly use (ethanol units/month) 44.02 42.81 99.14 73.87 158.20 118.88 10.18 <0.01*

Cannabis monthly use (joints/month) 13.00 26.61 8.39 25.96 67.00 63.71 12.54 <0.01*

Addiction course duration (years) 7.79 5.51 10.48 5.04 2.65 0.11

Abstinence duration (months) 5.64 3.51 6.41 4.32 0.39 0.53

Addiction and abstinence durations refer to the clinically significant addictive behavior (gambling for PG, and cocaine use for CDI). p-values in bold are statistically

significant.
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different drugs was collected using the IRAB (Verdejo-García
et al., 2005). The IRAB is inspired by applied and experimental
behavior analysis, and was not developed to estimate the clini-
cal significance of addiction, but to quantify the most important
parameters of drug use behaviors (frequency, duration, amount),
independently of the clinical status of the participant and the
accompanying symptomatology. All the participants in the three
groups went through the full IRAB interview. Here, we will
consider the answers to three questions included in the inter-
view: the average frequency of use (times/month), the average
amount consumed per episode (in grams or units), and the total
duration of the usage period (in months). In accordance with
standardized instructions, these parameters were used to com-
pute two composite measures: (1) average monthly amount of
each drug consumed (amount× frequency), in grams/month, and
(2) severity, or estimated lifetime amount of drug consumed
(amount× frequency× duration), in grams or units.

In order to avoid extremely skewed distributions, monthly
amount and severity were translated into within-design rank
scores for all analyses. A more detailed display of (non-
transformed) IRAB results for HC, PG, and CDI can be found
in Table A1 in the Appendix.

Average monthly use is customarily interpreted as an estimate
of the intensity of addiction during its course (acute exposure).
Severity, on the other hand, is attributed the cumulative effect
of addiction (chronic exposure). In the case of drugs of abuse,
severity is customarily assumed to correlate with the long-term
neurotoxic or neuroadaptive effects of that drug (Albein-Urios
et al., 2012a).

The IRAB has not been yet developed for gambling activ-
ities. Thus, in order to have equivalent measures for gam-
bling and cocaine use, gamblers were asked the same above-
mentioned IRAB questions (amount, frequency, lifetime dura-
tion of usage), but referred to gambling activities. That is, the
same questions used in the IRAB for registering drug use, were
adapted to estimate the two key gambling parameters (inten-
sity and severity), and then translated into within-design rank
scores. In this case, as no toxic substance is involved, sever-
ity would correlate with cumulative neuroadaptive or practice-
dependent effects of gambling activities (Robinson and Berridge,
2003).

The Kaufman brief intelligence test (Kaufman and Kaufman, 1990)
The K-BIT has been standardized and utilized widely, both in
clinical and research settings, to assess cognitive abilities. It com-
prises measures of verbal and non-verbal intelligence and takes
10–30 min to administer. For our purposes, we will use only the
compound IQ total score.

Probabilistic reversal learning task (Verdejo-García et al., 2010)
The reversal learning task used here is based on the PROB task
described in Swainson et al. (2000). A graphical description of the
task can be found in Verdejo-García et al. (2010). In each trial of
the task, there was a simultaneous presentation of two squares,
drawn in different colored lines. The task consisted of four phases
in total. In each phase, one stimulus is considered the“correct”one,
as choosing it (i.e., mouse-clicking on it) provides reward in most

cases, and the other is the“wrong”one, as choosing it was penalized
most of the times. This means that, on some trials, the computer
provided false feedback, i.e., selecting the correct stimulus was fol-
lowed by false negative feedback (NF) and selecting the incorrect
one was followed by false positive feedback. Positions of stimuli
were randomly shifted to avoid motor perseveration. Both nega-
tive and positive feedbacks were presented visually, and involved
winning or losing five points. The total amount of points accrued
was continuously viewed just below the center of the screen. Cru-
cially, the color corresponding to the correct choice and the one
corresponding to the wrong choice shifted after every phase (40
trials), that is, the stimulus that was previously correct became
incorrect, and vice versa.

For half the participants in each group, the percentage of
rewarded clicks on the good option was 75% in Phases 1 and
2, and 87.5% in Phases 3 and 4 (the task became slightly easier in
its second half). The other way round, for the other half of par-
ticipants, the percentage of rewarded clicks on the good option
was 87.5% in Phases 1 and 2, and 75% in Phases 3 and 4 (the task
became slightly more difficult in its second half). In other words,
the order of contingencies was a balanced factor.

STATISTICAL ANALYSIS OF PRLT PERFORMANCE
The main dependent variable for global PRLT performance analy-
sis was the number of correct choices (clicks on the highly
rewarded option) per each 10-trial block within each 40-trial
phase. In a first, full-task analysis, correct choices per phase and
block were submitted to a mixed three-factor ANOVA, with phase
(1–4) and block (1–4) as within-group factors, and group (HC,
PG, CDI) as between-group factor.

Secondly, theory-driven analyses will focus on the number of
correct choices in the first block of each phase, and the number of
correct choices in the last two blocks of each phase (collapsed). It
is important to note that (1) only the number of correct choices in
the first block of phases 2–4 can be interpreted as an index of rever-
sal cost. However, block 1 from the first phase will be also included
in analyses for design completeness reasons (the inclusion or exclu-
sion of that block does not significantly influence the results of
those analyses, nor the main conclusions drawn from them). And
(2) the number of correct choices in the two last blocks of each
phase can be interpreted as an estimate of asymptotic learning
level.1

This second series of analysis will be restricted to the impact
of chronic and acute exposure to gambling/cocaine in the clinical
groups. Four ANCOVAs (with intensity and severity as covariates)
were separately carried out for the PG and the CDI groups, with the
phase-wise first and last (two) blocks’ correct choices as separate
dependent measures.

1The use of the averaged two last blocks as an index of asymptotic learning rests
on the assumption that no further learning occurs in any of the three groups after
block 3 (so learning can be considered maximal in blocks 3 and 4). Actually, taking
into account those two blocks only, there was neither effect of block [F(1, 61)= 2.49,
MSE= 1.73, p= 0.12] nor block× group interaction [F(1, 61)= 1.65, MSE= 1.73,
p=0.20]. Mean (SE) number of correct choices were 8.02 (0.26), 7.80 (0.26), 7.28
(0.32), 7.91 (0.27), 7.92 (0.26), 8.03 (0.23), 7.72 (0.23), and 7.89 (0.25) for phase 1
block 3, phase 1 block 4, phase 2 block 3, phase 2 block 4, phase 3 block 3, phase 3
block 4, phase 4 block 3, an phase 4 block 4, respectively.
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Similarly to correct choices, decision latencies (measured as
reaction times from presentation of the two choice options to
the decision made by the participant, averaged for each block)
were submitted, firstly, to a block× phase× group global analyses.
Subsequently, separate ANCOVAs for PG and CDI groups, with
monthly use and severity as joint continuous predictors, were also
carried out. Although decision latencies have not been customarily
taken into account in reversal learning tasks, we will include them
here as complementary evidence.

Given that groups differ in alcohol and cannabis use, prior to all
analysis involving the group factor (HC, PG. CDI) we carried out
an ANCOVA disregarding the factor group, but including alcohol
and cannabis monthly use (translated into rank scores) as contin-
uous covariate predictors, and the same dependent measure used
in the corresponding between-group analysis. These pre-analyses
were thus carried out for the phase- and block-wise number of cor-
rect choices, decision latencies, and FRN magnitudes. As shown in
ANCOVAs for the potential effects of cannabis and alcohol use on
relevant dependent measures in Appendix, none of the potential
confounders (alcohol use, cannabis use, and their interaction) had
a significant impact on the abovementioned measures.

For all tests, the significance level was set at 0.05, after
Greenhouse–Geisser correction of degrees of freedom where it
was necessary.

EEG RECORDING
EEGs were recorded from 62 scalp locations using tin electrodes
arranged according to the extended 10–20 system mounted on
an elastic cap (Brain Products, Inc), and referenced online to
FCz. Vertical and horizontal eye activity were recorded from one
monopolar electrode placed below the left eye, and one monopolar
electrode located in a straight line at the outer canthi of the right
eye. Two scalp electrodes were attached to mastoids. All electrode
impedances during recording were below 5 kΩ. EEG and EOG
were sampled at 1000 Hz and amplified using a 0.016–1000 Hz
band-pass filter. Subsequently, all EEG recordings were downsam-
pled to 250 Hz, band-pass filtered using a 0.1–25 Hz 12 dB/octave,
re-referenced offline to average activity of the mastoids electrodes,
and FCz activity was recovered. Offline signal preprocessing was
done using EEGLAB software (Delorme and Makeig, 2004) freely
available at http://sccn.ucsd.edu/eeglab.

ERP EXTRACTION AND ANALYSIS
EEG recordings were segmented from −200 to +350 ms, time-
locked to the feedback onset. Epochs were corrected for ocular
artifacts by computing the SOBI ICA decomposition (Belouchrani
et al., 1993, 1997; Cardoso and Souloumiac, 1996, see also Tang
et al., 2004), as identified by the ADJUST algorithm (Mognon et al.,
2011). Other artifacts were subsequently removed using an auto-
matic rejection procedure: segments were excluded for the remain-
ing analyses when amplitudes were outside the ±100 µV range.
Afterward, segments were categorized as belonging to positive- or
negative-feedback trials (PF, NF). After the artifact correction pro-
cedure, a minimum of 27 trials for the NF and 51 for PF segments
were retained for further processing.

Next, the FRN was computed for each participant and feed-
back condition, as the difference between the average amplitude in

the 220–350 ms post-feedback interval, and the preceding positive
peak in the 150–220 ms interval. The magnitude of that difference
is normally larger for negative than for positive feedback (Hajcak
et al., 2005a,b), so a differential FRN score (henceforth, simply
FRN score) was computed as the difference between the FRN for
PF and the FRN for NF.

Statistical analyses were carried out on FRN scores for Fz and
FCz electrodes. The Pz channel was also included to test whether
observed effects could be attributed to P3 (as it has been observed
that P3 amplitude can affect FRN, and that it is affected by contin-
gency changes; Barcelo et al., 2006). P3 was thus extracted from Fz,
FCz, and Pz. However, the time window in which P3 is normally
observed includes, in our task, activity evoked by the following
trial in the sequence. In order to avoid signal contamination, we
carried out P3 analyses on a score computed as the average ampli-
tude for the last 50 ms of each segment referred to the average
amplitude during the immediately preceding 100 ms time win-
dow (see Chase et al., 2011, for a similar procedure). As we did
with the FRN, a differential P3 score (henceforth simply P3 score)
was computed as the difference between the P3 scores for NF
and PF.

Feedback-related negativity scores were submitted to a 3
(group: CDI, PG, and HC)× 2 (channel: Fz, FCz) repeated-
measures analysis of variance. P3 scores were submitted to a 3
(group)× 3 (channel: Fz, FCz, Pz) repeated-measures ANOVA.
The Bonferroni procedure was used to correct for multiple com-
parisons. A 0.05 p-level was used for all the statistical deci-
sions. Two participants from the PG group and two from the
HC group were excluded from the analysis due to equipment
malfunctioning.

BRAIN LOCALIZATION
Standardized low-resolution electromagnetic tomography
(sLORETA) was used for estimating the 3D cortical distribution of
current density underlying scalp activity. sLORETA, computations
were done using the MNI152 template, with the 3D space solution
restricted to cortical gray matter, according to the probabilistic
Talairach atlas. The cortical gray matter is partitioned in 6239
voxels at 5 mm spatial resolution. Brodmann anatomical labels are
reported using MNI space. Standardized sLORETA current source
densities with no regularization method were obtained from 61
channels (after recovering FCz) for each participant in each con-
dition, and for each time point in each feedback condition. A
discussion on the technical details of sLORETA and, specifically,
on the necessary restrictions for a viable solution to the inverse
problem can be found in Pascual-Marqui (2002).

The identification of the sources with a differential involvement
in the generation of FRN across groups followed the rationale
recently described by Catena et al. (2012 see also Silton et al.,
2009; Torres et al., 2013). A significant correlation across partic-
ipants between current source density (i.e., estimated activation)
at a certain voxel and the magnitude of FRN observed at FCz
can be interpreted as indicative of the involvement of such a
voxel in the generation of FRN. In other words, the correlations
between voxelwise current densities and FRN magnitudes can be
used to identify the brain areas involved in the generation of
FRN.
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Under such an assumption, brain localization analysis was car-
ried out according to the following steps: first, a representative
measure of the activation of each voxel for the FRN interval
was computed, by averaging voxel activations across the 220–330
post-feedback time window. Second, we computed the correlation
(across participants) between that averaged current density and
the magnitude of the FRN effect, for each voxel. And third, those
areas in which at least 10 voxels were found to significantly corre-
late with the FRN score were singled out as candidate areas with a
functional role in its generation.

RESULTS
BEHAVIORAL RESULTS
PRLT: Decision making
The main dependent variable in the global analysis was the number
of correct choices (clicks on the highly rewarded option) per each
10-trial block and each 40-trial phase. Figure 1 shows the mean
number of correct choices per phase, block, and group. The mixed
ANOVA, with phase (1–4) and block (1–4) as within-group factors,
and group (HC, PG, CDI) as the between-group factor, yielded a
significant block× phase× group interaction, F(18, 549)= 1.86,
MSE= 2.347, p= 0.03, η2

= 0.06. As expected, there were also sig-
nificant effects of phase, F(3, 183)= 3.06, MSE= 8.88, p= 0.04,
η2
= 0.05, block, F(3, 183)= 85.62, MSE= 3.68, p < 0.01,

η2
= 0.58, and phase× block, F(9, 549)= 5.416, MSE= 2.35,

p < 0.03. η2
= 0.08, showing within-phase learning effects, and

between-phases reversal costs in all groups.
Despite the significant three-way interaction, differences across

groups were not significant for any phase and block of the task
according to Bonferroni post hoc tests. Applying a non-corrected
post hoc LSD approach, differences between HC and CDI were
observed on the second block of the first phase, t (41)= 2.40,
p= 0.02, and between PG and CDI on blocks 2, t (39)= 2.07,
p= 0.04, and 3, t (39)= 2.12, p= 0.04, of Phase 3.

Results were clearer after taking monthly use and severity scores
into account. Given that monthly use and severity refer to different

FIGURE 1 | Mean number of correct choices per block and phase, for
HC, healthy controls; PG, pathological gamblers; and CDI, cocaine
dependent individuals.

addictive behaviors for PG and CDI, and that HC participants have
neither monthly use nor severity scores, we carried out separate
repeated-measures ANCOVAs for PG and CDI groups,using sever-
ity and monthly amount as covariates, and the number of correct
choices in the first block of each phase, and the number of correct
choices in the last two blocks of each phase as dependent measures
(see Statistical Analysis and footnote 1).

In search of reversal cost effects, we carried out separate ANCO-
VAs for the two clinical groups, with the number of correct choices
in the first block of each phase as dependent measure. In the PG
group, the analysis yielded a main effect of monthly amount gam-
bled, F(1, 18)= 4.42, MSE= 5.66, p= 0.05, η2

= 0.19. No other
marginal or interactive effects involving monthly amount gam-
bled or gambling severity were close to significance (minimum
p= 0.16). In the CDI group however, an identical analysis car-
ried out with cocaine monthly use and cocaine use severity as
covariates, did not yield any main or interactive significant effect
(minimum p= 0.44).

Similarly, two ANCOVAs were carried out with asymptotic
learning scores as the dependent measure. In the PG group, the
analysis did not yield any marginal or interactive significant effect
(minimum p= 0.18). In the CDI group, on the contrary, the analy-
sis yielded now a significant main effect of cocaine severity, F(1,
17)= 4.71, MSE= 4.71, p= 0.04, η2

= 0.22.
Table 2 shows where the effects yielded by these ANCOVAs

originate. The table displays partial correlations – in the PG
group – between monthly amount gambled and the number of
correct choices in block 1 (phases 1–4), with gambling severity as
variable of control; and – in the CDI group – between cocaine
use severity and the asymptotic learning measure, with cocaine
monthly use as control variable. The effect of monthly amount
gambled on first block correct choices was actually restricted to
phases 2 and 4, namely, to the first and the third reversals of the
task. Cocaine use severity, in turn, exerted its effect on phases 3
and 4.

DECISION LATENCIES
Finally, we analyzed the effects of group, monthly use, and sever-
ity on decision latencies. The main dependent measure was the
mean decision latency per phase and block. The group (HC,
PG, CDI)× phase (1–4)× block (1–4) ANOVA did not show
any significant marginal or interactive effect of group (minimum
p= 0.328).

The ANCOVA for the PG group, with block and phase as
within-group variables, and monthly amount gambled and sever-
ity scores as continuous predictors, showed significant main
effects of the monthly amount gambled, F(1, 18)= 5.66, p= 0.03,
η2
= 0.24 and gambling severity, F(1, 18)= 4.81, p= 0.04,

η2
= 0.21. No other marginal or interactive effect was close to sig-

nificance (minimum p= 0.24). An analogous ANCOVA on CDI
decision latencies, and cocaine monthly use and cocaine severity
as covariates, did not show any significant effect of monthly use,
or severity (all p > 0.10).

Figure 2 shows a graphical depiction of the monthly amount
effect observed in the PG group (coefficients represent partial
correlations between monthly amount gambled and decision
latency for each phase and block, computed while controlling for
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Table 2 | Partial correlations between monthly amount gambled and number of correct choices in block 1 (phases 1–4), and between cocaine

use severity and number of correct choices in blocks 3/4 (phases 1–4).).

Phase 1 Phase 2 Phase 3 Phase 4

partial r α partial r α partial r α partial r α

Gambling MU – correct choices (block 1) −0.12 0.63 −0.50 0.03* −0.17 0.49 −0.46 0.05*

Cocaine severity – correct choices (blocks 3/4) −0.31 0.21 −0.24 0.33 −0.69 0.01* −0.51 0.03*

Correlations larger than 0.46 (in absolute terms are bilaterally significant. Values in bold stand for statistically significant correlations and their corresponding p-values.

FIGURE 2 | Partial correlations between monthly amount gambled and
decision latency per phase and block (controlling for gambling
severity), in the PG group.

severity). Consistently across the task, the monthly amount gam-
bled positively covaried with decision latency, which means that
the intensity of addiction slowed decisions down (all correlations
above 0.445 are bilaterally significant).

In summary, the clinical groups seem to show different learn-
ing dynamics in the reversal learning task when compared to
matched controls. However, such differences cannot be fully
characterized if addictions are not considered from an idiosyn-
cratic point of view (i.e., taking chronic and acute exposure into
account).

Gambling intensity, measured as the monthly amount gam-
bled, emerges as a powerful mediator of learning-driven decision-
making: heavier gamblers tend to show signs of enhanced reversal
cost, and, additionally, tend to make significantly slower predic-
tions. Increased latency in decision-making tasks is customarily
interpreted as a sign of decisional difficulty (Spinoza-Varas and
Watson, 1994), although this measure has been paid no attention
at all in reversal learning studies.

The severity of gambling did not exert any significant effect
on reversal cost, which implies that the effect of gambling on that

particular aspect of reversal learning is not cumulative. On the
other hand, cocaine use severity, but not intensity, interfered with
asymptotic-level decision making. In this case, the potential effects
on decision latencies were negligible.

EEG RESULTS
Feedback-related negativity
Figure 3 displays ERP waveforms for each group in each feedback
condition. The 3 (group: HC, PG, CDI)× 2 (channel: Fz, FCz)
mixed ANOVA on the FRN score yielded significant main effects
of group, F(2, 57)= 4.04, MSE= 1.39, p < 0.03, η2

= 0.12, and
Channel, F(1, 57)= 20.19, MSE= 0.45, p < 0.01, η2

= 0.26, being
the largest FRN score observed at FCz. There was no interaction
between the two factors, F(2, 57)= 0.51. Bonferroni-corrected
post hoc comparisons showed that the FRN score was larger for
HC than for PG (p= 0.02). No other effects were significant. With
regard to P3, there was a theoretically irrelevant effect of channel,
F(2, 116)= 3.19, MSE= 1.17, p < 0.05, η2

= 0.05, but both the
group effect, F(2, 58)= 0.92, and the group× channel interaction,
F(4, 58)= 0.97, were very far from the significance level.

Source location
Using the bootstrapping approach (included in the sLoreta pack-
age) we observed several right hemisphere clusters of voxels that
significantly correlated with FRN scores in the control group
(Table 3): the inferior (BA46) and middle (BA9 and BA10) frontal
gyri, the insula (BA13), and the posterior cingulate gyrus (BA23).
As noted in the Section “Materials and Methods,” we take this as
evidence of the involvement of these areas in the generation of
FRN in normal conditions (please note that negative correlations
imply that the larger the activation in these areas, the larger – in
absolute values – the FRN score). These areas were established
as regions of interest to detect differences between the clinical
groups.

Feedback-related negativity-current density correlations in
those same areas for the two clinical groups are reported in Table 4.
Not surprisingly, those correlations differed from the ones in the
control group (p= 0.14, 0.06, 0.19, 0.06, 0.04 for the HC versus
CDI contrasts; and p < 0.01 for all HC versus PG contrasts across
areas). The deviation was thus larger for PG than for CDI. Density-
FRN correlations in the CDI group, although lower, were in the
same direction than the ones observed in the HC group. Corre-
lations in the PG group were mostly in the opposite direction,
and (according to the Bonferroni correction) significantly differed
from CDI’s in BA9, BA10, BA13, and BA23 (Table 4, rightmost
column).
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FIGURE 3 | ERP waveforms for each group in each feedback condition. Right bottom panel: differential FRN effect for the three groups. All amplitudes are in
µV. HC, Healthy controls; PG, Pathological gamblers; CDI, Cocaine dependent individuals; NF, Negative feedback; PF, Positive feedback.

Table 3 | Brain areas significantly correlated to the FRN score in the

control group.

Lobe Structure BA k X Y Z CSD-FRN

Correlation

Frontal Middle frontal 9 10 20 35 20 −0.70

Frontal Middle frontal 10 16 35 40 15 −0.75

Sub-lobar Insula 13 9 40 15 15 −0.71

Limbic Posterior cingulate 23 4 5 −40 25 −0.75

Frontal Inferior frontal gyrus 46 16 35 35 15 −0.74

BA, Brodmann area; k, cluster size in voxels; X, Y, and Z are in MNI space.

DISCUSSION
Our first research aim was to check for the existence of anom-
alies in reversal learning in two groups of CDI and PG, when
compared against HC. Such anomalies have been only partially
corroborated. The group× block× phase interaction effect on
correct decisions indicates that learning progressed differently in
the three groups. Such a difference is, however, subtle. In spe-
cific points of the task, individuals in the CDI group performed
worse than controls (phase 1, block 2), or than PG participants
(phase 3, blocks 2 and 3). The observation that cocaine addicts
are globally (although only slightly) more hampered than other
groups in PRLT performance is fully coincident with the results
reported by Fernández-Serrano et al. (2012). Additionally, the
significance of such a difference is strengthened by the existence
of differences at the electroencephalographic level, as discussed
later.

Table 4 | FRN-current density correlation coefficients for the key areas

involved in FRN generation (as detected in controls), and significance

of Bonferroni-corrected contrasts between correlation coefficients

across groups (PG, Pathological gamblers; CDI, Cocaine dependent

individuals).

Structure BA CDI PG p (PG versus CDI)

Middle frontal 9 −0.47 0.35 <0.01*

Middle frontal 10 −0.43 0.34 0.01*

Insula 13 −0.53 0.72 <0.01*

Posterior cingulate 23 −0.42 0.78 <0.01*

Inferior frontal gyrus 46 −0.36 0.07 0.10˚

˚Non-significant; *p < 0.05. p values in bold correspond to significant differences

between PGs and CDIs.

In relation to our second research aim, group analyses demon-
strate that the difficulty to interpret between-group PRLT perfor-
mance differences can be due – at least in part – to differences
within the clinical groups. On the one hand, asymptotic learn-
ing, as measured by the averaged number of correct choices in the
two last blocks of each phase, was significantly affected by cocaine
severity, that is, by the estimated cumulative exposure to cocaine
during the course of the addictive process.

On the other hand, reversal costs (as observed in phases 2 and
4; see Table 2) were specifically associated to gambling inten-
sity, namely, to the averaged amount gambled per unit of time.
Those gamblers who spend more money in gambling activities
also tend to show larger reversal costs. This is compatible with
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Leeman and Potenza’s (2012) proposal that there is a privileged
link between gambling and learning inflexibility2. Additionally,
we provide evidence that gambling, but not cocaine use, slows
decisions down. Increased latency in decision-making tasks is cus-
tomarily interpreted as a sign of decision difficulty (Spinoza-Varas
and Watson, 1994). So, this finding supports the idea that gambling
is specifically linked to the decisional aspects of reversal learning.
This association between gambling intensity, reversal cost, and
increased decision difficulty probably deserves further research.

The fact that the monthly amount gambled (i.e., gambling
intensity), but not gambling severity, exerts a significant impact on
phase-by-phase first block correct choices implies that the gam-
bling effect on such measure is not cumulative, that is, not due
to practice with gambling scenarios, or chronic gambling-induced
neuroadaptation. In other words, it is unlikely that increased rever-
sal costs are attributable to practice or sensitization. Conversely,
the evidence that cocaine use severity, but not monthly use (i.e.,
intensity), exerts an impact on asymptotic reversal learning seems
to prove that the cumulative effect of cocaine exposure (neuro-
toxicity) is exerted on a different component of reversal learning
performance, not necessarily involving learning inflexibility. Relat-
edly, Albein-Urios et al. (2012a) and Torres et al. (2013) have
recently demonstrated that some other well-known neuropsy-
chological anomalies observed in CDI (e.g., working memory
and motor inhibition deficits) are also attributable to cocaine
neurotoxic effects.

Still, the interpretation of our PRLT behavioral results requires
some further considerations. Firstly, recent evidence (van Holst
et al., 2010; Shaffer and Martin, 2011) shows that there exist non-
trivial psychological differences underlying differential preferences
for low-rate high-stakes gambling modalities (casino games, sport
bets), versus high-rate low-stakes ones (Video-lottery terminals,
slot machines). Our sample mostly consisted of male slot machine
gamblers, and was not large enough to segregate these two cate-
gories. At this moment, the role of gambling preferences in PRLT
performance remains open. And secondly, in most implemen-
tations of the PRLT reversals do not occur at fixed times, but
when the participant have reached a pre-established learning cri-
terion (for example, five-correct choices in a row; Franken et al.,
2008). Performance is then assessed as the total number of rever-
sals during the task, the total number of incorrect choices, the
mean number of trials-to-criterion, or the mean number of incor-
rect choices in a row after a reversal (perseverative series; Franken
et al., 2008; de Ruiter et al., 2009; Camchong et al., 2011; Lucan-
tonio et al., 2012). These measures are customarily interpreted as
measures of reversal cost or reversal learning (in)flexibility.

In our version of the task, phase length was fixed (40 trials),
to ensure comparability of learning curves across groups in global
analyses (and consequently to make the distinction between rever-
sal cost and asymptotic learning possible). In addition, our main
flexibility-related dependent measure was the number of correct

2On the contrary, Ersche et al. (2008) made a very careful evaluation of a number
of performance indices and found true reversal cost in cocaine users (but not in
amphetamine users). Importantly, that effect was found in current cocaine users,
but not in abstinent ex-addicts. At difference with gambling, the existence of reversal
costs associated to chronic effects of cocaine addiction remains undemonstrated.

choices in phase-by-phase first blocks. The reason underlying
the use of such measure (instead of the more common perse-
verative series mean length), is strictly statistical: given that the
PRLT provides probabilistic false feedback (punishment for a cor-
rect choice) the length of error series tends to be very variable
within each participant, depending on the particular ordering of
trials in the series. Most PRLT implementations do not warrant
asymptotic learning, but allow for a high number of reversals, so
variability can be reduced by means of averaging. In our case,
the task ensures asymptotic learning in each phase (see foot-
note 1), but contains only three contingency reversal points, and
thus a more stable measure is required. This particularity, how-
ever, does not compromise the interpretation of the measure in
terms of reversal cost/learning inflexibility (at least for blocks
2–4).

Our third and last research aim was to analyze electroen-
cephalographic differences between-groups (and, particularly, the
differences between the two clinical groups) with regard to their
response to feedback during reversal learning. We have observed
abnormal feedback-evoked cortical activity in the PG group. If we
take the magnitude and sign of the differential FRN score in the
control group as a reference of normality, the deviation from that
reference was maximal for gamblers (the FRN was visually smaller
for CDI than for HC, but CDI did not statistically differ either
from HC or from the PG).

According to Hajcak et al. (2005a,b), the FRN is mainly elicited
by unexpected negative outcomes (see also Holroyd et al., 2004),
and reflects the binary evaluation of good versus bad outcomes.
If that interpretation is taken as correct, it implies that gamblers
are particularly hampered to adequately ponder the impact of
NF. Consequently, we can assume that they are also hampered to
learn to make decisions on the individual history of losses. This
is fully coincident with the finding that gambling slows decisions
down, and also with our separate finding that recreational gam-
blers, at non-pathological levels, are less sensitive to losses than
non-gamblers (Torres et al., submitted).

Results regarding source location point in the same direction.
In accordance with the results we have obtained with HC, Hamp-
shire et al. (2012) found several areas to be particularly active when
reversal events were compared against other switch events (i.e.,
changes in the set of stimuli). These areas included the most pos-
terior extent of the right inferior frontal gyrus, extending into the
anterior insula, and the frontopolar portion of the middle frontal
gyrus (see also Mitchell et al., 2008), and were more active when
NF led to a change in the response pattern. In that study, the dorso-
lateral prefrontal cortex was also found to be involved in reversal
events, whereas other studies have attributed to it more general
higher-order executive functions involving attention (Reminjse
et al., 2005), and coordination of search behavior (Hampshire and
Owen, 2006). In any case, this set of anatomical areas is almost fully
coincident with the ones found to be involved in the generation of
the FRN in HC in the present study.

The only discordance between the present and previous results
seems to be the involvement of the posterior portion of the cin-
gulate gyrus in the generation of FRN. D’Cruz et al. (2011), and
Robinson et al. (2010) found the activation of posterior cingu-
late cortex after positive feedback in the reversal learning task
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to depend on whether it was expected or not. In a work by
Gläscher et al. (2009), activation in the same area was associ-
ated to the experienced value of the chosen option. Relatedly,
Nashiro et al. (2012) found it to be more active when feedback
was emotional than when it was neutral. And finally, a study by
Albein-Urios et al. (2012b), found it to be involved in regula-
tion of negative emotions. So, it is plausible that variability in the
magnitude of FRN is associated to emotional aspects of feedback
valuation.

Most importantly when these areas were taken as regions of
interest for the clinical groups, PG strikingly differed from CDI.
Although, as noted above, the magnitude of FRN did not differ
between the clinical groups, sLORETA analyses unveiled differ-
ences in the involvement of these areas in FRN generation. There
is ample evidence that addictive processes are associated to abnor-
mal response to feedback and abnormal activation of prefrontal
and orbitofrontal areas (see Schoenbaum et al., 2006, for a review).
However, our results provide the first direct neuroanatomical evi-
dence in favor of Leeman and Potenza’s (2012) proposal that
reversal learning deficits are particularly severe in gamblers (when
compared against other populations of addicted individuals).

Despite its several specific strengths (the careful selection of
participants, the close matching between-groups in intellectual
functioning and sociodemographic variables and the absence
of comorbidities in them), this study has also some limita-
tions that are worth mentioning. One of them is undoubtedly
the absence of enough trials in the reversal learning task to
track changes in the FRN across the task, and, more specifi-
cally, to clearly separate between reversal errors (those occur-
ring in the first trials after reversal points) and errors spon-
taneously occurring during other parts of the task. We have
shown that learning dynamics are behaviorally relevant; further
research is needed to describe in a similarly detailed way the
evolving changes in cortical activity occurring in parallel with
such learning dynamics. A second limitation is the impossibil-
ity to separate gamblers with preferences for different games of
chance. Third, despite the careful selection of participants, it is
virtually impossible to match groups in every potentially rele-
vant factor. Specifically, potentially addictive behaviors tend to
show complex correlation patterns. In our case, cocaine users were
also more likely to use alcohol and cannabis than gamblers and
controls. Although cannabis and alcohol use did not exert any

direct effect on PRLT performance or cortical activity, the pos-
sibility exists that these drugs modulated the chronic effects of
gambling/cocaine. This limitation is common to virtually all stud-
ies in which the group comparison methodology is used. And
finally, despite the recording of drug/gambling exposure mea-
sures, group comparison studies are less conclusive than prospec-
tive studies, with regard to the possibility to establish directional
causal links between neuropsychological abnormalities and addic-
tive behaviors. These four potential weaknesses warrant further
research.

FINAL REMARKS
To date, results regarding reversal learning deficits in addicts
have been elusive. This work confirms previous proposals that
feedback-based instrumental learning is more inflexible in patho-
logical gambling than in other forms of addiction, such as
cocaine dependence. At the same time, however, it raises impor-
tant questions about the causes of such inflexibility and the
role within-group variability in clinical samples. At the behav-
ioral level, the main findings of this research point out that
gambling severity slows decisions and increases reversal cost,
whereas cocaine addiction affects asymptotic scores in reversal
learning tasks. More importantly, psychophysiological and neu-
roanatomical data provided the first direct evidence that reversal
learning deficits in gamblers differ from drug addicts’ and are
related to abnormal activity in specific prefrontal and orbitofrontal
areas.
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APPENDIX
The IRAB provides information on frequency of drug use, amount
per drug use episode, and duration of use. The combination
of frequency and amount per episode allows for an estimate of
the amount used per unit of time. Duration of use is custom-
arily expressed in months, whereas amount units vary across
substances. Severity is computed as the monthly use× duration
product (note that severity scores can reach extremely high val-
ues, so correction measures are taken for analysis; e.g., translating
them into ranks, computing them from standardized duration and
monthly use scores).

Table A1 displays the observed IRAB results for regular use
of cannabis, tobacco, alcohol, and cocaine, as well as the equiva-
lent measures of gambling. Only those drugs of abuse used once
a month by at least 15% of the individuals in any of the samples
have been included. Mean consumption of all other drugs included
in the IRAB (MDMA, amphetamine, methamphetamine, heroine,
benzodiazepines, hallucinogens) is negligible. The number of ille-
gal drugs used at least once in the whole lifetime, however, provides
extra information about the different drug use patterns in the three
groups.

ANCOVAs FOR THE POTENTIAL EFFECTS OF CANNABIS AND ALCOHOL
USE ON RELEVANT DEPENDENT MEASURES
Either monthly use of cannabis and alcohol, or severity of alco-
hol/cannabis consumption could have been used as covariates
for the analyses reported in this appendix. However, severity and
monthly use scores (once translated into ranks) were virtually co-
linear (severity-monthly use correlation was r= 0.754 for alcohol,
and r= 0.937 for cannabis). The joint inclusion of severity and
monthly use measures in the following ANCOVAs would imply

a violation of this analysis’ criteria, and would thus lead to
inconsistent results.

PRLT: Decision-making
The within-subject pre-analysis ANCOVA, with block and
phase as within-group factors, and alcohol and cannabis
monthly use (translated into rank scores) as covariates
did not yield any direct or interactive significant effects
for any of the covariates. Only the block× phase× alcohol
monthly use approached significance (p= 0.10; all other
F <= 1).

PRLT: Decision latencies
As in the previous case, the ANCOVA pre-analysis with phase
and block as within-group variables, cannabis and alcohol
monthly use as continuous predictors, and phase- and block-
wise decision latencies as dependent measure, did not yield
any main or interactive effect of the covariates (minimum
p= 0.186).

FRN Scores
As we did with behavioral measures, we carried out a pre-
analysis ANCOVA on FRN scores, with channel as the within-
group factor, and alcohol and cannabis monthly use (trans-
lated into rank scores) as covariates. This analysis did not
yield any significant main or interactive effects of alcohol
or cannabis (all p > 0.38). Regarding P3 scores, only a the-
oretically irrelevant alcohol monthly use× channel interaction
was observed, F(2, 112)= 4.39, p= 0.02. Again, alcohol and
cannabis use can be discarded as potential causes of group
effects.
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