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Sparse coding has been posited as an efficient information processing strategy employed
by sensory systems, particularly visual cortex. Substantial theoretical and experimental
work has focused on the issue of sparse encoding, namely how the early visual system
maps the scene into a sparse representation. In this paper we investigate the complemen-
tary issue of sparse decoding, for example given activity generated by a realistic mapping of
the visual scene to neuronal spike trains, how do downstream neurons best utilize this rep-
resentation to generate a “decision.” Specifically we consider both sparse (L1-regularized)
and non-sparse (L2 regularized) linear decoding for mapping the neural dynamics of a large-
scale spiking neuron model of primary visual cortex (V1) to a two alternative forced choice
(2-AFC) perceptual decision. We show that while both sparse and non-sparse linear decod-
ing yield discrimination results quantitatively consistent with human psychophysics, sparse
linear decoding is more efficient in terms of the number of selected informative dimension.
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INTRODUCTION
How the brain represents information and how such a represen-
tation is ultimately utilized to form decisions and mediate behav-
ior are fundamental questions in systems neuroscience, being
addressed at many different scales from single-unit recordings to
neuroimaging across the brain. Work in theoretical neuroscience
has argued that a useful information processing strategy for the
brain is to map sensory information into a sparse representation –
the sparse coding hypothesis (Olshausen and Field, 1996a). Sparse
coding has been viewed as an optimal strategy for minimizing
redundancy and has been experimentally observed and theoret-
ically justified for a number of sensory systems including visual
(Baddeley, 1996; Dan et al., 1996; Baddeley et al., 1997; Vinje and
Gallant, 2000, 2002), auditory (Hahnloser et al., 2002; Hromadka
et al., 2008; Greene et al., 2009), olfactory (Perez-Orive et al., 2002;
Szyszka et al., 2005; Rinberg et al., 2006), and motor (Brecht et al.,
2004) systems. It is also considered efficient from a metabolic and
energy perspective.

Sparse coding has received substantial attention in the visual
neurosciences (Baddeley, 1996; Dan et al., 1996; Olshausen and
Field, 1996a,b, 1997, 2004; Rolls and Tovee, 1995; Vinje and
Gallant, 2000, 2002; Simoncelli and Olshausen, 2001), particu-
larly from the perspective of encoding. For example, it has been
shown that imposing sparsity constraints on rate-based neuronal
models yields receptive fields that resemble those of simple cells
in V1 (Olshausen and Field, 1996a). Others have shown how
sparse encoding can emerge temporally and is consistent with
the spike time distributions of visual neurons (Baddeley, 1996).
Some have looked more closely at the specific nature and degree
of the sparse encoding, investigating differences between “soft”
and “hard” sparseness constraints (Rehn and Sommer, 2007).
Many conclude that the visual system maps the visual scene into

a sparse representation. However given such a sparse encoding
strategy, how does the rest of the visual system utilize it for robust
and efficient object recognition? How is the sparse representation
exploited downstream to yield the behavior we observe?

In this paper we consider the problem from the perspective of
decoding activity from a large neuronal population (>1000s neu-
rons) simulated via a physiologically realistic model of primary
visual cortex. Related recent experimental work has investigated
linear decoding for orientation discrimination by decoding neural
activity from approximately 100 neurons in macaque V1 (Graf
et al., 2011). The reason for considering such a modeling approach
is that a mesoscopic analysis of 1000s of neurons is not possible
given the current state-of-the-art electrophysiology, since exper-
imentalists are still not able to record, in awake and behaving
animals, thousands of neurons at millisecond timescales.

Specifically we investigate how a representation of the visual
scene, constructed by early visual processing, is best linearly
decoded and mapped to behavior within a 2-AFC perceptual deci-
sion paradigm. We investigate sparse linear decoding not only in
terms of discrimination accuracy, but also as an avenue for exam-
ining the informative dimensions within the neural activities. We
compare the discriminatory predictions generated by the decod-
ing scheme to human psychophysics. Our approach enables us to
analyze the role of sparse coding in large neuronal populations in
relation to decoding accuracy and efficiency.

MATERIALS AND METHODS
PERCEPTUAL DECISION MAKING PARADIGM
We adapted a 2-AFC paradigm of face and car discrimination,
where a set of 12 face (Max Plank Institute face database) and
12 car grayscale images were used. The car image database was
the same used in Philiastides and Sajda (2006) and Philiastides
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et al. (2006), which was constructed by taking images from the
internet, segmenting the car from the background, converting the
image to grayscale, and then resizing to be comparable as the face
images. The pose of the faces and cars was also matched across
the entire database and was sampled at random (left, right, center)
for the training and test cases. All the images (512× 512 pixels,
8 bits/pixel) were equated for spatial frequency, luminance, and
contrast. The phase spectra of the images were manipulated using
the weighted mean phase method (Dakin et al., 2002) to intro-
duce noise, resulting in a set of images graded by phase coherence.
Specifically we computed the 2D Fourier transform of each image,
and constructed the average magnitude spectra by averaging across
all images. The phase spectra of an image were constructed by com-
puting a weighted sum of the phase spectra of the original image
(φimage) and that of random noise (φnoise).

Each image subtended 2˚× 2˚ of visual angle, and the back-
ground screen was set to a mean luminance gray. The image size
was set to match the size of the V1 model, which covered 4 mm2 of
cortical sheet. Figure 1 shows examples of the face and car images
used in the experiment as well as the effect on the discriminability
of the image class when varying the phase coherence.

The sequence of images was input to the model where an image
was flashed for 50 ms, followed by a gray mean luminance image
with an inter-stimulus-interval (ISI) of 200 ms (Figure 1C). Since

FIGURE 1 |The stimulus set for the 2-AFC perceptual decision making
task. (A) Shown are 12 face and 12 car images at phase coherence 55%.
(B) One sample face and one sample car image, at phase coherences
varying from 20 to 55%. (C) Design and timing of the simulated
psychophysics experiment for the model.

simulating the model is computationally expensive, we minimized
the simulation time by choosing an ISI which was as small as
possible yet did not result in network dynamics leaking across
trials. We conducted pilot experiments that showed that network
activity settled to background levels approximately 200 ms after
stimulus offset. We ran the simulation for each of the two classes,
face and car, at different coherence levels (20, 25, 30, 35, 40, 45,
55%) respectively. Each image was repeated by 30 trials in the
simulation, where the sequence of trials was randomly gener-
ated. In each simulation, we randomized the order of different
images,making sure not to push the model into a periodic response
pattern.

Parallel to simulating the model response,we conducted human
psychophysics experiments. Ten volunteer subjects were recruited.
All participants provided written informed consent, as approved
by the Columbia University Institutional Review Board. All the
subjects were healthy with corrected visual acuity of 20/20. Psy-
chophysics testing was administered in a monocular manner.
Images of different phase coherences were randomized in the
psychophysics experiment. During the experiment subjects were
instructed to fixate at the center of the images, and to make a
decision on whether they saw a face or car, as soon as possible,
by pressing one of two buttons with their right hand. The ISI for
human psychophysics experiments was longer and randomized
between 2500 and 3000 ms in order to provide for a comfortable
reaction time and to reduce the subjects’ ability to predict the time
of the next image. A Dell computer with an nVIDIA GeForce4
MX 440 AGP8X graphics card and E-Prime software controlled
the stimulus presentation.

MODEL SUMMARY
An overview of the model architecture and decoding is illustrated
in Figure 2. We modeled the early visual pathway with a feed-
forward lateral geniculate nucleus (LGN) input and a recurrent
spiking neuron network of the input layers of (4Cα/β) of primary
visual cortex (V1). We model the short-range connectivity within
the V1 layer, without feedback from higher areas. We simulated
a magnocellular version of the model, the details of which have
been described previously (Wielaard and Sajda, 2006a,b, 2007).
Note our model is a variant of an earlier V1 model (McLaughlin
et al., 2000; Wielaard et al., 2001).

In brief, the model consists of a layer of N (4096) conductance-
based integrate-and-fire point neurons (one compartment), rep-
resenting about a 2× 2 mm2 piece of a V1 input layer (layer 4C).
Our model of V1 consists of 75% excitatory neurons and 25%
inhibitory neurons. In the model, 30% of both the excitatory and
inhibitory cell populations receive LGN input. In agreement with
experimental findings, the LGN neurons are modeled as rectified
center-surround linear spatio-temporal filters. Sizes for center and
surround were taken from experimental data (Hicks et al., 1983;
Derrington and Lennie, 1984; Shapley, 1990; Spear et al., 1994;
Croner and Kaplan, 1995; Benardete and Kaplan, 1999). Noise,
cortical interactions, and LGN input are assumed to act additively
in contributing to the total conductance of a cell. The noise term
is modeled as Poisson spike train convolved with a kernel which
comprises a fast AMPA component and a slow NMDA component
(see Supplementary Materials in Wielaard and Sajda, 2006a).
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B

FIGURE 2 | Summary of the model architecture. (A) The model is
comprises of the encoding and decoding components. (B) Architecture of
the V1 model, where receptive fields and LGN axon targets are viewed in
the visual space (left) and cortical space (right). Details can be found in
Wielaard and Sajda (2006a).

The LGN RF centers were organized on a square lattice. These
lattice spacing and consequent LGN receptive field densities imply
LGN cellular magnification factors that are in the range of the
experimental data available for macaque (Malpeli et al., 1996).
The connection structure between LGN cells and cortical cells is
made so as to establish ocular dominance bands and a slight orien-
tation preference which is organized in pinwheels (Blasdel, 1992).
It is further constructed under the constraint that the LGN axonal
arbor sizes in V1 do not exceed the anatomically established values
of 1.2 mm (Blasdel and Lund, 1983; Freund et al., 1989).

In the construction of the model our objective was to keep
the parameters deterministic and uniform as much as possible.
This enhances the transparency of the model, while at the same
time provides insight into what factors may be essential for the
considerable diversity observed in the responses of V1 cells.

SPARSE DECODING
We used a linear decoder to map the spatio-temporal activity in
the V1 model to a decision on whether the input stimulus is a
face or a car. We employed a sparsity constraint on the decoder in
order to control the dimension of the effective feature space. Sparse
decoding has been previously investigated for decoding real elec-
trophysiological data, for instance by Chen et al. (2006), Palmer
et al. (2007), and Quiroga et al. (2007).

Since a primary purpose of using the decoder is to identify
informative dimensions in the neurodynamics, we estimate new
decoder parameters at each stimulus noise level (coherence level)
independently. Alternatively we could train a decoder at the highest
coherence level and test the decoder at each coherence level. In this

paper we focus on the first approach, since we view our decoder as
a tool for analyzing the information content in the neurodynamics
and how downstream neurons might best decode this information
for discrimination.

We constructed an optimal decoder to read out the information
in our spike neuron model, fully exploring the spatio-temporal
dynamics. The spike train for each neuron in the population is
si,k(t ) =

∑
l δ(t − ti,k,l), where t ∈ [0,250] ms, i= 1. . . N is the

index for neurons, k = 1. . . M is the index for trials, l = 1. . . P
is the index for spikes. Based on the population spike trains, we
estimated the firing rate on each trial by counting the number
of spikes within a time bin of width τ, resulting in a spike count

matrix ri,j ,k =
∫ jτ

(j−1)τ+1 si,k (t )dt, where i= 1. . . N represents the

ith neuron, j = 1. . . T /τ represents the jth time bin, k = 1. . . M
represents the kth trial. Note that we explored decoding using time
bins of different length. When τ= 25 ms, we assume that informa-
tion is encoded in both neuron and time, since the firing rate is
closer to instantaneous firing rate; when τ= 250 ms, we integrate
the spiking activity over the entire trial, leading to a rate-based
representation of information. A separate post hoc analysis showed
that 25 ms was in fact the bin width that yielded the highest dis-
crimination accuracy (bin width varied from 5 to 250 ms). The
class label of each sample bk takes the value of {-1,+ 1} represent-
ing either face or car with M being the number of trials. In order
to explore the information within the spatio-temporal dynamics,
we compute the weighted sum of firing rate over different neurons
and time bins. This leads to seeking the solution of the following
constrained minimization problem,

{w , v} = arg min
w ,v

1

M

M∑
k=1

L((wT xk + v)bk)+ λJ (w), (1)

where the first term is the empirical logistic loss function, and the
second term is the regularization function, with λ > 0 as the regu-
larization parameter. We create a stacked version of the spike count
matrix; xl,k= ri,j,k with l = (i− 1)N + j, i.e., stacking the neuron
and time bin dimensions together. The resulting linear decoder
can be geometrically interpreted as a hyperplane that separates
the classes of face and car, where w represents the weights for
the linear decoder, and v is the offset. In the case of the sparse
decoder, we use an L1 regularization term J (w)= ||w ||1; alterna-
tively for the non-sparse decoder, we use the L2 regularization
J (w) = ||w||22. In the language of Bayesian analysis, the logistic
loss term comes from maximum likelihood, L1 corresponds to the
Laplacian prior, and L2 corresponds to the Gaussian prior. L1-
regularized logistic regression results in a sparse solution for the
weights (Krishnapuram et al., 2005; Koh et al., 2007; Meier et al.,
2008). So-called “sparse logistic regression” serves as an approach
for feature selection, where features that are most informative
about the classification survive in the form of non-zero weights
(Ng, 2004). We developed an efficient and accurate method to
solve this optimization problem (Shi et al., 2010, 2011). Once we
learn the hyperplane, for any new image, we can predict the image
category via the sign of wT xk + v .

Figure 3 provides a geometric intuition of why L1 and L2 regu-
larization lead to sparse and non-sparse solutions, respectively. The
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FIGURE 3 | A schematic illustration of how different regularization
terms lead to sparse and non-sparse solutions in the linear classifier.
(A) L1 regularization corresponds to the diamond shaped ball centered
around the origin. (B) L2 regularization corresponds to the spherical ball
centered around the origin.

solution of L1 or L2 regularized logistic regression is the intersec-
tion of the regularization geometry and a hyperplane. Figure 3A
shows the L1 regularization corresponds to the diamond shaped
ball centered at the origin. As one increases the regularization para-
meter λ, the L1 ball grows and the solution is the point when it
hits the hyperplane. Given the geometry of L1 ball, the solution
is more likely to be sparse. Figure 3B shows the L2 regularized
logistic regression, where the geometry of the L2 ball is a sphere,
therefore leading to a non-sparse solution.

CROSS VALIDATION
Training and testing were carried out on different sets of images,
each containing six face images and six car images, with 30 trials
per image. Tenfold cross validation was used on the training set,
while the final weights applied on the testing set are estimated using
Jackknife estimation to reduce the bias. A regularization path was
also employed, where a family of λ’s is used. Given that different
values of λ offer different levels of sparsity, we chose λ that max-
imizes discrimination accuracy on the training dataset after cross
validation. We used this hyperparameter on the testing dataset to
calculate the final discrimination accuracy. In order to identify the
time windows that are critical for reading out information in the
V1 model, we used two approaches. One way to utilize dynam-
ics was based on a heuristic approach, where we only consider
dynamics during t ∈ [50, 150] ms, given that the V1 model has a
delay of 50 ms after stimulus onset and the length of activation is
about 100 ms. In a second approach, we optimized the temporal
window by an adaptive technique, where we search for an opti-
mal window that results in the best decoding performance. In the
adaptive technique, we systematically varied the latency and width
of the window, and computed the corresponding Az (area under
ROC curve) values through cross validation. The best window is
the one that results in the highest Az value.

MEASURING SPARSENESS
We characterize the sparseness of the neural representation in
the population spike trains, for both the temporal and spatial
domains. According to Willmore and Tolhurst (2001), lifetime
sparseness describes the activity of a single neuron over time, while

population sparseness characterizes the activity of a population of
neurons for a given time window. We estimate instantaneous fir-
ing rates using a Gaussian window 25 ms wide with a standard
deviation of 5 ms. Sparseness in firing rates can be measured by
kurtosis (Olshausen and Field, 2004), namely the forth moment
relative to the variance squared.

Using the sparse decoding framework,we are able to identify the
informative dimensions that are critical for our specific decision
making task. We define “informative dimensions” as the number
of non-zero weights in the decoder, which is equal to the cardi-
nality of the weight vector. Informative dimensions thus reflect
the number of non-zeros in the spatio-temporal “word.” Note one
neuron can be selected by the decoder at multiple time bins, there-
fore, we define “informative neurons” as the number of neurons
having at least one non-zero weight across different time bins.

STATISTICAL TESTS
We used a likelihood ratio test to evaluate the goodness of fit.
We fit a single Weibull curve jointly to both the psychometric
and neurometric dataset (dof= 4), as well as fitting two Weibull
curve independently to both dataset (dof= 8). We computed the
likelihood ratio using D = −2 ln(lj/lp ln). The null hypothesis is
psychometric and neurometric data can be described by the same
curve, and the decision rule is based on the Chi-square statistics
χ2. If p > 0.05, do not reject null hypothesis; otherwise, reject null
hypothesis.

RESULTS
ENCODING BY THE V1 MODEL
We first characterized the sparseness in the neuronal population
activity given face and car stimuli (see Materials and Methods). We
measured both the lifetime sparseness and population sparseness
for the network using a flashed presentation of the sample images.
Figure 4A shows the time course of the firing rate for one example
neuron over 50 trials. The firing rate of this neuron is sparse over
time. One can also see the increase in firing rate 50–100 ms shortly
after the stimulus onset. Figure 4B plots the histogram of firing
rates for this neuron, averaged over 50 trials, showing that the
kurtosis is 1.65, where a positive kurtosis indicates sparseness and
a kurtosis of zero indicates a Gaussian distribution. Similarly, we
also measured sparseness in the spatial domain. Figure 4C shows
the firing rates of all neurons at 50 ms during one trial. The dis-
tribution of firing rates is shown in Figure 4D, with a kurtosis of
10.26. Thus for the stimuli we consider for constructing our 2-AFC
discrimination paradigm (faces vs. cars), the V1 model produced
population responses which are relatively spatially sparse and mar-
ginally temporally sparse. However they are not highly sparse (e.g.,
kurtosis > 100), as has been seen in models which impose hard
sparseness (Rehn and Sommer, 2007).

DECODING SPATIALLY AVERAGED FIRING RATE
Next we analyzed the spatially averaged firing rate from the V1
model to see whether it carried information for discriminating
stimulus class. Specifically we constructed a proxy for multi-unit
activity by averaging firing rates over all 4096 cortical neurons
and all 30 trials for each phase coherence level. We first investi-
gated whether spatially averaged firing rates were sensitive to phase

Frontiers in Psychology | Perception Science April 2013 | Volume 4 | Article 161 | 4

http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science/archive


Shi et al. Perceptual decision making in a V1 model

FIGURE 4 | (A) Spike trains of one example neuron over 50 trials, simulated
for a face stimulus. (B) Distribution of firing rates has a kurtosis of 1.65,
indicative of temporal sparseness. (C) Spatial distribution of instantaneous

firing rates over all neurons in the network. Firing rates are computed at
50 ms post-stimulus for one trial. (D) Distribution of firing rates has a kurtosis
of 10.26.

coherence levels in the stimulus. Figure 5 shows that the spatially
averaged firing rate decreases as the coherence level decreases for
face trials and car trials. This is consistent with the V1 neurons
being selective to oriented edge energies, which are reduced as the
phase coherence decreases. Although spatially averaged firing rates
in V1 have never been directly observed for this experimental para-
digm, evidence for graded responses, as a function of task difficulty
(i.e., coherence level), have been observed in full scalp EEG, par-
ticularly in electrodes over visual cortex (Philiastides et al., 2006).

We then considered the difference in the spatially averaged fir-
ing rate between face and car trials. Figure 5C shows a graded
response for the average difference, with the trend being toward
smaller differences for lower coherence levels. To investigate how
discriminating this difference was on a trial-to-trial basis, we con-
structed histograms of the spatially averaged firing rates for both
face and car trials. We constructed a neurometric function by
computing the area under the receiver operating curve (ROC)
curve (i.e., area given as Az) at each coherence level and fitting a
Weibull function to these points. The neurometric curve was con-
structed based on the time window from 50–150 ms post-stimulus,
which is the time window with the maximum mean difference in
the spatially average firing rates for the two stimulus classes. The

resulting neurometric curve (black curve), shown in Figure 5D,
was a poor match to the group psychometric curve (red curve),
which was computed by averaging over the behavioral data of
10 human subjects performing the same two-class discrimination
task. The finding that the stimulus class, for such complex stimuli
as faces and cars, cannot be decoded from the spatially averaged
firing rate is also consistent with previous findings measured by
EEG (Philiastides and Sajda, 2006), where EEG in visual cortex is
selective for coherence level but not selective for image class.

DECODING SPATIO-TEMPORAL DYNAMICS
The above observation prompted us to investigate whether a more
fine-grained mesoscopic decoding strategy holds information for
stimulus class discrimination. We investigated a sparse decod-
ing strategy that exploits the spatio-temporal neurodynamics
produced by the V1 model.

Specifically, we investigated whether the transient nature of
the neurodynamics is critical for learning a linear discrimination
boundary. If discrimination is driven by a sustained activation of
neurons over time, then an optimal decoding strategy would be
based on integrating the neuronal spiking activities over a sub-
stantial fraction of the trial. On the other hand, if the transient
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FIGURE 5 | (A) Average response over all the model’s cortical neurons for all
face stimuli. (B) Average response over all the Magnocortical neurons for all
car stimuli. (C) Average response difference between face and car stimuli for
the Magno system. (D) Neurometric curve by decoding spatially averaged

firing rates for the V1 model (thick black curve) is plotted, together with the
group average psychometric curve fitted across 10 subjects (thick red curve),
and psychophysical performance of 10 individual subjects (thin dashed red
lines).

dynamics are critical for discrimination, then a finer grain tempo-
ral integration of the dynamics would yield better discrimination.
We evaluated the difference between these two cases by construct-
ing a neural“word”using integration time bins of different lengths.
A time bin of 25 ms captures the transient information in the
neural activities while a time bin of 250 ms would treat the neural
information in a sustained manner. Theoretical studies have inves-
tigated how information content in the neural activity can vary as
a function of the length of the window used for estimation (Panz-
eri et al., 1999). Here we empirically study this within the context
of the neural activity generated by the model. Figure 6 illustrates
how the spike count matrix for discrimination is constructed. Note
that the dynamic word has a dimensionality that is 10 times larger
than the sustained word.

The decoding results, shown in Figure 7A, reveal that the
predicted discrimination accuracy is substantially higher when
transient neurodynamics are utilized. The neurometric curve for
the transient dynamics decoding (i.e., temporal coding model,
black curve) lies within the variation of the human behavioral
data, whereas the neurometric curve for the sustained decoding
(gray curve) is clearly outside the range of human behavioral

performance. Figure 7B shows the mean neurometric curve
(black curve), constructed by averaging the discrimination accu-
racy across six random initializations of the model. The aver-
age psychometric curve (average of 10 subjects, red curve) is
shown for comparison. The significance of the similarity between
the neurometric and psychometric curves should not be over-
looked, given that the model of V1 is not optimized/tuned to
match the psychophysics nor is the decoder trained to match
the psychophysics. Taken together with the fact that the V1
model also produces realistic classical and extraclassical physi-
ological responses, at both the single cell and population level
(Wielaard and Sajda, 2006a,b), this result provides validation for
this modeling substrate.

We further investigated the role dynamics plays in decoding
accuracy and the fit of the neurometric curve relative to human
psychometric performance by comparing the decoding of activ-
ity generated by our V1 model to the activity generated by the
first layer of the feedforward HMAX model (Serre et al., 2007).
Shown in Figure 8, this version of HMAX, which has no dynam-
ics, results in a neurometric curve that substantially deviates from
the psychometric performance, overestimating decoding accuracy
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A B C

FIGURE 6 | (A) Spike trains from simulated neurons are aligned relative to
stimulus onset. Words are constructed by binning spike trains using a given
temporal bin width. (B) A spatio-temporal word represented as a matrix of

size N neurons by 10 time bins, each time bin being 25 ms wide. Numbers
indicate spike counts for bins with at least one spike. (C) A word represented
as a vector of length N, computed using a single bin of size 250 ms.

FIGURE 7 | (A) Simulated neurometric performance for one initialization of
the V1 model. Shown are (black) neurometric curve constructed by
decoding the full spatio-temporal word, D=3.19, p=0.53; (gray)
neurometric curve constructed from a decoder that ignores dynamics,
D=52.26, p < 0.01. Also shown is (dashed red lines) the psychophysical
performance of 10 human subjects, and (solid red curve) the group
psychometric curve across 10 subjects. (B) Shown are (black) simulated
neurometric performance averaged over five initializations of the model,
together with (red) the average psychometric curve for the 10 human
subjects. Error bars on both curves represent standard error. Likelihood
ratio test yields D= 6.42, p=0.17.

at low coherence levels and underestimating it at high coherence
levels.

Finally we investigated how decoding accuracy is affected by
the degree of sparsity in the neural activity. Table 1 was con-
structed by varying the initial conditions of the model in such
a way that physiological response properties, such as orientation
tuning and modulation ratios (i.e., fraction of simple and complex
cells), were not significantly affected though there were observed
changes in both spatial and temporal sparsity. As can be seen in
Table 1, the decoding accuracy is strongly correlated with the spa-
tial sparseness of the activity (Pearson’s r = 0.96, p= 0.009) but
not significantly correlated with temporal sparseness (Pearson’s
r =−0.65, p= 0.24) with the higher decoding accuracy associated
with a greater degree of spatial sparseness.

FIGURE 8 | Decoding accuracy compared to a feedforward model.
Comparison of psychometric and two neurometric curves, one for sparse
linear decoding of activity generated by our dynamical V1 model (black
curved – same as Figure 7A, D=3.19, p=0.53;) the other for a sparse
linear decoding of activity generated by the first layer of the feed forward
HMAX model (gray curve; D=48.26 (p < 0.01). Code for simulating HMAX
feedforward model is freely available from http://cbcl.mit.edu/jmutch/
cns/hmax/doc/

ALTERNATIVE DECODING STRATEGIES
In this work, we use the decoder to evaluate the information con-
tent for varying level of stimulus noise. In this regard, we compared
several decoding strategies. Figure 9A shows neurometric curves
for two decoding scenarios: (black) train and test the decoder at
each coherence independently (gray), train at the highest coher-
ence and test at each coherence. Simulation results indicate train-
ing and testing the decoder on each coherence level independently,
though suboptimal relative to training at the highest coherence, is a
better match to the human psychophysics. This would suggest that
not only information about the signal but also information about
the noise distribution is potentially used by the subjects in the task.

Figure 9B compares sparse and non-sparse decoding strategies:
(black) sparse decoding (gray), non-sparse decoding. In this
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Table 1 | Five V1 models differing in their spatial and temporal

sparsity, measured via kurtosis, and the resulting classification

performance measured via the area under the ROC curve (Az).

Spatial

Sparseness

(Kurtosis)

Temporal

Sparseness

(Kurtosis)

Classification (Az)

Model 1 8.50 2.51 0.73

Model 2 11.83 1.42 0.84

Model 3 14.91 0.08 0.87

Model 4 8.84 0.60 0.76

Model 5 9.86 1.15 0.78

FIGURE 9 | Comparison of several decoding strategies. (A) Two
decoding strategies: (black) train and test at each coherence independently,
D=3.19, P =0.53; (gray) train at the highest coherence and test at each
coherence, D=12.88, P =0.01. Both are trained as sparse decoders. (B)
Sparse and non-sparse decoding strategies: (black) sparse decoder,
D=3.19, P =0.53; (gray) non-sparse decoder each with the same amount
of regularization, D= 3.66, P =0.45. Both are trained on each coherence
independently. Also shown are (dashed red lines) the psychophysical
performance of 10 human subjects; (solid red curve) the group
psychometric curve across 10 subjects.

case it is less clear which is a better match to the human
psychophysics – i.e., both lie within the inter-subject variability
and both are fits cannot be rejected under the likelihood ratio
test (See Statistical Tests). However, below and in the following
sections we will discuss several advantages of the sparse decoder
in terms of robustness.

One of the attractive features of a sparsity constraint is it makes
the decoder robust to noise and irrelevant features (Ng, 2004). We
tested robustness by comparing the sparse decoder with a non-
sparse decoder (see Materials and Methods). Figure 9 compares
the decoding results for the two different regularizations. We swept
the values for the hyperparameters weighting the contribution of
the regularizer (see Materials and Methods) and computed a cross-
validated discrimination performance. Consistent with Figure 9B,
the sparse decoder yielded better discrimination performance for
all coherence levels, while also requiring one to two orders of mag-
nitude fewer informative dimensions. Also clear from Figure 10
is a degradation of discrimination performance using non-sparse
decoding, with such degradation more dramatic as the noise in
the stimulus increases.

In general, sparsity helps in two ways: one is when the train-
ing samples are few, the other is its ability to ignore noise. The

FIGURE 10 | Discrimination accuracy for both sparse and non-sparse
decoding strategies. Decoding is shown for three different coherence
levels while sweeping the hyperparameter that controls the amount of
regularization. Sparse decoding always yields fewer informative dimensions
while also having greater discrimination accuracy for each of the three
coherence levels.

computer vision and deep learning community have investigated
the importance of sparsity in classification tasks, with sparse
autoencoding being an example of how sparsity can improve the
final classification result (Ranzato et al., 2007; Coates and Ng,
2011).

INFORMATIVE DIMENSIONS
The sparse decoder not only makes decoding of high-dimensional
features feasible, but also facilitates an avenue for investigating
feature selection and quantifying the informative dimensions.
Figure 11A shows that the number of informative dimensions
increases as the task becomes more difficult, i.e., the decoder will
exploit additional dimensionality in the neural word to improve
decoding performance. Realizing the fact that one neuron might
participate in the decision process multiple times, we also com-
puted the number of informative neurons, which is the number of
uniquely chosen neurons in the neural word. Our results indicated
that the number of informative neurons also decreases as the task
gets easier, as shown in Figure 11B. Such an observation offers
possible insight into the tradeoff between decoding accuracy and
metabolic cost. Finally, Figure 11C shows the number of neurons
in which more than one time bin is selected in the neural word.
Thus most neurons participate only once in the decoding process.

“MELODY” WITHIN NEURAL DYNAMICS
We analyzed the spatial and temporal distributions of the infor-
mative dimensions arising from the sparse decoding framework.
Figure 12A shows three coherence levels while Figure 12B shows
the spatial distribution of neurons selected for these three lev-
els. It is clear that more neurons are selected as the task becomes
more difficult. Given that the stimuli are presented as a monocular
simulation, one can see “banding” indicative of ocular domi-
nance columns. We also investigated the temporal distribution
of the selected neurons. Using an adaptive windowing technique
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FIGURE 11 | (A) Number of informative dimensions decrease as the task becomes easier. (B) Number of informative neurons decreases as the task becomes
easier. (C) Difference between the number of informative dimensions and the number of informative neurons.

A D

E

B

C

FIGURE 12 | (A) Example of images at three coherence levels. (B)
Spatial distribution of neurons selected by the decoder. Shown are
neurons in the cortical space, where selected neurons are indicated in
black. (C) Temporal windows selected by the decoder together with their

corresponding weights. (D) Chronometric function indicating the time
needed by the decoder to accumulate evidence in the network
dynamics. (E) Behavioral chronometric functions derived from human
psychophysics.

(described in the Materials and Methods) we found a pattern of
activity that can best be described as a “melody.” See Figure 12C,
which shows that the visual stimulus elicits a spatio-temporal
pattern in the cortical activity that carries information about
discrimination. Our finding is similar to the activation patterns
that have been observed in vitro for spontaneous cortical activity
(Cossart et al., 2003; Watson et al., 2008).

The adaptive windowing technique also allows us to investi-
gate the optimal time window over which the decoder integrates
information to form a decision. Figure 12D can be interpreted

as the network’s chronometric function, namely the time needed
for the network to form the decision. Though the network does
not consider motor preparation or other possible sources of delay,
and thus the chronometric function cannot be strictly interpreted
as a measure of reaction time, this trend is very consistent with
subjects’ reaction time curves, see Figure 12E. Thus we see that
by reading out the neurodynamics of the V1 model using a sparse
linear decoder, we observe accuracy and timing for the discrimi-
nation that are very much consistent with the results for human
subjects.
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DISCUSSION
DECODING SPATIO-TEMPORAL DYNAMICS
Experimental studies, both on the microscopic and macroscopic
level, have offered insight that higher areas of cortex convey ade-
quate neural evidence for decision making, whereas the biological
transformation of such evidence through the early visual pathway
remains unclear. Our results suggest that there is substantial infor-
mation at the level of V1 that can be linearly decoded and mapped
to behavior data. A study of optical imaging data in awake behav-
ing monkeys investigated the decoding capacity of V1 and showed
that an optimal decoder could explain the behavioral response
in a reaction time visual detection task (Chen et al., 2006, 2008).
A follow-up study using single-unit and multi-unit recordings in
the same task showed an inferior decoding performance for V1
(Palmer et al., 2007), indicating that pooling from a large neuronal
population is critical for exploiting the maximum information
encoded in the cortex. Our work suggests that this pooling must
be done in a distributed manner across the population, namely
simply locally pooling neurons in the population does not suffice.
We also find that short sampling intervals/windows (25 ms) yield
better discrimination accuracy.

As we mentioned earlier, a more recent primate study has shown
how an empirically based linear decoder can be used to decode fir-
ing rate activity from a population of V1 neurons (on the order of
100 neurons) for a 2-AFC orientation discrimination task (Graf
et al., 2011). These results also showed that specific subsets of
neurons in the population contribute to the decoding accuracy.

Our results also support the hypothesis of DiCarlo et al. who
have argued that the decision space for invariant object recogni-
tion is a subspace which flattens out non-linear manifolds of the
early visual representation (DiCarlo and Cox, 2007). Our results
agree with this hypothesis and suggest that even at the level of V1,
substantial information can be decoded using a linear decoder. It
should be noted that our work has been mostly focused on evalu-
ating invariance along the dimension of spatial noise, with stimuli
normalized in position and scale.

RELATIONSHIP TO OTHER DECODING METHODS
Several investigators have argued for population coding (Pouget
et al., 2000, 2002; Averbeck et al., 2006) as a model of orienta-
tion discrimination, based on the assumption that orientation
tuning, computed from an average response over the period of
sinusoidal drifting gratings, was responsible for discrimination.
Models based on selecting the most informative point on a tun-
ing curve, usually the steepest point, only utilized the local shape
of the tuning curve (Bradley et al., 1987; Hawken and Parker,
1990). Fisher information was utilized in later models to study the
discriminating information for tuning curves (Seung and Som-
polinsky, 1993; Abbott and Dayan, 1999; Sompolinsky et al., 2001)
under the assumption that information was not limited to a point
on the tuning curve, but was subject to the limitation that Fisher
information could only be measured for a very small orientation
difference. Besides the population code, a further study using the
Chernoff distance between two distributions of spike counts paid
attention to the global information of a tuning curve, and found
that narrow orientation tuning was not necessarily optimal for
all angular discrimination tasks (Kang and Sompolinsky, 2001;

Kang et al., 2004). These studies, however, all resorted to using
the average responses of neurons across time, therefore ignor-
ing the rich dynamics of the spiking activity of the neuronal
population.

On the other hand, substantial work has been done to char-
acterize the temporal characteristics of neural dynamics using
statistical models. Bayesian methods (Bialek and Zee, 1990; Bialek
et al., 1991; Sanger, 1996; Osborne et al., 2005) are used to char-
acterize the spiking dynamics of neurons, providing the flexibility
for statistical inference (Mendel, 1995; Brown et al., 1998). Point
process likelihood-based generalized linear models (GLM) have
been used to analyze history dependence in neural spiking activ-
ity. State-space models provide a flexible tool for neural spike
train decoding (Brown et al., 1998; Barbieri et al., 2004; Brock-
well et al., 2004; Paninski, 2004; Wu et al., 2006; Deneve et al.,
2007; Czanner et al., 2008). These statistical methods typically
model the neural dynamics with some assumptions on the hidden
brain states, and use a generative approach to infer the stimuli
based on the neural dynamics. Latency coding scheme (Shriki
et al., 2012) and spike timing dependent plasticity (Masquelier and
Thorpe, 2007) have been investigated for decoding V1 informa-
tion, all pointing to the conclusion temporal dynamics is critical
for object recognition. Our results have focused on a discrimi-
native approach, mapping the neural dynamics into a (binary)
decision.

RELATIONSHIP TO RESERVOIR COMPUTING
Theorists have sought to build computational models that are
inspired by the cortex and test how such architectures perform
in object recognition tasks. Models based on feedforward archi-
tectures, such as HMAX (Serre et al., 2007), propose that a com-
bination of linear and non-linear filtering operations, arranged
in a hierarchical structure, can map the visual world into a high-
dimensional space where objects can be linearly decoded with
high recognition accuracy. Noticeably absent in such feedforward
architectures is a recurrent connectivity and thus the dynamics
which are clearly prevalent in visual cortex. Termed liquid state
machine (LSM) (Maass et al., 2002) and echo state network (ESN)
(Jaeger and Haas, 2004), these algorithms have been related to the
brain’s neural microcircuitry, and potentially link the anatomy and
physiology of the vast recurrent circuitry in cortex with general
computation capabilities.

The concept of reservoir computing stipulates the importance
of dynamics. Theoretically, there are several ways to utilize the
dynamics of the population spike trains. The first approach is to
study the spike statistics, such as mutual information, though such
an approach is limited to a small number of neurons. A second way
of using dynamics relies on cliques of neurons falling into a stable
state, such as a limit cycle, as a model of coding information and
short-term memory. LSM and ESN, however, do not rely on form-
ing stable brain states, as a traditional dynamical system would
require. A number of investigators have pursued work along this
line, most of which use randomly connected recurrent networks
(White et al., 2004; Yamazaki and Tanaka, 2007; Legenstein et al.,
2008). Our work follows this line of research, however using a
physiologically realistic model of V1 that was constructed under
many biological constraints.
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CAVEATS OF A MODEL
A potential criticism of this work is that our results are based on
decoding of activity generated from a computational model of V1
and not from experimental recordings. Our model was designed
to investigate classical and extraclassical response properties of
large population of neurons in early visual cortex. Thus though
the neural activity we decode is simulated, our model is physiolog-
ically realistic, validated against experimental data across a wide
range of responses.

Complex visual objects are likely not directly discriminated
from V1 responses alone, and more complex non-linearities and

dynamics, including feedback, likely play a role in how objects are
detected, identified, and recognized. However we believe that the
paradigm presented in this paper represents a first step in under-
standing how complex images might be encoded within the V1
activity and be ultimately decoded further downstream.
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