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Although the idea of a method effect in psychological measurement seems intuitively
straightforward – that is, it is said to occur when any characteristic of a measurement
procedure contributes variance to scores beyond what is attributable to variance in the
attribute of interest – much of the surrounding conceptual vocabulary remains confused.
In part, these confusions can be traced to deeper confusion in the human science litera-
ture regarding the meaning of measurement. In particular, the thinking of human scientists
about method effects has been shaped by (a) received wisdom regarding why method
effects are problematic to begin with, and, therefore, what corrective measures are appro-
priate, (b) the formal and implied semantics of psychometric techniques that have been
developed to model method effects, and (c) general philosophical undercurrents that have
contributed to the collective understanding of psychological measurement. Notably, ten-
sions between lines of thought that can be broadly characterized as empiricist and realist
have contributed to uneven thinking surrounding the concept of a method effect. In this
paper, it is argued that it may be possible to formulate an account of what method effects
are that is coherent not only across different research traditions in the human sciences,
but also with thinking found in other scientific disciplines; however, doing so requires a
more explicit commitment to a realist position on measurement than is generally forth-
coming from human scientists. By examining these issues, this paper hopes to contribute
to semantic clarity regarding not just method effects, but also the meaning of measurement
in psychology.
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generalized latent variable models

Although the ideas of method effects and methods variance have
been present in the literature on psychological measurement for
more than a half-century, and at first glance seem to be intuitively
straightforward, a great deal of the associated conceptual vocabu-
lary remains confused. In part these confusions can be traced to
the significant variation in the ways in which method effects are
conceptualized, discussed, and statistically modeled in different
parts of the literature; in particular, discourse on method effects is
shaped by the explanations given for why method effects are prob-
lematic to begin with, and by the semantics of commonly applied
statistical models for behavioral data [particularly confirmatory
linear factor analysis (CFA) and fixed- and random-effects per-
spectives on the modeling of local item dependence (LID) within
the item response theory (IRT) tradition]. Additionally, and more
fundamentally, confusions regarding method effects are connected
to deeper confusions regarding the meaning of measurement in the
human sciences.

Method effects are generally understood as occurring when
“any characteristic of a measurement process or instrument con-
tributes variance to scores beyond what is attributable to the
construct of interest” (e.g., Sechrest et al., 2000, p. 64). It is regu-
larly pointed out, however, that this definition lacks rigor, and thus
there is considerable variation in interpretations of the concept
(e.g., Fiske and Pearson, 1970; Golding, 1977; Fiske and Campbell,
1992; Cronbach, 1995; Brannick et al., 2010). To begin with, the

definition of a method effect in terms of sources of variance in
outcomes seems to be both too strong and too weak: too strong,
as it would exclude systematic biasing effects that would leave
score variance intact (i.e., effects that operate on the expectation
of the outcome of a procedure rather than its variance), and too
weak, as it would include anything that adds random noise to the
outcomes of a procedure, which would seem to imply that unreli-
ability in general is a kind of method effect. Further, most of the
time method effects are defined by ostension, and the examples
commonly given can vary significantly from one field to another.
Consequentially, the operating definition of a method effect used
by most applied researchers is loose and relative to the purposes
of a test (Sechrest et al., 2000), and may or may not include such
things as person factors (e.g., response biases such as halo effects
and social desirability; Bagozzi and Yi, 1991) and situational fac-
tors (e.g., whether a test is administered in a high-stakes context).
Additionally, standard thinking about method effects is based on
a strict trait-method dichotomy that is itself questionable (Cron-
bach, 1995), and may be more applicable in some contexts than
others. Even researchers within the same field may have very dif-
ferent understandings of what a method effect is and how much
of a problem it is (Brannick et al., 2010; Pace, 2010).

Furthermore, the term “method effect” is itself only commonly
encountered in a particular subset of human science fields of
research, such as those concerned with personality, organizations,

www.frontiersin.org April 2013 | Volume 4 | Article 169 | 1

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/about
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/10.3389/fpsyg.2013.00169/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=AndrewMaul&UID=53327
mailto:andyemaul@gmail.com
http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Maul Method effects

management, and marketing. The concept of shared variance
among behavioral observations due to communality in incidental
features of the observational procedure is present in other fields
as well, though it is often couched in different terms, such as
measurement invariance to transformations of test features, gen-
eralizability across different response formats or modes of obser-
vation, and item-type-related LID. Accompanying these distinct
vocabularies are distinct statistical tools, and distinct motivations
for concern with method effects. These differences, combined with
the simple fact that the models and their applications appear in
research journals with little overlap in readership, has led to a
significant degree of unevenness in thinking about the role of
methods in measurement throughout the human sciences.

An additional and more fundamental factor contributing to
confusion regarding method effects is that discourse and think-
ing on method effects in measurement depends on the way in
which measurement itself is conceived. Especially in recent years,
a number of scholars have noted a great deal of confused thinking
in the human sciences regarding the meaning of measurement
(e.g., Michell, 1990, 1997, 1999, 2000, 2004, 2005, 2008; Bors-
boom et al., 2003, 2004; Borsboom, 2005, 2008; Trendler, 2009;
Sijtsma, 2012). In part this confusion is due to the fact that two
general currents of philosophical thought in the twentieth and
twenty-first centuries have influenced thinking about psychologi-
cal measurement, in some cases in conflicting ways. In particular,
while empiricism (and, more particularly, logical positivism, and
operationalism) strongly influenced the early development of the-
ories of measurement in psychology (e.g., Boring, 1923; Bridgman,
1927; Boring et al., 1945; Stevens, 1946; Suppes and Zinnes, 1963;
Krantz et al., 1971), philosophical realism has arguably under-
pinned many of the uses and interpretations of psychological tests
from the beginning (a point argued by Michell, 1999), and has
been more explicitly invoked in theories of measurement and
validity in recent years (e.g., Michell, 1990, 1999, 2005; Borsboom
et al., 2004; Borsboom, 2005; Hood, 2009; Maul, 2012; also in
the “constructive-realism” of scholars such as Messick, 1989, and
Mislevy, 2009; see also Slaney and Racine, 2011). The average prac-
titioner or researcher may be unaware of the conceptual tensions
that sometimes result from the different ways in which these two
strands of thought have contributed to discourse about specific
concepts such as method effects, and about measurement more
generally.

It may be possible to formulate an account of what method
effects are that is coherent not only across different research tradi-
tions in the social sciences, but also with thinking found in other
scientific disciplines; however, doing so requires a more explicit
commitment to a realist position on measurement than is gen-
erally forthcoming from human scientists. By examining these
issues, this paper hopes to contribute to semantic clarity regard-
ing not just method effects, but also the meaning of measurement
in psychology. The organization is the paper is as follows. The
first section reviews the logic commonly given in different parts
of the literature about what method effects are and why they
are important. The second section more closely examines the
semantics of two classes of statistical tools commonly used to
model method effects, and considers their implied stances on
what method effects – and, by implication, measurement – are

all about. The third section then delves more deeply into the ways
in which general lines of philosophical thought have influenced
thinking about measurement in psychology, and method effects
in particular. The final section argues that, despite differences in
vocabulary and norms of practice across fields, there is a common
general understanding of what method effects are, and that this
understanding is consistent with modern realist thinking about
measurement.

WHAT ARE METHOD EFFECTS, AND WHY ARE THEY
IMPORTANT?
The general understanding of method effects seems to be that
they represent unwanted “nuisance” variance in observed out-
comes that are associated with the particular way information was
collected, rather than with variance in that which was intended to
be measured (often an attribute of a person). This implies that, at
least in principle, it would have been possible to collect informa-
tion about the same attribute using a different method – that is, at
least some features of the particular method or methods employed
are incidental rather than essential features of the testing proce-
dure. (This, as it happens, it not always obviously true; this point
will be revisited in a later section).

In some cases, alternative methods may be explicitly included
as design elements in a testing situation. Seen this way, the use of
different methods to assess a trait represents an attempt at triangu-
lation, or, alternatively put, an attempt to establish that inferences
about a targeted attribute are robust (i.e., invariant) to a specific
set of transformations in the testing procedure. For example, if
information about an employe’s conflict-resolution ability is col-
lected via self-report, peer-report, and supervisor-report, the three
methods are thought to represent three different sources of evi-
dence about the same person attribute: each of them may be flawed
in particular ways, but, ideally, they are differently flawed, and so
the information obtained from the three methods together may be
more dependable and generalizable than the information obtained
from each method individually.

Campbell and Fiske (1959) gave a related but slightly differ-
ent motivation for the deliberate inclusion of different methods
in their seminal article on multi-trait multi-method (MTMM)
studies. Campbell and Fiske described the logic of convergent and
discriminant validity,1 which leverages the idea of a trait as “a rel-
atively stable characteristic of a person – an attribute, enduring
process, or disposition – which is constantly manifested to some
degree when relevant, despite considerable variation in the range
of settings and circumstances (of observation)” (Messick, 1989, p.
15). If such a trait has truly been identified, and is indeed invariant
to a variety of transformations in the incidentals of its assessment,
different methods of observation should give consistent results.
Conversely, when a particular method of observation is applied to
the assessment of distinct traits, the fact that they share a method in

1The language of convergent and discriminant validity was popular at the time
largely because of Cronbach and Meehl’s (1955) seminal paper on construct valid-
ity. Although convergent and discriminant validity as such are not emphasized in
modern treatments of validity (e.g., APA, AERA, NCME, 1999; Borsboom et al.,
2004; Kane, 2006), their legacy remains present in the interpretations of MTMM
studies, particularly in fields such as organizational and marketing research.
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common should not inflate their apparent association. Thus con-
vergent validity is seen as the extent to which different methods
agree on the trait values of individuals, and discriminant validity is
the extent to which different traits are empirically distinguishable,
even when they are assessed via the same method.

Clearly, the second of these concerns is unique to measurement
situations in which more than one attribute is of interest (i.e.,
“multi-trait” studies). Such situations are more common in some
fields, such as personality, organizational, management, and mar-
keting research, than in others, such as educational testing and
experimental psychology. Within the former collection of fields,
the potential biasing of observed associations among theoretically
distinct traits seems to be thought of as the primary reason why
one should be concerned with method effects (e.g., Podsakoff et al.,
2003; Lance et al., 2010; Pace, 2010), sometimes to the point that
it is argued that method effects can be ignored entirely if this
particular concern can be dismissed.

Conversely, in fields in which it is more the norm of prac-
tice to focus on the measurement of a single attribute at a time,
the term “method effect” itself is less commonly heard, but the
concept of variance in behavioral observations being related to
incidental features of the observational procedure is nonethe-
less present. For example, in situations in which multiple raters
score performances of individuals, the specific rater or raters to
which one was assigned is generally considered an incidental,
rather than essential, feature of the testing procedure. Though
steps are usually taken to maximize the interchangeability of raters
(e.g., by training them against a standardized rubric until a high
degree of consistency is achieved), it is nevertheless well-known
that even well-trained raters may introduce some amount of nui-
sance variance into scores due to their idiosyncrasies. Discussion
of rater effects often takes place under the umbrella concept of
facets of a testing procedure (e.g., Cronbach et al., 1972; Linacre,
1989), which could also include such things as contextual fac-
tors (e.g., whether a person is tested at morning or at night, or
in a quiet environment or a noisy one), item formats or modal-
ities (e.g., whether an item is multiple-choice, written-response,
or answered orally), and delivery methods (e.g., whether a test is
presented via paper and pencil or via computer). Within the con-
text of generalizability theory (Cronbach et al., 1972), the reason
for concern with facets is generally worded in terms of minimiz-
ing unwanted sources of variance when making inferences and
decisions about individuals. In some other contexts, such as in
many-facets Rasch measurement (Linacre, 1989), the concern is
sometimes worded in terms of accounting for the fixed effects
of facets on item difficulty (e.g., rater leniency or severity) and
for obtaining scale scores that control for variation in construct-
irrelevant facets (e.g., the specific rater or raters to which a student
was assigned).

The concept of LID, commonly encountered in the literature on
IRT, is also related to the concept of a method effect. Specifically,
on a unidimensional test2, LID is said to occur when responses
to individual items share more in common with one another

2Although multidimensional IRT models have now reached a fairly high state of
sophistication, it is still more the norm of practice in the domains in which IRT is
applied to consider only a single substantive dimension at a time, and therefore, it is

than just that their probabilities jointly depend on the latent vari-
able. This can occur for many reasons; one common example is
the “testlet” situation (e.g., Wainer et al., 2007), in which specific
groups of test items share, in addition to dependence on the latent
variable, incidental test features such as common stimulus mate-
rial, a common prompt or item stem, or a common format. The
main concern that is usually given regarding LID is that failing to
adequately model it will lead to overestimation of measurement
precision (reflected in, for example, upwardly biased reliability
estimates and downwardly biased standard errors; e.g., Sireci et al.,
1991).

Finally, the concept of measurement invariance (e.g., Millsap,
2011) can be framed in terms of methods as well. Although
invariance studies more commonly examine such things as the
invariance of parameters across groups of persons (e.g., males
versus females, persons of different nationalities), it is also pos-
sible to speak of invariance across alternative methods (com-
monly in terms of groups characterized by methods; e.g., persons
who responded to a paper-and-pencil survey versus those who
responded to an online version of the same survey). Here, con-
cerns about methods may be worded in terms of construct bias, or
the idea that a test may measure something different depending on
its mode of delivery if group invariance does not hold. This hints
at the possibility that methods may do more than simply introduce
variance in observations over and above what can be attributed to
variance in the measured attribute: they may, in fact, change the
interpretation of the measured attribute.

Thus there is considerable variation in the conceptual vocab-
ulary surrounding the concept of method-related dependencies
in observations, and the motivations given for attending to such
issues. This variation is intertwined with the semantics of the sta-
tistical techniques commonly employed in different fields to model
method effects. These models and their semantics now deserve a
closer inspection.

THE SEMANTICS OF PSYCHOMETRIC MODELS OF METHOD
EFFECTS
Distinct methodological traditions have arisen in various areas of
research in the human sciences. Included in these traditions are
often strongly institutionalized preferences for particular sorts of
statistical models. Although recent advances in generalized latent
variable modeling (e.g., Skrondal and Rabe-Hesketh, 2004) have
clarified the syntactic connections between commonly employed
parametric models by establishing powerful unified frameworks
from which these models can be derived as special cases, the vocab-
ulary and traditions surrounding many specific models remain
highly distinct, and the statistical and conceptual connections
between various models are not readily transparent to the average
researcher.

By way of illustration, two popular classes of models will
be described here, with particular attention to both their for-
mal semantics and the manners in which they are commonly
interpreted: MTMM CFA models and random-effects IRT testlet
models.

much more common for LID to be modeled within a single (substantive) dimension
rather than as a common source of item dependence across dimensions.
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MULTI-TRAIT MULTI-METHOD CFA MODELS
After Campbell and Fiske’s (1959) introduction of the idea of an
MTMM study and the rise of linear factor analysis (Lawley and
Maxwell, 1963; Jöreskog, 1971; Bollen, 1989), CFA models were
developed for MTMM data, the two most famous of which are the
correlated-trait correlated-method (CTCM) model and the cor-
related uniqueness (CU) model (Marsh and Grayson, 1995). The
CTCM model is commonly presented as follows:

yj = t + LT Tj + ΛM M j + ej (1)

where y j is a p-dimensional random vector of indicators (trait-
method units) observed in subject j (j= 1 . . . N ), ej is a p-
dimensional random vector of mutually uncorrelated residuals
(also called specific factors, disturbances, or uniquenesses), τ is a
p-dimensional vector of regression intercepts, Tj and Mj are q-
and r-dimensional vectors of common Trait and Method factor
scores, and ΛT and ΛM are the p× q and p× r matrices of trait
and method factor loadings. Under the assumption that Tj, Mj, and
ej are mutually uncorrelated, the implied covariance structure is:∑

= ΛT ΨT Λ′T +ΛM ΨM Λ′M +Θ (2)

where ΨT and ΨM are the q× q and r × r covariance matrices
of the trait and method factors and Θ is the diagonal covariance
matrix of the residuals ej.

A path diagram corresponding to this model is shown in
Figure 1 (here in the case in which there are three traits and
three methods). This model, as a special case of linear confirma-
tory factor-analytic models more generally, models the conditional
mean of the indicator variables, making it appropriate when said
indicator variables are continuous. When estimated using max-
imum likelihood (ML) techniques (as is common), it must be
additionally assumed that these variables are normally distributed.
Since responses to individual test questions can rarely be scored
continuously, item-level data are almost never modeled using
CTCM models. Instead, it is common practice to take the sum or
average of a set of items (the result is sometimes called a “parcel”
or just a “test”), in the hopes that the distributions of such sums or
averages approximate continuous and normally distributed vari-
ables. This model, again like factor models more generally, also
assumes that the latent variables are continuous. Finally, MTMM
studies nearly always have only a single indicator variable for each
combination of trait and method, or“trait-method unit”(reflected
in Figure 1 by the fact that there are 3M× 3T= 9 indicator vari-
ables), but there is no necessary reason this needs to be the case3;
the number of trait factors times the number of method factors is
simply the lower limit on the number of indicator variables needed
for estimation of an MTMM.

Formally, the CTCM model states that population-level vari-
ance4 in each observed variable has three causes, each of which is

3In fact, models with more than one indicator at the intersection of each trait and
method might be more resilient to the estimation and convergence problems so
common in MTMM studies (for a review, see Lance et al., 2002).
4The semantics of models given in this paper correspond to what Borsboom et al.
(2003) refer to as the between-subjects or interindividual interpretation of the

FIGURE 1 | A Correlated-Trait, Correlated-Method (CTCM) model.

modeled as a person-level random variable: the trait and method
dimensions, and a specific factor. There are no formal semantic
differences in the modeling of the trait and method causes other
than their specific patterns of loadings (the fact that Tj and Mj are
separated out in Eq. 1 is a simply a matter of notational conve-
nience). In most applied contexts, the trait variables are interpreted
in a relatively straightforward manner as denoting specified attrib-
utes (“traits”) of persons, controlling for the specific method of
measurement. The method factors may be interpreted in a parallel
manner as denoting attributes of persons that relate to how peo-
ple respond to particular methods of measurement, controlling for
which trait is being assessed, such as method-specific talents or skill
sets; an example of such an interpretation would be when a factor
loading on oral tests is interpreted as denoting “oral presentation
ability,” controlling for the topic being spoken about. However,
in practice, it is common for such dimensions to be interpreted
primarily as nuisance dimensions, where only population-level
parameters are of interest (similarly to how unique factors are
commonly interpreted).

The fact that trait and method factors are both random per-
son factors implies that term “method factor” may be consid-
ered misleading – that is, “method factors” vary over persons,
not over methods. A somewhat more appropriate (albeit wordy)
term might be “factors of method-specific ancillary traits.” The
interpretation of these factors will be discussed further in a later
section.

It is common for CTCM models to fail to converge, or to yield
unstable or inadmissible solutions (Marsh and Bailey, 1991; Lance
et al., 2002; Eid et al., 2008). Partly in reaction to this, modified
forms of the CTCM model have been proposed, such as models
with orthogonal methods factors correlated-trait uncorrelated-
method (CTUM). The orthogonality constraints force a different

causal relations expressed in latent variable models. As they discuss, when cross-
sectional data are analyzed (as is common), this is the only interpretation that
can be defended. Additional assumptions are necessary if a within-subjects or
intraindividual interpretation is desired.
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set of semantics on the method factors; for example, the “oral
presentation ability” interpretation from the previous example
might be suspect, insofar as this ability might be expected to
relate to facility with other methods, due, for example, to over-
lap in component skills (e.g., test-wiseness, motivation, general
verbal ability). The method factor in the CTUM model could
only be interpreted as denoting those attributes of persons that
are truly specific to a particular method of measurement, and
in many cases it may not be clear exactly what such attributes
would be.

Another model proposed as an alternative to the CTCM model
is the CU model (Marsh and Grayson, 1995), which drops the
method factors entirely and allows the disturbances of observed
variables that share a common method to correlate. Corre-
lations are usually interpreted as “unanalyzed associations” in
factor and path models, meaning that no causal explanation
is given for these associations; thus, such models say nothing
formal about the reasons methods induce dependence among
observations.

ITEM RESPONSE THEORY RANDOM-EFFECTS TESTLET
MODELS
There are a number of within-item multidimensional IRT mod-
els that have been developed that could be considered models
for method effects. As mentioned previously, the concept of LID
shares a conceptual relation with the concept of method effects:
LID occurs when variation in some subset of item responses shares
more in common than just their common cause represented by the
(primary) latent variable, and methodological similarities among
items are an obvious possible source of such shared variance. Thus
it could be said that method effects are one possible cause of LID,
and, therefore, that models developed for LID may be used to
model method effects.

Various constrained versions of full information bi-factor mod-
els (Gibbons and Hedeker, 1992; see also Holzinger and Swineford,
1937) have been proposed to model tests with testlet structure,
one of the more famous of which is Bradlow et al.’s, 1999; also
see Wainer et al., 2007, c.f. Rijmen, 2010) testlet response model.
The bi-factor model (and Bradlow et al.’s testlet model) can be
pictorially represented by Figure 2 (here in the case in which there
are three testlets and 30 items)5 Wang and Wilson (2005a,b) devel-
oped this model specifically for the one-parameter logistic (1PL)
case. Their model is as follows:

log
(
Pnij

/
Pni(j−1)

)
= θn − dij − ck(i) + γnk(i) (3)

in which θn represents the primary dimension of individual dif-
ferences (also interpretable as a random intercept), dij is the item
parameter associated with step j in item i, ck(i) is the overall dif-
ficulty of testlet k, and γnk(i) is the random effect of testlet k. The
random-effects of testlets are constrained to be orthogonal to one
another and to the random intercept θn; thus, γnk(i) can be inter-
preted as a dimension of individual differences (i.e., a random

5Unlike the CFA literature, in the IRT literature it is uncommon to encounter path-
diagrammatic presentations of models; to my knowledge the random-effects IRT
testlet model has not been presented in this way before.

FIGURE 2 | A Bi-factor model.

person effect) that affects the probability of success on items on a
specific testlet, independent of the primary dimension and other
testlets6. A separate equation for the covariance structure (analo-
gous to Eq. 2) is not commonly given in the IRT literature (but
would in this case be a diagonal matrix, given that all dimensions
are orthogonal). The variances of θn and γnk(i) are estimated para-
meters and can be used to aid interpretation of the extent to which
variation in item responses is attributable to variation in the pri-
mary dimension versus the presence of the item in its testlet. The
formulation given here is consistent with Masters’ (1982) partial
credit model, in which category difficulties are freely estimated for
each item; appropriate constraints could yield other models (also
see Adams et al., 1997).

This model can readily be extended to the 2PL case via the
addition of item-specific slope parameters on θn and γnk(i). In
the case where slopes are estimated, there are various constraints
that can be placed on the model for purposes of identification
and interpretability: Bradlow et al. (1999) impose the restriction
that a single slope parameter is estimated for each item, which
applies to that item’s loading on both the primary dimension and
the testlet dimension; other possibilities have also been explored,
such as models that estimate a single slope parameter for each
testlet dimension but allow all slopes to be freely estimated on the
primary dimension (Li et al., 2006), and models that constrain
the slopes of items on testlets to be inversely proportional to their
slope on the primary dimension (DeMars, 2006).

The logit link function makes these models appropriate for
ordinal indicator variables. The indicator variables are typically
assumed to have Bernoulli distributions if dichotomous, and
multinomial distributions if polytomous. As with all IRT models,
it is assumed that the latent variables are continuous. Although the

6As in the case of the CTUM model, this orthogonality constraint has the conse-
quence that if there is any method- (or testlet-) induced variance in item scores that
is shared across methods (or testlets), this variance will be confounded with the pri-
mary dimension rather than the method dimensions. In the case of a test composed
of testlets, then, the variance of the testlet dimensions could be arguably interpreted
as variance in responses due to factors specific to that very testlet, but not variance
due to factors that would influence responses to testlet questions in general.
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presentations of these models in the literature have assumed a sin-
gle primary (“substantive”) dimension plus k testlet dimensions,
they are easily generalizable to the case in which there is more
than one substantive dimension, using established techniques in
multidimensional IRT (e.g., Adams et al., 1997; Reckase, 2009), in
which case the model would be multidimensional on both sides
of Figure 2. If the items within a testlet loaded onto more than
one substantive dimension, this model would be equivalent to
the CTUM model discussed earlier, albeit with a logit rather than
identity link.

As previously noted, these models have mainly been presented
as “testlet” models and discussed in terms of their helpfulness in
modeling specific sources of local dependence. Wang and Wilson
(2005b) also refer to Eq. 3 as a “facet” model, and discuss how
it can be applied when there are multiple raters whose influence
cannot be modeled solely in terms of an overall shift in difficulty
due to leniency or severity (i.e., a fixed effect, represented by ck), as
is done in the many-facets Rasch model (Linacre, 1989). In terms
of its formal semantics, the model is even more general than that.
A random testlet or facet effect is equivalent to a second dimen-
sion of individual differences that causes variation in a subset of
item responses, and thus, induces stronger dependence amongst
those items than would be expected due to their primary com-
mon cause(s). There is no reason why the logic of this cannot
extend to other sources of variation in specific subsets of items on
a test, such as the fact that different subsets of items represent dif-
ferent sources of information (e.g., self-report, supervisor-report,
etc.) or different formats of items, among other method-related
possibilities.

Finally, like the CFA models discussed previously, the method
(or testlet, or facet) dimensions vary over persons, not over meth-
ods; thus, again, a more appropriate name than (say) “testlet
dimension” might again be “dimension of testlet-specific individ-
ual differences.” Conversely, the fixed effect ck is a constant over
persons, and thus operates on the expectation (rather than the
variance) of observed scores; taken together, a specific method can
thus be modeled as adding both systematic bias and random error
to the outcomes of measurement procedures.

DISCUSSION
The previous two sections have illustrated how the formal seman-
tics of models for method effects depend on the particulars of
model specifications (in terms of constraints, numbers of dimen-
sions, choice of link functions, etc.). Informally, as discussed
previously, interpretations of method effects depend largely on
differences among research traditions in vocabulary, in the sub-
ject matter typically dealt with, and in the motivations commonly
given for why method effects or LID are worthy of attention;
these differences, combined with differences in the way the mod-
els are commonly presented (illustrated by the different choices
of symbols and the switch between vector and scalar notation
between Eqs 1 and 3, as well as the differences in baseline assump-
tions concerning the link function and the number of substantive
dimensions in the model), may give rise to the perception that
these models and their associated semantics are entirely dissimi-
lar. This is, however, not the case: the models share a high degree
of commonality at both the syntactic and semantic levels.

It is easier to see the connections between the models if one
starts with a more general model, and then derives the earlier mod-
els. Using the notation of Skrondal and Rabe-Hesketh (2004), a
generalized latent variable model can be formulated thusly:

g (yj) = Xjβ + Λjηj + εj (4)

where y j is a matrix of observed responses (which, among other
possibilities, could be individual scored item responses, as is com-
mon in IRT, or parcel scores on tests, as is common in CFA), g (·)
is a link function (e.g., identity, logit, probit, etc.), Xjβ is the fixed
part of the model, Λj is a structure matrix describing the load-
ings of the latent variables ηj onto the observed responses, and εj

is a vector of observation-specific errors or unique factors. This
response model can be combined with a structural model:

ηj = Bηj + ζj (5)

where B is an M by M matrix of regression parameters (modeling
the covariance structure between the latent variables) and ζj is a
vector of M errors or unique factors.

Although this account leaves out many details, it summarizes
the essence of a generalized latent variable model. From this model,
the CTCM model (Eqs 1 and 2) can be derived by setting g (·) to
an identity link, including no covariates in Xj and thus allowing
β to be a vector of intercepts (denoted as τ in Eq. 1), splitting the
notation for Λjηj into a “trait” part and a “method” part (denoted
as LTTj and LMMj in Eq. 1), and manipulating the contents of
the B matrix to reflect the constraints on the factor correlations
appropriate for the model. On the other hand, the random-effects
Rasch testlet model (Eq. 3) can be derived from the generalized
model by setting g (·) to an adjacent-category logit link, includ-
ing covariates in Xj for the presence of an item in testlet k (with
the value 1 for presence of an item in a testlet and 0 otherwise),
splitting the notation for β into an item- (or item step-) specific
intercept and a testlet-specific intercept (denoted as dij and ck(i)

in Eq. 3), splitting the notation for Λjηj into a single primary
dimension and k testlet dimensions (denoted as θn and γnk(i) in
Eq. 3), and allowing B to be a diagonal matrix (thus constraining
the primary dimension and all testlet dimensions to be mutually
orthogonal), and constraining all elements of the Λj matrix to be
1 or 0 (based on whether an item is or is not associated with each
variable) rather than freely estimated. (Allowing the elements of
the Λj matrix to be estimated moves the model from the Rasch
family to the 2PL family of IRT models).

Returning to a visual examination of Figures 1 and 2, it should
be readily apparent that the two models share many features. Path
diagrams such as these are traditionally silent as to the nature
of the link function represented by the arrows – in classical CFA
models, the arrows represent linear effects (i.e., identity links), but
there is no necessary reason why they cannot represent non-linear
effects – so the shift from identity links in Figure 1 to logit links in
Figure 2 is not readily apparent. Also, the fixed part of the model
(Xjβ) is generally not represented in path diagrams, meaning that
such diagrams are silent as to whether methods operate on the
expectations of indicators in addition to their variances. These
two omissions aside, however, it can be seen that in both cases

Frontiers in Psychology | Quantitative Psychology and Measurement April 2013 | Volume 4 | Article 169 | 6

http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Maul Method effects

variance in each indicator is influenced by two primary dimensions
of individual differences, one of which is typically interpreted
as denoting an attribute that the test was designed to measure,
and the other of which denotes sources of variation associated
with a particular method. Once one is aware that (a) there is no
upper bound on the number of indicator variables that load onto
each dimension and (b) there can be multiple substantive dimen-
sions in IRT models just as in linear (CFA) models, it becomes
clear that both models can easily be represented by the same path
diagrams, with the exception of the absence of indicator-specific
unique factors or error terms in the model with a non-linear link
function.

Thus, perhaps despite appearances to the contrary, latent vari-
able models employed in different research traditions share deep
syntactic connections, and,accordingly, share much of their formal
semantics as well.

THEORIES OF MEASUREMENT AND THE CONCEPT OF A
METHOD EFFECT
In addition to the norms of statistical and interpretive prac-
tice associated with particular research traditions, thinking about
method effects is also affected by beliefs (many of which may not
be explicitly recognized by researchers) regarding the meaning of
measurement itself. There is not a single consensus definition of
measurement accepted by all human scientists, or indeed by all
physical scientists, and debates over the meaning of measurement
will likely not see resolution any time soon. Obviously, unclear
semantics about measurement can propagate to unclear semantics
about any measurement-related concept, including but not limited
to method effects. It is worth reviewing some of the most influ-
ential lines of thought concerning measurement, and exploring
how each of them has contributed to discourse on method effects,
sometimes in contradictory ways. The various ways of thinking
about measurement can broadly be categorized as either empiricist
or realist.

EMPIRICIST THINKING ON MEASUREMENT
The term empiricism can refer to a broad range of philosophical
positions; they share in common a commitment to direct observa-
tion as the basis for knowledge (though what counts as observation
is a perennially unsettled issue). Empiricism has been a major force
in shaping Western thinking about science (and natural philoso-
phy) since at least as far back as Aristotle, and standard accounts of
the history of Western science emphasize how, over the centuries,
empiricist lines of thinking have dovetailed with other views in
epistemology (particularly those based on rationalism).

In the early twentieth century, the movement known as log-
ical positivism synthesized many ideas from classical empiricism
along with then-current advances in the philosophy of language
and mathematics. Positivism was associated with a strong empha-
sis on direct observation as the basis for knowledge and a category
rejection of metaphysics; statements regarding unobservable (the-
oretical) entities or forces were only regarded as meaningful if such
statements could be linked to observations in a clear and consistent
manner.

There are two major strands of thought on measurement
that are consistent with much of positivist thinking. The

first is representational measurement theory (RMT), which is
characterized by the stance that measurement is the construction
of morphisms between numerical relations and empirical relations
(e.g., Scott and Suppes, 1958; Krantz et al., 1971; for an account of
the relations between RMT and positivism, see Borsboom, 2005).
The second is operationalism, which is characterized by the stance
that the meaning of any theoretical concept is exhausted by the
operations undertaken to measure instances of the concept (Bridg-
man, 1927). Both of these stances on measurement have exerted
strong influences on thinking about measurement in psychology;
notably, Stevens’ (1946) oft-cited definition of measurement as the
assignment of numerals to objects according to a rule is consistent
with both RMT and operationalism.

Representational measurement theory
Representationalism is regularly described as the mainstream posi-
tion on measurement in the general literature the philosophy
of science. It has also had a significant influence on thinking
about measurement in the human sciences; however, with the
exception of the relatively small body of literature in mathemat-
ical psychology from which the theory originated, most of this
influence has been indirect.

Representational measurement theory holds that to measure is
to construct a representation of an empirical relational system via
a numerical relational system. On this view, the starting point for
measurement is the determination of empirical relations amongst
objects (e.g., X is greater than Y and less than Z). This requires that
empirical relations be directly observable, or “identifiable” (Sup-
pes and Zinnes, 1963, p. 7), though it is not always obvious what
this means (c.f. Michell, 1990; Borsboom, 2005).

Once empirical relations are determined, numbers are assigned
to empirical entities in such a way as to preserve the qualities of
their empirical relations. Relational systems can possess different
sorts of structures, and the particular sort of mapping of empirical
onto numerical relations determines the scale properties. This is
the basis for Stevens’ (1946) scale types (nominal, ordinal, interval,
ratio), which are now common parlance in the human sciences.
This is an example of the aforementioned indirect influence of
RMT on thinking about measurement in the human sciences.

One of the principal reasons that RMT has not been
more widely influential in the human sciences is that standard
accounts of the theory have difficulty accounting for the role of
measurement error. RMT holds that relations must be directly
observable; in contrast, statistical models employed in the human
sciences (such as those discussed in the previous section) take
observations to be error-prone reflections of latent variables with
idealized structures.

In fact, the very concept of a“method effect,”as formulated pre-
viously, piggybacks on the concept of error in observations. RMT’s
requirement of observable relations would seem to require that the
particular method of measurement employed play essentially no
role at all, other than being a way of making such observations.
One could formulate this hypothesis in (at least) two ways. In
the first case, the method acts as a perfect conduit running from
true relations in the world to sensed relations. In the second case,
the concept of “true relations” is dismissed entirely, and sensed
relations are themselves held to be the object of study. In this case,
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one could either hold that the world does not exist apart from our
perceptions of it, or that its existence is simply irrelevant.

Where, then, do methods play a role in RMT? Without an
account for how observations can contain error, it seems the only
answer can be that either (a) the method of measurement plays a
trivial role in being a perfect conduit from the real to the sensed
world, or (b) the very concept of a method of measurement is
unnecessary, as measurement is simply the mapping of directly
experienced relations onto numerical relations. In either case, if
two different methods of measurement yield two different rela-
tional systems, they cannot be said to be measuring the same
attribute.

Operationalism
Operationalism (or operationism; Bridgman, 1927) shares with
RMT a focus on observables as the basis of knowledge and a rejec-
tion of metaphysics. Operationalism was proposed as a semantic
doctrine about the meaning of theoretical terms rather than a
theory of measurement per se: operationalism holds that the
meaning of theoretical terms is exhausted by the particular oper-
ations undertaken to observe them, which means that the results
of a particular set of operations (or measurement procedure) are
interpreted as measurements simply by fiat. Operationalism was
originally proposed as a form of extreme epistemic humility in
reaction to the upending of seemingly basic concepts such as
length by the special theory of relativity: Bridgman felt that one
of the reasons that it had been so difficult to see that the New-
tonian notion of absolute time and space was flawed was that
our theoretical terms came with too much baggage. For example,
the idea of length was commonly interpreted as meaning some-
thing like “taking up space” – but this presupposes the existence
of absolute space. Thus, asking why the lengths of objects seemed
to be different depending on the speed with which they were trav-
eling was already an ill-formed question, in that hidden within
it was a false assumption about the nature of space. Bridgman
proposed instead that the meaning of concepts such as “length”
be limited to purely observable (operational) terms: thus “length”
would mean nothing more than (for example) specified proce-
dures associated with the repeated application of a standard meter
stick.

Operationalism has since been almost uniformly rejected as
irreconcilable with general scientific practice and vocabulary.
Notably, operationalism has the consequence that each unique set
of operations must be associated with a distinct theoretical term –
thus, “the outcome of the application and reading of an alcohol
thermometer” and “the outcome of the application and reading
of a mercury thermometer” cannot refer to the same theoretical
property. Following the collapse of logical positivism and an asso-
ciated general retreat from extreme forms of empiricism, many
scholars became increasingly willing to accept that the interpre-
tation of concepts like temperature and intelligence outrun their
associated measurement procedures – and, in fact, it is very diffi-
cult to make sense of both scientific and lay discourse about such
concepts without this belief.

Operationalism had a strong influence on psychology (and in
particular, behaviorism), especially through Boring (e.g., Boring,
1923) and his student Stevens (e.g., Stevens, 1935, 1946). One of

the reasons for this is surely the difficulty of precisely defining
psychological attributes; stating that “intelligence is what the tests
test” (Boring, 1923, p. 35) neatly sidesteps the issue, and also gives
at least the appearance of rigor by anchoring abstract ideas in
observables. Notable in the concept of operationalism is that “it is
meaningless to ask whether something is ‘really’ being measured
. . . there is neither a need nor a place for postulating attributes
which are prior to the measurement operation” (Borsboom, 2005,
p. 93). Thus, just as in (at least one interpretation of) RMT, the
very concept of a method effect is incoherent in an operational-
ist framework, insofar as method effects are held to “contribute
variance to scores beyond what is attributable to the construct of
interest” (Sechrest et al., 2000, emphasis added).

More generally, and again like RMT, the concept of
measurement error is ill-fitting with operationalism: if the results
of applying a procedure are by definition a measurement of the
theoretical term, what is there to be in error about? If one were will-
ing to accept that repeated applications of the same measurement
procedure under the same conditions could yield different results,
and one were willing to accept a definition of the theoretical term in
terms of the average of a series of replications of a procedure rather
than the outcome of a single application of that procedure, one
could define measurement error as random deviations from a true
long-run average; in fact, this is exactly how measurement error
is defined in Classical Test Theory, a point argued by Borsboom
(2005). As Borsboom also points out, repeated application of the
same measurement procedure under the same conditions is not,
strictly speaking, something that can ever be done, given that “the
same conditions” must include the same time of measurement,
and time moves in one direction only. Moreover, given our lack of
access to the true counterfactual of running the same procedure
under the same conditions, it is unclear why results should actu-
ally be expected to differ over identical applications. If results differ
because the conditions are themselves different, then, according to
the doctrine of operationalism, one does not have measurement
error – one has distinct theoretical concepts.

Thus, at least in their original, strict forms, the two major lines
of empiricist thought on measurement have little room for the
concept of a method effect, as it is commonly interpreted in human
science measurement. As soon as one has formulated the idea that
an attribute of an object or person can be observed in more than
one way, it seems one has also assigned an independent identity to
the attribute, and embraced at least some version of a realist stance
on measurement.

REALIST THINKING ON MEASUREMENT
The term realism also refers to a broad range of positions; what
they share in common is the belief that a natural world exists inde-
pendently of observation. Scientific realism further proposes that
at least one aim of science is to promote the acquisition of knowl-
edge about this natural world. In the context of measurement
(e.g., Michell, 2005) this implies that the measured attribute exists
independently of the specific measurement procedure. It should
be noted that while the strict forms of empiricism discussed
in the previous section are either antirealist or simply arealist,
there is nothing inherently contradictory about a commitment
to observation as the basis of knowledge and the belief that a
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natural world exists independently of observation; thus, realist
philosophies are often compatible with more moderated forms of
empiricism.

There are various possible ways to conceive of the rela-
tionship between a measured attribute and the outcomes of a
measurement procedure. Borsboom et al. (2003, 2004) and Bors-
boom (2005) articulate a causal view of measurement, which holds
that measurement takes place when variation in an attribute
causally produces variation in the outcomes of a measurement
procedure, in such a way that inferences can be made from the
outcomes of the procedure back to the attribute. For example,
a mercury thermometer measures temperature because variation
in temperature (the attribute) causally produces variation in the
expansion of mercury in precisely calibrated glass tubes (the obser-
vations). The link of causality from the attribute to the outcomes of
the procedure justifies the inference from those observed outcomes
back to the unobserved attribute.

The validity of such a procedure is clearly threatened to the
extent to which anything besides the targeted attribute can causally
produce variation in the outcomes of the procedure. Broadly,
this is consistent with Messick’s (1989) discussions of “construct-
irrelevant variance.” One obvious source of such variance could
be anything about the measured object that influences how it
responds to a particular method of observation, apart from the
fact that the method of observation is simply recording variation
in the measured attribute. That is, if there is some other attribute
of objects (e.g., their local air pressure) that influences how they
respond to a particular measurement procedure (e.g., application
of a mercury thermometer), then the extent to which variation
in other such attributes is actually responsible for variation in
the outcomes of the procedure could be considered a source of
method-related attribute-irrelevant variance. Another source of
such variance would be actual variance in methods, insofar each
the outcomes of different methods applied to the same objects may
have different expectations. It seems natural to apply the term
“method effect” to both of these cases: that is, effects of meth-
ods that are random over persons, and effects that are fixed over
persons.

Decoupling method-specific variance from attribute variance
under a realist framework thus requires nothing more than know-
ing what attribute is the target of measurement, and how variance
in this attribute is transmitted to variance in the outcomes of the
measurement procedure. (Borsboom et al., 2009, p. 155 even state
that this is “all there is to know regarding test validity”)7. If it is
possible to give a complete account of the causal processes lead-
ing from variation in the attribute to variation in observations,
any additional causes of variation in observations can be clearly
identified as attribute-irrelevant, and threats to the validity of the
measurement procedure. To the extent to which such additional
sources of variation are associated with the particular method
of observation used, they could be termed method effects. If the
design of the test is thoughtful, models such as those discussed in

7Strictly speaking, one could argue that it is sufficient to know that variation in
an attribute causes variation in observations, even if one did not know how this
process occurred. In practice, it is difficult to know the former without knowing at
least something about the latter.

the previous section may assist in purging (or “purifying”) person
estimates of contamination by methods variance (cf., Ip, 2011).

This account raises an important conceptual point about
method effects: inherent in the idea of a method effect is that,
at least in principle, more than one measurement procedure (i.e.,
more than one method) could have been used to observe variation
in the attribute; thus, the particular method by which variation in
the attribute is observed in a given setting is attribute-irrelevant.
In the case of human measurement, one interpretation of this phe-
nomenon could be that people possess “ancillary skills” (Messick,
1996) that influence how well they perform on particular types of
items or under particular conditions, and thus, how well a person
does on any given test item is caused both by the attribute measured
by the test and by skills unique to particular modes of assess-
ment. This hypothesis is broadly consistent with the semantics of
the MTMM and testlet models discussed earlier and displayed in
Figures 1 and 2.

However, it may not always be clear to what extent an attribute
is conceptually independent of the methods of measurement,
especially in human science applications. The definition of tem-
perature as an attribute of objects or systems is now very precise,
and thermodynamic theory can specify the causal mechanisms
that lead from variation in temperature to variation in the out-
comes of the application of a range of specific measurement
procedures (including but not limited to the aforementioned mer-
cury thermometer) in a great amount of detail. Arguably, there are
no cognitive theories so precisely developed, and the causal mecha-
nisms that link attributes to observations are rarely if ever specified
in such detail.

More generally, it is not always clear to what extent the method
of observation is truly attribute-irrelevant, and to what extent
the methods of observation help inform or even construct the
meaning of the attribute. For example, consider an oral assess-
ment of a student’s knowledge in a particular domain: it could
be held that the attribute being assessed is simply knowledge in
the domain, and the choice to assess it orally (as opposed to,
for example, through multiple-choice items or written essays) is
attribute-irrelevant; conversely, it could be held that what is being
assessed is something more like“knowledge in the domain plus the
ability to orally express that knowledge,” in which case the method
of measurement is anything but irrelevant. Another example is
a classic from the trait literature: it seems reasonable to suppose
that a person may reliably behave differently in different social
settings, such that their level of an attribute such as assertive-
ness truly differs when the person is with his or her family versus
being at the workplace; in this instance a disparity between a fam-
ily report and a supervisor-report of the person’s assertiveness
may owe not to method-specific noise, but to a legitimate dif-
ference in the person’s context-specific manifestation of the trait.
Though such interpretive difficulties have been acknowledged by
a number of scholars, including Cronbach (e.g., Cronbach, 1995)
and Campbell and Fiske themselves (e.g., Fiske and Campbell,
1992), lack of definitional clarity regarding what attributes are or
are not intended to be measured by tests continues to obfuscate
attempts to distinguish attribute-relevant from method-related-
attribute-irrelevant variance in many applied contexts. In part,
this may be because researchers are intuitively working from a
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metaphysical position that might be termed constructive-realism
rather than a stricter form of realism that holds that attrib-
utes exist fully independently of human-designed measurement
procedures.

Constructive-Realism
The concept of realism applied to psychological attributes is often
taken to imply that the attributes in question are hypothesized
to exist independently of human intentionality. That is, stat-
ing that an attribute exists or is real is taken to imply that it
exists in observer-independent (ontologically objective) fashion,
just like (supposedly) physical attributes such as temperature and
mass. This, in turn, is often interpreted as implying physical (i.e.,
neurophysiological) identity, and in some contexts a genetically
determined biological basis for variation in the attribute.

However, it is not necessary for psychological attributes to
be ontologically objective for them to be real components of
the natural world. Elsewhere, I have discussed how Searle’s (e.g.,
Searle, 1995) distinction between ontological and epistemic sub-
jectivity and objectivity, and his recognition of the existence of
intentionality-dependent objects and attributes of objects, pro-
vides the conceptual vocabulary with which a coherent realist
account of psychological attributes can be formulated (Maul,
2012). Briefly, psychological attributes can be (a) to some extent
ontologically subjective, in that they involve conscious phenom-
ena with subjective first-person ontology, and (b) to some extent
be composites delineated by contextually and pragmatically dri-
ven linguistic frames of reference, rather than being natural kinds
(or natural attributes, as the case may be) in the classic sense (e.g.,
Quine, 1969). This is broadly compatible with Messick’s (1989)
and Mislevy’s (e.g., Mislevy, 2009) constructive-realism, in which
psychological attributes are taken to exist as reasoning devices
in specific narrative frames of reference (see also Hood, 2009).
Finally, this notion is compatible with many modern accounts of
realism, such as Putnam’s (e.g., Putnam, 1999, p. 52) natural or
pragmatic realism, which rejects the idea that the world consists
of a fixed totality of mind-independent objects and their attrib-
utes and embraces the idea that “all our perceptions are already
richly imbued with conceptual content . . . to use a Wittgensteinian
idiom, seeing is always seeing as and it is the interface between the
world and the rich fabric of our concepts that jointly determines
what we see.”

From this perspective, what constitutes a method effect is a
contextualized and pragmatic issue, and methodological features
of the very same procedure may be considered method effects or
not relative to the conception of the attribute(s) being measured
by the test. A contemporary example comes from the renewed
interest on the part of the U.S. educational testing community
in the inclusion of “performance events” (e.g., Messick, 1996) in
high-stakes tests, alongside more traditional item formats such
as multiple-choice [found, for example, in literature available
from the Smarter Balanced Assessment Consortium (SBAC)8 and
Partnership for Assessment of Readiness for College and Careers
(PARCC)]9. On performance tasks, students may be asked to

8http://www.smarterbalanced.org/smarter-balanced-assessments/
9http://www.parcconline.org/parcc-assessment

(for example) perform short experiments or produce specified
products. Suppose that there is some degree of disparity between
the results of performance events and multiple-choice items con-
cerning the relative levels of knowledge of the students. It could
be said that the two testing modalities each require a different
set of method-specific ancillary skills in addition to the attribute
intended to be measured (e.g., mastery of scientific concepts),
and further that these ancillary skills are not themselves the tar-
get of instruction or measurement, in which case they are best
treated as method factors (Figure 3); conversely, it could be argued
that the two testing modalities measure legitimately and impor-
tantly different domains of knowledge, skill, and/or ability, in
which case they are best treated as different substantive dimen-
sions (Figure 4). Interestingly, much of the past and current
rhetoric around the use of performance events in educational
assessments is consistent with both possibilities (cf., Briggs and
Maul, 2011).

Still more troublingly, both possibilities could be true at once,
in which case method-specific ancillary skills would be insepa-
rable from attributes of interest. More generally, it may often
be the case that a method of measurement is completely con-
founded with an intended target attribute. For example, any
instance in which an attitudinal or motivational attribute is
assessed entirely via positively worded Likert items is a situation
in which each item response is potentially caused by both the
attribute and by any ancillary person characteristics that influence
how the person responds to positively worded Likert items (e.g.,

FIGURE 3 | Item types as method factors.

FIGURE 4 | Item types as primary dimensions.
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FIGURE 5 | Method confounded with trait.

global agreeableness, edge aversion, or preference, idiosyncratic
interpretation of the word “strongly,” etc.). This possibility is dis-
played visually in Figure 5. Under typical circumstances10, it will
not be possible to estimate such a model; thus, a unidimensional
model will likely be fit to the data, and it is likely that the uni-
dimensional model will produce inflated estimates of the degree
of dependence of the observations on the latent variable, insofar
as there is an additional (method-related) source of dependence
amongst the items being confounded with dependence due to the
common causal attribute. Such situations are rarely discussed in
terms of method effects, perhaps largely because they usually can-
not be modeled as such, but the conceptual problem with method
effects is very much present, and all the more intractable for being
un-modelable.

Thus, in any given measurement situation, clarity regarding
method effects depends on clarity regarding the ontological status
of the attribute being measured. As was illustrated in the previ-
ous section, if an attribute is not taken to exist independently of
a measurement procedure, the very concept of a method effect
is incoherent; on the other hand, if it is taken to have indepen-
dent existence, a coherent account of how the choice of methods
influences the outcomes of the measurement procedure, and the

10There are at least two circumstances under which such a model could be estimable.
One is if it were possible to experimentally intervene on one dimension but not the
other. Another is if it were possible to find subjects who could be assumed to have
sufficiently high or low values on one of the dimensions such that there would be a
ceiling or floor effect, and thus any variance in observed outcomes could be assumed
to be due to variance in the other dimension.

selection of appropriate psychometric models, depends on being
able to specify a priori what the attribute itself is and is not, and
how the methods of measurement serve to transmit variance in
the attribute into variance in observations.

DISCUSSION
Borsboom (2009, p. 708) commented that “semantics is . . . by
far the weakest point of psychometric theory.” In this paper,
I have argued that discourse and thinking around the concept
of a method effect, and related ideas, are shaped by a number
of sometimes-conflicting historical, normative, and philosophi-
cal forces, and that this has had the result of sometimes making
it inordinately difficult to see the communalities across research
traditions.

However, the formal semantics of models employed in differ-
ent human science research traditions are in fact quite similar.
Borsboom et al., 2003; borrowing terms from Hacking, 1983) dis-
cuss how latent variable models in general require both entity
realism, in that they refer to unobserved attributes of persons
or objects, and theory realism, in that they represent variation in
the observed outcomes of measurement procedures as (at least in
part) causally determined by variation in these attributes. The
models discussed in this paper and presented in Figures 1–3
share these general features of latent variable models, and more
specifically state that there are at least two causes of variation
in specific observations, one of which is method-specific. Such
a hypothesis may be compatible with a range of shades of real-
ism, including versions of constructive-realism that allow for the
possibility that the existence of an attribute is not independent
of human intentionality. However, strictly interpreted antirealist
theories, such as those derived from severe forms of empiricism
popular in the early twentieth century, are not compatible with
the concept of a method effect. If theoretical attributes were truly
nothing more than the operations undertaken to measure them
(operationalism), or if measurement were nothing more than the
construction of morphisms from directly experienced empirical
relations to numerical relations (representationalism), or indeed,
if measurement were truly nothing more than the assignment of
numerals to objects according to a rule (Stevens, 1946), method
effects would be a non-issue. Measured attributes must exist inde-
pendently of a specific measurement procedure if method effects
are defined as sources of variance beyond what is attributable to
the measured attribute.

Ultimately, method effects are but one of many specific
measurement-related concepts in the human sciences that depend
for coherence on clarity regarding deeper issues about the nature
and meaning of measurement. The productivity and success of
cross-disciplinary discourse (both among fields in the human
sciences, and between the human and physical sciences) will
depend on further clarification of many of the basic concepts of
measurement.
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