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The operational momentum (OM) effect describes a systematic bias in estimating the out-
comes of simple addition and subtraction problems. Outcomes of addition problems are
overestimated while outcomes of subtraction problems are underestimated. The origin of
OM remains debated. First, a flawed uncompression of numerical information during the
course of mental arithmetic is supposed to cause OM due to linear arithmetic operations
on a compressed magnitude code. Second, attentional shifts along the mental number
line are thought to cause OM. A third hypothesis explains OM in 9-month olds by a cog-
nitive heuristic of accepting more (less) than the original operand in addition (subtraction)
problems.The current study attempts to disentangle these alternatives and systematically
examines potential determinants of OM, such as reading fluency which has been found
to modulate numerical–spatial associations. A group of 32 6- and 7-year-old children was
tested in non-symbolic addition and subtraction problems, in which they had to choose
the correct outcome from an array of several possible outcomes. Reading capacity was
assessed for half of the children while attentional measures were assessed in the other
half. Thirty-two adults were tested with the identical paradigm to validate its potential of
revealing OM. Children (and adults) were readily able to solve the problems. We replicated
previous findings of OM in the adults group. Using a Bayesian framework we observed
an inverse OM effect in children, i.e., larger overestimations for subtraction compared to
addition. A significant correlation between children’s level of attentional control and their
propensity to exhibit OM was observed. The observed pattern of results, in particular the
inverse OM in children is hard to reconcile with the previously proposed theoretical frame-
works.The observed link between OM and the attentional system might be interpreted as
evidence partially supporting the attentional shift hypothesis.

Keywords: approximate calculation, non-symbolic calculation, mental number line, development, space and
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INTRODUCTION
Along with a variety of species humans possess an untrained
and non-symbolic “number sense,” which yields representations
of numerical magnitude that can then be used productively in
arithmetic operations such as addition and subtraction (Gallistel,
1990; Wynn, 1992; McCrink and Wynn, 2004; Barth et al., 2005;
Cordes et al., 2007; Nieder and Dehaene, 2009). When estimating
the outcome of simple mental calculation problems, adults sys-
tematically overestimated the outcomes of addition problems and
underestimated the outcomes of subtraction problems (McCrink
et al., 2007). Analogous to a perceptual phenomenon called repre-
sentational momentum (Freyd and Finke, 1984) – in which adults
misperceive the position at which a moving object disappears in
the direction of the movement – this effect was termed opera-
tional momentum (OM). OM was observed for both symbolic
(e.g., Arabic numerals) and non-symbolic notations (e.g., arrays
of objects), implying a notation-independent mechanism which
uses semantic and abstract magnitudes as input (Knops et al.,
2009b). OM is also observed in paradigms using different response

modalities (i.e., choosing from a number of responses, or pointing
to the estimated outcome on a linear number scale), suggesting
that its origin lies at a central cognitive processing level (Pinhas
and Fischer, 2008).

In order to properly detail the existing theoretical hypotheses
which attempt to explain OM in approximate calculation, we must
first introduce two notions that are crucial for the understanding
of the proposed mechanisms. Originally (McCrink et al., 2007;
Knops et al., 2009b) the OM bias was explained by mechanisms
which describe the underlying numerical magnitude representa-
tions as: (a) logarithmically compressed and (b) spatially oriented,
with smaller numbers located left from larger numbers. The adult
humans tested in these studies possess a cognitive system that
enables them to perceive and process numerical magnitude infor-
mation in an approximate, analog fashion – the aforementioned
“number sense,” or approximate number system (ANS). The ANS
yields a sense of a given numerical magnitude by activating a
fixed position along a numerically ordered continuum, commonly
referred to as the Mental Number Line (MNL). Crucially, the MNL
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is hypothesized to be logarithmically compressed; that is, distances
between neighboring numbers decrease logarithmically inversely
to the numbers’ magnitudes. Due to the noisiness of activation sig-
nals in the ANS, activation at a given position on the MNL will also
partially activate adjacent positions. Although still under debate,
mounting evidence from behavioral (Moyer and Landauer, 1967;
Izard and Dehaene, 2008) and computational studies (Dehaene
and Changeux, 1993) suggests that the mental magnitude rep-
resentation is logarithmically compressed. Most central to the
current study, recent data from single-unit recordings has been
used to directly test the assumption of a logarithmic compres-
sion with fixed variability against alternative scales such as a linear
scale with increasing variability (Nieder and Miller, 2003). Models
assuming compressed scales yielded better fit indices than a linear
scale both during perception of number stimuli and during main-
tenance in memory. Moreover, compressed scaling of symbolic
numbers has been demonstrated to persist in educated Western
adults (Viarouge et al., 2010). In a series of experiments adults were
asked to judge whether a given sequence of numbers contained too
many small numbers or too many large ones. Participants judged
as random those sequences that oversampled small numbers. And
finally, while scaling of symbolic numbers may linearize over time
(Siegler and Opfer,2003),possibly due to education,non-symbolic
numerosities have been found to be mapped in a non-linear way
in adults (Dehaene et al., 2008). Nevertheless, some researchers
suggest a linearly scaled mental magnitude representation with
increasing variability as numerical magnitude increases (Gallistel
and Gelman, 2000; Brannon et al., 2001; Ebersbach et al., 2008;
Gallistel, 2011; Stoianov and Zorzi, 2012). Indeed, when asking
children to place numbers on a spatial scale (e.g., a line) according
to their cardinal value the observed mappings change from a loga-
rithmic mapping scheme to a linear mapping scheme as a function
of number knowledge and familiarity with numerical concepts
(Siegler and Opfer, 2003). Children exhibited a linear mapping
scheme for familiar number ranges (e.g., 1–100 for second and
fourth graders) and a logarithmic mapping scheme in an unfa-
miliar number range (e.g., 1–1000 for second and fourth graders)
(Siegler and Opfer, 2003; Berteletti et al., 2010). It is unclear to
what extent these mapping schemes reflect the scaling schema of
the underlying representation, however (Karolis et al., 2011). In
sum, we think there is good evidence for a compressed numeri-
cal magnitude representation with fixed variability, especially for
non-symbolic numerosity information.

Several lines of evidence support the notion of a spatially
oriented mental magnitude representation. The classic Spatial–
Numerical Association of Response Codes (SNARC) effect implies
an association of numerical magnitude representation with exter-
nal space (Dehaene et al., 1993). In this phenomenon, left-side
responses are faster for small numbers, while right-side responses
are faster for larger numbers, providing evidence for a spatially ori-
ented MNL in which adults associate small numbers with the left
side of space and large numbers with the right. The left-to-right
orientation was suggested to result from reading habits in partic-
ular societies, such as the French-speaking (left-to-right reading
and writing) sample tested by Dehaene et al. (1993); the phenom-
enon was attenuated in Iranian participants (right-to-left reading
and writing) in relation to the number of years they had been in

France (Dehaene et al., 1993). Shaki et al. (2009, p. 331) found
that the SNARC effect was reversed in Palestinian participants
who read both words and numbers from right to left, bolstering
the idea that directional reading habits (e.g., left-to-right in West-
ern cultures) “enables the association between numbers and space
to become significant,”which in turn may lead to differentially ori-
ented mental number representations depending on cultural and
situational variables (Bächtold et al., 1998). The cultural impact on
the SNARC effect and the assumed underlying MNL representa-
tion is also supported by studies on the developmental trajectory of
this phenomenon. The majority of studies investigating the spon-
taneous spatial orientation of the MNL in children using classic
SNARC-like tasks failed to observe significant results before the
age of 9 years (Berch et al., 1999; van Galen and Reitsma, 2008;
Imbo et al., 2012). However, some recent work using child-friendly
paradigms has called this into question, with some evidence for
culturally appropriate spatial mapping of small-large magnitudes
as early as the preschool years (Opfer et al., 2010; Patro and Haman,
2012). Recent evidence suggests that initial spatial biases become
strengthened or weakened depending on the nature of the school-
ing that children receive (Shaki et al., 2012). Thus, it is conceivable
that existing spatial biases consolidate with increasing reading pro-
ficiency. Further, semantic activations of magnitudes cause spatial
shifts of attention. Fischer et al. (2003) found that the numer-
ical magnitude of numbers presented centrally before a simple
stimulus detection task had a systematic impact on participants’
performance. Participants responded faster to left-sided targets
than to right-sided targets when targets followed the presentation
of small numbers. An equivalent advantage was observed for right-
sided stimuli following large numbers. Similarly, Nicholls et al.
(2008) demonstrated that participants were biased in their deci-
sion about which of two gray scales was darker by the numerical
magnitude of superimposed digits. Left- and right-ward atten-
tional biases were observed for low and high numbers, respectively.
In the line-bisection effect, participants are relatively accurate at
finding the midpoint of a line comprised of a series of “x”s, but
deviate left- or right-ward when the line is comprised of a string
of the word “two” or “nine,” respectively (Fischer, 2001; Calabria
and Rossetti, 2005). Finally, damage to right parietal cortex elic-
its visuo-spatial hemineglect alongside representational neglect of
portions of the MNL (Zorzi et al., 2002). Patients suffering from
hemineglect not only misperceived visual information from the
left hemifield, they also neglected numerical information from the
left side of the MNL; when asked for the numerical middle between
1 and 9 the patients responded “6,” as if they did not consider the
smaller numbers located on the left side of the mental number
representation.

Together, the above findings strongly support the notion of
a left-to-right oriented and logarithmically compressed MNL.
This construct is central when considering the nature of the
mechanisms put forth to explain the phenomenon of OM. Here
we will detail three such proposed mechanisms, which are not
necessarily exclusive of each other. The first mechanism was
proposed by McCrink et al. (2007) in their original documen-
tation of OM, and implemented in a computational model by
Chen and Verguts (2012). It is based on two notions: first, it
assumes a compressed mental magnitude representation. Second,
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it assumes that the cognitive system “undoes” the compression
during mental calculation and operates on uncompressed mag-
nitudes. This process of uncompression may be subject to a
systematic bias which results in a slightly compressed magni-
tude code during calculation. This compressive bias may in turn
cause the OM. A simple example illustrates this idea. Imagine
a participant adds two numbers, e.g., 20+ 5. Internally, these
are represented as log10(20)= 1.301 and log10(5)= 0.699. In
the most extreme case, the uncompression process fails com-
pletely and participants will actually operate on the log-scaled
values and add log10(20)= 1.301 and log10(5)= 0.699. Adding
two logarithms corresponds to multiplying their linear-scaled
values, i.e., log10(20+ 5)∼ 20× 5= 100 and in most cases this
would result in values larger than the actual outcome. A sim-
ilar argument holds for subtraction which would be replaced
by division. Note that this example is used only to illustrate
the basic idea of this account. The actually observed biases are
much smaller than in this example. The main idea is that partic-
ipants apply a linear transformation on a compressed scale which
will lead to over- or under-estimating the outcome of a given
problem. This hypothesis will be referred to as the “compression
account.”

The second account appeals to attentional shifts along the
MNL. According to this hypothesis, arithmetic operations are
mediated by a dynamic interplay between cortical structures which
process spatial information. In particular, it has been reasoned
that a bilateral circuitry involving posterior superior parietal lobe
(PSPL) and horizontal intraparietal sulcus (hIPS) that imple-
ments a form of vector addition over eye and retinal position
information is co-opted by mental arithmetic. Indeed, exploit-
ing the fact that saccades are accompanied by shifts of spatial
attention in saccade direction, Knops et al. (2009a) used the
brain activity elicited by left- and right-ward saccades to pre-
dict whether French-speaking participants were performing cen-
trally presented addition or subtraction problems. The authors
found that addition problems corresponded to the neural activity
associated with right-ward saccades, presumably since partici-
pants shift attention toward larger numbers on the right side
of the MNL. OM results from the momentum that drives par-
ticipants too far along the MNL in the direction of the opera-
tion. This hypothesis will be referred to as the “attentional shifts
account.”

Finally, a third hypothesis was proposed by McCrink and Wynn
(2009) to explain the possible presence of OM in a population of
9-month-old infants. The authors presented visual sequences of
addition and subtraction problems using non-symbolic numerosi-
ties (such as 6+ 4= 5, 10, or 20), and provided the infants with
three different types of outcomes to these problems: correct, too
large, or too small. The infants looked reliably longer to the out-
comes that violated the “momentum” of the particular problem.
Infants who saw an addition scenario looked for a relatively long
time at outcomes that were too small, but similarly to outcomes
that were correct and too big; infants who saw a subtraction sce-
nario looked longer at outcomes that were too large, and less to
the correct and too-small outcomes. The authors put forward
two suggestions to explain this pattern, the first was a compu-
tational account in which the infants are genuinely computing

an acceptable outcome with some amount of error in magni-
tude representations that went in the “direction” of the operation.
However, since a full-fledged, spatially oriented MNL is unlikely
in this relatively unenculturated population, the authors hypoth-
esized that they may instead be deploying general arithmetic
principles. Specifically, “if adding, accept more” than the origi-
nal operand, and “if subtracting, accept less (McCrink and Wynn,
2009, p. 407).” We will refer to this hypothesis as the “heuristics
account.”

No study to date has attempted to disentangle these alternatives.
In the following experiment we systematically examine potential
determinants of OM, looking at a population that serves as a tran-
sition group between infants and adults-children in their first year
of school. Six- and seven-year-old children were given a series of
non-symbolic addition and subtraction problems, in which they
had to choose the correct outcome from an array of several possible
outcomes. The children were placed in either a reading condition
or a cueing condition, in which we also separately tested their read-
ing automaticity or attentional orienting capacity, respectively. (A
group of adults was also tested on the non-symbolic addition and
subtraction task, to ensure the efficacy of the paradigm in eliciting
OM.) This design allows us to address two outstanding questions
in the literature. First, do we see any evidence for a MNL at this
age, as exhibited by the overall presence of a spatial–numerical
interaction during arithmetic operations (OM)? Second, insofar
as they exhibit OM, what are the determinants of the presence of
this phenomenon?

Our predictions are as follows. First, if the MNL is instantiated
via the highly automatic and culturally directed reading habits
of the children, we will see a positive relationship between read-
ing fluency and level of exhibited OM. Reading has been shown
to modulate number-space associations while illiterate individu-
als did not exhibit consistent associations between numbers and
space (Shaki et al., 2012). If there is not a spatially organized
MNL at this age, regardless of reading ability, or if the MNL is
present but not dictated by the child’s literacy, we will observe no
relationship between these two constructs. Second, if OM is due
to the flawed uncompression of mental numerosities during the
course of mental arithmetic, we should observe a standard adult-
like OM effect in 6- and 7-year olds, irrespective of their measures
on reading or attention. Ample evidence from line-bisection tasks
supports a logarithmically compressed magnitude representation
early in formal schooling, with only a prolonged shift to linear
representations culminating in sixth grade – and then only for
scales that have become familiar (Siegler and Opfer, 2003; Opfer
and Siegler, 2007; Barth and Paladino, 2011). The distribution of
responses should resemble the pattern shown by adults and peak at
or around the correct outcome with a higher degree of acceptance
of over- or under-estimated outcomes (for addition and subtrac-
tion, respectively). There will be a fall-off as the incorrect outcomes
become extremely discrepant from the correct outcomes. Third, if
the children’s responses are driven by a “if adding, accept more, if
subtracting, subtract less” heuristic account, we would expect to
find an OM bias whose effect size would resemble the effect size
found in adults. However, since children would not be engaging
in an approximate calculation process, but rather show a gen-
eral tendency to choose larger outcomes for addition and smaller
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outcomes for subtraction, the distribution of responses would dif-
fer from what is observed in adults. The distribution would not
necessarily be centered on or around the correct response in a
given set of presented response alternatives. Rather, we should
see a trend to accept as correct any amount larger than the first
operand (for addition) or smaller than the first operand (for sub-
traction). Again, we would expect no effect of reading ability or
attentional indices if this pattern was observed. Finally, if OM is
underlain by shifts of spatial attention along a MNL, we will see a
relationship between attentional indices and the strength and/or
presence of OM. Children who exhibit strong orienting responses
in the presence of spatial cues may have more adult-like circuits
for deploying attention, and this results in adult-like OM in which
these particular children peak in response choice relatively close
to the correct answer, with a margin of acceptance for somewhat
larger outcomes during addition problems and somewhat smaller
outcomes for subtraction problems. At least two attentional func-
tions can be distinguished that are relevant in the present context.
Attentional selection refers to the observed benefit in performance
in response to stimuli appearing at attended locations. When a
stimulus appears at unattended locations, however, attention has
to be re-oriented toward the formerly unattended location. This
reorientation is time-consuming and hence responses to stimuli
at unattended locations are delayed. Neuroimaging studies point
to distinct cortical circuits for selection and reorienting (Corbetta
et al., 2008).

MATERIALS AND METHODS
PARTICIPANTS
Children
The final sample consisted of 32 children (15 boys, 17 girls)
between 6 (n= 15) and 7 (n= 17) years of age [mean (SD) age: 6.5
(0.51) years]. An additional four children were tested but excluded
due to refusal to complete the study (3) or to homogenize the age
range of the final sample (1). We also had an exclusion crite-
rion for any children who were fluent in a right-to-left language
(e.g., Hebrew); no one tested met this criteria. These children were
recruited in the greater NYC area via word of mouth or through
a local school. Informed written consent from the parents was
obtained for all tested children. All children participated in a non-
symbolic arithmetic task. Half of the sample (16) additionally
participated in an attentional cueing paradigm [mean (SD) age:
6.38 (0.5) years], and the other half participated in a reading test
[mean (SD) age: 6.69 (0.48) years]. In order to eliminate any inter-
actions between the primary and secondary tasks, the order of the
tasks was counterbalanced such that half the children received the
primary adding/subtracting task first, and the other half received
the secondary attention/reading task first.

Adult controls
A final sample of 32 college students (4 males, 28 females),
recruited via the introductory psychology subject pool at a
NYC university, were tested with the same non-symbolic cal-
culation paradigm as the children. An additional eight students
were excluded, seven for fluency in a right-to-left language (e.g.,
Hebrew), and one to keep sample size comparable between both
groups. All students gave written informed consent and had

normal or corrected-to-normal sight. Mean age was 18.88 years
(SD= 2.06).

TASKS
Arithmetic task
Stimuli. Four addition and four subtraction problems were cre-
ated. Problems are presented in Table 1. To evaluate the differential
effect of the arithmetic operation irrespective of numerical size
of the outcome, we chose problems such that both arithmetic
operations covered the same numerical range of final outcomes.
Additionally, three memory trials were created with a second
operand of zero to assess the overall capacity to retain the shown
numerosities in mind.

Apart from the correct result, eight deviant results were created
for each arithmetic problem. These deviants were arranged as a
geometric series (i.e., were linearly spaced on a logarithmic scale)
and ranged from double the correct result to half of the correct
result [technically, they were generated as round (c × 2i/4), where
c is the correct result and i ranges from −4 to +4]. Since this
procedure would lead to some identical response alternatives for
memory trials with set size= 6 (rounded deviants: [3, 4, 4, 5, 7,
8, 10, 12]) due to rounding to integers we repeatedly subtracted
one from the smallest duplicate deviant until no further deviants
were present. This resulted in the following response alternatives:
[2, 3, 4, 5, 7, 8, 10, 12]. To avoid a strategy of always selecting the
response falling in the middle of the proposed range, only six out of
those nine possible results were presented on screen. In 50% of the
trials we presented the upper six (high range), and thus the correct
result was the second smallest numerosity (although numerosities
were randomly mixed). In the other 50% of the trials the lower
six choices were shown (low range), and the correct result was
therefore the fifth smallest numerosity. For example, for a prob-
lem such as 6+ 2= 8 the low range would correspond to response
alternatives 4, 5, 6, 7, 8, and 10. The high range would correspond
to response alternatives 7, 8, 10, 11, 13, and 16.

Table 1 | Arithmetic problems presented in the non-symbolic

calculation experiment and their correct and deviant results.

Operands Results and deviant response alternatives

First Second 1/2 1/1.7 1/1.4 1/1.2 1 1.2 1.4 1.7 2

ADDITION

6 2 4 5 6 7 8 10 11 13 16

6 4 5 6 7 8 10 12 14 17 20

14 5 9 11 13 16 19 23 27 32 38

14 11 13 15 18 21 25 30 35 42 50

SUBTRACTION

16 8 4 5 6 7 8 10 11 13 16

16 6 5 6 7 8 10 12 14 17 20

32 13 9 11 13 16 19 23 27 32 38

32 7 13 15 18 21 25 30 35 42 50

MEMORIZATION

6 2 3 4 5 6 7 8 10 12

19 9 11 13 16 19 23 27 32 38

25 13 15 18 21 25 30 35 42 50
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To prevent the use of non-numerical cues, the sets of dots
representing the non-symbolic numerosities were designed and
generated using Matlab® such that dot size changed, but total dot
area in a given set was always fixed across stimuli for half of the
trials. As a result of this manipulation, average item size covaried
inversely with numerosity during the presentation of the operands
(i.e., sets with smaller numerosities had larger dots). For the second
half of the trials individual dot size was held constant and total dot
area covaried with numerosity (i.e., sets with smaller numerosities
had smaller total dot area). Thus, neither total occupied area nor
individual dot size could serve as a cue for distinguishing between
the different numerosities throughout the experiment. To avoid
memorization effects due to repetition of a particular stimulus,
on each trial stimulus images were randomly chosen from a set of
10 precomputed images with the given numerosity.

PROCEDURE
The non-symbolic calculation task contained addition, subtrac-
tion, and memory trials. Each trial started with the presentation
of a picture of a monkey that disappeared after a mouse button
was clicked. An empty wooden box appeared at the bottom of the
screen and the first set of dots moved into the box. The dot set
appeared at the top of the screen and moved toward the middle of
the screen with decreasing speed such that it would briefly remain
stationary at the screen center before speed increased again and the
dot disappeared inside the box. For addition problems a second set
of dots appeared on screen and disappeared inside the box in the
described manner. For subtraction problems a set of dots moved
out of the box and disappeared at the top of screen. For memory
trials only one set of dots disappeared in the box. After all sets of
dots disappeared, three response alternatives appeared on the left
and right side of the screen in an elliptic fashion, randomized for
spatial location (i.e., the quantities are randomly assigned to the six
positions). Each response alternative was presented as the top view
of the box which contained different numbers of dots (see above).
Children were asked to choose the correct outcome by clicking on
the respective box. The beginning of the response active period
was indicated by the appearance of the mouse pointer on top of a
green star in the center of the screen. See Figure 1 for a depiction
of an exemplar addition trial. A total of 44 trials were presented, 12
memory trials, 16 addition, and 16 subtraction trials. A training
period consisting of eight trials preceded the actual paradigm. In

the training period, responses were not time-limited and feedback
was provided. A correct choice was indicated by a green frame
around the chosen box. The appearance of a red frame around
the chosen box indicated that the choice was incorrect. During
training response alternatives remained on screen until the cor-
rect response alternative was chosen. For the test period we limited
response time to a maximum of 20 s. In the testing period, no feed-
back about the correctness of the choice was provided. The chosen
alternative was highlighted by a surrounding blue frame, irrespec-
tive of correctness. On average children completed all calculation
trials in about 20 min.

Attention task
Stimuli and procedure. An adapted Posner paradigm was admin-
istered to half of the child sample. A capital letter X in the center of
the screen served as fixation point. On each trial the fixation was
replaced by a yellow smiling face after a random interval between
1200 and 2400 ms. The smiling face indicated a forthcoming trial
and remained visible for 750 ms. It was accompanied by an acoustic
signal that served to attract children’s attention. After a 250-ms
interval with no stimuli on screen a blue arrow appeared in the
center of the screen that pointed either to the left, to the right,
or in both directions. The bidirectional arrow served as neutral
condition. After a variable delay (200 or 800 ms) a blue star (intro-
duced as “bug” to the children) appeared lateral to the arrow. The
children were instructed to “zap the bug” by pushing the response
button on the side of the target stimulus as fast as possible. The
single headed arrows provided valid information about the side
of the upcoming target in 67% (n= 40) of the trials (valid tri-
als). In invalid trials (n= 10; 17%) the target stimulus appeared
opposite the pointing direction of the arrow. The neutral condi-
tion was presented in 17% of the trials (n= 10). Target side (left,
right) was balanced (50% each) in valid, invalid, and neutral trials.
When the children hit the response button the target disappeared
and an acoustic sound indicated whether the response was cor-
rect (sound 1) or not (sound 2). Eight training trials preceded
the test and served to illustrate the task. The task lasted about
5–8 min.

This design allowed us to evaluate two central parameters of the
attentional system: orienting (selection) and reorienting. Adopt-
ing common procedure from the attention literature the orienting
effect was computed as the difference in reaction times between

FIGURE 1 | Screenshots taken during an addition trial. Two dot clouds sequentially move from the top of the screen into the box before the inside of the box
is shown with six response alternatives. Children were asked to indicate the correct outcome by clicking on the respective box.
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neutral and valid trials, the reorienting effect was computed as the
difference in reaction times between neutral and invalid trials. All
reaction time analyses were based on correct responses only.

Reading task
Stimuli and procedure. In order to assess reading ability and
fluency, each child was provided with a developmentally appropri-
ate vignette to read aloud while the experimenter tape-recorded
him/her on the computer. The children were instructed to “Please
read as much of this as you can, trying not to make any mistakes.”
The vignette was as follows:

Mother and Father frog were going to a party. Mrs. Turtle
came to babysit.
“Hello, little frogs,” said Mrs. Turtle, “What are we going to
do tonight? Would you like me to read you a story?”
“Yes! Yes!” said the little frogs,“we would like that very much.”
Mrs. Turtle finished reading. The little frogs cried, “Would
you like to jump with us?”
“Not now,” said Mrs. Turtle, “It’s suppertime. I will make you
a nice supper.”
“Ok!” said the little frogs, “we are very hungry.”

A coder blind to the hypotheses of the experiment reviewed the
tapes of the children and assessed the subjective relative level of
fluency for each child (from 1 to 10), and also coded how long
each child took to read the vignette. Because we found that the
time-to-read measure captured fluency in a more objective way
than the coder rating, we used those data as each child’s fluency
score in our analyses.

DATA ANALYSIS
Data were analyzed using SPSS® under a classical statistical
null hypothesis significance testing (NHST) approach. Bayesian
analyses were conducted using R (R Development Core Team,
2010).

RESULTS
CHILDREN
Arithmetic task
Can children memorize the operands? First, we demonstrate
that children were indeed capable to process and memorize the
presented numerosities, albeit in an approximate fashion. If so,
the mean chosen value on memory trials should closely follow
the presented numerosities. Figure 2 shows that this is actually
the case. Mean chosen numerosity (squares) increased signifi-
cantly with presented numerosity [F(2, 60)= 279.65, p < 0.001,
epsilon= 0.88 (Huynh and Feldt, 1970)]. This main effect did not
interact with age [F(2, 60)= 1.17, p= 0.32], indicating that both
age groups were capable of remembering the presented numerosi-
ties. In line with the assumption of the mental magnitude repre-
sentation following Weber’s law we observed a constant coefficient
of variation that did not significantly covary with numerosity [F(2,
60)= 2.20, p= 0.12; lower part of Figure 2]. No significant inter-
action with age was observed [F(2, 60) < 1]. A slight tendency
to overestimate the remembered numerosities was present in the
data. Figure 2 (right) depicts the difference between mean cho-
sen numerosity and the memorized numerosity. To test whether
this difference was statistically different from zero we computed a

FIGURE 2 | Left column: mean responses (chosen values, squares) of
the subjects and standard deviations (circles) plotted against the
correct outcome for memory trials. The lower part depicts the coefficient
of variation (CV, diamonds) – that is, the ratio of standard deviation and
mean chosen value, plotted against the displayed numerosity. A constant
coefficient of variation indicates that variability of chosen values increased
proportionally with mean chosen value. In turn, this can be understood as
an instantiation of Weber’s law. Right column: the difference between the
displayed numerosity and the chosen value plotted against the displayed
numerosity. Positive values indicate that children tended to overestimate
the remembered numerosities. Error bars indicate the standard error of the
mean.

linear regression (y = a+ bx) to predict memorized numerosity
(y) based upon shown numerosity (x). If children were sys-
tematically overestimating the numerosities the intercept (a) of
this regression equation would be significantly larger than zero.
Mean intercept (a= 0.63) did not differ significantly from zero
[t (31)= 1.72, p= 0.095]. However, mean slope (b= 0.28) was sig-
nificantly larger than zero [t (31)= 8.65,p < 0.001], indicating that
estimates increased with shown numerosity.

Did children engage in approximate calculation or respond at
random? Next, we analyzed whether the subjects chose among
the proposed choices at random. On each trial, six response alter-
natives were presented. They were either sampled from the lower
range of response alternatives (alternatives one through six in
Table 1) or the upper range of response alternatives (alternatives 3
through 9 in Table 1). As a consequence the correct outcome was
either the second (high range) or the fifth smallest response alter-
native (low range) on screen. If the subjects were able to solve the
arithmetic problems, their response choices should show a non-
flat distribution, presumably centered close to the correct value.
In contrast, if they responded randomly, we would not expect
any differences in the frequency of choosing a particular response
alternative. In Figure 3, we plot response frequency for each oper-
ation, separately for trials in which the correct answer was second
(black) or fifth (gray). Responses were clearly distributed non-
randomly. The peak of the distribution was always centered on
response alternatives close to the correct outcome.

These conclusions were supported by an analysis of variance
(ANOVA) over the different response categories, with (arcsine-
transformed) percentage of choice as the dependent variable and
rank of the subject’s choice (one to six), range (second or fifth
value correct), and operation (addition, subtraction) as factors. A
main effect of rank [F(5, 155)= 3.80, p= 0.012, epsilon= 0.62]
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FIGURE 3 | Distribution of the children’s choices across the six
proposed results, averaged over all arithmetic problems, separately for
addition (left column) and subtraction (right column). The children’s
responses were not distributed randomly but depended on the range of
response alternatives presented (high or low range shown as black squares
and gray squares, respectively). Responses were centered around the
values that were closest to the correct outcome (fifth for low range and
second for high range).

was observed, indicating an unequal distribution of response fre-
quencies and therefore speaking against a random choice pattern.
Most importantly, a significant interaction between rank and range
[F(5, 155)= 10.36, p < 0.001] was observed, indicating that chil-
dren indeed chose values close to the correct outcome. No other
main effects or interaction were significant. The absence of sig-
nificant interactions between rank and operation or between all
three factors indicates that this response pattern was comparable
for both arithmetic operations.

Did children’s performance in the non-symbolic calculation
task conform to Weber’s law? We next examined how children
responded to our different arithmetic problems. The left column
of Figure 4 shows the children’s mean responses (chosen values)
as a function of the size of the correct result, separately for the two
operations. If the children were able to solve the arithmetic prob-
lems, the chosen value should increase as a function of the correct
outcome. With increasing numerical magnitude, theory predicts
an increasing variability of the chosen values (see the appendix in
Barth et al., 2006). Finally, according to Weber’s law, the increase in
the chosen values should be paralleled by a proportional increase
in response variability, as expressed in terms of their respective
standard deviation, resulting in a constant coefficient of variation
(CV, the ratio of the standard deviation, and mean of the subjects’
responses) across arithmetic problems of different numerical mag-
nitude. As can be seen in Figure 4, both children’s mean responses
(depicted as squares) and their standard deviation (depicted as
circles) increased as a function of the correct outcome for both
addition (black) and subtraction (gray). This impression was con-
firmed by repeated measures ANOVAs of mean and standard devi-
ation with operation (addition, subtraction) and numerosity (8,
10, 19, 25) as within-group factors and age as between group fac-
tor. Mean responses [F(3, 90)= 313.04, p < 0.001, epsilon= 0.60]
and variability [F(3, 90)= 53.70, p < 0.001, epsilon= 0.68] of
responses increased significantly with increasing correct outcome.
Interestingly, the increase of mean chosen value and its variation

FIGURE 4 | Left column: mean responses (chosen values, squares) of
the children and standard deviations (circles) plotted against the
correct outcome for addition (black) and subtraction problems (gray).
The lower part depicts the coefficient of variation (CV, diamonds) – that is,
the ratio of standard deviation and mean chosen value, plotted against the
correct outcome. A constant coefficient of variation indicates that variability
of chosen values increased proportionally with mean chosen value. In turn,
this can be understood as an instantiation of Weber’s law. Right column:
the logarithm of the correct outcome plotted against the logarithm of the
mean value chosen by the children for addition (black) and subtraction
(gray). The gray line indicates a ratio of 1 – that is, perfect performance.

were stronger for addition than for subtraction as indicated by
the significant interactions [mean: F(3, 90)= 6.42, p= 0.001,
epsilon= 0.82; SD: F(3, 90)= 3.12, p= 0.035, epsilon= 0.91]. No
other main effect or interaction was significant.

As can be seen in the lower left part of Figure 4, the CV was
constant across the whole range of outcomes for addition and
subtraction. This was tested statistically with a repeated measures
ANOVA with operation (addition, subtraction) and numerosity
(8, 10, 19, 25) as within-group factors and age as between group
factor. No main effect or interaction reached statistical significance
(minimum p= 0.133). To further corroborate this finding we cal-
culated the difference between the correct outcome and the mean
chosen value, once both of them had been transformed to a loga-
rithmic scale, and calculated a repeated measures ANOVA on the
standard deviations of these differences, with size of the correct
result as the only factors, separately for both operations (addition
and subtraction). Neither for addition [F(3, 93)= 2.65, p= 0.053]
nor for subtraction [F(3, 93)= 0.977, p= 0.407] we observed a
significant impact of problem size on the standard deviation of
this index.

Taken together, these results suggest that data are well described
by Weber’s law which is in line with the assumption that the
underlying mental magnitude representation is logarithmically
compressed. Therefore, all following analyses concerning the OM
effect were carried out in a logarithmic scale, using as input the
difference between the logarithm of the correct outcome and the
logarithm of the chosen value. Such analyses also have the advan-
tage of more likely meeting the prerequisites of the ANOVA, which
stipulates that all data have a fixed variability.

Did children show operational momentum in non-symbolic cal-
culation? To quantify this OM effect, we computed a simple
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estimate of response bias: the mean difference between the log
of the subject’s responses and the log correct result. This value was
submitted to an ANOVA with operation as within-group factor
and age as between group factor. Most importantly, no main effect
of operation was observed [F(1, 30)= 3.02, p= 0.092], that is, no
significant bias toward smaller responses for subtraction than for
addition was observed for children. No significant interaction with
age was observed [F(1, 30)= 0.76, p= 0.39]. Results are shown in
Figure 5.

Cueing task
Overall performance in the cueing task was very good. Children
committed only a total of 20 errors corresponding to 2% that were
excluded from all subsequent analyses.

Mean reaction times from valid, invalid, and neutral conditions
were computed per child and z-standardized per child (mean= 0,
SD= 1) to account for high between-subject variability in reaction
times from children.

Benefit and cost in the cueing task. First, we analyzed the effects
of cueing on reaction times by computing the benefits and the
costs of valid and invalid trials with respect the neutral condi-
tion, respectively. Adopting standard nomenclature from attention
domain the benefit (neutral – valid) will be referred to as orienting
effect and cost (neutral – invalid) will be referred to as reorienting
effect. Figure 6 (left) depicts the cueing effects and implies that the
type of cue (valid, invalid, or neutral) had a measurable impact on
children’s performance. This impression was supported by a sig-
nificant main effect of cue type in a repeated measures ANOVA
with cue type (valid, invalid, neutral) and SOA (200 ms, 800 ms) as
factors [F(2, 30)= 21.13, p < 0.001]. No other main effect or inter-
action was significant, implying that the observed cueing effects

FIGURE 5 | Mean response bias for children and adults, defined as the
difference between the chosen value and the correct outcome, both
expressed on a log scale. A negative bias indicates underestimation, and a
positive bias indicates overestimation.

were not statistically modulated by SOA. Paired t -tests revealed a
significant orienting effect {valid trials were responded to faster
than neutral trials [t (15)=−2.72, p= 0.016]} and a significant
reorienting effect {neutral trials were responded to faster than
invalid trials [t (15)=−4.16, p= 0.001]}.

Correlating cueing effects with calculation data
It has been argued that the OM effect is at least partially
due to attentional shifts induced by the arithmetic operation
that is operating on a spatially oriented mental magnitude
representation. According to this account additions are associ-
ated with attentional shifts to the right and subtractions are
associated with attentional shifts to the left. To test this account
we assigned half of the children in the current study to a cue-
ing paradigm. If the OM effect is a consequence of the inter-
action between the attentional systems and the mental magni-
tude system we should observe a correlation between both mea-
sures over children. That is, children with a large OM effect
should also exhibit larger attentional cueing effects. To test this
account we computed Pearson correlation coefficients between
the OM bias (that is [log(chosenAddition)− log(correctAddition)]−
[log(chosenSubtraction)− log(correctSubtraction)] and the orienting
and reorienting effects observed in the cueing paradigm. Note that
this analysis, too, is based upon correct trials in the cueing para-
digm only. While orienting did not correlate significantly with

FIGURE 6 | Left column: z-standardized mean reaction times for valid,
neutral and invalid conditions of the attention paradigm. Error bars
indicate standard error of the mean. Right column: the reorienting effect
(difference between neutral and invalid trials) plotted against the operational
momentum bias. For reorienting better performance is indicated by
numerically larger (i.e., less negative) values. A regular operational
momentum effect corresponds to positive values, an inverse operational
momentum effect corresponds to negative values. The correlation between
reorienting and operational momentum signifies that the less children suffer
from invalid cueing the more they are prone to exhibit a regular operational
momentum effect.
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OM bias (r = 0.14, p= 0.616), a significant correlation between
OM bias and reorienting was observed (r = 0.59, p= 0.017). The
difference between invalid and valid trials did not significantly
correlate with OM bias (r =−0.37, p= 0.158). In Figure 6 (right)
we plot the individual OM biases against the reorienting effect. It
becomes evident that the relatively high correlation was not driven
by few outliers but that over the entire range of reorienting and
OM bias a higher OM bias was associated with smaller reorienting
effects, that is with lower costs due to invalid cueing.

Correlating reading fluency with OM
We hypothesized that reading may corroborate existing spatial–
numerical links and may thus be linked with OM. To test this idea
we assessed individual reading capacities by measuring reading
durations for a short text. Although reading durations showed sub-
stantial variability (mean= 114 s; SD= 94 s) no correlation was
observed with OM [r(reading, OM bias)=−0.18, p= 0.513].

ADULTS
To test whether the current version of the paradigm is suited to
reveal OM effects we administered the same paradigm to a group
of 32 students from Barnard College. The same analysis steps as for
children were performed for adults and described briefly below.

Can participants memorize the operands?
Again we start by testing whether participants were able to cor-
rectly memorize the shown values. Both mean chosen values (6.7,
20.8, and 25.4 for displayed numerosities 6, 19, and 25, respec-
tively) and the standard deviation of chosen memorized value
increased significantly with presented numerosity [mean: F(2,
62)= 473.14, p < 0.001, epsilon= 0.83; mean: F(2, 62)= 38.28,
p < 0.001] indicating that participants were capable of remem-
bering the presented numerosities. In line with the assumption
of the mental magnitude representation following Weber’s law
we observed a constant coefficient of variation that did not sig-
nificantly covary with numerosity [F(2, 60)= 1.33, p= 0.273,
epsilon= 0.88].

Did participants engage in approximate calculation or respond at
random?
Next, we analyzed whether the subjects chose among the proposed
choices at random. To this end we analyzed (arcsine-transformed)
percentage of choice as the dependent variable in an ANOVA and
rank of the subject’s choice (one to six), range (second or fifth value
correct), and operation (addition, subtraction) as factors. A main
effect of rank [F(5, 155)= 3.57, p= 0.006, epsilon= 0.89] was
observed, indicating an unequal distribution of response frequen-
cies and therefore speaking against a random choice pattern. Most
importantly, a significant interaction between rank and range [F(5,
155)= 54.14, p < 0.001] was observed, indicating that participants
did not engage in a random choice pattern. Operation interacted
significantly with range [F(5, 155)= 4.22, p= 0.049], rank [F(5,
155)= 6.84, p < 0.001, epsilon= 78], and with range and rank
[F(5, 155)= 9.88, p < 0.001). Results are shown in Figure 7.

Did participant’s performance in the non-symbolic calculation task
conform to Weber’s law?
We next examined how the subjects responded to the differ-
ent arithmetic problems. Specifically, repeated measures ANOVAs

FIGURE 7 | Distribution of the participants’ choices across the six
proposed results, averaged over all arithmetic problems, separately for
addition (left column) and subtraction (right column). Responses were
not distributed randomly but depended on the range of response
alternatives presented (high or low range shown as black squares and gray
squares, respectively). Responses were centered around the values that
were closest to the correct outcome (fifth for low range and second for high
range).

with numerosity and arithmetic operation revealed that: (a) cho-
sen values increased as a function of correct outcome [F(3,
93)= 764.36, p < 0.001, epsilon= 0.85], (b) the variability of
the choices increased with increasing correct outcome [F(3,
93)= 73.19, p < 0.001, epsilon= 0.86]. We found that the coeffi-
cient of variation increased with increasing correct outcome [F(3,
93)= 3.82, p= 0.017, epsilon= 0.87]. A significant interaction
between operation and numerosity [F(3, 93)= 6.15, p= 0.001]
was due to the fact that the increase was present only for addi-
tion [F(3, 93)= 9.44, p < 0.001] but not for subtraction [F(3,
93)= 1.63, p= 0.188]. This pattern of results was corroborated
by the results of two repeated measures ANOVAs on the standard
deviation of the difference between the chosen values and the cor-
rect outcomes after they had been transformed to log scale with
size of the correct outcome as the only factor. We observed a signif-
icant main effect of size for addition problems [F(3, 93)= 10.56,
p < 0.001] but the size of the outcome did not systematically
influence response variability for subtraction [F(3, 93)= 1.74,
p= 0.164]. Results are shown in Figure 8.

Did participants show operational momentum in non-symbolic
calculation?
Finally, we analyzed the OM effect by computing the same bias
as for children {[log(chosen value)− log(correct outcome)]} for
each problem and averaged over addition and subtraction prob-
lems, separately. A paired sample t -test revealed a significant
OM effect [t (31)= 2.91, p= 0.007] that took the form of a
full cross-over effect. That is, participants significantly overesti-
mated results for addition problems [t (31)= 2.12, p= 0.042] and
under-estimated results for subtraction problems [t (31)=−2.61,
p= 0.014]. Results are depicted in Figure 5.

JOINT ANALYSIS OF OM IN ADULTS AND CHILDREN
To statistically test the observed discrepancy of regular OM
in adults and the absence of a statistically significant OM
in children we submitted the log-scaled bias [log10(chosen
value)− log10(correct outcome)] from both groups to a common
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FIGURE 8 | Left column: mean responses (chosen values, squares) of
the subjects and standard deviations (circles) plotted against the
correct outcome for addition (black) and subtraction problems (gray).
The lower part depicts the coefficient of variation (CV, diamonds) – that is,
the ratio of standard deviation and mean chosen value, plotted against the
correct outcome. A constant coefficient of variation indicates that variability
of chosen values increased proportionally with mean chosen value. In turn,
this can be understood as an instantiation of Weber’s law. Right column: the
logarithm of the correct outcome plotted against the logarithm of the mean
value chosen by the participants for addition (black) and subtraction (gray).
The gray line indicates a ratio of 1 corresponding to perfect performance.

ANOVA with type of arithmetic operation (addition vs. subtrac-
tion) as within-subjects factor and group (adults vs. children)
as between-subjects factor. Type of arithmetic operation did not
have a significant impact on the observed calculation bias [F(1,
62)= 1.44, p= 0.234]. No main effect of group was observed
[F(1, 62)= 2.601, p= 0.112]. Most importantly, in line with the
observed discrepancy type of arithmetic operation significantly
interacted with group [F(1, 62)= 11.62, p= 0.001], statistically
corroborating the observation that the differential impact of the
arithmetic operation on the chosen values depends on the group.
Adults show a differential impact of arithmetic operation while
children tend not to. This is in line with the observation that the
OM bias for addition and subtraction is negatively correlated over
adults (r =−0.343, p= 0.054) but positively correlated over chil-
dren (r = 0.42, p= 0.017). Put differently, those adults who tend to
larger overestimation in addition also tend to larger underestima-
tion in subtraction. In children this pattern is reversed. Children
who tend to larger overestimation in addition also show larger
overestimation in subtraction.

JOINT ANALYSIS OF OM IN ADULTS AND CHILDREN USING A
BAYESIAN APPROACH
The repeated measures ANOVA model as implemented in SPSS
assumes homoscedasticity, meaning that the variation of the
dependent variable is the same for each experimental group and
repeated measurement. In developmental research, this might
however not be justified. If the comparison involves, for example,
children, heteroscedasticity may be observed due to increased vari-
ation in functioning, compliance with the task, or both. Indeed,
analyzing the standard deviation of the chosen values in a 2 (oper-
ation)× 4 (outcome) repeated measures ANOVA with age group
(adults vs. children) as between group factor revealed a significant
main effect of group [F(1, 62)= 23.15, p < 0.001], indicating that

adults responses were less variable than children’s responses. Thus,
the stipulated homoscedasticity cannot be assumed. As known
from the statistical literature, heteroscedasticity can substantially
decrease power (Wilcox et al., 1986; Wilcox, 1987), the probability
of identifying an existing effect.

A straightforward way to overcome the implausible restric-
tion of homoscedasticity is by using a Bayesian model with all
(co)variances considered as unknown parameters. In the Bayesian
approach, estimation is informed not only by information from
the data (likelihood function), but also by a priori information
(prior density function). Their product is proportional to the
target of Bayesian estimation (posterior density). The posterior
density is often computed with the help of Monte Carlo methods.
For an introduction to the Bayesian approach for experimental
researchers, see Kruschke and Safari Tech Books Online (2011).

Let i= 1, 2, . . ., 32, j = 1, 2, k = 1, 2 index subjects (1 through
32), measurements (addition vs. subtraction), and groups (adults
vs. children), respectively. Then the data form an i× j × k array.
We consider a multivariate normal likelihood. In probability
notation, this can be put as:

yik ∼ N (µk , Σk) , (1)

with the vector yik =

(
yi1k

yi2k

)
of the addition and subtraction

scores of the ith subject from the kth group, µk =

(
µ1k

µ2k

)
the kth group’s means in addition and substraction, and Σk =(

σ2
11k σ2

12k
σ2

21k σ2
22k

)
the group-specific covariance matrix. Notice that:

(a) the model assumes correlated measurements as the secondary
diagonal of Σk is not restricted to zero and (b) it assumes het-
eroscedasticity as the variances are allowed to be unequal across
groups and measurements, why we may consider it as a het-
eroscedastic repeated measures ANOVA model. Prior densities
must be specified to complete the model. We choose a flat nor-
mal density for the measurement means of each group because we
wish to let the data dominate the analysis:

µjk ∼ N (0, 100000) . (2)

For the same reason, we assign the following inverse Wishart
density to the covariance matrices with identity matrix I =(

1 0
0 1

)
and 2 degrees of freedom:

Σk ∼ inverse −Wishart (I , 2) . (3)

Before running the model, data were standardized. We sam-
pled µ1k , µ2k , σ2

11k , σ2
12k , and σ2

22k iteratively using JAGS 3.3.0.
Convergence was checked by visual inspection. We discarded
the first 100,000 out of 600,000 iterations as burn-in. Infer-
ence was based on the remaining. Marginal posterior densities
including those of the effects of operation in adults and children,
µ11−µ21 and µ12−µ22 respectively, and that of the interaction
(µ11−µ21)− (µ12−µ22), are summarized in Table 2.

The probability that the effect is positive/negative in the
light of the data is given by the appropriate integral of the
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Table 2 | Marginal posterior densities from the Bayesian analysis.

Mean HDIa

MODEL PARAMETERS

Means

µ11 0.226 [−0.054, 0.502]

µ21 −0.513 [−0.863, −0.156]

µ12 −0.034 [−0.391, 0.324]

µ22 0.321 [−0.062, 0.702]

(Co)variances

σ2
111 0.635 [0.353, 0.974]

σ2
121 −0.265 [−0.589, 0.031]

σ2
221 1.026 [0.571, 1.576]

σ2
112 1.056 [0.582, 1.617]

σ2
122 0.460 [0.054, 0.930]

σ2
222 1.204 [0.666, 1.846]

DERIVED QUANTITIES

Effects

µ11−µ21 (addition vs. subtraction adults) 0.739 [0.221, 1.254]

µ12−µ22 (addition vs. subtraction children) −0.354 [−0.758, 0.048]

(µ11−µ21)− (µ12−µ22) 1.093 [0.450, 1.756]

aThe highest density interval is a credible region, including the most likely values.

marginal posterior density (Jackman, 2009). For µ11−µ21,
(µ11−µ21)− (µ12−µ22), and µ12−µ22 this probability is
0.997, 0.999, and 0.958, respectively, 0.003, 0.001, and 0.042 are
the probabilities of the contrary, namely that the effect is zero or
less/more than zero. Considering their ratios, we conclude that
beside decisive support for OM in adults and a difference in OM
between adults and children, our data strongly supports the idea
of an inverse OM in children.

DISCUSSION
In the current study we administered a non-symbolic calculation
paradigm – along with a reading and an attentional cueing task –
to 6- and 7-year olds to examine the presence and determinants
of OM. Four main findings are of note. First, we replicate the
presence of proficient non-symbolic addition and subtraction in
an adult population, along with a systematic overestimation of
addition outcomes, and underestimation of subtraction outcomes
(McCrink et al., 2007; Knops et al., 2009b). Second, the children
tested here were capable of non-symbolic addition and subtrac-
tion, using only their “number sense”; they reliably altered their
responses to the offered outcomes to correspond with a mental cal-
culation of the estimated correct outcomes, and did so without the
aid of confounding perceptual cues. Third, while a group of adult
controls showed a regular OM effect, children did not show a sig-
nificant OM effect using classical statistical NHST. However, using
Bayesian inference we observed a significant inverse OM effect.
That is, subtraction problems lead to significantly larger overesti-
mations than addition problems. Finally, there was a relationship
between a child’s level of attentional reorienting and their propen-
sity to exhibit regular OM; the lower the cost of the invalid cue the
more regular OM bias exhibited by that child. Counter to hypothe-
ses that offer self-directed automaticity of reading as a driver of
spatial–numerical links, we found no relationship between reading
fluency and OM.

What do the current findings implicate for the different
hypotheses concerning the basis of OM and the developmental
trajectory of OM?

THE COMPRESSION HYPOTHESIS
The compression hypothesis assumes that the OM results from a
flawed uncompression operation during the course of manipulat-
ing mental magnitudes (McCrink et al., 2007; Chen and Verguts,
2012). According to this hypothesis a regular OM effect was
expected in the tested age range. The observed absence of an over-
all OM bias under classical statistical NHST in combination with
a significantly reversed OM under Bayesian approach is hard to
reconcile with this notion. One might argue that the compres-
sion of the MNL is not identical for adults and children at the age
of 6–7 years, and therefore the OM should differ between adults
and children. However, if anything compression of the mental
magnitude representation is more pronounced for children in the
tested age range, implying a regular OM bias that is even more
pronounced than in adulthood (Siegler and Opfer, 2003; Opfer
and Siegler, 2007). For example, Berteletti et al. (2012) found no
significant differences between linear and logarithmic model for
number to position task in first (mean age: 6;11) and second grade
(mean age: 7;11). Preschoolers (mean age: 5;8) were best fit by
logarithmic and as of third grade (mean age: 8;9) linear models
provided best fit. Hence, the shift from logarithmic to linear map-
ping of numbers to positions occurs only in second or third grade,
when children are older than the sample tested here. Therefore, the
present results speak against a flawed compression-uncompression
mechanism as the driving factor of the OM bias.

THE HEURISTICS APPROACH
The heuristics approach (McCrink and Wynn, 2009, p. 407) sug-
gests that children deploy a general arithmetic principle of “if
adding, accept more” than the original operand and “if subtract-
ing, accept less.” According to this approach, too, an OM bias
was expected for the tested age range (that is, given an addition
and subtraction problem that yield the same objective answer, the
average subjective outcome chosen as correct for addition will be
higher than that chosen for subtraction). Moreover, the response
distribution was expected to differ significantly from the distribu-
tion observed for adults. Under the strictest interpretation of this
theory, if children had adopted such a heuristic rather than engag-
ing in an approximate calculation they would have frequently
chosen results that are larger than the first operand in addition and
smaller than the first operand in subtraction, with no differenti-
ation between somewhat vs. extremely larger/smaller. This would
result in a response distribution that plateaus at results discrim-
inably larger than the initial outcome and ranging up (addition) or
those that start at any outcome discriminably smaller than the ini-
tial operand and go down (subtraction). The present study yielded
two findings that speak against this heuristic approach. First, we
did not observe an overall OM bias in 6- and 7-year-old children
using NHST in combination with a significant inverse OM under
Bayesian approach. Second, the response distributions did not fol-
low the expected pattern under the assumption of a pure heuristic.
Rather, the distributions largely resembled those observed for adult
participants, with distinct response peaks (albeit less pronounced
for subtraction problems). For example, for the high response
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range in addition problems the observed modal value was actu-
ally numerically smaller than the actual outcome. Together, these
results imply that children did indeed engage in approximate cal-
culation and speaks against the assumed heuristic of accepting
generically “more” with addition or “less” with subtraction.

READING FLUENCY ACCOUNT
The hypothesis that reading fluency underlies the formation of a
spatial–numerical link, and its resultant OM bias, was also unsup-
ported. Although there was a wide range of reading ability (ranging
between 36 and 320 s to read through a short vignette) this factor
did not correlate with a propensity to show regular OM. While
numerous studies have found that the reading directionality of
adults clearly modulates the traditional SNARC effect, it is likely
not responsible for instantiating it (Shaki et al., 2009, 2012). In
addition to the current findings, there are several studies which
show the presence of other spatial–numerical relationships before
the onset of reading (Opfer et al., 2010; Berteletti et al., 2012; Shaki
et al., 2012). This suggests that reading is not the driving factor in
the formation of spatial–numerical links. Other aspects of the cul-
tural milieu may lead to the development of spatial–numerical
links (such as seeing adults model directional counting (Opfer
et al., 2010), or utilize gesture in a culturally consistent fashion)
which subsequently may be modulated by reading fluency.

ATTENTIONAL SHIFTS ACCOUNT
The attentional shift account explains OM as the result of shifts
of spatial attention along the MNL that lead participants to pre-
fer outcomes in the “direction” of the arithmetic operation (Knops
et al., 2009a). This account predicts that children exhibit a response
distribution similar to the pattern observed in adults and a rela-
tionship between attentional indices and the strength and/or pres-
ence of OM. Children showed an inverse OM bias under a Bayesian
approach which is not in line with the predictions of the attentional
shift hypothesis. The OM bias was correlated with the reorienting
effect. With decreasing reorientation effect the tendency to exhibit
a regular OM bias increased across children. Reorientation cap-
tures the ability to switch attention from invalidly cued locations
to the uncued location at which the actual stimulus appears (Car-
rasco, 2011). Children who are more proficient in this process tend
to show a more adult-like OM bias.

On the neural level in adults reorienting has been associated
with joint activation in two distinct but intertwined cortical sys-
tems (Corbetta et al., 2008), the ventral attention system (VAS)
and the dorsal attention system (DAS). The VAS encompasses right
inferior parietal regions around the temporo-parietal junction and
ventral frontal cortex including parts of middle frontal gyrus, infe-
rior frontal gyrus, Insula, and frontal operculum (Corbetta et al.,
2008). The DAS comprises bilateral areas in the intraparietal sul-
cus, superior parietal cortex, and frontal eye fields. The DAS is
associated with goal-directed orienting of attention that biases the
processing of relevant stimuli. In contrast, the VAS is activated by
salient but unexpected stimuli and has been proposed to be sup-
pressed during periods of focused attention to prevent reorienting
to distracting events. The VAS likely receives filtering informa-
tion about whether or not an unexpected stimulus is salient from
prefrontal cortex (Shulman et al., 2003). Activity in the VAS is
modulated at the transition point between two tasks or two stimuli

(Dosenbach et al., 2006). Against this background, the size of the
reorienting effect might be interpreted as an index for the integrity
of the described attentional systems, and/or the extent to which the
attentional system is connected to executive control functions (sit-
uated in prefrontal cortex). Both reorienting and executive control
have been shown to be functional yet immature in 6- to 7-year olds
(Konrad et al., 2005; Wetzel et al., 2006, 2009; Carp et al., 2012).
Thus children who show a smaller reorientation effect might be
more mature in developing situational control over distracting
stimuli, and therefore more likely to exhibit an adult-like OM.
Together with a functional attentional selection system (DAS) –
as evidenced by the significant benefit from valid cues – this
implies a key role for a functional and mature attentional system
for the OM to arise in the context of non-symbolic calculation
tasks. Surprisingly, OM propensity did not correlate with orient-
ing (r = 0.14) as predicted by the attentional shift hypothesis. We
can only speculate about the reasons for this finding. A regular OM
effect may rely on automatic and reliable number-space associa-
tions and a full-fledged attentional system. Under this assumption
we would speculate to observe increasing OM bias with increas-
ing age. Second, we may hypothesize that correlation between OM
and attention increases with age. For the moment these consider-
ations are speculative and need to be addressed in further studies.
In this respect the present study presents the first pieces of evi-
dence for the developmental trajectory of the OM effect and its
relation to other cognitive domains such as reading and attention.
The observed pattern of results is not fully compatible with the
attentional shift hypothesis. Nevertheless, the observed response
pattern in combination with the significant correlation between
reorienting and OM make this hypothesis a promising theoreti-
cal approach to delineate the developmental trajectory of the OM
effect.

In sum, in the present study we tested several existing hypothe-
ses about the origin of the OM effect by administering a non-
symbolic calculation task to children aged between 6 and 7 years.
Most crucially, using a Bayesian framework we observed a signif-
icant inverse OM effect in children. Testing a sample of college
students with the same paradigm revealed a significant regular
OM. The children’s results are hard to reconcile with the pro-
posed theoretical accounts for the OM, namely the attentional
shift hypothesis, the compression hypothesis, and the heuristic
account. The propensity to show a regular OM effect correlated
with reorienting scores in an adapted Posner paradigm, linking the
OM to the attentional system. We believe that the current child-
friendly paradigm offers a promising avenue to further explore
the development of spatial–numerical links, and that these find-
ings lead to novel predictions based on the relationship between
distinct attention systems, space, and number in both children and
adults.
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