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The present article is concerned with studies on magnitude estimations that strived to
uncover the underlying mental representation(s) of magnitudes. We point out a number
of methodological differences and shortcomings that make it difficult drawing general
conclusions. To solve this problem, we propose a taxonomy by which those studies could
be classified, taking into account central methodological aspects of magnitude estimation
tasks. Finally, we suggest perspectives for future research on magnitude estimations,
which might abandon the hunt for the mathematical model that explains estimations best
and turn, instead, to investigate the underlying principles of estimations (e.g., strategies)
and ways of their improvement.
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INTRODUCTION
There is an ongoing debate among researchers concerned with
magnitude estimations on how the relationship between subjec-
tive estimations and objective magnitudes may be described best.
This issue is important as poor estimation performance – such as
in number line estimation tasks – is associated with limited math-
ematical abilities in children (e.g., Booth and Siegler, 2008; Geary
et al., 2008). Furthermore, the characteristics of the underly-
ing mental representation of magnitudes including its systematic
biases are often directly inferred from the estimations (e.g., Siegler
and Opfer, 2003).

Initially, two fundamental models have been proposed on how
magnitudes might be mentally represented. The logarithmic ruler
model (Dehaene et al., 1990; Dehaene, 1997) assumes that magni-
tudes are represented with constant variability on a mental num-
ber line. However, representations of larger numbers are located
closer to each other and thus overlap compared to smaller num-
bers. The accumulator model, in contrast, states that magnitudes
are represented equidistantly but with proportionally increas-
ing variability (i.e., scalar variability: Gibbon and Church, 1981;
Whalen et al., 1999; Huntley-Fenner, 2001). Studies promoting
the logarithmic model usually employed relative magnitude esti-
mation tasks such as identifying the larger of two numbers (e.g.,
Dehaene et al., 1990), while other studies used absolute magni-
tude estimations that required the approximate transformation
between two magnitudes (e.g., generating 23 key presses without
counting: Whalen et al., 1999). Only absolute magnitude esti-
mations will be considered further in this article as only these
represent estimations in a narrower sense, that is, “a process of

translating between alternative quantitative representations, at
least one of which is inexact” (Siegler and Booth, 2005, p. 198).

Based on the initial accounts, Siegler and colleagues (e.g., Siegler
and Opfer, 2003) investigated how the estimation pattern of mag-
nitudes develops using the number line task. Participants usually
mark the position of given numbers on a number line, ranging for
instance from 0 to 100 or from 0 to 1000. It has been demonstrated
that in young children and for relatively large number ranges,
in particular, the estimation pattern exhibits a logarithmic shape,
whereas for small number ranges and in older children and adults,
the pattern is linear and quite exact, without scalar variability.

This research was the starting point for further studies aim-
ing to explain typical biases in numerical estimations of children
and adults. Alternative models to a logarithmic model with con-
stant variability and a linear model with scalar variability have been
proposed, that is, segmented linear models (e.g., Ebersbach et al.,
2008; Moeller et al., 2009) or a cyclic power model (e.g., Barth and
Paladino, 2011). Moreover, a simple power model, adopted from
psychophysical research (e.g., Stevens, 1957), was put forward to
describe systematic biases in adults’ numerical estimations (e.g.,
Crollen et al., 2011). A debate has started and is still going on about
which model is best suited to explain the relationship between esti-
mations and actual magnitudes (e.g., Barth and Paladino, 2011;
Opfer et al., 2011; Ashcraft and Moore, 2012; Bouwmeester and
Verkoeijen, 2012).

In the present article, we aim at emphasizing that studies
employing absolute magnitude estimations to investigate the char-
acteristics of the mental representation of magnitudes are often
hardly to compare as they involve a broad range of methodological
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approaches that apparently may lead to different outcomes con-
cerning the shape, accuracy, or variability of the estimations. To
address this problem, we propose a taxonomy by which many
of the conducted (and future) studies may be classified, which
might help to evaluate the comparability, reliability, and valid-
ity of studies. Finally, implications for future research will be
suggested.

LACKING COMPARABILITY OF THE STUDIES
Studies involving absolute magnitude estimations differ broadly
with regard to the tasks, the stimuli, and the methods of analy-
sis. Hence, even additional studies might provide no further clarity
on children’s and adults’ estimation abilities and the nature of
their underlying mental representations as long as apples and pears
are collected into the same basket. In the following, we will give
some examples that are directly related to the taxonomy proposed
later.

First, estimations can be conceived as numerical or non-
numerical (Siegler and Booth, 2005). Numerical estimations
involve a magnitude in a symbolic format (i.e., a number word
or a numeral) that has to be transferred approximately into
another – symbolic or non-symbolic – magnitude (e.g., telling
the number of dots), or vice versa. This type will be referred
to as symbolic estimations in the following. Non-numerical –
or non-symbolic estimations, in contrast, refer to the approxi-
mate transformation between two non-symbolic magnitudes (e.g.,
reproducing a number of dots by key presses). Crollen et al.
(2011) showed that symbolic and non-symbolic estimations of
adults differ both qualitatively and quantitatively. Symbolic esti-
mations yielded typical biases – that is, under- or overestimations,
respectively – that could be well described by a power function.
Non-symbolic estimations (i.e., reproduction task), in contrast,
were relatively accurate and were described best by a largely linear
function.

The differences between symbolic and non-symbolic estima-
tions might be explained by the assumption of format-dependent
representations of magnitudes (e.g., Dehaene, 1992; Cohen Kadosh
et al., 2011; Lyons et al., 2012; for a review see Cohen Kadosh
et al., 2008), although a format-independent representation has
been proposed, too (e.g., McCloskey et al., 1985; Barth et al., 2003;
Walsh, 2003). Evidence for format-dependent representations
comes from fMRI measures showing that different formats acti-
vate distinct brain regions (e.g., Vogel et al., 2013). Furthermore,
Roggeman et al. (2007) provided evidence that (at least small) sym-
bolic magnitudes are mentally represented by place codes, that is, as
activation of a specific position on the mental number line, corre-
sponding to the target magnitude. Non-symbolic magnitudes, in
contrast, are represented by summation codes, that is, as activation
of a whole segment of the number line up to the corresponding
position of the target magnitude. Place codes reflect a local and
thus more precise activation on the number line than summa-
tion codes and might thus explain a higher accuracy of symbolic
compared to non-symbolic estimations. Furthermore, it has been
assumed that different transformation paths exist between dis-
tinct representational codes (e.g., bi-directional mapping model:
Castronovo and Seron, 2007) that might differently affect chil-
dren’s estimations, in particular, whose number knowledge is not

fully developed yet. They might perform poorer in symbolic esti-
mations that require the comprehension or production of number
symbols, compared to non-symbolic estimations. Evidence for this
assumption stems from children’s magnitude comparisons (see
Rousselle and Noël, 2007) as well as from differential effects of
language characteristics on number line estimations (Helmreich
et al., 2011). However, most of the studies so far that strived at
examining the mental representation of magnitudes involved only
symbolic estimations, which is in particular true for research with
children (for an exception see Mejias et al., 2012). It might be
worthwhile to directly compare the performance in symbolic and
non-symbolic estimations and to relate it to the symbolic num-
ber knowledge. Sasanguie et al. (2012) have for instance found
that children’s performance in both a symbolic and a non-symbolic
number line task were highly correlated but that only the symbolic
task performance was associated with math performance–even if
controlled for non-symbolic task performance (see also Sasanguie
et al., 2013).

Furthermore, different types of tasks were used within sym-
bolic estimations, such as position-to-number tasks (or percep-
tion tasks), where symbolic numbers have to be assigned to
given non-symbolic magnitudes (e.g., Ashcraft and Moore, 2012)
and number-to-position tasks (or production tasks), where non-
symbolic magnitudes have to be generated that match given sym-
bolic numbers (e.g., Barth and Paladino, 2011). Crollen et al.
(2011) have shown that both tasks yield opposing biases (i.e., over-
estimations in the production task and underestimations in the
perception task) and different error rates in adults. A poorer perfor-
mance in a production-like task compared to a perception-like task
was also reported for children (Mundy and Gilmore, 2009; Mejias
et al., 2012).

In addition, the target stimuli to be estimated differed.
Continuous stimuli, such as in the number line paradigm (e.g.,
Siegler and Opfer, 2003), and discrete stimuli (e.g., numbers of
dots, Crollen et al., 2011) have been used. Boyer et al. (2008)
showed that children perform better in proportional judgments
of liquids when they were presented as continuous amounts than
by discrete units–probably as discrete magnitudes allured them to
apply counterproductive counting mechanisms and suppressed a
more intuitive approach. Moreover, children were also more accu-
rate in comparing continuous (i.e., lengths of bars) than discrete
magnitudes (i.e., numbers of dots; Barth et al., 2009).

Taken together, research so far has shown that the estimation
type (i.e., symbolic vs. non-symbolic), task type (i.e., perception,
production), and target type (continuous vs. discrete) might dif-
ferently affect the shape and accuracy of magnitude estimations as
well as the direction of the biases in terms of under- and overesti-
mations. The next two issues refer to the variability and, again, to
the shape of the estimations and, relatedly, to the inferred shape of
the underlying mental representation of magnitudes.

Magnitude estimations can be bounded (e.g., number line
tasks with lower and upper anchor points: Siegler and Opfer,
2003) or unbounded with no upper anchor cue (e.g., Booth and
Siegler, 2006, Exp. 1; Whalen et al., 1999; Cohen and Blanc-
Goldhammer, 2011). This issue is relevant in particular for the
question of whether or not the estimations exhibit the signa-
ture of scalar variability. It seems likely that only unbounded
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tasks with no upper anchor cue would yield scalar variabil-
ity as they do not allow for adjusting large estimations to an
upper limit (Ebersbach et al., 2008). Furthermore, young chil-
dren who lack an understanding of large numbers might fail to
use the upper numerical anchor and their estimations thus might
exhibit scalar variability, too, in cases where the upper anchor is
unfamiliar.

Moreover, within the bounded number line tasks, many stud-
ies provided a lower and an upper anchor, such as 0 or 1 and
100 (e.g., Siegler and Opfer, 2003; Siegler and Booth, 2004; Booth
and Siegler, 2006; Laski and Siegler, 2007; Opfer and Siegler, 2007;
Ebersbach et al., 2008; Opfer and Thompson, 2008; Thompson and
Opfer, 2008; Ashcraft and Moore, 2012; Ebersbach, in press), while
in other studies the location of an additional reference point was
explicitly referred to in the pre-test (e.g., the location of 50 on a
number line of 0–100; Barth and Paladino, 2011; Bouwmeester and
Verkoeijen, 2012; Slusser et al., 2013). The explicit indication of an
additional reference point might have affected the shape of the esti-
mations and facilitated the calibration of the estimations around
the additional reference point. As a result, estimations might be
best described by a cyclic power model with relative accurate esti-
mations near the reference points, while the absence of a third
reference point might rather yield a better fit with a logarithmic
model.

METHODOLOGICAL TAXONOMY
So far, we illustrated methodological differences between studies
that might account for the often heterogeneous findings concern-
ing the shape, variability, and accuracy of magnitude estimations.
To solve this shortcoming, we propose a taxonomy into which each
of the used paradigms might be classified (see Figure 1). This tax-
onomy accounts for (1) the question of whether symbolic numerals
(or number words) are involved in the estimations or not (i.e.,
symbolic vs. non-symbolic estimations), (2) the type of the esti-
mation tasks (i.e., perception, production, reproduction), (3) the
type of the target stimuli (i.e., discrete vs. continuous), (4) the
potential range of the estimations (i.e., bounded vs. unbounded),
and (5) whether an additional reference point was provided or
not. For instance, a classical number line paradigm (e.g., Siegler
and Opfer, 2003) involves symbolic/numerical estimations in terms
of a production task, in which the target stimuli are continuous,

the estimation range is bounded by anchors and no additional
reference point is provided.

SUGGESTIONS FOR FUTURE RESEARCH
First of all, it could be useful to systematically manipulate the
methodological aspects proposed in the taxonomy in magnitude
estimation tasks. This might allow determining if previous findings
concerning the shape, variability, and accuracy of magnitude esti-
mations and their underlying mental representation, as well as the
emergence of systematic estimation skills in the course of develop-
ment are generalizable or if they apply only to certain paradigms.
If the latter was true, the different paradigms might tap different
mental representations or, perhaps a certain paradigm might be no
reliable and valid instrument to investigate the underlying mental
representation (cf. Moeller and Nuerk, 2011).

Second, when aiming at identifying the mathematical model
that explains magnitude estimations best, one has to take into
account that model fits are affected, amongst others, by the num-
ber of trials, the number of parameters of the model, the question of
whether a constant is estimated or not, and by the intra-individual
variability of the estimations, which is relatively large in young chil-
dren, in particular. One way to account for the model errors as well
as for the number of free parameters would be using the Akaike
information criterion (AIC), though it refers only to the relative fit
of alternative models.

Third, shortcomings in deciding which model describes the
shape of estimations of individual participants best should be pre-
vented. Previous approaches largely differed, ranging from infer-
ential statistics (i.e., comparing adjusted R2 values or the absolute
values of the residuals of each model by t-tests: Siegler and Opfer,
2003; Moeller et al., 2009; Berteletti et al., 2012; though it can-
not even be assumed that these parameters are Gaussian: May
et al., 1989; Edgington and Onghena, 2007) to pure descriptive
accounts (i.e., comparing R2 values or likelihoods of each model by
visual inspection: Thompson and Opfer, 2008; Barth and Paladino,
2011; Cohen and Blanc-Goldhammer, 2011; Ashcraft and Moore,
2012). A descriptive approach provides maximally a heuristic but
not a reliable decision rule (Glover and Dixon, 2004). Even slight
differences between concurrent model fits might be overvalued
if estimations were, for instance, classified as being linear only
because the fit of a linear model is R2 = 0.731 and that of an

FIGURE 1 | Taxonomy of paradigms of studies on magnitude estimations.
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alternative model is R2 = 0.730. In this regard, a statistically based
classification method seems necessary to avoid arbitrary results
(see also Moeller and Nuerk, 2011; Bouwmeester and Verkoeijen,
2012). In addition, if individual data will be analyzed in future
research, a larger number of trials should be used to get more reli-
able data – although it also needs to be considered that a multitude
of trials might reduce participants’ motivation and yield interfering
learning effects.

A fourth remark refers to the assumption, made implicitly or
explicitly, that linear relationships between estimations and actual
magnitudes, as reflected for instance by a better fit of a linear
model (e.g., Siegler and Opfer, 2003), are the “idealized develop-
mental endpoint of numerical estimation” (Ashcraft and Moore,
2012, p. 256; see also Hollands et al., 2002). Even if estimations
rather obey a linear function, they might significantly and sys-
tematically deviate from the actual values, depending on the slope
and intercept of the fitted linear function. Thus, even if equidis-
tance between neighboring numbers is assumed, the estimations
might deviate fundamentally from the actual values (cf. Moeller
and Nuerk, 2011). In turn, estimations that are better explained by
a power or logarithmic model might correspond on average bet-
ter to the actual magnitudes than a linear model. However, the use
of the best-fitting function might be questioned if the functions
make similar predictions with respect to the observable estima-
tion behavior (cf. Wagenaar, 1975; Dehaene, 2001; Thompson and
Opfer, 2008; Cantlon et al., 2009). It thus might be useful to con-
sider not only the shape of the estimations but also the accuracy in
terms of both absolute and simple deviations from the actual val-
ues, as well as the variability of the estimations (see also Holloway
and Ansari, 2008; White and Szucs, 2012).

Given the current state of research, future research might rather
focus on conditions that lead to biased magnitude estimations
and on how these estimations and the underlying “number sense”
(Dehaene, 1997) might be improved. First attempts were already

provided in the field of developmental research, where number
games have proven to support equidistance in the mental repre-
sentation of numbers (e.g., Wilson et al., 2006; Siegler and Ramani,
2008; Whyte and Bull, 2008). Other approaches might include pro-
moting the familiarity with (e.g., Ebersbach et al., 2008) and the
embodiment of numbers (e.g., Fischer et al., 2011) as potential
precursors of an appropriate representation of the number system.
Furthermore, the nature of estimation processes might be inspected
further, such as when and how anchor cues are used or internally
created–in particular in the course of development (see Schneider
et al., 2008; Ashcraft and Moore, 2012; White and Szucs, 2012).
It has been shown that adults use anchors to adjust their numer-
ical estimations (Izard and Dehaene, 2008), but studies on whether
children are able to do so and how their use of anchors might
be affected (e.g., number knowledge, working memory) are rare
(for exceptions see Newman and Berger, 1984; Petitto, 1990). Thus,
the question of how and which estimation strategies are applied
should be addressed. In addition, as strategies affect estimations
(e.g., Ashcraft and Moore, 2012) one might question the funda-
mental assumption underlying the use of estimation paradigms,
namely that estimations are a probate instrument to tap the under-
lying mental representation at all (Gescheider, 1998; Moeller and
Nuerk, 2011). To sum up, we put forward a taxonomy that might
contribute to a better comparability of studies on absolute magni-
tude estimations. We propose that the research focus might switch
from trying to identify the model that describes the estimations best
toward conditions and strategies that lead to estimation biases and
toward procedures that might ward off these biases.
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