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In a seminal paper written five decades ago, Cronbach discussed the two highly distinct
approaches to scientific psychology: experimental and correlational. Today, although these
two approaches are fruitfully implemented and embraced across some fields of psychology,
this synergy is largely absent from other areas, such as in the study of learning and
behavior. Both Tolman and Hull, in a rare case of agreement, stated that the correlational
approach held little promise for the understanding of behavior. Interestingly, this dismissal
of the study of individual differences was absent in the biologically oriented branches of
behavior analysis, namely, behavioral genetics and ethology. Here we propose that the
distinction between “causation” and “causes of variation” (with its origins in the field of
genetics) reveals the potential value of the correlational approach in understanding the full
complexity of learning and behavior. Although the experimental approach can illuminate
the causal variables that modulate learning, the analysis of individual differences can
elucidate how much and in which way variables interact to support variations in learning
in complex natural environments. For example, understanding that a past experience
with a stimulus influences its “associability” provides little insight into how individual
predispositions interact to modulate this influence on associability. In this “new” light,
we discuss examples from studies of individual differences in animals’ performance in the
Morris water maze and from our own work on individual differences in general intelligence
in mice. These studies illustrate that, opposed to what Underwood famously suggested,
studies of individual differences can do much more to psychology than merely providing
preliminary indications of cause-effect relationships.
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In a widely influential paper, Cronbach (1957) discussed the two
highly distinct approaches to scientific psychology: experimen-
tal and correlational. According to Cronbach, the experimental
approach attempts to understand reality by manipulating (under
simplified conditions) variables between groups/treatments. In
contrast, the correlational approach attempts to understand reality
by estimating the influence of variables under complex con-
ditions between individuals. Individual differences, critical for
correlational analyses, are troublesome noise for the experimental
psychologist, while differences between treatments, critical to the
experimental approach, are avoided among correlational psychol-
ogists. Hence, although both approaches are complementary and,
as Cronbach argued, equally important to psychology, they are
typically employed separately; mitigating their true explanatory
potential.

As the discipline of psychology gravitated toward a more
scientific framework, so too did its reliance on experimental
methodologies (Ebbinghaus, 1913; Osgood, 1953). Already ubiq-
uitous in the older sciences of physics, chemistry, and biology,
the design and philosophy of controlled experiments also became
part of psychologists’ mindset. Due to this wide adoption (and
the advances it has prompted), the experimental approach needs
little theoretical defense. If its use is still scarce in some fields

of psychology, we believe it is not due to rejection, but rather,
because experimental control is often difficult to implement when
studying some complex variables. However, even in very complex
fields such as social psychology, the explosion of research in behav-
ioral economics (Kahneman, 2003) illustrates the vast application
(and popularity) of the experimental approach. The correlational
approach, on the other hand, is not so widely embraced, and, as
we will argue, needs to be better understood and more commonly
implemented.

Correlational psychology has been productive for decades in
fields like personality psychology, social psychology, psychomet-
rics, clinical psychology, and developmental psychology. Although
these fields focus on very distinct topics, they all try to understand
what makes individuals vary according to their personality, cul-
tural background, cognitive abilities, extreme disorders, and age.
[It is worth noting that “aging” is never induced (i.e., experimen-
tally manipulated). Although a comparison of two ages under
controlled laboratory conditions is often described as an “experi-
ment,” in fact, the comparison of the performance of two groups of
different ages is a very narrow correlational analysis.] Acclaimed
ideas like the self-determination theory (Ryan and Deci, 2000),
general intelligence (Jensen, 1998), and Piaget’s theory of cogni-
tive development (Piaget and Inhelder, 1973) are all children of the
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correlational approach, and their broad impact and explanatory
value is undeniable.

Even with its relative success within psychology, the correla-
tional approach appears to provoke a disproportional distrust
among psychologists. Remarkably, among those studying learn-
ing and behavior (our focus here), the correlational approach
was never fully appreciated. (Even in the sub-disciplines where
this approach is widely employed, it is still often admonished as
being “only correlational.”) Due at least in part to the influence
of behaviorism, the dominance of the experimental approach in
studies of learning overwhelmed the contributions of studies of
individual differences (an observation that is also true of tra-
ditional fields within behavioral neuroscience). Almost none of
the principles that guide contemporary theory on learning were
derived from correlational analyses. Since its origins a century ago,
the behaviorists’ obsession with experimental analyses was prob-
ably a reaction to an unscientific and speculative psychology that
dominated the early discipline. John Watson, the father of Behav-
iorism, announced in a highly influential writing (Watson, 1913)
that “psychology as the behaviorist views it is a purely objective
experimental branch of natural science,” and claimed that tightly
controlled conditions were the answer to elucidating the basis of
any behavior, from understanding his “Tortuga’s birds” to under-
standing the “educated European.” Later, both Tolman (1924) and
Hull (1951), in a rare case of agreement, stated that correlational
methods held little promise for the understanding of behavior. Tol-
man assumed that “individual difference variables [were] average
standard values,” and that “rat-workers have always done this, per-
haps unconsciously.” According to Tolman “we have tried to keep
heredity normal by using large groups, age normal by using rats
between 90 and 120 days old, previous training normal by using
fresh rats in each new experiment, and endocrine and nutritional
conditions normal by avoiding special dosages and also again by
using large groups.” Tolman was, in sum, distrustful of the correla-
tional approach, and stated that factor analyses (which epitomize
the correlational method) “do not seem to suggest any simple or
agreed-upon results [and, for instance, in the case of intelligence
research], the controversy rages from Spearman’s one or two fac-
tors through Kelley’s and Thurstone’s three to nine factors.” Even
during the revolution in learning theory in the 1960s, all criti-
cal empirical data was derived exclusively from the experimental
approach (for a review of this era of rapid change, see Rescorla,
1988).

Aside from the historical reaction to non-scientific psychology,
we might wonder what else led the study of behavior to become
so ingrained in experiments and resistant to individual variations.
The reasons for this might be the biases of psychology in relation
to the role of animals. Seen sometimes as lesser organisms at a
lower stage of an imaginary human scale, individual differences in
animals were probably considered too simplistic in their causes to
be informative (a concern that has been reinforced by the increas-
ingly wide adoption of genetically homogeneous, inbred animals).
In addition, it was easy to assume that experimental studies might
elucidate an invariant framework of learning processes, mitigating
any interest in individual differences. Regardless of the genesis of
this bias, we believe that the correlational approach can provide
an understanding of learning and behavior that is not attainable

through experimental studies alone, as it has done so successfully
in other disciplines.

Interestingly, the waning interest in individual differences and
the dismissal of the correlational approach did not occur in bio-
logical branches of behavior analysis, such as behavioral genetics
and ethology. Why might these closely related fields in psychology
and biology have evolved so differently? To be fair, we scientists fre-
quently have good intuitions on how to apply the scientific method
in our fields of study. However, maybe just as frequently, we fail
to appreciate the full utility of those methods, and their broader
implications toward our understanding of reality. For this reason,
it is dangerous to simply rely on precedence and intuition to inform
our methodologies. In this article, we first argue that philosoph-
ical concerns in the fields of evolution and genetics demonstrate
why individual differences were so powerful in biological branches
of behavior, and why we can (and should!) incorporate the same
lessons in the psychological branches of behavior. It is from the
distinction between “causation” and “causes of variation” (with its
origins in quantitative genetics) that springs the potentially huge
contribution of the correlational approach. We then use results
from animal learning to illustrate how studying causes of vari-
ation can answer unique questions about the complex role that
multiple psychological factors play in the expression of learning.

THREE LESSONS FROM BIOLOGY: CAUSES OF VARIATION AS
THE CLUES FOR UNDERSTANDING “HOW MUCH” AND “IN
WHICH WAY” PHENOTYPES EMERGE
The relevance of individual differences to scientific inquiry only
became obvious after the work of Charles Darwin on evolution
by natural selection (Gould, 2002). Before this, the study of life
followed the same platonic idealism common in physics and chem-
istry. Any molecule of water, anywhere, has the same proprieties
of an ideal molecule of water. Hence, the same was considered
to be true for life. Any individual should contain more or less
the same characteristics as the stereotypical (ideal) individual of
that species (Bernier, 1984). And this reasoning also applied for
organs, tissues, and cells. Variations, therefore, were considered
imperfections around the ideal (or “true”) substrates of a system.
In their early traditions, the fields of physiology and biochem-
istry were trying to identify the pieces that constituted a perfect
engine. For digestion to occur, an organism needs the mechanisms
of peristaltic movements and chloride acid in a specific order, and
with a specific duration, for any given type of food. In contrast,
Darwin did not focus on the ideal (or average) of a piece, but on
the variation between those pieces (Gould, 2002). He was looking
to what made individuals differ, and why we encounter various
degrees of differences in nature. In so doing, Darwin was able to
understand/discover/deduce one of the major forces of evolution
(Dennett, 1995), and in fact, to grasp the adaptation of species.
This was no small accomplishment, and, throughout decades of
work, Darwin’s approach was primarily correlational (although
he did conduct an occasional experiment, most remarkably with
birds as subjects).

Almost concomitant with Darwin’s work, the focus on indi-
vidual differences was critical to the discoveries of Mendel on the
laws of inheritance. Although Mendel’s work was also experimen-
tal due to the manipulation of his pea plants’ attributes, this was
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an “indirect” manipulation mainly intended to make the determi-
nants of heredity (genes, chromosomes, meiotic division) simpler
to observe (Griffiths et al., 2007). He did not directly manipulate
the process of heredity itself, and thus could not deduce a specific
cause regarding why a purple plant generates a purple daughter
(something that can be accomplished today using transgenic tech-
niques). What Mendel did deduce was a cause for the differences in
peas (what we now know as “particular segregation”) by looking
at the relevant individual differences (i.e., the ratios from breed-
ing). Obviously, this discovery was far more important than any
that could have emerged from the isolated results of experimental
manipulations. This reasoning of discovering the causes under-
lying a system by looking at phenotypic differences gave origin
to the classical approach in genetics, that later became known as
“forward genetics” (Nagy et al., 2003).

The pioneering work of Darwin and Mendel reveals a very
important lesson. Previously, biology mainly followed the pattern
from causes (test conditions) to effects, with the attendant wor-
ries about ruling out false positives and false negatives by use of
repetition and control groups. By focusing on individual differ-
ences, Darwin and Mendel made popular the opposite pattern:
going from effects (the clues found in individual differences) to
their causes. Now for this approach, concomitant worries arise
about ruling out alternative explanations (for an in depth discus-
sion about a similar division in scientific methods, see Cleland,
2002). The reasoning of going from causes to effects is what
defines most of the experimental approach, and the reasoning
behind going from effects to causes is what defines most of the
correlational approach. In other words, the experimenter has to
be a master puppeteer; creatively applying different treatments
and proper control groups (i.e., pulling the right strings). The
correlator, in turn, has to be an expert detective; creatively con-
sidering the relevant observations and variables (i.e., finding the
right clues) from already existing differences in individuals (By
analogy, we would rarely criticize a police investigator’s work as
“only correlational.”) Absent proper control and adequate consid-
eration, neither approach is capable of unequivocal conclusions,
nor should either approach be condemned for this. This lesson,
that important and historically verified conclusions have emerged
from correlational research, is called here Lesson #1.

Now let us step back to think about what we can learn from
analyzing the causes that underlie the emergence of individual
differences. In a simple example, consider the process of combus-
tion. We know that for combustion to occur, we need the causal
factors of an oxidant (e.g., oxygen), a fuel (e.g., wood), and an
external source of ignition (e.g., the strike of a match). However,
oxygen (as well as fuel) is usually present in most practical sit-
uations. Thus an investigator searching for the cause of a fire in
a building will most likely look for the source of external igni-
tion (like a short-circuit of cables, an overheating of a machine,
or a carelessly disposed match). On the other hand, since many
other non-necessary factors could increase or reduce the intensity
of a fire, a city administrator looking to reduce the incidence of
fires could start reducing the most common “causes” (risk factors)
for differences in fires in the past, e.g., storage of paper docu-
ments, overloaded electrical systems, and portable heat sources.
Likewise, city administrators could promote those non-necessary

factors known to mitigate the damage (i.e., variation) associated
with fires, e.g., fire alarms and fire sprinklers. So, although fire is
caused minimally/necessarily by three factors (that have the same
importance for a single fire), they can have different importance
and interact with many other non-necessary factors to create dif-
ferent incidences of fires across buildings and cities (as well as
many different responses to fire or the threat of fire). The same
reasoning applies to the expression of a phenotype of a living
organism. Phenotypes emerge from the interaction of genetic and
environmental necessary factors. All of them are the true (and
complete) causation of an individual’s phenotype, and it is mean-
ingless to try to separate genotype and environment as distinct
necessary causes for the individual’s phenotype (as oxygen, wood,
and strike of a match are also inseparable as causes for lighting a
fire). All of the causes are of the same critical importance! On the
other hand, in a population, we can look for the distinct impor-
tance of (both necessary and non-necessary) causes of phenotypic
variation among individuals rather than the causation of any sin-
gle individual’s phenotype (Templeton, 2006). This is analogous
to finding that, among all fires in a humid city, portable heat-
ing sources “caused” more fire than the storage of paper (due to
the dryness created inside a room). In other words, “causation”
is the inseparable causes of an idealized system, while “causes of
variation” are the separated causes for differences in a system.

The distinction between causation and causes of variation
in biology was insightfully discussed by Templeton (2006). The
diseases phenylketonuria (PKU) and scurvy have closely related
causes. In the case of PKU, an accumulation of phenylalanine in
early life leads to mental retardation. At least two main causal fac-
tors are needed for accumulation of phenylalanine: a mutation that
disrupts genes for enzymes that metabolize phenylalanine [like in
the phenylalanine hydroxylase (PAH) gene], and the consumption
of phenylalanine (commonly present in human diets). In scurvy,
lack of vitamin C in an individual disrupts the synthesis of col-
lagen, leading to, among other effects, open wounds and loss of
teeth. Again, at least two main causal factors are needed for lack of
vitamin C: the absence of vitamin C in a diet, and the incapacity to
biosynthesize vitamin C (most mammals can synthesize vitamin C
from simple glucose, but humans have a mutation in the gene for
the L-gulonolactone oxidase (GULO) enzyme, which is required
in the last step of vitamin C’s synthesis). Hence, both scurvy and
PKU are (necessarily) caused by a mutant gene that leads to loss
of function and by a specific diet. Yet, PKU is typically said to
have a “genetic” basis, whereas scurvy is said to have an “envi-
ronmental” basis. PKU is considered a genetic disease because the
environmental component of the causation (i.e., phenylalanine in
the diet) is nearly universal whereas the PAH mutation is rare. As
a consequence, when PKU occurs in a human population, it is
because the person has the mutation since virtually all of us have a
diet that would promote the PKU response (given that mutation).
Therefore, the phenotype of PKU is strongly associated with the
PAH mutation in human populations. Scurvy is also the result of
the interplay between genes and environment, but in this case the
genetic component of the causation is universal in humans. How-
ever, the environmental component of the interaction of having
a diet without sufficient amounts of vitamin C is rare. There-
fore, the phenotype of scurvy is associated with a diet deficient in
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vitamin C in human populations. In sum, while mutations and
dietary habits are what cause both PKU and scurvy, genetic muta-
tion is what causes some people to express PKU and others to not,
while dietary habits cause some people to express scurvy and oth-
ers to not. Different phenotypes can have the same causation, but
different causes of variation!

As the above example illustrates, studying causes of variation
reveals how much each cause influences the differences between
individuals in a population. This is Lesson #2 to glean from biol-
ogy. In an analogy with physiology, understanding the causational
role of cholesterol in the blockage of arteries, although important
to understand how the circulatory system works, provides little
insight into how big the risks are of cholesterol to heart disease, or
how big the role of exercise is as a mitigating factor. In other words,
it tells us little about how much each cause can contribute to “real-
world” variation. In this sense, the experimental analysis of the
causal role of cholesterol in the blockage of arteries with no appre-
ciation of individual differences in the causes of variations would
be misleading. This quest for understanding the relative impor-
tance (i.e., “how much”) of distinct variables in the establishment
of a phenotype led to a boom of new methods from founding-
giants like Galton, Pearson, Wright, Fisher, and Spearman. It is
not a coincidence that the complexity in trying to organize the
clues that nature left in individual differences led to whole new
branches of statistics, such as analysis of variance, correlations,
regressions, factor analyses, and path analyses.

While the study of causes of variation is powerful, it surely has
its limits, and has often been abused by scientists that treated corre-
lations as evidence of causal relationships (for a highly critical view,
see Lewontin, 2006). Maybe the best example of the confusion of
this distinction between causation and causes of variation lies in
the widespread misunderstanding of heritability. Like in any corre-
lational approach, heritability estimates the causes of variation for
a specific trait. Specifically, heritability measures how important
the difference in genes are for the individual differences in a phe-
notype in a specific population and environment (Griffiths et al.,
2007). A heritability of 0%, however, does not mean that genes
have zero influence in the determination of the phenotype (as a
matter of fact, all phenotypes have genes as causal factors); it only
means that genes are not influencing the existing individual differ-
ences in that phenotype in that population and that environment
(Visscher et al., 2008). Scurvy, as we have seen, has a heritability
of 0% since all humans share the same deleterious mutation for
the GULO enzyme (that synthetizes vitamin C), but that mutation
certainly plays a causal role in the disease! Following the same rea-
soning, a heritability of 100% does not mean that genes are the sole
determinants of a phenotype. Even more problematic, heritability
for a specific phenotype can change drastically depending on the
environment and the frequency of genes in the population (Bai-
ley, 1997). This ephemeral and fragile aspect of heritability reveals
that, although useful, it is only a gross estimation of what is an
underlying complex and integrated network of causes of variation
(Rockman, 2008).

Living organisms are not only complex (i.e., representing
the expression of many independent factors), but are made up
of many interacting (necessary and non-necessary) factors that
are often shaped by selection to function as integrated units

(Pigliucci, 2003). For some complex phenotypes (like behaviors),
vast networks/architectures integrate genetic, biochemical, phys-
iological, and environmental factors across other phenotypes
(Oyama, 2000). This high amount of integration of different levels
makes the causes of a phenotype not only additive/subtractive, but
also multiplicative, divisive, and non-linear (Templeton, 2006).
Hence, experimentally modifying one component in isolation
gives unpredictable, uninterpretable, or unreplicable results, and
we should study multiple components simultaneously (Rockman,
2008). With the advance of genetics, the approach of forward
genetics (that follow the detective’s tradition of going from indi-
vidual difference to causes) is now able to reveal the details that
heritability cannot (Mackay et al., 2009). Methods like quantita-
tive trait loci (QTL) analysis and genome-wide association study
(GWAS) can reveal gene effects and interactions of genes in the
same locus (dominance), in different loci (epistasis) and in other
phenotypes (pleiotropy; Erickson, 2005).

As seen above, the network of interacting causes in a living sys-
tem is much more than the sum of the causes of its parts. This
leads us to Lesson #3: studying causes of variation shows in which
way the complicated and integrated network of causes interact.
This integration of complex phenotypes is probably the main rea-
son for the boom in the correlational approach in genetics, with
remarkable advances particularly in behavioral genetics (Boake
et al., 2002; and for examples of the correlational approach elu-
cidating genetic networks in behaviors, see Rüppell et al., 2004;
Edwards and Mackay, 2009; Sauce et al., 2012).

LESSONS APPLIED TO STUDIES OF LEARNING AND
BEHAVIOR: THE CASE FOR GREATER FOCUS ON CAUSES OF
VARIATION (AND MORE CORRELATIONAL METHODS)
It is now useful to summarize the three lessons described above
in relation to Cronbach’s division of psychology according to
experimental and correlational methods. While with the exper-
imental approach we can easily determine what causal variables
underlie learning (“causation of a behavior”), the correlational
approach is better suited to determine how much and in which
way variables interact in a population to produce differences in a
behavior (“causes of variation of a behavior”). The difficulty inher-
ent to correlational psychology is finding the relevant behaviors
and measurements (“clues”), and discriminating between differ-
ent possible causes. These difficulties are analogous (and no more
or less problematic) to those encountered by the experimentalist
when deciding upon the appropriate treatment/control groups to
include in an experiment.

In genetics, the correlational approach is widely used to under-
stand how much genes influence the differences in a phenotype,
and in which way those genes interact to create those differences.
In psychology, the same approach can be applied to the study
of interacting psychological factors, like cognitive constructs and
computational networks (Gallistel and Matzel, 2012). In a way, the
study of psychology involves more complex considerations (and
systems) than biology, since behavior is one step removed from
underlying neuronal activity (Jacob, 1977). Thus it is even more
imperative that we attend to causes of variation. As we already
described, much work in Psychology has exploited the individual
differences approach, but the study of learning and its behavioral
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expression is in desperate need for insights provided by correla-
tional methods. In other words, we need to better understand the
causes of variation.

As we described above, behaviorism was by its nature an explic-
itly experimental approach, treating behavior as a compendium of
causations, not of causes of variations. Behaviorism explained how
learning happens (S-S and S-R models), what the critical variables
are (e.g., CS, US, ISI, ITI, contingency, contiguity), what the pro-
prieties are (e.g., extinction, inhibition, facilitation), the rates and
patterns of responding (schedules of reinforcement), and general
predispositions (e.g., belongingness, blocking, overshadowing; for
a guide to these concepts, see Domjan, 2009). Nonetheless, it has
only rarely been asked if individuals would differ in their learning
capacities. For example, the acknowledgment that a simple past
experience with a stimulus influences that stimulus’“associability”
(as during latent inhibition) provides little insight into how other
experiences interact to change it, or the relative importance of each
experience in the ultimate determination of behavior.

The classic learning models of Rescorla and Wagner (1972);
Pearce and Hall (1980), and others that followed were all based on
the results of experimental studies, and have been varyingly suc-
cessful at predicting group average performance (Domjan, 2009).
However, those models are agnostic in relation to individual dif-
ferences. In other words, they are neither informed by, nor inform
about (predict) causes of variation. It is not a coincidence that most
theories of learning emerged directly from the experimental data
that immediately preceded them (i.e., new data often demands
new theoretical frameworks). In integrated and complex networks,
it becomes increasingly difficult to design experiments that pro-
duce novel or surprising results. Experimental psychology, in other
words, is highly focused on observing new effects. In contrast, in
correlational psychology the effects are already there, so it is more
critical to make sense of the effects that have been observed.

In an example from the learning literature, the radial arm maze
is a test originally designed to measure short-term (“working”)
memory in rats (Olton and Samuelson, 1976). During the devel-
opment of the radial arm maze, many experiments were done to
differentiate between variables that were needed/necessary to pro-
mote efficient performance from those that were not. Variables like
algorithmic search (Roberts, 1979), auditory and olfactory guid-
ance (Zoladek and Roberts, 1978), and marking of visited arms
(Maki et al., 1984) were all “excluded” as necessary for the ani-
mals performance in the maze, suggesting that visual navigation
(i.e., “spatial memory”) was sufficient. In the behavioral literature,
this quest for what is “necessary and/or sufficient” in learning is
ubiquitously present, and reveals a mindset of the search for “cau-
sation.” These experiments with the radial arm maze show what
causes-effects can be, and what mice minimally need in order to
find food, but not the relative importance of each variable to find-
ing food under “normal” circumstances (either in a laboratory or
in the wild). For instance, one could easily imagine a circumstance
where, in the presence of degraded visual cues (for instance, in
the dark spaces where rodents typically live), an animal might rely
primarily on olfactory information for guidance. Thus because an
animal can use spatial cues to guide its search, it need not neces-
sarily (or even preferentially) do so. (It is somewhat ironic that in
our quest for precision and isolation of causes, the experimental

psychologist has often lost sight of this caveat. In a recent dis-
cussion of spatial learning in one of our undergraduate classes,
a perceptive student, uninitiated to the dogma of experimental
psychology, asked “but in the real world, would not an animal
use some combination of these strategies?” Thus what might be
obvious to the uninitiated is sometimes lost on the indoctrinated.)
From Lesson 3 above, we know that behaviors, like any phenotype,
are notoriously complex and integrated, affording many different
ways to accomplish the same goal. Therefore, the rats in the radial
arm maze may differ not only in their performance, but also in the
frequency with which particular strategies are recruited (i.e., how
much for smell, visual tracking or algorithm) across individuals. If
some rats tend to rely on one “strategy,” whereas others habitually
rely on alternative strategies, pooling data from both groups may
be uninformative and misleading. A non-obvious cause may not
be revealed if there is considerable variation within the rats in the
tendency or ability to use a particular strategy. In other words,
a Type II error can occur if individual variance is not taken into
account (for examples and a more in depth discussion of this cases,
see Kosslyn et al., 2002).

Granted from Lessons 1, 2, and 3 (above) that correlational psy-
chology and causes of variation are critical for the study of learning
and behavior, how does one proceed in actually collecting com-
prehensive data? As Miller (1959) suggested, multiple response
variables (effects) are a problem that can be addressed with factor
analysis. By substituting formal for intuitive methods, this type of
analysis has been of great help in locating constructs with which
to summarize observations (i.e., to organize the clues). As we have
seen for genetics, individual differences result from a network of
causal factors. A cause can affect multiple phenotypes, and this
“pleiotropy” in genetics is what we call in psychology a “latent
construct,” like the g factor (“general intelligence”) that affects
many different behaviors and cognitive systems. In other situa-
tions, more than one cause is able to affect the same phenotype,
and this “epistasis” in genetics is closely related to what we in psy-
chology express by “convergent validity” (concept first appearing
in Frankmann and Adams, 1962), like emotional arousal that can
be defined/caused by different variables (Russell, 1978). In a factor
analysis, causes that affect multiple phenotypes lead to covariance
structure in a sample of individuals (Houle et al., 2002), i.e., a
“latent construct.” If a pair of causes affect at least one behavior
in common, we see an overlap of factors (Houle et al., 2002), i.e.,
a “convergent validity.” We will now give examples of research
in learning for both cases of “latent construct” and “convergent
validity” that show the importance of causes of variation and the
correlational approach.

SWIMMING NAVIGATION: UNDERSTANDING THE RELATIVE
IMPORTANCE OF MANY VARIABLES TO DIFFERENCES IN THE
EXPRESSION OF ONE
The Morris water maze is a procedure widely used for stud-
ies of spatial learning/memory and navigation (for a review, see
D’Hooge and De Deyn, 2001). In the typical paradigm, a mouse
is placed into a small pool of water which contains an escape
platform hidden below the water’s surface. Visual cues, such as
geometric patterns or colored shapes, are placed around the pool
in plain sight of the animal. The platform remains in the same
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position, but, on each trial, the mice are released from different
starting points. Most mice learn the task (i.e., find the escape plat-
form efficiently) surprisingly quickly, often reaching asymptotic
levels of performance after three or four trials. Absent olfactory
(or other) intra-maze cues or a single route that leads to the escape
platform, performance on this task is presumed to strongly depend
on the animal’s reliance on extra-maze visual cues to guide their
navigation to the invisible platform. Learning in this instance is
usually calculated by the length of the path taken by the animals
to find the platform.

Similar to the case of radial arm maze above, there are other
(not-so-obvious) behaviors/causes that can influence the animals’
performance in the Morris water maze. To assess these influences,
Wolfer et al. (1998) looked for causes of variation in swimming
navigation by measuring relevant variables (i.e., the right clues)
inside the Morris water maze. Using a factor analysis, they found
that 81% of all individual differences in performance in the Morris
water maze could be largely described in terms of three statistical
factors, or causes. Factor 1 explained 49% of the variability, and
behaviors that loaded strongly on this factor were correlated with
measures of frequent swimming near the wall, prolonged swim-
ming times, and a low fraction of time spent in the actual target
quadrant (i.e., the quadrant that contained the escape platform).
Because of these clues, the authors interpreted this cause of perfor-
mance as “thigmotactic behavior,” and this factor was asserted to
have a decidedly non-spatial origin (i.e., performance was unre-
lated to the animals having learned a spatial strategy). Factor 2,
interpreted by the authors as “passivity,” explained 19% of the
variability, and correlated with reduced swimming speed and fre-
quent floating. Finally, Factor 3, interpreted by the authors as
“memory,” accounted for 13% of the behavioral variability, and
reflects primarily the search time spent in the former target quad-
rant during a probe trial (in which the escape platform was absent
from the pool). This means that, although memory-guided swim-
ming navigation in the Morris water maze is commonly regarded
as being heavily dependent on spatial memory, other causes can
be even more important as causes of variation in performance. All
of those behaviors/causes are converging on the same behavior,
i.e., “navigation,” despite the relatively low contribution of spatial
learning.

When using the experimental approach, we must assume that
an animal behaves the way it should according to the design
(parameters) of a test. In the Morris water maze, for example, a
preliminary experimental comparison between a group of mutant
mice carrying a disruption in the iPA gene (believed to play a role
in the formation or modification of synaptic connections) and a
group of control mice led to the conclusion that spatial memory
was unaffected by the iPA mutation (Huang et al., 1996). However,
Wolfer et al. (1998) showed that this was because the performance
scores had been biased by the individual variability in the causes
of thigmotaxis and passivity, which masked the subtle genotype
difference in memory. With the factor analysis, the spatial memory
impairments of the mutant mice were revealed.

The example above shows the power of the correlational
approach as an aid in separating causes of variations in behavior,
and in this instance, to help clean the noise from the interesting
causes of variation in swimming navigation (in this case, spatial

memory). In addition, although the authors did not touch on this
topic, the results from their factor analysis also showed how much
each factor contributes to the differences in swimming navigation
of a particular group of mice (which may be an approximation
of what happens in other groups). Hence, these analyses suggest
more fully how mice operate when trying to find their way across
open water. The depth of this analysis could never be achieved
simply through the manipulation of a single variable.

GENERAL LEARNING ABILITY: UNDERSTANDING THE RELATIVE
IMPORTANCE OF ONE VARIABLE TO THE DIFFERENCES IN MANY
OTHERS
In our initial work on this topic, we were looking for a poten-
tial general factor that influenced learning across a variety of
tasks in mice. If mice differ in their learning capacity, is there
a latent factor that can influence causes of variations across dis-
parate learning tasks? To answer this question, we tested mice in a
battery of five common learning tasks (associative fear condition-
ing, passive avoidance, path integration, odor discrimination, and
spatial navigation), each of which made unique sensory, motor,
and information processing demands on the animals (Matzel et al.,
2003). Unlike the more common use of genetically homogeneous
animals (see above), here we used a genetically heterogeneous
strain of mice in order to maximize the variability (i.e., individual
differences) within the group (a useful strategy for correlational
research). In our initial study, we performed a factor analysis of the
performance of 56 animals across all learning tasks, and obtained
a positive correlation across all tasks in which a single latent factor
explained 38% of the differences between animals. In other words,
animals that performed well in one task tended to perform well
in other tasks of the battery. We described that latent factor (or
construct) as “general learning ability” (Matzel et al., 2003).

Since the time of that initial report, similar results have been
obtained with mice tested on as many as nine learning tasks
(Matzel et al., 2008) and in other laboratories (Galsworthy et al.,
2005; Locurto et al., 2006). All of these observations reveal one
cause influencing the variation in many different learning abili-
ties, analogous to the network of the cause of variation in human
intelligence (Jensen, 1998; see Kolata et al., 2008, for a structural
analysis based on observations of 250 + mice). Following this, an
obvious question arose: is the latent factor that underlies perfor-
mance on all tasks in our learning battery limited to an influence
on learning? If, as has been suggested, this factor is analogous
to general intelligence in humans (Blinkhorn, 2003; Kolata et al.,
2008), we would expect this general cause of variation in mouse
learning to interact with (i.e., cause and/or be caused by) other
cognitive abilities. Does it? If yes, by how much and in which way?
Breaking down the cognitive components of a general factor is
similar to the case in behavioral genetics of studying the contribu-
tion of individual genes to the genetic architecture underlying the
causes of variation in a behavior. Since those first observations,
we have been investigating the clues behind mice’s general learn-
ing differences. Among many causes of variation that we assessed,
including animals’ propensity for exploration or novelty seeking,
working memory capacity, and attentional abilities (Matzel et al.,
2006; Matzel and Kolata, 2010; Light et al., 2011), here we describe
our work on reasoning capacity.
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Based on what we know from the causation of learning in
humans (and its analogs in artificial intelligence), we know
that reasoning can create efficient heuristics that can ultimately
improve learning performance. Therefore, we looked at reason-
ing as a potential co-variate of general learning in mice. To assess
reasoning in mice, we devised a novel task based on a “decision”
(or binary) tree maze (for illustration, see Matzel et al., 2011).
Decision trees are commonly used in studies of decision anal-
ysis to identify strategies that are most efficient in reaching a
goal. Unlike learning measures (where rate of acquisition is the
critical metric), to assess reasoning we measured only animals’
asymptotic behavior, which can be expected to reflect the indi-
vidual’s implementation of an established search strategy. This
is important, since we were specifically interested not in learn-
ing ability, but rather the degree to which the animal can apply
learned information in an efficient manner (thus analogous to
reasoning). In this regard, two animals with the same underly-
ing learning ability might express different aggregate scores in
the “learning” battery due to variations in their capacity to act
upon what has already been learned. We first tested the ani-
mals’ rate of acquisition on the five learning tasks that constitute
our standard learning battery, and then assessed their asymp-
totic performance (presumed to reflect a form of reasoning) in
the decision tree. When animals’ reasoning performance was
compared to their factor scores for learning (representing mice’s
general learning ability), we observed a strong correlation of 0.60
between these independent measures (Wass et al., 2012), i.e., aggre-
gate learning abilities were correlated with rudimentary reasoning
abilities.

The above data suggests that animals’ comprehension of the
underlying structure of the decision tree, and their implemen-
tation of an efficient strategy to use this information, co-varies
with their general learning abilities. This correlation is what one
might expect if a latent factor influenced not just learning abil-
ities, but rather, general cognitive performance (i.e., intelligence).
However, performance in the decision tree maze is confounded
by short-term memory duration as well as span (i.e., the animal
must retain a memory of the depleted goal locations in order
to operate efficiently), and so reasoning ability is not the only
potential source of performance variation in this task. Thus we
developed a second reasoning task (“fast mapping”), on which
the animals’ performance was not subject to the same sources
of noise. (Although often misunderstood to mean “replication,”
“converging operations” is the method by which through inde-
pendent manipulations, the effects of which have unique sets of
underlying interpretations, we can “converge” on one common
interpretation; Garner et al., 1956). This exemplifies the investiga-
tive work necessary when using the correlational approach. We
were trying to find the right clues (reasoning instead of short-
term memory) and devise adequate tests to isolate these sources of
variance.

“Fast mapping” describes a process whereby a new concept or
association (such as the meaning of a word) is formed based on a
logical inference derived from a single exposure to limited infor-
mation (Carey and Bartlett, 1978). This “inference by exclusion”
is believed to play a critical role in the extraordinarily rapid and
seemingly effortless acquisition of vocabulary during early human

development, and is often described as a hallmark of human
reasoning. Kaminski et al. (2004), demonstrated that a Border
Collie was able to accurately respond to a command to retrieve
a novel object (identified by a novel term) from among set of over
200 previously learned objects. For our purposes, we designed a
task to assess fast mapping in mice. Animals were familiarized with
a group of objects (small plastic animals), and were then taught to
associate pairs of these objects. This was accomplished by expos-
ing the mice to one object, and then allowing them to retrieve a
piece of food that was hidden under the sample object’s paired-
associate. After learning a series of such object pairs (much like a
word can be associated with its meaning), the animals were trained
to find the relevant paired-associate within a field that contained
several objects, all of which had been previously associated with
different samples. This training continued for several weeks until
all animals exhibited near errorless choice performance (i.e., chose
the correct paired-associate from a field of familiar objects). After
completing this training, animals were presented with a “fast map-
ping” test trial. On these trials, animals were exposed to a novel
sample object, and then allowed to explore the test field which
contained one novel object among a set of familiar objects (ones
that had an established “meaning” based on prior training). The
principle of fast mapping suggests that under these conditions, a
rational animal should conclude that since the sample object was
novel, the food reward should be located under the unfamiliar
object in a field of otherwise familiar objects. More importantly,
performance on this task makes no obvious demands of short-
term memory (or at least a very minimal demand, unlike that
required to perform in the decision tree described above). Hence,
as any good detective would conclude, “fast mapping” allowed a
better isolation of one part of the whole puzzle (analogous to a
“control” in the experimental approach). We found that perfor-
mance on this “cleaner” reasoning task had a correlation of 0.44
with the animals’ aggregate performance in the learning battery
(Wass et al., 2012).

The results above suggest that reasoning is part of the big-
ger network that is also causing differences in the performance of
learning tasks (i.e., the latent construct of general learning abilities,
that we now call general cognitive abilities or GCA). However, it
remains to be determined if reasoning participates in this network
as a prior cause of variation in GCA, as a mediator between GCA
and learning, or is simply another effect of an unspecified common
antecedent. These questions could be addressed in the future with
the correlational approach involving path analysis and other con-
cepts from structural equation modeling (e.g., endogenous and
exogenous variables). It is notable that these statistical techniques,
maybe not coincidently, were co-formulated by a geneticist, Sewall
Wright, and a psychologist, Herbert Simons (for more on these
methods, see Loehlin, 2003).

As seen in Lesson 3 above, studying individual differences
within the context of theories of general mechanisms may pro-
vide insights into one of the knottier problems in psychology:
understanding non-additive effects of different variables (Kosslyn
et al., 2002). That is, not only may the effects of one variable alter
the effects of another, but the precise degree to which the variables
interact may depend on their values. These are the questions that
will guide our future research.
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INSIGHTS FROM CAUSES OF VARIATION: THE CASE FOR
ANIMALS IN STUDYING LEARNING AND BEHAVIOR
A final case must be made from the three lessons described above:
research with non-human animals can be especially powerful
when studying causes of variation. In animal studies, complex-
ity is more limited, so we are likely to find fewer (but more
dominant) causes of variation even with similar levels of inte-
gration. This is because with a bigger number of causes, the
potential interactions (the genetic epistasis and pleiotropy, and
their environmental/psychological equivalent) are much higher.
In a bigger network, the covariance of behaviors and the relative
importance of causes in a species (e.g., the genes, neuronal con-
nections, experiences, nutrition, and psychological constructs)
are very difficult to understand. In other words, differences in
behavior of more complex subjects like humans will reflect more
influence from “other” (less dominant) causes, will be more sen-
sitive to these other causes, and thus more difficult to predict.
These extra (related or unrelated) causes and effects on individual
differences can lead to an under- or over-estimation of the prin-
cipal causes of behavior, and can lead us down the wrong tracks
(i.e., causes for different effects). In this context, one might be
compelled to ask if the intricacies of the human condition (for
instance, in regard to a topic as complex as intelligence) can be
adequately modeled and studied in a non-human animal such as
a mouse. At some levels of analysis, the answer to this question is
“no.” For instance, variations in intelligence among humans can
create effects in academic/professional success, interpersonal rela-
tionships, and even prejudice (Gottfredson, 2008; Engle, 2010).
These outcomes have no approximate analog in laboratory ani-
mals. However, it is exactly for this reason that the vagaries of
intelligence are far simpler in animals that they are in humans. It
is this simplicity along with the potential for control and invasive
interventions that provide opportunities with animals that are not
available to those who study intelligence in humans. Clearly, ani-
mals can never be expected to provide the complete story of any
human behavior. However, much like the synergy between corre-
lational and experimental work, the synergy between human and
animal research can inform us about the human condition in ways
that would be impossible with human research alone (for relevant
data, see Kolata et al., 2010; for discussion and implications, see
Matzel et al., in press).

The problem of complexity might explain, for example, the
problem of the “missing heritability” in human intelligence.
Although intelligence’s heritability is high (around 80%), it has
been notoriously difficult to find its genetic causes of variation
(much less its environmental influences; Deary et al., 2009). As the
human brain became increasingly complex, so did the problems
and tasks that humans are likely to undertake. Thus evolution
probably played a bigger role in shaping human’s intelligence than
it did in other animals. And because the causes of variation in
human intelligence are enormously intertwined, they are necessar-
ily harder to recognize, much less separate. Cognitive, neural, and
genetic causes might be masking and/or confounding the inter-
pretation of each’s contribution to the overall phenotype. The
confusion is sufficiently great that it becomes near impossible to
make sense of which the important strings (or clues) are, and
which string connects to which.

Simplification by using animals is useful for experimental and
correlational approaches in different ways. For experimental stud-
ies, using animals may reduce the number of necessary control
conditions. For example, if Tolman (1924) employed humans as
his subjects instead of rats, he would have needed more experi-
ments to reach the same conclusions. In experimental psychology,
too many extra causes (variables) complicate the experimental
design, leading to many different treatments/controls. On the
other hand, with correlational studies, using animals allows for
more clarity to see the hidden, relevant clues, and to test for their
distinct contributions and relationships (see Kolata et al., 2010, for
the application to the genetics of intelligence in laboratory mice).
These reasons for using animals, of course, are in addition to the
better-known reasons for research with animals: convenience, cost,
and number of techniques available. Of course (as noted above)
animal research alone is limited in its application to the human
condition. Thus both animal and human research is necessary and
complimentary.

As detectives trying to understand a complex crime from pro-
fessor Moriarty (here, the evolutionary process shaping a behavior
across hundreds of generations), it will be extremely useful to
understand smaller parts of the plan first (less complex animals,
even though still considerably complex), and to later use this
foundation to understand bigger parts (more complex animals,
like humans and chimpanzees), and, finally, to put all the pieces
together. Furthermore, many smaller parts are probably unique
(with no counterpart in humans). This would ultimately inform
us about how the causes of variation in other animals differ from
the causes of variation in humans, and possibly provide evolution-
ary clues regarding why these differences exist. It can go beyond
using animals as a generalization to humans. It can become the
critical distinction between understanding human learning from
understanding learning (for a similar defense of this position, see
De Waal, 2009). So, as detectives, we would understand what a
general Moriarty’s crime is (all designs/species for a behavior in
all situations), and be more confident of when and how the next
will occur.

CONCLUSION
As we have seen, biology, genetics in particular, has been extremely
successful in its application of individual differences to our under-
standing of causes of variation. With regard to the application of
correlational methods, some fields in psychology, especially in the
study of learning and behavior, have been reluctant to adopt a
similar strategy.

In a very influential article, Underwood (1975) argued correctly
that the correlational approach can be used as a preliminary test of
theories. However, Underwood argued that the use of correlations
should be limited to only that, claiming that “if the correlation is
substantial, the theory has a go-ahead signal, that and no more.
The usual positive correlations across subjects on various skills and
aptitudes allow no conclusion concerning the validity of the theory
per se; experimental ingenuity is responsible for creating and vali-
dating a theory.” As we have discussed in this article (especially in
Lessons 2 and 3), Underwood made a gross understatement about
the power that comes from the study of individual differences. Cor-
relational psychology can be much more than a mere “method of
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checking viability.” It can show the importance of each cause, and
in which way those variables interact in an integrated network.
Furthermore, as seen in Lesson 1 above, detective/correlational
work can create and validate highly ingenious and unexpected
theories. Darwin and Mendel were well aware of the power of
this approach, and few would dispute the magnitude (or lasting
influence) of their contributions.

For all of its power, beware, though, of the irresponsible
study of individual differences. Describing a multitude of corre-
lations without considering a general mechanism or theoretical
framework can be of little use, and even misleading (Kosslyn
et al., 2002; Pigliucci, 2003). Darwin, one of the first to use the
hypothetic deductive method, knew this rule quite well (Ayala,
2009), and this awareness might be what makes psychologists
so distrustful of correlational methods. In the case of study-
ing behavior and learning, our predecessors have successfully
employed experimental methods to open the horizon for a better-
guided study of causes of variation in learning and behavior.
The future application of correlational methods to the study

of learning will need to use animals to simplify the questions
that need to be asked in order to infer a network of causes
of variation. Also, we will need to know the foundations for
animal learning in order to measure it (look for clues) in a cre-
ative way so each measurement will provide its own meaningful
answers.

As Cronbach (1957) urged five decades ago: “in the search for
interactions we will . . . come to realize that organism and treat-
ment are an inseparable pair and that no psychologist can dismiss
one or the other as error variance.” By studying more causes of
variations on individual differences, we might be able to accom-
plish the fruitful synergy between experimental and correlational
approaches in the study of learning and behavior.
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