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A latent variable study examined whether different classes of working-memory tasks
measure the same general construct of working-memory capacity (WMC). Data from
270 subjects were used to examine the relationship between Binding, Updating,
Recall-N-back, and Complex Span tasks, and the relations of WMC with secondary
memory measures, indicators of cognitive control from two response-conflict paradigms
(Simon task and Eriksen flanker task), and fluid intelligence. Confirmatory factor analyses
support the concept of a general WMC factor. Results from structural-equation modeling
show negligible relations of WMC with response-conflict resolution, and very strong
relations of WMC with secondary memory and fluid intelligence. The findings support
the hypothesis that individual differences in WMC reflect the ability to build, maintain and
update arbitrary bindings.
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The terms working memory and working memory capacity are used
with different meanings in a broad range of research fields. In this
paper we use working memory to refer to a hypothetical cognitive
system responsible for providing access to information required
for ongoing cognitive processes, and we use working-memory
capacity (WMC) to refer to an individual differences construct
reflecting the limited capacity of a person’s working memory.
Our aim is to achieve a better understanding of this construct,
its measurement, and its relations to other ability constructs.

Various indicators have been developed to capture individual
differences in WMC over the last 30 years. The best known and
most frequently used class of tasks for measuring WMC is prob-
ably the complex span paradigm (Daneman and Carpenter, 1980;
Conway et al., 2005). Many studies of individual differences in
WMC measure this construct exclusively through one or several
variants of complex-span tasks. As a consequence, much recent
theorizing about what underlies individual differences in WMC
has focused—perhaps too narrowly—on the complex span task
class (e.g. Unsworth and Engle, 2007a; Barrouillet et al., 2011;
Oberauer et al., 2012).

In this article we argue for a broader perspective on WMC as
an individual-differences construct. We investigate the relation-
ship between complex-span performance to other indicators of
WMC and related constructs. This research has three interlinked
aims We evaluate the validity of several task classes for measur-
ing WMC; we test three theories of the nature of WMC; and we
study predictions concerning the relation of WMC with other
cognitive constructs. We next review the three theoretical views
on how to characterize WMC as an individual-differences con-
struct: The executive-attention view of WMC (e.g., Engle, 2002),
the primary-memory/secondary-memory view (Unsworth and
Engle, 2007b), and the binding hypothesis (Oberauer et al., 2007;

Oberauer, 2009). Figure 1 presents an overview of the constructs
to be discussed, examples of indicators by which they can be
measured, and their relations as postulated by the three theories.

WMC AS EXECUTIVE ATTENTION
Engle (2002) hypothesized that WMC “is about using attention
to maintain or suppress information” (p. 20). Elsewhere Engle
et al. (1999, p. 104) argued that WMC “is not really about storage
or memory per se, but about the capacity for controlled, sus-
tained attention in the face of interference or distraction.” The
executive-attention hypothesis was empirically tested by compar-
ing high- and low-span participants on a variety of paradigms
measuring cognitive control. For instance, in one study partic-
ipants selected for having very high or very low complex-span
scores performed a saccade task (Kane et al., 2001). In the prosac-
cade condition a visual cue was presented on the same side of
the screen where the to-be-identified target appeared later. In the
antisaccade condition the cue appeared on the opposite side from
the target, supposedly distracting attention. Low-span partici-
pants were slower and less accurate in the antisaccade condition
than high-span participants, but the groups did not differ in
the prosaccade condition. Similar results with other executive-
control paradigms were found in further studies comparing
participant groups with high versus low complex-span scores—
for example using the Stroop task (Kane and Engle, 2003), a
Dichotic-Listening task (Conway et al., 2001), and a go/no-go task
(Redick et al., 2011). These studies are limited in two regards.
First, they compare extreme groups of individuals defined by
their complex-span scores. Extreme-group comparisons are well
suited for detecting individual differences but ill-suited for esti-
mating their effect size, because they tend to overestimate effects
in the population. Second, testing executive attention with a
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FIGURE 1 | Schematic outline of the constructs investigated (ovals),

their indicators (rectangles), and their relations (arrows). The relations
are color-coded (see legend in upper left corner) to indicate which relation is
postulated by which of the three theories of WMC discussed in the text
(relations drawn in black are theoretically non-controversial). Relations not
coded in the color of a theory might be compatible with the theory in

question but are not explicitly assumed in that theory. Indicators and
constructs not measured in the present study are drawn with broken lines.
Gf, fluid intelligence; EA, executive attention; PM, primary memory; WMC,
working-memory capacity; SM, secondary memory; Swi, task
switching/shifting; Inhib, inhibition; Upd, working-memory updating; FR, free
recall; PA, paired-associates recall; Rec, recognition.

single experimental paradigm conflates variance due to individual
differences in executive control with task-specific variance.

Both limitations have been overcome in correlational studies
that measured WMC and executive attention through multiple
indicators and evaluated their relationship through structural
equation modeling (SEM). An important foundation for this
endeavor has been laid by the seminal SEM study of executive
functions by Miyake et al. (2000). They identified three separate,
but positively correlated executive-function factors: inhibition,
(task-set) shifting, and working memory updating.1

More recent studies have related WMC to some of these three
executive-function factors. Oberauer et al. (2003) found mod-
est correlations around 0.30 between task-set shifting (referred
to as “supervision” in their study) and WMC factors (see also

1One limitation of this study was that reliability estimates, inter-task corre-
lations, and factor loadings for several of the measures were low. Miyake and
Friedman (2012) recently provided an update on their model, which has better
psychometric properties.

Oberauer et al., 2007). Keye et al. (2009, 2010) found no sub-
stantial relation between response inhibition in the Eriksen
flanker task and also the Simon task and a latent WMC fac-
tor. In contrast, two studies by Unsworth and his colleagues
obtained moderate positive correlations between latent factors
reflecting executive attention (primarily measured through inhi-
bition indicators) and WMC (Unsworth, 2010; Unsworth and
Spillers, 2010). On balance, the evidence points to a positive
but not very high correlation between WMC and the shift-
ing and inhibition factors of executive control. One aim of our
present study was to contribute further evidence on the corre-
lation between WMC and indicators of inhibition, using latent-
factor modeling to isolate different sources of variance in the
inhibition indicators.

The relation between WMC and the updating factor of Miyake
et al. (2000) is more complex. Whereas shifting and inhibition
have been measured by difference scores isolating the execu-
tive process of interest by contrasting two experimental con-
ditions, the updating factor of Miyake et al. (2000) has been
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measured by overall performance in working memory tasks that
involve updating. Therefore, performance in those tasks reflects
a mixture of WMC and updating ability. 2 For that reason,
working-memory updating tasks have been used not only as
indicators of the executive-function factor called updating in
the Miyake et al. (2000) model (see also Friedman et al., 2008;
Miyake and Friedman, 2012), but also as indicators of WMC
(Kyllonen and Christal, 1990; Süßet al., 2002; Oberauer et al.,
2008; Lewandowsky et al., 2010). In recent years, a number
of studies investigated the relationship between tasks measur-
ing WMC arguably not involving updating, such as complex
span tasks, and tasks assumed to strongly involve updating of
working memory, such as the n-back task. In n-back, partic-
ipants are presented with a long sequence of stimuli and are
requested to decide for each stimulus whether it matches the
one n steps back in the sequence. Several studies reported only
small correlations between performance on the n-back task and
complex span tasks (Kane et al., 2007; Jaeggi et al., 2010a,b).
In contrast, Schmiedek et al. (2009) obtained a nearly perfect
correlation between a latent factor measured by three complex
span tasks and a latent factor represented by three different
working-memory updating tasks. The three updating indica-
tors included a figural n-back task, the memory-updating task
(Oberauer et al., 2000) in which participants updated memorized
digit values by arithmetic operations performed on them, and
a new task called alpha span that required continuous updating
of the order of to-be-remembered letters. The low correlations
between n-back performance and WMC measures in previous
studies can be attributed to various combinations of three fac-
tors: (1) The use of single indicators for measuring updating
(i.e., the n-back task) and for measuring WMC; (2) the mis-
match of content domains between a spatial-figural n-back task
and verbal complex span tasks (Kane et al., 2007); and (3) the
mismatch of the memory-test methods—recognition in n-back
tasks versus recall in complex span. In the present study we
revisit the relationship between complex span and working mem-
ory updating tasks, using multiple indicators, balanced across
content domains, for both categories of tasks, and consistently
testing memory through recall to avoid differences in method
variance.

Another question of interest in this context is whether
WMC tests with and without updating account for different
portions of variance in fluid intelligence. Kane et al. (2007)
have found that performance in a complex-span task and in
an n-back task were largely independent and equally good
predictors of fluid intelligence. One reason for this finding
could be that the complex-span task used verbal material
whereas the n-back task used visual-spatial material. Here we
use a broad set of updating tasks to test whether they con-
tribute to the prediction of fluid intelligence over and above
complex-span tasks.

2One study separated these two sources of variance (Ecker et al., 2010):
these authors found that working memory updating tasks correlated with
a WMC factor (measured through non-updating tasks) primarily because
they involved short-term maintenance and processing, whereas the updating
process itself (referred to as substitution) did not correlate with WMC.

WMC AS PRIMARY AND SECONDARY MEMORY
Building on traditional dual-store models, Unsworth and Engle
(2007a) proposed that performance in complex-span tasks draws
on two sources, a limited capacity component that maintains
information over brief periods of time, and a more durable com-
ponent that stores information over longer time periods. WMC
as reflected in complex span performance is thus characterized as
a composite of active maintenance (primary memory: PM) and
controlled retrieval from secondary memory (SM). SM is critical
for performance as soon as the load on PM reaches its capacity
limit. PM is argued to have a capacity of about four elements, but
in complex span, part of this capacity is required for the distrac-
tor task, thereby displacing list items from PM. Therefore, recall
in complex span tasks relies to a larger extent on SM than in
simple span tasks. Retrieval from SM is a cue-dependent search
process that is adversely affected by proactive interference, encod-
ing deficits, and output interference. Limitations in both PM
and SM are reflected in complex-span performance. According to
Unsworth and Engle (2007a, p. 1038), “. . . simple and complex
span tasks largely measure the same basic subcomponent pro-
cesses (e.g., rehearsal, maintenance, updating, controlled search)
but differ in the extent to which these processes operate.” Simple-
span tasks are supposed to measure predominantly maintenance
in PM, whereas complex-span measures capture mainly con-
trolled search in SM.

Based on these assumptions, Unsworth and Engle (2007a) pre-
dicted that the correlation between complex span and fluid intel-
ligence is mediated by individual differences in two constructs,
the capacity of PM and the efficiency with which individuals
encode information into SM and search information in SM. This
prediction has been confirmed by several correlational studies
(Unsworth et al., 2009; Unsworth, 2010; Unsworth and Spillers,
2010). Other studies provide additional evidence that the acqui-
sition of associations in SM predicts fluid intelligence over and
above complex span (Tamez et al., 2008, 2012; Kaufman et al.,
2009).

In the present study we therefore included a measure of asso-
ciative SM to investigate its relation to complex-span performance
and to working-memory updating. We predict that SM should
be strongly correlated with complex span, in agreement with
prior work by Unsworth and his colleagues. We expect that the
correlation between SM and working-memory updating should
be comparatively smaller because the updating tasks require the
maintenance of a small number of items, hardly exceeding the
presumed capacity of PM. Moreover, the requirement to rapidly
update the remembered items renders SM unsuitable for their
maintenance because SM is susceptible to proactive interfer-
ence, which would build up across multiple updating steps. As
a consequence, SM should be virtually useless for updating tasks
(see Cowan et al., 2012, for a similar argument). We also asked
whether SM contributes to the prediction of fluid intelligence over
and above established classes of WMC indicators (e.g., complex
span and updating tasks).

THE BINDING HYPOTHESIS OF WMC
In our own view, working memory is a system for building, main-
taining and rapidly updating arbitrary bindings. For instance,
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items in a list are bound to list positions, objects are bound to
locations in space, and concepts are bound to roles in propo-
sitional schemata. The capability for rapid formation of tem-
porary bindings enables the system to construct and maintain
new structures, such as random lists, spatial arrays, or mental
models. Working memory is important for reasoning because
reasoning requires the construction and manipulation of rep-
resentations of novel structures. The limited capacity of work-
ing memory arises from interference between bindings, which
effectively limits the complexity of new structural representa-
tions, and thereby constrains reasoning ability (Oberauer et al.,
2007).

Evidence for the binding hypothesis comes primarily from
two sources. First, tasks specifically designed to measure the
ability of constructing new structural representations have been
shown to be closely correlated with conventional measures of
WMC, and to be excellent predictors of fluid intelligence. This
is true even for task versions that do not require any memory
because all relevant information is constantly visible (Oberauer
et al., 2003; Bühner et al., 2005; Oberauer et al., 2008; Chuderski
et al., 2012). Second, when short-term recognition performance
is decomposed into contributions from familiarity and recollec-
tion, the latter, but not the former is correlated with WMC.
Recollection, but not familiarity reflects the maintenance of
temporary item-context bindings (Oberauer, 2005; Öztekin and
McElree, 2010).

According to the binding hypothesis, working-memory updat-
ing tasks should be excellent measures of WMC because they
involve rapid updating of temporary bindings. Tasks such as the
n-back task, the running-memory task, and the memory-updating
task (Oberauer et al., 2000) require participants to remember a
small number of items in their correct order (in n-back and run-
ning memory) or in their correct spatial location (in memory
updating). Thus, items must be bound to their ordinal posi-
tions or their spatial locations. These bindings must be continu-
ously updated. For instance, in the memory-updating paradigm,
participants initially encode a set of digits, each in a different
spatial location, and then update the values of individual dig-
its by the results of arithmetic operations. Each updating step
requires updating of bindings between digits and their locations.
According to this view, updating tasks are closely related to other
measures of WMC, and to fluid intelligence, not because they
reflect executive attention, but because they reflect the mainte-
nance of temporary bindings. Because these bindings must be
updated rapidly for multiple times, there is little chance for grad-
ual learning of long-term associations. Therefore, we argue that
updating tasks are particularly well suited for measuring peo-
ple’s ability to build and maintain temporary bindings in working
memory, with little contribution from associative-learning mech-
anisms of SM.

AIMS AND PREDICTIONS FOR THE PRESENT STUDY
The present study has three interlinked aims. First, we test
hypotheses from the three theoretical views about the nature
of WMC outlined above. Second, we investigate to what extent
different task classes for measuring WMC are interchangeable
indicators of the same construct. Third, we explored how WMC is

related to SM, cognitive control, and fluid intelligence. The three
aims are interlinked because different theories about the nature
of WMC lead to different expectations about which kind of tasks
measure the same construct (i.e., WMC), and about how these
tasks and constructs relate to other cognitive constructs. To this
end, we tested participants on multiple tests of the following cat-
egories: (1) complex-span tasks (Cspan), (2) working memory
updating tasks (Updating), (3) tests of immediate memory for
temporary bindings (Binding), (4) tests of SM for associations
(SM), (5) tasks measuring response inhibition (Inhibition), and
(6) tests of fluid intelligence (Gf).

The executive-attention theory of WMC motivates the follow-
ing predictions (see Figure 1, red arrows): Cspan tasks should be
highly correlated with Updating and with Inhibition, because the
latter two represent aspects of executive functions. The common
variance of these three classes of measures, reflecting general exec-
utive attention, should be a good predictor of Gf. This theory does
not rule out that other constructs, such as SM or Binding, also
contribute to predicting Gf.

The dual-component theory of Unsworth and colleagues con-
ceptualizes performance in complex-span tasks as being deter-
mined by maintenance in PM and search in SM (see Figure 1,
blue arrows). As we argued above, tests of working-memory
updating are unlikely to rely much on SM, and therefore reflect
maintenance in PM to a larger extent than complex-span tasks.
Therefore, we can expect that Cspan is related to SM on the one
hand, and to PM (as measured by Updating) on the other hand,
whereas SM and Updating are comparatively weakly related to
each other. Updating and SM should also contribute indepen-
dently to predicting Gf.

The binding hypothesis implies that a measure of the main-
tenance of temporary bindings should share a large proportion
of variance with other measures of WMC, including Cspan and
Updating. The shared variance of all those measures is assumed to
reflect the WMC construct (see Figure 1, green arrows). Together
with the binding measures, the updating tasks should have com-
paratively high loadings on this construct because, as we argued
above, these tasks require the rapid updating of bindings. The
broad WMC construct, reflecting maintenance and updating of
bindings, should be a good predictor of Gf. In contrast, Inhibition
is not expected to be closely related to Cspan, Updating, or Gf.
SM performance should substantially depend upon the ability to
create bindings in working memory. According to the binding
hypothesis, temporary bindings in working memory, not more
long-term associations in SM, are directly relevant for reason-
ing. Therefore, we expect that Gf is better predicted by WMC (i.e.,
the shared variance of Binding, Updating, and Complex Span)
than by SM.

METHODS
PARTICIPANTS
The mean age of the final sample (N = 262) was 27.41 years
(SD = 4.83) and 56% were female. The sample had a broadly
varying educational background. Thirty-one percent of the par-
ticipants did not have a high school degree, 47% of the sample
had a high school degree but no completed college degree, and
22% of the sample held academic degrees.
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PROCEDURE
Trained research assistants tested up to 9 participants simul-
taneously. Each participant completed two sessions, both last-
ing ∼3 h including breaks. The time interval between sessions
ranged from 4 to 6 days. The order of the tasks was constant
across participants. 3 Each task was instructed directly before
administration. Practice trials with feedback about accuracy were
completed before administering the tests. There was no feedback
for test trials. All computerized tasks were programmed using
Inquisit 3.0©. Besides the 20 tasks analyzed in the present study
participants completed seven gambling tasks, three mental speed
tasks and two self-report questionnaires.

MEASURES, SCORES AND ESTIMATES OF RELIABILITY
The measures are conceptualized as indicators for four task
classes. Arguably these task classes tap different aspects of
the working memory system. Within each task class indica-
tors relied on either verbal, numerical, or figural-spatial stimuli
and responses, or mixtures of two of these content domains.
The selected task classes reflect operationalizations of compet-
ing WMC accounts and are frequently used measures for the
assessment of WMC. Based on these two criteria, four WMC task
classes were identified: (1) Complex Span (Cspan) tasks designed
to capture simultaneous storage and processing in conditions of
high interference, (2) Updating tasks assessing the accuracy of
updating in working memory across a series of steps, (3) Recall N-
back (RNb) tasks requiring the evaluation of the identity of each
stimulus from a sequence to a preceding stimulus presented with
a certain lag N, which also captures the updating of temporary
bindings in working memory and (4) Binding tasks developed to
test the ability to establish and briefly maintain bindings in work-
ing memory (see Figure 2 for a schematic representation of an
example task for the four task classes).

Besides these four classes for measuring WMC, three covari-
ates were of relevance in the present study. First, we developed
three tests for the assessment of SM, capturing the aptitude to
establish new associations in memory. These tasks were designed
analogous to the binding tasks, except that list lengths were longer
in order to exceed the capacity limits of primary memory and that
memory for associations was tested over a much longer retention
period filled with other tasks to ensure that recall relies entirely on
SM. Second, two popular experimental paradigms—the Simon
task and the Eriksen flanker task—were included to measure one

3It is common to control for effects of task order (including effects of item
order and block order) in experimental settings but very uncommon to do so
when the purpose of testing is to measure person parameters (see Wilhelm
and Oberauer, 2006 for a regression analytic application with binding mea-
sures). Person parameters are compromised if there are individual differences
in response to task order variations. Depending on the nature of task-order
effects (effects of position, of order, and carry-over effects ought to be dis-
tinguished), their magnitude, and their relevance Yousfi and Böhme (2012)
recommend sophisticated and flexible item response theoretic solutions, but
these solutions require many more test items than were available in the present
study. Therefore we cannot rule out effects of the specific task order. Any such
effects, however, should inflate correlation estimates in the same way for all
correlations, without distorting the pattern of correlations that is critical for
our structural analyses.

aspect of cognitive control, the inhibition of strong but wrong
response tendencies. Finally, we administered three tests of fluid
intelligence as criterion measures.

Complex span tasks (Cspan)
In the reading span task, adapted from Kane et al. (2004), partic-
ipants recalled letters in the context of a simple reading compre-
hension task. Several sentences were presented successively on the
screen. Below each sentence, a single letter was displayed simul-
taneously with the sentence. Participants had to memorize the
letters. Additionally, they evaluated the meaningfulness of the
sentences (e.g., “The police stopped Andreas because he crossed
the sky at red light.” would require a “no” response). After assess-
ing the meaningfulness of the last sentence of each trial, subjects
recalled the letters of that trial in their order of presentation.
Sentence-letter combinations were presented without time limits
during learning and recall. The next stimulus appeared as soon as
participants provided their response to the actual stimulus pair.

The procedure of the operation span task was very similar and
applied the same conditions of presentation. Participants evalu-
ated the correctness of arithmetic equations of low difficulty and
memorized short words displayed simultaneously with the equa-
tions. The task requirement was to recall all words presented in a
trial in the correct serial order after evaluating the last arithmetic
equation.

The rotation span task—developed on the basis of an idea
from Shah and Miyake (1996)—was also adapted from Kane et al.
(2004). Participants recalled a sequence of short and long arrows
radiating out from the center of the screen pointing into one
of eight possible directions. They had to maintain this sequence
while processing a figural verification task after each arrow. Each
display presented a normal or mirror-reversed G, F, or R in the
middle of the screen. Each letter was rotated by an angle selected
at random from 8 possible angles, equally spaced by 45 degree
steps. The participant’s task was to decide whether the orienta-
tion of a letter was normal or mirror-reversed. After completing
all elements of a trial, participants recalled all of the arrows of
that trial in the sequence of their appearance. For recall a graphic
depicting the 16 possible arrows appeared. Participants used the
mouse to indicate the arrows they memorized by clicking on the
corresponding points of the answer screen.

Load levels were two to five and we administered three prac-
tice and 12 test trials for each task, three for each load level
(see Table A1 for details). The score for each trial was the pro-
portions of list elements recalled in their correct serial posi-
tions. We use the average score across all trials of each task as
indicators in the latent variable models (Conway et al., 2005).
Descriptive results and reliability estimates—which were satisfac-
tory to high, ranging between 0.74 and 0.87—are summarized in
Table A2.

Updating tasks (Updating) (e.g., Miyake et al., 2000)
The verbal updating task included 12 trials. Each trial used stim-
uli from 2 to 5 semantic categories, depending on the load
level of the trial. Categories were forenames, animals, fruits &
vegetables, objects, and countries. Words were presented one at a
time for 2000 ms during trials of the load level 2, 2400 ms for
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FIGURE 2 | Schematic representations of tasks. (A) Schematic
representations of complex span tasks (rotation span). (B) Schematic
representations of updating tasks (updating verbal). (C) Schematic

representations of recall 1-back tasks (numerical recall 1-back). (D)

Schematic representations of binding tasks (verbal-numerical binding). See
task descriptions for details.

load level 3, 2800 ms for load level 4 and 3000 ms for the high-
est load level respectively. After an Inter Stimulus Interval (ISI)
of 500 ms the next word was presented. Participants’ task was to
keep the last word for each category in mind. After a variable and
unpredictable number of updating steps (range 2–6) participants
were asked to type the last word presented for each category.

In the numerical updating task digits were displayed in 2–6
boxes (depending on the load-level of a trial). A variable and
unpredictable series of digits per box (range 2–6) was presented
one by one for 1600 ms per digit. Each digit was displayed in a box
selected at random. Subjects were asked to keep in mind the last
digit for each box, and type the digits for each box at the end of
each trial. We administered 12 numerical updating trials.

In the spatial-figural updating task rectangles of different colors
were presented on different positions within a 3 × 3 grid matrix.
Depending on the load level of a trial, we used two to five different
colors. Colored rectangles were presented one at a time at a rate of
2000 ms presentation at load level 2, 2400 ms at load level 3, and
2800 ms at load level 4 and 5. The ISI was 500 ms. The number
of positions for each rectangle in different trials ranged from 2

to 5 and was unpredictable. Subjects were asked to keep track of
the last position of each color. At recall, rectangles of the different
colors used in the current trial were presented one at a time under
the grid, and participants responded by clicking with the mouse
into the grid cell where the target color appeared last.

Trial scores are the proportion of correctly recalled words,
numbers, or color positions, respectively. We use the proportion
of correct responses across all trials of a task as dependent vari-
ables in the models. Table A1 displays the detailed trial design.
Table A2 shows descriptive statistics and reliability estimates for
all task versions. Cronbach’s α and McDonald’s ω—computed
as a reliability estimate for the latent variable in unidimensional
measurement models across all trials of a task version—were
satisfactory to good.

Recall 1-back (RNb) (Dobbs and Rule, 1989)
Three 1-back tasks were designed to measure recall of continu-
ously updated elements. The tasks were similar to the updating
tests used by Schmiedek et al. (2010). In the verbal RNb task, let-
ters were presented one by one in 1 to 3 boxes, depending on
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the load level of the trial; see Table A1 for details. Each time a
new letter appeared in a box, participants typed the last letter
that has been presented previously in that box. Each response
had to be completed within the time for which the new letter
was presented; responses after this interval were counted as errors.
The procedure was equivalent in the numerical RNb task. Digits
were presented instead of letters in the boxes, and participants
responded by typing the last digit that had been presented pre-
viously in a given box. In the spatial-figural RNb task different
abstract Figures (1–3, depending on the load level) were dis-
played in randomly selected cells of a 3 × 3 grid. For every new
figure presented, participants had to indicate the last location in
the grid in which the respective figure has been presented one
step before. Participants responded by clicking in the correct grid
cell with the mouse; they had to respond as long as the figure
was presented. The presentation intervals for individual stimuli,
which determine the response windows, varied across RNb tasks
and were based on results from pilot studies. In the verbal task,
intervals were 2500 ms at load 1, 3000 ms at load 2, and 3500 ms
at load 3. In the numerical RNb task response intervals were
2500 ms at load 1, 2900 ms at load 2, and 3100 ms at load 3. In
the spatial-figural RNb task presentations intervals were 2500 ms
at load 1, 3500 ms at load 2, and 4500 ms at load 3. More specifics
concerning the task design is provided in Table A1 and Figure 2
shows a schematic representation of the trial sequence.

Proportion of correct responses across queries in a trial was
defined as score. The mean across trials formed the task scores
that served as dependent variables in the latent variable mod-
els. Descriptive statistics and reliability estimates—which were all
excellent (α and ω all above 0.90)—are provided in Table A2.

Binding tasks (Binding)
The binding tests relied on pairing stimuli from different content
domains. Therefore, the assignment of tests to content domains

is less clear than for other task classes. In the letter-color binding
task, each trial involved sequential presentation of a short list of
letter-color pairs that participants had to remember. This was fol-
lowed immediately by a recall test, probing each pair in a random
order. In one half of the tests the color of a pair was presented
centrally, and all letters used in the current trial were lined up
horizontally below. Participants had to select the letter that had
been paired with the given color. For the other half of the trials the
color that had been paired with a given letter had to be selected
from a list of all colors presented in the current trial. Thus, the
test made no requirement on item memory (i.e., remembering
which letters and which colors were used in the current trial) but
tested only memory for their pairwise relations, which requires
maintenance of temporary bindings. To increase the demand on
temporary bindings in WM as opposed to associations in long-
term memory, the binding tests used a small set of letters and
colors repeatedly throughout all trials, so that across successive
trials the same letters and colors were paired in many different
ways. Accuracy therefore depended on remembering the pairing
in the current trial as opposed to different pairings of the same
elements in previous trials.

In the word-number binding task participants remembered
several pairs of nouns with two-digit numbers. Recall was tested
as in the letter-color task. In the location-letter binding task par-
ticipants were asked to remember the positions of letters within a
3 × 3 grid. During recall participants had to indicate the location
of a given letter, or select the letter that was displayed at a given
location in the grid.

Load levels ranged from 2 to 6 pairs in each of the three bind-
ing tasks. There were 15 trials for the letter-color task and 14 trials
for the two other binding measures. The number of trials per load
level is provided in Table A1. In the letter-color task presenta-
tion time of each pair was 1000 ms, and the ISI was 3000 ms. In
the word-number task presentation time was 2000 ms, followed

FIGURE 3 | Confirmatory factor analysis of updating, Recall 1-back (RNb) and Complex Span (Cspan) Tasks (Model 1). The model postulates a
verbal-numerical nested factor (VN that is orthogonal to task class specific factors). _v, verbal indicators; _n, numerical indicators; _f, figural indicators.
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by an ISI of 1000 ms. In the location-letter test stimuli were pre-
sented for 1500 ms, and the ISI was 500 ms. There was no response
deadline at recall.

Trial scores were the proportion of correctly recalled pairs.
Average performance across all trials in each task served as the
indicator analyzed in latent variable models. Descriptive statis-
tics and reliability estimates of these indicators are provided in
Table A2. Internal consistency (Cronbach’s α) was 0.69 for the
letter-color, 0.79 for the word-number and 0.79 for the location-
letter version of the task and McDonald’s ω was satisfactory for
all three indicators.

Secondary memory tasks (SM)
The SM tasks were constructed in close analogy to the binding
measures. In the word-word SM task participants learned 20 word
pairs presented sequentially. In the word-number task participants
learned a sequentially presented list of 20 pairs of one word and
one two-digit number each. In the letter-position SM task partic-
ipants had to learn 12 associations of letters to positions within a
4 × 4 grid.

Presentation time for each stimulus pair was 4000 ms, fol-
lowed by ISI of 1000 ms for all SM tests. There were two blocks
of trials, each consisting of 20 pairs in the word-word and the
word-number task, and 12 pairs in the letter-position task, respec-
tively. The two blocks included different lists of stimuli, and they
were located at different positions within the testing sessions (see
Table A1 for details).

Between encoding and recall subjects completed other tasks
to ensure that they could not retain some of the pairs in work-
ing memory. The tasks completed in this retention interval
lasted ∼3 min, and they tested either mental speed or cognitive
control. There was no time limit at recall. In the word-word
task participants were provided with either the first or second
word from a pair and had to type in the missing word. In
the word-number tasks participants received either the word or
the number and had to type in the missing associate. In the
letter-position task participants indicated the position of a given
letter in the grid, or the letter that was presented on a given
position.

Trial scores were the proportion of correctly recalled pairs
within a block. The average performance in the two blocks of a
task was then used as dependent variable for the latent variable
models. Reliability estimates were satisfactory (see Table A2 for
descriptive statistics and reliabilities).

Reasoning tasks (Gf)
In line with the variation of content domains in the WMC mea-
sures, assessment of reasoning ability was based upon three tests
varying in content. We administrated the fluid intelligence sec-
tion of the Berlin Test of Fluid and Crystallized Intelligence (BEFKI;
Wilhelm et al., 2013). Participants were asked to deduce valid
conclusions from a set of premises in the verbal version. In the
numerical version participants had to solve arithmetic reasoning
problems. In the figural subtest participants had to infer regu-
larities in series of geometric figures that changed their shape,
position, and shading. Based upon this inference participants
had to select two further elements that correctly completed the
sequence.

Reasoning measures were paper-pencil based and had
multiple-choice format. There were 16 items in each test and
14 min of testing time per domain. Scores and dependent vari-
ables for the models were the proportion of correctly solved items
for each content domain. Descriptive statistics and reliability
estimates for the three indicators are given in Table A2.

Tasks measuring response inhibition (Inhibition)
Stimuli for the Eriksen Flanker (E) task were five left or right
pointing arrows presented in a row in the center of the screen.
Participants were asked to indicate the direction of the third
(middle) arrow by pressing the corresponding arrow keys—
left (number 4) or right (number 6)—on the number block
of a regular keyboard. Answer keys were labeled by colored
stickers. Flanker arrows all pointed to the same direction. The
flanker direction was either the same as that of the target arrow
(compatible task condition) or the opposite direction (incompat-
ible task condition).

We used diamonds and squares as stimuli for the Simon (S)
task. These stimuli had a size of approximately 30 × 30 mm
and were presented below or above a central fixation cross.
Participants were asked to respond by pressing the key with the
upright pointing arrow on the regular keyboard (labeled with a
sticker) when they saw a diamond, and the key with the down
pointing arrow when they saw a square. Thus, a diamond in the
upper half of the screen, or a square in the lower half, were com-
patible trials, whereas a diamond in the lower half and a square in
the upper half were incompatible trials (Stürmer et al., 2002).

Both tasks were applied as intermediate tasks in the retention
interval of the SM measures. There were two blocks for both mea-
sures, each including 80 trials (half of which were incompatible).
Trials were classified according to three independent variables
(cf. Keye et al., 2009): Congruency of the trial itself, congruency
of the preceding trial, and repetition priming (i.e., whether or
not the stimulus of the current trial was identical or not to the
stimulus of the preceding trial); crossing of these three variables
resulted in eight conditions. Dependent variables were averages of
the inverted latencies obtained across all correct responses of each
condition. Inverted latencies were calculated as 1,000 divided by
the reaction time (RT) in milliseconds. Descriptive statistics and
reliability estimates are displayed in Table A2.

DATA TREATMENT
Both test sessions were attended by 267 participants. Five of them
had missing values on more than four tasks due to technical prob-
lems during testing and were excluded from the sample. As a first
step of data cleaning we visually screened the univariate distribu-
tions for each performance indicator. Observations indicative of
floor effects were set to missing value. Outlier values—defined as
observations that were located above the whiskers of the boxplots
(g = 1.5) of the univariate distributions—were set to missing
(Tukey, 1977). With the present sample size the applied settings
of this outlier labeling rule are adequate (Hoaglin et al., 1986).
Across all indicators a total of 34 scores (0.5% of the data) were
missing, including the outlier scores that have been set to missing.
There were no missing data for half of the 34 indicators consid-
ered in this paper. We performed a multiple random imputation
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(e.g., Allison, 2001; Sinharay et al., 2001) to generate 20 datasets,
differing only in the imputed values. These data sets are the basis
of subsequent analysis. Based upon this procedure of handling
missing data the variability of the imputed plausible values across
multiple datasets can be used to adjust the standard errors (SE)
of the parameter estimates in the structural equation models.
Plausible values are computed as predicted values for the miss-
ing observations plus a random draw from the residual normal
distribution of the respective variable. The imputation was car-
ried out based on a multiple regression under the multivariate
normal model that included all other indicators as predictors in
the imputation model. Although the multivariate normal model
implies strong assumptions—specifically normally distributed
variables and normal and homoscedastic error terms—Schafer
(1997) showed that the normal model performs well even for
variables that are not normally distributed at the manifest level,
especially if non-normal distributions are observed for variables
without missing values. In our case the normality assumption was
violated for 6 out of 17 variables with missing data. In order to
overcome possible drawbacks due to these violated assumptions
and investigate the robustness of the results we will also report
bootstrapped parameter estimates computed for a single imputed
dataset.

In a second step of initial data screening, we estimated a con-
firmatory factor model for the core constructs investigated in the
present study and inspected Mahalanobis distances of partici-
pants as a measure of deviance in the multivariate distribution.
There were no observations standing out from the rest of the
sample, as indicated by their Mahalanobis-values. Therefore, no
further outlier correction was required.

STATISTICAL ANALYSES
All Confirmatory Factor Analyses (CFA) and Structural Equation
Models (SEM) were run in Mplus 6 (Muthén and Muthén, 1998–
2010) using two different estimation procedures: (1) multiple
imputation procedures implemented in Mplus (Asparouhov and
Muthen, 2010) and (2) Maximum Likelihood (ML) estimation
with bootstrap SEs and confidence intervals (CIs) of the model
parameter and bootstraped p-value for the χ2 statistics.4 The
latter were obtained using the residual bootstrapping option
implemented in Mplus, which corresponds to the Bollen-Stine
bootstrap procedure (Bollen and Stine, 1992). ML estimation was
computed on the basis of a single dataset. For all models 1,000
bootstrap samples were drawn. We report confidence intervals
that are based upon this bootstrap procedure. For the analysis
based on multiple datasets, parameter estimates are averaged over
the set of analyses by the program. The SE are computed using the

4Due to moderate floor and ceiling effects in some of the tasks (see Table A2
for details) we re-estimated all models based on datasets for which data points
at floor (<0.08) and ceiling (>0.95), which caused the skewness and non-
normality of those distributions, were replaced by imputed data points based
on an imputation model that included all variables (see Polasek and Krause,
1994). The multiple imputations of datasets were realized with the R package
mice by van Buuren and Groothuis-Oudshoorn (2011) using a routine imple-
mented by Robitzsch (2013). Estimating all models with these imputed data
had only small effects on correlation and regression coefficients and had no
impact on the conclusions drawn from the models.

average of the SE and the estimated parameter variation between
analyses using the formula of Rubin (1987). Mplus provides a chi-
square test of overall model fit for analysis based upon imputed
data (Asparouhov and Muthen, 2010).

A variety of indices are commonly used to assess the ade-
quacy of structural equation models (Bollen and Long, 1993).
An important statistic is the χ2-value that expresses how similar
the model-implied covariance matrix and the observed covari-
ance matrix are. Higher values indicate stronger deviations of
the observed from the implied covariance matrix. For many pur-
poses the χ2-test is not optimal because its power heavily depends
on sample size. Therefore, we will report additional fit indices.
The Root Mean Square Error of Approximation (RMSEA) is an
estimate of misfit due to model misspecification per degree of
freedom. The Standardized Root Mean-square Residual (SRMR)
reflects the standardized difference between observed and the
model-implied covariance matrix. The Comparative Fit Index
(CFI) is known as an incremental fit index that expresses the pro-
portion of improvement in overall fit relative to a model assuming
no correlations between the manifest variables (independence
model). Together these statistics and indices allow the assessment
and evaluation of model fit. Some cut-off values have been estab-
lished as rules of thumb for evaluating the fit on the bases of these
indices. If the sample size is not large, the χ2-statistic should not
surpass the conventional level of significance. Regardless of sam-
ple size the CFI values should be 0.95 or higher, RMSEA values
should be 0.06 or smaller, and SRMR values should be 0.08 or
smaller (Hu and Bentler, 1995).

RESULTS
We tested a series of latent variable models to address the research
questions outlined above. In the first section we investigate the
scope of the WMC construct and show that WMC encompasses
both complex-span and updating tasks. In the second section
we test the prediction of the binding hypothesis that WMC also
encompasses a test of binding memory. In the third section
we test the hypothesis of the two-component theory of a close
relationship between WMC measures—in particular Complex
Span—and SM. The fourth section tests the hypothesis from
the executive-attention theory that Inhibition is closely related to
WMC. In the final section we investigate the relation of WMC and
SM to fluid intelligence.

COMPLEX SPAN, RECALL 1-BACK AND UPDATING TASKS
As can be seen in Figure 1, all three theories under considera-
tion agree that complex-span tasks and updating tasks share a
substantial proportion of their variance, although they suggest
different interpretations of this shared variance: According to the
executive-attention theory it reflects variance in general executive
attention; according to the two-component theory it reflects pri-
marily PM, and according to the binding hypothesis it reflects
the binding ability assumed to underlie WMC. In addition, the
two-component theory motivates the prediction that the correla-
tion between task classes varies as a function of SM contribution
to task performance. Arguably, for complex span the SM contri-
bution is larger than for Recall N-back and Updating. Therefore,
the latter two should be more highly correlated among each other
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than each of them is correlated with Cspan. To test these hypothe-
ses we estimated Model 1 as a confirmatory factor model with four
latent factors.

Model 1, presented in Figure 3, postulates three task factors,
one for each task class (Cspan, RNb, and Updating). Additionally,
a fourth content specific factor is included to account for individ-
ual differences due to the verbal-numerical content used in six
of the nine indicators. The content factor is specified as being
orthogonal to the three task factors. The task factors are esti-
mated as being correlated. Model fit estimated on the basis of
the multiple datasets was excellent: χ2[18] = 31.68, p = 0.024,
CFI = 0.989, RMSEA = 0.054, SRMR = 0.025 (the bootstrap p-
value for the χ2-test computed for a single dataset was 0.138).
All factor loadings on task factors were large and significantly
different from zero. They are given in Figure 3 and in Table 1
together with bootstrap estimates of the 95% CIs computed on
a single dataset. Loadings on the verbal-numerical content factor
(VN) were lower, but still substantial and significantly larger than
zero. The correlations between task factors were r = 0.89 between
Cspan and Updating (single dataset for bootstrapped estimates
r = 0.90), r = 0.80 between Cspan and RNb (single dataset 0.80),
and r = 0.92 between Updating and RNb (single dataset 0.92).
These very high correlations confirm that the Updating and RNb
task classes designed for this study are essentially measuring the
same construct. Furthermore, they are also highly related with
Cspan. We compared Model 1 with a simplified Model 1 b in
which a single WMC factor replaces the three task factors. The
fit of this general-factor WMC model was poorer than the fit
of Model 1: χ2[21] = 53.18, p < 0.01, CFI = 0.974, RMSEA =
0.076, SRMR = 0.032.

BINDING AND WORKING MEMORY CAPACITY
Concerning the relation between the first three working-memory
task classes (Cspan, Updating, & RNb) and the binding mea-
sures, the three theories make partly different predictions. From
the executive-attention view, binding tasks are not different from
short-term memory measures such as digit span and word span,
which are assumed to require less control of attention than
complex-span tasks and updating tasks. Therefore, the binding
tasks should correlate less with the other three WMC task classes
than these task classes correlate with each other. According to the
two-component theory, correlations between tasks should reflect
the relative contributions of SM and PM to each of them. Because
in the binding tasks, short lists of pairs are presented briefly with-
out intervening distraction, there is little time to encode them into
SM. Moreover, the use of a small set of elements re-paired in each

trial would create massive proactive interference in SM, so that
reliance on SM is unlikely to be helpful. In this regard, the bind-
ing tasks are similar to the updating tasks that likewise must rely
mostly on PM. Therefore, binding tasks should be more closely
correlated with the updating tasks than with complex span, which
arguably relies to a larger extent on SM.

From the perspective of our binding hypothesis of WMC,
all four task classes (Cspan, Updating, RNb, and Binding) pri-
marily reflect individual differences in the ability to quickly
build, briefly maintain, and rapidly update arbitrary bindings.
Therefore, they should all be highly if not perfectly correlated. In
order to establish the structure of individual differences across all
four WMC task classes, Model 1 was extended with an additional
factor for the binding tasks. The additional factor had to account
for the shared variance of the three binding indicators (letter-
color, word-number, and location-letter). Initially, the factor
intercorrelations for the four task factors were freely estimated.
The correlations among all four task factors were found to be very
high. Therefore, we replaced them by a higher-order factor model
(Model 2)—depicted in Figure 4—as the final representation of
the WMC construct to be used in further analyses. Freely esti-
mated standardized loadings of the Binding and Updating factors
on the second order WMC factor did not differ significantly from
one. Thus, in the final solution for Model 2 these factor loadings
were set to one, and the residual variance of the two first order fac-
tors was constrained to zero. RNb and Cspan loadings were also
very high: 0.89 and 0.95 respectively.

The fit of Model 2 was very good: χ2[43] = 74.47, p = 0.002,
CFI = 0.982, RMSEA = 0.053, SRMR = 0.030 (bootstrap p-
value for the χ2-test computed for a single dataset was 0.074).
Loadings on the first-order factors (Updating, RNb, Cspan and
Verbal-Numerical) did not substantially differ from those from
Model 1. Standardized loadings on the Binding factor ranged
between 0.51 and 0.86, with a highest loading of the letter-
position task. Verbal-numerical content-specific variance was
accounted for by the VN factor that was introduced in Model 1
and also had loadings from the letter-color and the word-number
binding tasks. There was a substantial residual covariance (0.38)
between the verbal and numerical Binding indicators, which we
interpret as shared method variance of learning pairwise relations
within the verbal-numerical content domain.

WORKING MEMORY CAPACITY AND SECONDARY MEMORY
We next address the relation between the general WMC factor
established in Model 2 and SM. According to the view that com-
plex span reflects to a substantial extent the efficiency of search

Table 1 | Estimates of Loadings for Model 1 (and Bootstrap Estimates of the 95% Confidence Intervals based on a Single Dataset) and

Standardized Loadings (and Standard Errors Estimated on Multiple Datasets).

Verbal indicators Numerical indicators Figural indicators

λ λ (std) λ λ (std) λ λ (std)

Updating 0.09 (0.07–0.12) 0.58 (0.05) 0.13 (0.10–0.15) 0.76 (0.04) 0.11 (0.09–0.13) 0.75 (0.03)
RNb 0.18 (0.16–0.20) 0.92 (0.02) 0.17 (0.14–0.20) 0.84 (0.02) 0.09 (0.07–0.10) 0.55 (0.05)
Cspan 0.13 (0.10–0.15) 0.65 (0.05) 0.08 (0.06–0.09) 0.58 (0.05) 0.15 (0.12–0.17) 0.82 (0.04)

Note: RNb, Recall 1-back; Cspan, Complex Span; λ, factor loading; std, standardized.
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FIGURE 4 | Confirmatory factor analysis of Binding, Updating, Recall

1-back (RNb) and Complex Span (Cspan) Tasks (Model 2). The common
variance of the task factors is accounted for by the higher-order Working
Memory (WM) factor. The loadings of the Binding and Updating factors on

WM were set to 1, the disturbance term of these factors was constrained to
zero. _v, verbal indicators; _n, numerical indicators; _f, figural indicators; _lc,
letter-color; _wn, word-number; _ll, location-letter; CS, Cspan indicators; VN,
Verbal-numerical content factor.

in SM, a strong relation with the measures for SM ought to be
predicted. The relation of SM indicators with the other WMC
task classes is expected to be lower, because these task classes rely
less on SM. In contrast, the executive-attention view of WMC
provides no reason to expect a high correlation between WMC
and SM. Finally, according to the binding hypothesis, we should
expect that maintaining robust bindings in WM facilitates long-
term learning of those bindings. Therefore, we should expect a
positive correlation between WMC and SM on the level of general
WMC, not specifically for Cspan.

To test the relationship of WMC and SM we extended Model
2 by adding an SM factor that accounts for common vari-
ance among the three SM tasks (Model 3 depicted in Figure 5).
Additionally, Model 3 introduces a second nested factor PAsso.
This factor was introduced to capture method variance due
to paired-associates learning with verbal or verbal-numerical
content. This method factor was foreshadowed in Model 2
by the residual covariance between the letter-color and the
word-number binding tasks.

Model 3 had a very good fit: χ2[75] = 117.07, p = 0.001, CFI
= 0.981, RMSEA = 0.046, SRMR = 0.034 (bootstrap p-value for
the χ2-test computed for a single dataset was 0.044). Loadings
of task scores on the SM factor were all substantial and ranged
between 0.58 and 0.65. Verbal-numerical Binding and SM indi-
cators loaded substantially and significantly on the PAsso factor
(0.39–0.71). The latent level correlation between the second-order
WMC factor and SM was 0.79 (bootstrap estimates of the 95% CI
based on a single dataset was 0.70–0.87), and statistically different
from unity (�χ2[1] = 22.86). This result implies that WMC and
SM are closely related but not identical constructs. Additionally
estimating the relation between the first order residual term of

the Cspan factor and SM did not affect model fit which implies
that this relation was not reliably different from zero (χ2[74] =
115.16, p = 0.002, CFI = 0.982, RMSEA = 0.046, SRMR = 0.034;
compared with Model 3 �χ2[1] = 1.91, p = 0.17).

WORKING MEMORY CAPACITY AND CONTROLLED ATTENTION
We next explored associations of WMC with measures of cog-
nitive control, in particular response inhibition in the Eriksen
flanker and the Simon paradigm. The executive-attention view
of WMC (Engle et al., 1999; Engle, 2002; Engle and Kane, 2004)
predicts a substantial positive correlation between WMC and
the success of overcoming cognitive conflict through the inhi-
bition of strong but wrong response tendencies. The success of
response inhibition can be gauged through individual differences
in conflict effects (i.e., the size of the Simon congruency effect
and of the Eriksen flanker congruency effect). To test the predic-
tion of the executive-attention view we first needed to establish
a measurement model for the two conflict paradigms to obtain a
measure of the success of response inhibition.

Measurement model of response inhibition
To investigate whether the two paradigms (Simon and Eriksen
flanker) are measuring the same underlying construct of response
inhibition we specified a measurement model relating latent
factors of performance on the Simon task and the Eriksen
Flanker task. The measurement model (Model 4a) is depicted
in Figure 6. According to our previous experience with the
modeling of individual differences in these response-conflict
paradigms (Keye et al., 2009, 2010) we postulated three factors
for each paradigm. Besides a general factor representing gen-
eral efficiency in each paradigm we specified a conflict factor
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FIGURE 5 | Structural equation model of WMC and Secondary Memory

(SM) (Model 3). The measurement model of WMC is identical with the one
depicted in Figure 3, postulating a higher order model for WMC with four
first order factors: Binding, Updating, Recall 1-back (RNb) and Complex Span

(Cspan). The VN (Verbal-Numerical Content) factor is maintained from Model
2. SM, Secondary Memory; PAsso, Learning Paired-Associations; _v, verbal
indicators; _n, numerical indicators; _f, figural indicators; _lc, letter-color; _wn,
word-number; _ll, location-letter; CS, Cspan indicators.

FIGURE 6 | Measurement Model of Response Inhibition (Model 4a). The
model postulates two general factors (E and S); which account for individual
variation in the number of correctly solved items per second (inverted
latencies) during the Eriksen Flanker task and the Simon task, respectively.
Additionally, for each paradigm we specified a factor to capture variation in
response inhibition, and another factor for repetition priming (E RI, E Rep, and

S RI and S Rep). Indicators were built to reflect sequence modulations of
performance; cC, compatible trials following compatible trials; iC, compatible
trials preceded by incompatible trials; cI, incompatible trials following
compatible trials; iI, incompatible trials preceded by incompatible trials; _id,
identical (stimulus repetition, relative to preceding trial); _ni, non-identical
(stimulus change, relative to preceding trial).

(CC-E and CC-S, respectively) to account for individual differ-
ences in the size of the congruency effects in each paradigm.
Additionally, we specified a repetition-priming factor to capture
individual differences in the size of the priming effect in cases

of a perfect match between the previous and current stimuli in
the Simon and Eriksen tasks (E-Rep and S-Rep respectively).
We allowed for correlations between corresponding factors across
paradigms.
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The model depicted in Figure 6 fitted the data acceptably well:
χ2[86] = 330.91, p = 0.000, CFI = 0. 947, RMSEA = 0.104,
SRMR = 0.046 (bootstrap p-value for the χ2-test computed on a
single dataset was 0.05; χ2[86] = 341.24). We attribute the rather
high RMSEA statistic to the high average zero-order correlation
and the high communalities in this analysis. Prior research shows
that small correlations of residuals—indicating a decent fit of the
model—might come along with indications of bad fit in terms
of conventional criteria when the unique variances are small
(Browne et al., 2002; Heene et al., 2011). Standardized loadings
on the general factors were high (all above 0.74), and standard-
ized loadings on the specific experimental factors were lower (as
expected for nested factors) but substantial. The model allows for
correlations between corresponding factors for both paradigms.
All other correlations were theoretically not expected and were
fixed to zero. Models in which these fixed correlations between
latent factors were estimated freely resulted in small estimates
not surpassing the conventional significance criterion. There was
a moderate to strong correlation between the two general fac-
tors (E and S), r = 0.62 (p < 0.001; bootstrap estimates of the
95% CI from 0.49 to 0.78). However, the two conflict factors
were completely unrelated: estimated r = 0.008 when modeling
multiple datasets. The bootstrap estimate of the 95% CI based
on a single dataset ranged between −0.21 and 0.18. Repetition
priming factors between task paradigms were weakly correlated
(r = 0.24). Due to the lack of latent variable correlations for the

two conflict factors—which are of focal interest in their relation
with WMC—and in order to keep model complexity relatively
low, the relationships of cognitive-conflict factors with WMC
and SM were studied in two separate structural equation models
(SEM), one investigating the correlation of conflict in the Simon
task with WMC and SM, and the other doing the same for conflict
in the Eriksen task.

Working memory, secondary memory and response inhibition in the
Simon task
In Model 4b (Figure 7), the sub-structure of Model 4a describing
individual differences in the Simon task was related to Model 3.
The fit of this model was acceptable: χ2[201] = 438.72, p = 0.000,
CFI = 0.950, RMSEA = 0.067, SRMR = 0.053 (bootstrap p-
value for the χ2-test computed on a single dataset was 0.016;
χ2[201] = 385.95). Factor loadings did not notably differ from
those estimated in the measurement models (Model 3 and Model
4a). There were 6 correlations of interest estimated in this model:
The general factor from the Simon task (S) was moderately cor-
related with WM (r = 0.35; bootstrap estimate of the 95% CI:
0.22–0.48) and with SM (r = 0.34; bootstrap estimate of the 95%
CI: 0.20–0.48). No significant correlation was observed between
the specific conflict factor (S RI) and WM (r = − 0.13; p = 0.36)
and SM (r = 0.06; p = 0.74). WM and SM were also unrelated
to Repetition Priming (WM: r = 0.07; p = 0.37; SM: r = 0.11;
p = 0.19).

FIGURE 7 | Structural Equation Model testing the relationship of WM,

SM and Response Inhibition un the Simon task (Model 4b). Binding,
Updating, Recall 1-back (RNb) and Complex Span (Cspan); VN,
Verbal-Numerical Content Factor; SM, Secondary Memory; PAsso, Learning
Paired-Associations; _v, verbal indicators; _n, numerical indicators; _f, figural
indicators; _lc, letter-color; _wn, word-number; _ll, location-letter; CS, Cspan

indicators; S, General RT performance during the Simon task; S RI, Response
Inhibition effect in the Simon task, S Rep, Repetition Priming during the
Simon task; cC, compatible trials following compatible trials; iC, compatible
trials preceded by incompatible trials; cI, incompatible trials following
compatible trials; iI, incompatible trials preceded by incompatible trials; _id,
identical (Repetition Priming); _ni, non-identical (Unprimed).
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Working memory, secondary memory and response inhibition in the
Eriksen Flanker task
Model 4c had the same structure as Model 4b, except that the
sub-structure of Model 4a describing individual differences in
the Eriksen task was related to Model 3. This model had the
same constraints on correlations as Model 4b. Model 4c fitted the
data acceptably well: χ2[201] = 317.56, p < 0.001, CFI = 0.974,
RMSEA = 0.047, SRMR = 0.044 (bootstrap p-value for the χ2-
test computed on a single dataset was 0.198; χ2[201] = 324.60).
Factor loadings did not notably differ from those estimated in
the antecedent measurement models (Model 3 and Model 4a).
The general factor reflecting overall performance on the Eriksen
task (E) was moderately correlated with WM (r = 0.49; bootstrap
estimate of the 95% CI: 0.35–0.63) and SM (r = 0.43; bootstrap
estimate of the 95% CI: 0.29–0.57). Similarly to Model 4b the
Eriksen Response Inhibition factor was not significantly related
to WM (r = −0.12; p = 0.06) and SM (r = −0.08; p = 0.30).
There was a small correlation between the repetition priming fac-
tor and WM (r = 0.16; p = 0.011; bootstrap estimate of the 95%
CI: −0.03–0.37), and the same was true for SM (r = 0.21; p <

0.01; bootstrap estimate of the 95% CI: 0.008–0.41). These pos-
itive correlations express slightly faster responses after stimulus
repetition for higher levels of WM and SM (the dependent vari-
ables are inverted latencies for Eriksen and Simon in all models,
thus higher scores represent better performance).

WORKING MEMORY CAPACITY, SECONDARY MEMORY, AND THEIR
RELATIONSHIP TO FLUID INTELLIGENCE
The relation between WMC and fluid intelligence received con-
siderable attention (Ackerman et al., 2005) and there is consensus

that this relation is very strong, though not perfect (i.e., Kyllonen
and Christal, 1990; Kane et al., 2005; Oberauer et al., 2005).
Unsworth et al. (2009) showed that the relation between com-
plex span and fluid intelligence is mediated in part through SM
and in part through PM. Because our indicators of WMC—with
the exception of complex span—reflect primarily the capacity
of working memory or PM, we understand Unsworth’s two-
component model as implying that SM should increment the
prediction of Gf over and above WMC. The executive attention
view and the binding theory both predict that WMC will show
unique contributions to the explanation of Gf and both views are
agnostic toward a potential increment in the prediction from SM.

We extended Model 3 with a further latent factor Gf, measured
with three reasoning tests. All correlations between the factors for
WMC, SM, and Gf were estimated. The extended model (Model
5, depicted in Figure 8) had a good fit: χ2[118] = 174.77, p <

0.001, CFI = 0.978, RMSEA = 0.043, SRMR = 0.036 (bootstrap
p-value for the χ2-test computed on a single dataset was 0.034;
χ2[118] = 176.62). Standardized factor loadings of Gf indicators
were 0.71 (verbal reasoning), 0.70 (numerical reasoning), and
0.68 (figural reasoning). Loadings of the WMC and SM indica-
tors were highly similar to those estimated in Model 3. WMC
and SM were substantially correlated (r = 0.79, consistent with
Model 3). Both WMC and SM were highly correlated with reason-
ing: r = 0.83 (bootstrap estimate of the 95% CI: 01.77–0.90) and
r = 0.78 (bootstrap estimate of the 95% CI: 0.67–0.89), respec-
tively. Corresponding with the overlapping confidence intervals,
constraining the correlations of WMC with Gf and of SM with Gf
to equality did not significantly impair model fit: �χ2[1] = 0.82;
p = 0.63. Therefore, the small numerical difference between the

FIGURE 8 | Structural Equation Model testing the relationship of WM,

SM and Gf (Model 5). Binding, Updating, Recall 1-back (RNb) and Complex
Span (Cspan); VN, Verbal-Numerical Content Factor; SM, Secondary

Memory; PAsso, Learning Paired-Associations; Gf, Fluid Intelligence; _v,
verbal indicators; _n, numerical indicators; _f, figural indicators; _lc,
letter-color; _wn, word-number; _ll, location-letter; CS, Cspan indicators.
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FIGURE 9 | A first structural model estimating explained variance

in Gf by means of binding and secondary memory indicators

(Model 6a). Gf, Fluid Intelligence; VN, Verbal-Numerical Content

Factor; _v, verbal indicator; _n, numerical indicator; _f, figural
indicator; _lc, letter-color; _wn, word-number; _ll,
location-letter.

FIGURE 10 | A second structural model estimating explained variance in

Gf by means of binding and secondary memory indicators (Model 6b).

SM+,Secondary Memory for Paired Associations; Gf, Fluid Intelligence; VN,

Verbal-Numerical Content Factor; _v, verbal indicator; _n, numerical indicator;
_f, figural indicator; _lc, letter-color; _wn, word-number; _ll, location-letter; the
residual variance of the SM_n indicator was fixed to zero.

freely estimated correlations is—given the statistical power in the
present study—inferentially not meaningful.

To test a specific prediction derived from the binding hypothesis
(Oberauer et al., 2007) we estimated two further models contrast-
ing binding in WM and association memory in SM as predictors
of Gf. In the first one (Model 6a, depicted in Figure 9), a gen-
eral Memory factor, which we label Memory∗, accounted for the
common variance of binding and SM indicators. The residual
variance common to all indicators of binding (and only those)
was accounted for by a specific factor we label Binding∗ that is
orthogonal to Memory∗. Shared method-specific variance was
modeled in a second nested factor (that we label PAsso in line
with interpretation from prior models) that was also orthogonal
to the other factors in Model 6a. A factor of fluid intelligence (Gf)
was regressed on Binding∗ and Memory∗. Model fit was excellent:
χ2[18] = 21.00, p = 0.27, CFI = 0.997, RMSEA = 0.025, SRMR
= 0.023. The two predictors explained 74% of the variance in Gf.
The standardized regression weight of the general Memory∗ fac-
tor was 0.79, and the one originating from the Binding∗ factor was
0.35. Fixing the regression weight of Binding∗ to zero impaired
model fit significantly: �χ2[1] = 7.83; p < 0.01, showing that
the explained Gf variance through residual binding variance over
and above the Memory∗ factor is statistically significant.

In the second model (Model 6b, depicted in Figure 10) we
reversed the roles of the binding and the SM indicators. In this
model the general factor, which we now label Memory+, was
accompanied by a nested factor representing the residuals of the
secondary-memory tasks, SM+. In order to achieve convergence
in this model the residual variance of the numerical SM indicator

was fixed to zero. Model fit was again excellent: χ2[19] = 19.53,
p = 0.42, CFI = 0.999, RMSEA = 0.010, SRMR = 0.023. The
explained variance in Gf was 75%, and the standardized regres-
sion weight of the general factor Memory+ was 0.85, whereas that
of SM+ was 0.14. Fixing the regression weight of SM+ to zero
did not impair model fit significantly (�χ2[1] = 2.54; p = 0.12),
showing that the specific variance of SM that is not shared with
maintenance of temporary bindings did not contribute incremen-
tally to the prediction of fluid intelligence.

DISCUSSION
Our finding speak to three interrelated questions: What is work-
ing memory capacity? How should it best be measured? And
finally, how is WMC related to other cognitive constructs, in par-
ticular SM, fluid intelligence, and executive attention / cognitive
control? We discuss the implications of our findings for these
three questions in turn.

WHAT IS WORKING-MEMORY CAPACITY?
The case for a general factor
We began by testing to what extent different working-memory
task classes reflect the same WMC construct. The hypothesis that
complex-span performance reflects to a large extent the ability
to retrieve efficiently from SM (Unsworth and Engle, 2007a,b)
motivated the prediction that a Complex Span factor is more
indicative of SM than the other two paradigm-specific working-
memory factors, Recall-N-Back, and Updating, because the latter
two paradigms arguably minimize the potential contribution of
SM. What we found in Model 1 were strong correlations of
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performance at the level of latent variables implying a strong
overlap and congruence of the constructs measured by the four
task classes. Therefore, it is unlikely that the task classes capture
SM to very different degrees. Importantly, the present data sup-
port the position that Recall-1-back tasks as a specific version of
so-called n-back are valid measures of WMC. This result rein-
forces prior reports (Shelton et al., 2007; Schmiedek et al., 2009)
and alleviates the concern raised by Kane et al. (2007) that n-
back tasks don’t measure the same construct as complex-span
tasks. Our findings go beyond prior research by showing very
high construct overlap of Recall-N-Back and Complex Span and
a nearly perfect relationship with the factor for Updating tasks.
Importantly, this conclusion—as the ones to be discussed next—
is based on latent variables and not on the analysis of single
tasks.

The strong construct overlap between Complex Span and
Updating is of particular interest because working-memory
updating has been regarded as one of the three factors of exec-
utive functions identified by Miyake et al. (2000). The updat-
ing factor was highly correlated (0.61) with one complex-span
measure (Operation Span) in that study, consistent with our
finding. At first glance this close relationship could be inter-
preted as supporting the executive-attention theory of WMC.
We believe that this conclusion would be premature. As pointed
out by Ecker et al. (2010), performance in working-memory
updating tasks reflects a mixture of variance in general working-
memory processes (i.e., keeping available a set of representations
over short periods of time, and retrieving them accurately) and
variance in the specific efficiency of updating (i.e., substitut-
ing old working-memory contents by new ones). When Ecker
and colleagues separated these components, they found that only
the general working-memory components were related to mea-
sures of WMC. Therefore, we interpret the close correlation
between the Updating factor and the other WMC factors in our
study as reflecting variance in those general working-memory
components of updating tasks.

Working-memory capacity and binding
Model 2 served to test the binding hypothesis of WMC
(Oberauer et al., 2007) by asking how well the general WMC
construct—measured through Complex Span, Recall-N-Back,
and Updating—is correlated with a Binding factor. In this model
the general WMC factor was perfectly correlated with the Binding
factor, so that the loading of Binding on WMC could be fixed to
1 without loss of fit. The WMC factor also accounted for 100%
of the Updating variance, 79% of the Recall-1-back variance, and
90% of the variance in Complex Span. These findings suggest that
the common source of variance across all four task paradigms is
the cognitive mechanism of building, maintaining and updating
arbitrary bindings (Oberauer, 2009; Oberauer et al., 2007).

Rapid formation and updating of bindings is needed for the
Updating and Recall-1-back tasks because accurate performance
in these paradigms requires memory for the relations between
items and their contexts (e.g., relations between letters and loca-
tions, or between words and categories), and rapid updating of
those relations. Bindings are also a core factor for success in
Complex Span tasks, because these tasks require the recall of items

in the correct serial order (Schmiedek et al., 2009; Oberauer et al.,
2012). For the recall of serial positions in a list it is necessary to
create firm bindings between content (words, letters, length and
directions of arrows) and context (the serial position of a word,
letter, or arrow within the list). Additionally, these bindings need
to be established and maintained in the presence of an interfering
secondary task.

HOW TO MEASURE WORKING MEMORY CAPACITY
Psychometric considerations
One corollary of the strong correlation between different
working-memory paradigms is that all four task classes can be
seen as good proxies of a general WMC factor. A closer look at
the psychometric quality and attributes of competing paradigms
allows for a more refined perspective.

First, concerning the magnitude of the loadings of the
task-class specific factors on the second order WMC factor, the
Binding and Updating factors did best, showing no task-specific
variance at all, and Complex Span did comparatively less well,
showing the largest amount of task-class specific variance.
These differences notwithstanding, all four task classes are good
indicators of WMC, because they reflect to a large extent reliable
variance of the general WMC construct. The relatively novel
Recall-N-back paradigm is arguably a very efficient method
for assessing WMC because it enables continuous recording of
performance at a high rate.

Second, the relevance of content factors in this broad task bat-
tery seems to be weaker than has been assumed by some authors
(Shah and Miyake, 1996; Süßet al., 2002). It is possible that the
relevance of content variance is larger for conventional short term
memory span measures, such as digit span or letter span, than for
working-memory tasks (Kane et al., 2004).

Third, the binding tasks had shared variance with the SM task,
which could be taken to compromise the clean separation of mea-
surement of WMC and SM. The covariance between our binding
tasks and the paired-associates learning tasks that we used as indi-
cators of SM probably reflect the shared method variance between
these two task paradigms. The largely analogous methods for
these two paradigms was intended to enable a direct compar-
ison of the ability to maintain temporary bindings in working
memory and the ability to acquire more long-term associations
in SM (as in our Models 6a and 6b). SM could be measured
in a more method-independent way through multiple indicators
using different methods.

Practical recommendations
Every cognitive test carries some task-specific variance that is
unrelated to the construct of interest, and tests of WMC are
no exception. Therefore, we generally recommend measuring
WMC through a heterogeneous set of paradigms to avoid mono-
operation bias (Shadish et al., 2002; Lewandowsky et al., 2010).
Often, however, only limited time and resources are available to
measure WMC, such that administration of only a single test is
feasible. In light of our findings of high correlations between four
different WMC paradigms, this is a defensible practice. In that
case, a number of considerations can be made to choose among
the available paradigms.
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First, the four task classes investigated here differ in their con-
struct validity, as reflected in their loadings on the general WMC
factor. Although the differences were not large, they might weigh
slightly in favor of using the Binding or the Updating task rather
than Cspan or Recall-N-Back. Second, the tasks differ in their
efficiency, that is, the number of independent measurements per
testing time. Complex-span trials take relatively long, whereas tri-
als of the other three paradigms are shorter, which means that
a more reliable score can be obtained in the same amount of
time (see Table A2 for details). A third consideration concerns
the exhaustiveness and sufficiency of task scores. In all complex-
span tasks participants work on two tasks, a memory task and a
concurrent processing task, but only their memory performance
is considered in scoring. Although cut-off scores in processing-
task performance are usually applied (Conway et al., 2005), odds
are that there remain stable individual differences in processing
performance which are ignored in scoring the tasks (and also
in subsequent data analysis). This issue might be a nuisance in
scientific use but is a serious problem in using Complex Span
measures as a diagnostic tool in high-stakes contexts. There are
also multiple ways of calculating the recall scores (see the proce-
dures discussed in Conway et al., 2005). In contrast, there is less
ambiguity of scoring for the other three task classes.

WORKING MEMORY CAPACITY IN RELATION TO OTHER COGNITIVE
CONSTRUCTS
Working memory capacity, secondary memory, and fluid
intelligence
The results from Model 3 are consistent with previously reported
correlations between WMC and SM, showing that they are
separable but closely correlated constructs (Unsworth et al.,
2009). The correlation reported here is stronger than that
reported in previous studies. This might be the case because
our WMC factor reflects the common variance of four differ-
ent working-memory paradigms, whereas it was restricted to
Complex Span indicators for working memory in previous work.
We conclude that the close relation between WMC and SM is not
specific to complex-span tasks, but rather extends to Updating,
Recall-N-Back, and Binding tasks. At first glance this finding is
surprising because, whereas the complex-span paradigm bears
close similarity to established SM tasks such as the continuous-
distractor task, the latter three paradigms were designed to
minimize the potential contribution of SM: The Updating, Recall-
N-Back, and Binding tasks used comparatively short retention
intervals, thereby leaving little chance for encoding into SM, and
they generated a high level of proactive interference, thereby min-
imizing the usefulness of SM representations (for a similar argu-
ment regarding proactive interference see Cowan et al., 2012).
Therefore, it appears implausible that variance in the efficient use
of SM plays a major role in determining performance in those
working-memory paradigms. Our finding becomes less surpris-
ing when we consider the reverse direction of causality: According
to the binding hypothesis, high WMC reflects the ability to estab-
lish robust bindings in working memory, which in turn support
encoding of those bindings into SM. Therefore, high WMC might
be a cause, not a consequence, of a well-functioning SM.

At the same time, there is a substantial proportion of
unique variance in both SM and the second order WMC factor.

Therefore, the present results clearly show that WMC is not
equivalent with SM. This conclusion is reinforced by the finding
that Binding provides an independent contribution besides SM
to predicting fluid intelligence (Models 6a and 6b). One possi-
ble interpretation of this finding is that fluid intelligence reflects
on the one hand the ability to maintain and update temporary
bindings in working memory (Oberauer at al., 2007), and on
the other hand the ability to acquire more lasting associations in
SM (Tamez et al., 2008, 2012; Kaufman et al., 2009). We tested
the relative contribution of bindings in working memory and
association-learning in SM to predicting fluid intelligence in two
models focusing on Binding and SM as predictors of Gf. Despite
the strong collinearity between SM and the Binding factor it
seems as if the Binding factor was slightly more important for the
prediction of fluid intelligence: Once Binding performance was
statistically controlled for, SM was no longer significantly related
to fluid intelligence. Although the present results require repli-
cation we conclude that the results for Model 3 and the models
derived from it are in line with the binding hypothesis of WMC
(Oberauer et al., 2007).

Working-memory capacity and cognitive control
In Models 4a through 4c we tested the relation between the effi-
ciency of cognitive control and the other factors. The two factors
representing the efficiency of cognitive control—conflict costs
in the Simon task and in the Eriksen flanker task—were unre-
lated with each other. This is a replication of previous findings
showing that conflict related slow-down factors don’t generalize
across these two paradigms (Keye et al., 2009, 2010). This result
is not due to a lack of reliability of these factors (see Table A2). If
both paradigms capture similar conflict costs they should share
a substantial amount of variance, and hence should be corre-
lated at least moderately positive with each other, contrary to
our finding. We conclude that either at least one of the two
conflict cost factors is not a valid measure of cognitive con-
trol in response-conflict situations, or that individual differences
in cognitive control in response-conflict tasks are entirely task
specific. From the perspective of the theory of Executive Attention
this results is discouraging because it suggests that measures taken
to reflect the ability to cope with interference and distraction
essentially capture task-specific variance in performance. We also
observed no correlation between the conflict-related slow down
factors in either the Simon or the Eriksen task and any of the
WM and SM factors. These findings replicate and extend pre-
vious reports on the correlation between WMC and factors of
conflict costs after removing variance due to individual differ-
ences in overall speed (Keye et al., 2009, 2010). Other research
on this issue is somewhat inconclusive: Redick and Engle (2006)
and Heitz and Engle (2007) found that high WM span partici-
pants were faster at minimizing the distracting impact of incom-
patible flankers as compared to low WM span participants—a
result that was not found for the compatible trials (Heitz and
Engle, 2007). These results arose from extreme-group compar-
isons, which are regarded as problematic in individual-differences
research (see Preacher et al., 2005). Other studies that did not rely
on extreme-group comparison reported no correlation between
WMC and performance on the flanker task (Friedman and
Miyake, 2004).
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The present methodological approach relies on latent variable
modeling of factors reflecting cognitive control, partialling out
baseline reaction time along with other potentially confounded
response components such as repetition priming. In addition, we
used a broad battery of working memory measures to measure
WMC on a high level of generality. We found that any relation of
both the Simon and the Eriksen paradigm with WMC is entirely
due to individual differences in overall choice reaction time. This
relation is probably best understood as an instance of the corre-
lation between WMC and general cognitive speed in choice tasks
(Schmiedek et al., 2007).

CONCLUSIONS
To conclude, we obtained strong evidence for the binding
hypothesis of WMC: This hypothesis correctly predicted that
complex-span tasks, updating tasks, and binding tasks all shared
a large proportion of variance, which reflects a broad general
WMC construct and strongly predicts fluid intelligence. We also
obtained some evidence for the two-component hypothesis of

Unsworth and Engle (2007a,b). This hypothesis correctly pre-
dicted that a measure of SM is closely related to complex span
and to fluid intelligence. This hypothesis did not predict, but is
at least compatible with the finding that SM was equally strongly
correlated with our updating and binding tests. Finally, our results
are not well explained by the executive-attention theory of WMC,
which erroneously predicts a close correlation between measures
of inhibition one the one hand, measures of WMC and fluid
intelligence on the other hand.
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APPENDIX

Table A1 | Classification of the indicators.

Name of indicator Serial position N items load a N items load b N items load c N items load d N items load e N items all

Binding verbal 02/S1 2 (2) 3 (3) 3 (4) 3 (5) 4 (6) 15

Binding verbal-num. 04/S2 2 (2) 4 (3) 4 (4) 3 (5) 1 (6) 14

Binding figural 09/S2 1 (2) 4 (3) 4 (4) 3 (5) 2 (6) 14

Updating verbal 13/S2 2 (2) 3 (3) 4 (4) 3 (5) – 12

Updating numerical 04/S1 2 (2) 2 (3) 3 (4) 3 (5) 2 (6) 12

Updating figural 02/S2 3 (2) 3 (3) 3 (4) 2 (5) – 11

Recall 1-back verbal 15/S2 2 (1) 5 (2) 5 (3) – – 12

Recall 1-back num. 05/S2 2 (1) 5 (2) 5 (3) – – 12

Recall 1-back figural 07/S1 2 (1) 5 (2) 5 (3) – – 12

Reading span 03/S2 3 (2) 3 (3) 3 (4) 3 (5) – 12

Operation span 08/S2 3 (2) 3 (3) 3 (4) 3 (5) – 12

Rotation span 05/S1 3 (2) 3 (3) 3 (4) 3 (5) – 12

LTM verbal 06/S1 12/S2 2 (20) – – – – 2

LTM verbal-num. 08/S1 07/S2 2 (20) – – – – 2

LTM figural 01/S2 16/S2 2 (12) – – – – 2

Reasoning verbal 10/S1 – – – – – 16

Reasoning num. 10/S1 – – – – – 16

Reasoning figural 10/S1 – – – – – 16

Simon 06/S1 08/S1 – – – – – 2 × 80

Eriksen 07/S2 12/S2 – – – – – 2 × 80

Note. Load-levels are displayed in brackets.
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Table A2 | Descriptive statistics—all performance indicators.

Name of indicator M SD α ω

Binding verbal 0.64 0.12 0.69 0.70

Binding verbal-numerical 0.68 0.14 0.79 0.80

Binding figural 0.81 0.13 0.82 0.82

Updating verbal 0.66 0.16 0.81 0.82

Updating numerical 0.73 0.17 0.85 0.85

Updating figural 0.74 0.15 0.72 0.72

Recall 1-back verbal 0.72 0.20 0.94 0.94

Recall 1-back numerical 0.63 0.20 0.94 0.94

Recall 1-back figural 0.44 0.16 0.93 0.93

Reading span 0.79 0.19 0.89 0.89

Operation span 0.89 0.13 0.88 0.88

Rotation span 0.68 0.18 0.83 0.84

Secondary Memory verbal 0.41 0.26 0.94 0.94

Secondary Memory verbal-numerical 0.24 0.16 0.85 0.85

Secondary Memory figural 0.25 0.16 0.74 0.74

Reasoning verbal 0.53 0.16 0.62 0.62

Reasoning numerical 0.51 0.17 0.63 0.63

Reasoning figural 0.43 0.18 0.67 0.68

Simon _cC_id* 2.17 0.30 0.91 0.91

Simon _cC_ni* 1.96 0.34 0.91 0.91

Simon _iC_id* 1.93 0.31 0.92 0.91

Simon _iC_ni* 1.81 0.33 0.92 0.92

Simon _cI_id* 1.73 0.32 0.93 0.93

Simon _cI_ni* 1.66 0.32 0.92 0.92

Simon _iI_id* 1.91 0.29 0.91 0.91

Simon _iI_ni* 1.75 0.32 0.93 0.93

Eriksen _cC_id* 2.08 0.26 0.90 0.90

Eriksen _cC_ni* 2.02 0.29 0.95 0.95

Eriksen _iC_id* 2.00 0.27 0.94 0.94

Eriksen _iC_ni* 1.98 0.26 0.93 0.93

Eriksen _cI_id* 1.68 0.21 0.93 0.94

Eriksen _cI_ni* 1.73 0.28 0.95 0.95

Eriksen _iI_id* 1.74 0.23 0.92 0.92

Eriksen _iI_ni* 1.75 0.24 0.93 0.94

Note. *M, SD and Reliability was calculated for inverted latencies; cC, compatible trials following compatible trials; iC, compatible trials preceded by incompatible

trials; cI, incompatible trials following compatible trials; iI, incompatible trials preceded by incompatible trials; _id, identical (Repetition Priming); _ni, non-identical

(Unprimed); α and ω have been calculated with the R package psych Revelle (2013).
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