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Background: Biological motion perception is served by a network of regions in the occipital,
posterior temporal, and parietal lobe, overlapping areas of reduced cortical volume in
schizophrenia. The atrophy in these regions is assumed to account for deficits in biological
motion perception described in schizophrenia but it is unknown whether the asymmetry of
atrophy found in previous studies has a perceptual correlate. Here we look for possible
differences in sensitivity to leftward and rightward translation of point-light biological
motion in data collected for a previous study and explore its underlying neurobiology using
functional imaging.

Methods: n = 64 patients with schizophrenia and n = 64 controls performed a task requiring
the detection of leftward or rightward biological motion using a standard psychophysical
staircase procedure. six control subjects took part in the functional imaging experiment.

Results: We found a deficit of leftward but not rightward biological motion (leftward
biological motion % accuracy patients = 57.9% ± 14.3; controls = 63.6% ± 11.3 p = 0.01;
rightward biological motion patients = 62.7% ± 12.4; controls = 64.1% ± 11.7; p > 0.05).
The deficit reflected differences in distribution of leftward and rightward accuracy bias in
the two populations. Directional bias correlated with functional outcome as measured by
the Role Functioning Scale in the patient group when co-varying for negative symptoms
(r = −0.272, p = 0.016). Cortical regions with preferential activation for leftward or rightward
translation were identified in both hemispheres suggesting the psychophysical findings
could not be accounted for by selective atrophy or functional change in one hemisphere
alone.

Conclusion: The findings point to translational direction as a novel functional probe to
help understand the underlying neural mechanisms of wider cognitive dysfunction in
schizophrenia.

Keywords: functional outcome, motion perception, STS, social cognition, translational motion, fMRI

INTRODUCTION
Visual function has long been recognized as altered in schizophre-
nia (Silverstein and Keane, 2011). Motion perception is one aspect
of vision affected, with differences between patients and con-
trols reported for motion coherence, velocity and luminance
contrast (for review see Chen, 2011). There is an apparent hierar-
chy of motion effects within schizophrenia with global motion
more affected than local motion (Chen et al., 2003) and bio-
logical motion more than global motion (Brittain et al., 2010a).
Furthermore, at the top of the motion hierarchy, biological
motion appears linked to an important outcome measure –
the level of social functioning. Patients with poorer biological
motion perception have less favorable social outcome, biolog-
ical motion sensitivity correlating directly with social outcome
(Kim et al., 2005) or indirectly through social perception (Brittain
et al., 2010a). The neurophysiology, brain networks and psy-
chophysics of motion perception are well understood, providing
a useful model system from which to approach the underlying

neurobiology of wider cognitive dysfunction schizophrenia (Chen,
2011; Silverstein and Keane, 2011). In its link to social functioning,
biological motion is of particular interest in this regard.

Motion perception involves a network of regions in the occip-
ital, posterior temporal, and parietal lobes. In the occipital lobe,
the primary visual cortex and its immediate surrounds (areas V1
and V2) respond to all classes of motion (Watson et al., 1993)
while different sub-regions of the lateral surface of the occipi-
tal and posterior temporal lobes respond to different classes of
motion. Biological motion is a term used for a class of motion
first characterized by Johansson (Johansson, 1973) in which walk-
ing or movements such as jumping, running, kicking, throwing,
crawling, shoveling, dancing are defined by point-light sources.
Such stimuli have attracted considerable research interest due to
their inherent combination of motion, form and action that may
help reveal how such properties are integrated in the brain. The
key brain regions implicated in previous studies are: (i) the pos-
terior superior temporal gyrus (STG) and cortex surrounding the
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superior temporal sulcus (STS), bilaterally in some studies and
predominantly right hemispheric in others (Bonda et al., 1996;
Howard et al., 1996; Vaina et al., 2001; Peuskens et al., 2005; Peelen
et al., 2006) (ii) regions in the ventral temporal lobe overlapping
or in close relation to regions involved in face, object, figure, and
kinetic contour processing (Vaina et al., 2001; Grossman and Blake,
2002; Peuskens et al., 2005) (iii) the cerebellum (Vaina et al., 2001;
Sokolov et al., 2012) (iv) frontal cortex (Vaina et al., 2001; de Lus-
sanet et al., 2008) and (iv) the parietal lobe (Bonda et al., 1996;
Vaina et al., 2001).

It is assumed that functional or structural changes in the net-
works described above underlie the psychophysical motion deficits
found in schizophrenia, a view supported by the finding that dif-
ferences in functional activation for hits, false alarms and correct
rejections in the posterior STS for biological motion stimuli differ
in patients with schizophrenia from controls (Kim et al., 2011).
Brain lesions in the parietal lobe/parieto-temporal junction (Bat-
telli et al., 2003), superior temporal or inferior frontal regions
(Saygin, 2007) and anterior temporal lobe (Vaina and Gross, 2004)
are associated with deficits in biological motion. These regions
typically have reduced cortical volume in structural imaging stud-
ies of schizophrenia. Although imaging findings vary from study
to study, Shenton et al. (2001) in a review of the literature found
15/15 studies reporting a decrease in STG gray matter volume.
Similarly, 9/15 studies reported volume reductions in the parietal
lobe and 30/50 studies in the frontal lobe, particularly prefrontal
cortex.

A consistent finding in structural imaging studies of
schizophrenia is an asymmetry of atrophy in the left and right
hemispheres. Within the network of areas linked to biological
motion, the left STG is typically more affected than the right
(Shenton et al., 2001). Similarly, the left inferior parietal lob-
ule is typically more affected than right inferior parietal lobule
(Niznikiewicz et al., 2000). The question therefore arises as to
whether the asymmetry in hemispheric atrophy has a percep-
tual correlate. One aspect of motion perception that seems to
be represented differently in each hemisphere is the direction of
translational motion – the movement of an object or dot pat-
tern across the visual field. Unlike primary visual cortex, which
responds to stimuli in the contralateral hemifield only, motion
specialized cortex (area V5) responds to motion in both contralat-
eral and ipsilateral fields through interactions between the two
hemispheres (Tootell et al., 1998; ffytche et al., 2000). Motion spe-
cialized areas thus respond to movement across the whole visual
field, with evidence to suggest a bias of representation in each
hemisphere. Patients with left hemispheric lesions have a pre-
dominance of leftward motion perception deficits while patients
with right hemispheric lesions have a predominance of rightward
motion perception deficits (Barton et al., 1995). This suggests a
relative specialization for leftward translational motion in the left
hemisphere and rightward translational motion in the right hemi-
sphere. Evidence from an intraoperative study disrupting motion
specialized areas in the right hemisphere through stimulation
resulted in predominantly rightward motion perception deficits
(Blanke et al., 2002), consistent with this view.

To date, most studies of biological motion have used stim-
uli that remain fixed, without translation across the visual field

(i.e., a figure walking in place as if on a treadmill). It is there-
fore unclear whether leftward translational biological motion is
linked to the left hemisphere and rightward translational bio-
logical motion to the right hemisphere, as seems to be the case
for coherent motion. However, the existence of an asymmetry is
hinted at by studies of biological motion figures facing leftward or
rightward while walking in place. Leftward-facing figures walking
in place in the left hemifield are associated with greater activation
of right hemispheric frontal and parietal regions than rightward-
facing figures. Similarly, rightward-facing figures walking in place
in the right hemifield are associated with greater activation in
left hemispheric frontal and parietal regions than leftward-facing
figures (de Lussanet et al., 2008). Leftward and rightward fac-
ing figures are also represented in spatially distinct sub-regions
of the fusiform gyrus (Michels et al., 2009). Such findings lend
support to the possibility of a difference in the representation of
leftward and rightward translational biological motion in each
hemisphere.

If leftward and rightward translation of biological motion are
represented differently in each hemisphere, then asymmetrical
atrophy within the biological motion network described in previ-
ous studies may be reflected as a difference in sensitivity to leftward
and rightward biological motion translation. We have sought evi-
dence to support this view using data from our previous study in
which we found reduced sensitivity in schizophrenia to biological
motion translation direction (Brittain et al., 2010a). Here we re-
examine this data to establish whether the reduction in sensitivity
identified related to one direction more than the other and report
preliminary functional imaging evidence of the neurobiology of
translation direction for biological motion stimuli.

MATERIALS AND METHODS
Full details of patient recruitment and testing methods for the psy-
chophysical study have been presented elsewhere (Brittain et al.,
2010a,b). Patients with a DSM-IV diagnosis of schizophrenia
(n = 64) were recruited from outpatient and inpatient facilities
in South London and controls (n = 64) from local advertisement
and a volunteer database. The study was approved by the Institute
of Psychiatry Ethical committee and all subjects gave informed,
written content. The two groups were matched for age, gender,
level of education, visual acuity, and handedness but differed in IQ
(estimated with the two-subtest version of the Wechsler Abbrevi-
ated Scale of Intelligence WASI, Psychological Corporation, 1999;
patients = 101.91 ± [SD]15.24; controls = 107.37 ± 13.49). The
inclusion criteria for both participant groups were: age between
18 and 65, English as a first language, no current alcohol or drug
dependency, predominantly right handed (assessed using a six
item version of the Annett Handedness Questionnaire Annett,
1970), no history of electroconvulsive therapy (none in the past
3 years for the patient group), no significant ophthalmological
disease, sensory disability, history of epilepsy, or known neurolog-
ical condition. Other tests performed of relevance to the analyses
reported here are: (i) Role Functioning Scale (Goodman et al.,
1993). This assesses functional outcome in four domains (working
productivity, independent living/self-care, immediate social net-
work relationships, extended social network relationships) with
scores ranging from one (severely impaired) to seven (optimal).
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The Global Role Functioning Index (GFI) is the sum of the domain
scores ranging from 4 (worst functioning) to 28 (best function-
ing) (ii) Positive and Negative Syndrome Scale (PANSS Kay et al.,
1987) assessing positive, negative and general psychopathology
symptoms in separate sub-scales.

BIOLOGICAL MOTION TEST
An array of 50 randomly moving white dots appeared in a square
area subtending 10◦ of visual angle on a black background. Each
trial lasted 3500 ms. At a random time after trial onset, 12 of the
dots moved as a biological motion array forming a figure walking
at 4.5◦/s either leftward or rightward. The figure could appear
at any position in the screen at the onset of the trial. When the
figure reached the left or right vertical edge of the square array
of dots it re-appeared at the opposite edge. Subjects were not
required to maintain fixation. At the end of the trial, participants
were asked to respond whether the figure had moved (i) leftward,
(ii) rightward or (iii) was not seen. Responses were logged by
the experimenter. A correct response increased the number of
randomly moving dots by 20 for the next trial (increment = 10
after first incorrect response). An incorrect or “not seen” response
resulted in a decrease of 10 dots for the next trial. This resulted
in a psychophysical staircase function that reached a plateau after
approximately 15 trials in each block. Two blocks of forty-two
trials were performed for each subject. Each block contained 21
leftward trials and 21 rightward trails in pseudorandom order (i.e.,
the number of trials for each direction was fixed but their order of
presentation randomised) so that each trial (i.e., each point on the
psychophysical staircase) had equal probability of being leftwards
or rightwards. All subjects were trained on the task prior to testing
and confirmed they were able to see the walking figure.

ANALYSIS
The trials were sorted into leftward and rightward directions (42
trials for each direction in the two blocks combined) and an accu-
racy score for each direction derived for each subject. The leftward
accuracy score = (number of correctly identified leftward trials /
42) × 100. The rightward accuracy score = (number of correctly
identified rightward trials / 42) × 100. Trials with “did not see”
responses were deemed incorrect. We also derived an accuracy
score for the subset of trials at the plateau of the psychophysical
staircase where the level of distractor dots was approximately con-
stant. This threshold accuracy value related to the last 28 trials in
each block and, because of the randomization of direction, varied
from subject to subject in the total number of leftward and right-
ward trials. For each direction, group differences in accuracy score
between patients and controls were tested using two-sample t tests.
ANOVA models were used to examine the effects of gender and
degree of right handedness. Within-subject measures of leftward
and rightward accuracy were compared in a repeated measures
ANOVA model with within-subject factor direction(left, right)
and between-subject factor group(patient, control). Correlations
between accuracy and functional outcome were explored using
non-parametric tests (Spearman’s Rho, one-tailed tests) and para-
metric tests (Pearson’s) when co-varying for negative symptoms.
Correlations between leftward and rightward accuracy and with
IQ were measured using parametric tests (Pearson’s).

FMRI METHODS
Six control subjects without history of neurological or psychiatric
illness took part in the study (two male, four female; mean age
30 ± 6 years). All had normal corrected visual acuity and gave
informed consent. Subjects were presented the same translational
biological motion stimulus as used in the psychophysical study,
with timings adapted for fMRI (8 s trial length with the stimulus
appearing at a random time around 4 s after the appearance of
distractor dot noise; inter-trial interval = 8 s) and a fixed num-
ber of distractors determined for each subject prior to the scan
to standardize performance at ∼70% correct. Subjects were not
required to maintain fixation. Biological motion trials were inter-
leaved with trials of coherent motion, optic flow and blank trials.
Only data from biological motion trials is presented here (14 tri-
als for each subject, seven leftward, seven rightward). Subjects
responded with a right hand button press to indicate whether they
had seen rightward, leftward or no motion.

MRI ACQUISITION AND ANALYSIS
Functional images were acquired on a 1.5 Tesla GE Neuro-
optimised Signa LX Horizon System (General Electric, Milwaukee,
WI, USA), using a gradient echo planar sequence sensitive to
blood oxygenation level dependent (BOLD) contrast (TR = 2 s;
TE = 40 ms; flip angle 90◦; 64 × 64 matrix; in-plane voxel
size 3.75mm × 3.75 mm). 16 axial slices, 7 mm thick with
0.7 mm interslice gap, were acquired every 2 s. For each sub-
ject, the functional time series was motion corrected (Friston
et al., 1996), transformed into stereotactic space and smoothed
with a 7 mm FWHM Gaussian filter using SPM software
(http://www.fil.ion.ucl.ac.uk/spm). The activity at each voxel was
high-pass filtered and modeled by three covariates (distractor dot
onset, leftward biological motion onset for correct trials; right-
ward biological motion onset for correct trials), convolved with
the hemodynamic response function. Group activation maps for
leftward > rightward and rightward > leftward translational bio-
logical motion were created using a fixed effect model that included
all subjects.

RESULTS
As described previously for the biological motion task, control
subjects had a higher number of distractor dots at threshold
than patients (number of distractor dots at threshold con-
trols = 211.95 ± 63; patients = 186.25 ± 61; Brittain et al., 2010a).
The level of distractor dots at threshold reflects the number of
errors made in the staircase and one would expect, therefore, a
significant correlation between accuracy and the number of dis-
tractor dots at threshold (r = 0.845, p < 0.001 for the group as a
whole, the correlation is not perfect due to the varying position
on the staircase of the first error and its associated change in step
size). The issue we explore here is whether accuracy across the
staircase differed for one direction and the other or, put another
way, whether the reduced sensitivity in schizophrenia overall was
driven primarily by reduced sensitivity in a single direction.

The accuracy results from each direction in all participants
are illustrated in Figure 1A. There was no significant differ-
ence in accuracy between patients and controls for rightward
motion (patients = 62.7% ± 12.4[SD]; controls = 64.1% ± 11.7;

www.frontiersin.org July 2013 | Volume 4 | Article 436 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/Psychopathology/archive


“fpsyg-04-00436” — 2013/7/12 — 20:02 — page 4 — #4

Hastings et al Biological motion translation in schizophrenia

FIGURE 1 | Biological motion direction accuracy. (A) accuracy scores for
leftward and rightward motion for the cohort as a whole with a significant
difference in accuracy for leftward motion only. (B) The accuracy scores for

leftward and rightward directions in each subject are connected by a line to
illustrate their negative correlation. The circles indicate the position of the
mean values given in Figure 1A.

t126 = 0.66; p > 0.05). In contrast, a significant difference
was found for leftward motion (patients = 57.9% ± 14.3;
controls = 63.6% ± 11.3; t126 = 2.49; p = 0.01). The reduc-
tion in leftward motion accuracy was not influenced by gender
(F1,124 = 0.75; p > 0.05) or right/ambiguous handedness
(F1,123 = 1.16; p > 0.05). It does not reflect a bias in the
patient group to respond “right” for trials that they were unsure
of rather than using the “did not see” option as the average
number of trials reported as “did not see” was similar in the
two groups (patients = 28.9%, controls = 28.4%). These accu-
racy values relate to all trials in the staircase and thus contain
a mixture of easy trials presented at the beginning of a block
when the number of distractor dots is low and difficult trials
presented at the end of a block when the number of distrac-
tor dots is high. We found the same pattern of results when
examining the subset of difficult trials at threshold, although the
level of significance was lower given the smaller number of tri-
als and variability in the number of leftward and rightward trials
used to derive the accuracy value (rightward motion at threshold
patients = 56.2% ± 13.6; controls = 56.9% ± 14.1; t126 = 0.297;
p = 0.76; leftward motion at threshold patients = 49.9% ± 16.7;
controls = 55.1% ± 14.2; t126 = 1.86; p = 0.06). We also

examined whether the accuracy values might be related to IQ.
Treating the patients and controls as a single group, IQ corre-
lated with leftward accuracy (r = 0.186; p = 0.01; higher IQ
better accuracy score), but not rightward accuracy (r = −0.81;
p = 0.18). The association with leftward accuracy was also found
for the control group considered alone (r = 0.206; p = 0.05)
and a negative correlation was found between rightward accu-
racy and IQ (higher IQ lower accuracy, r = −0.244; p = 0.02).
In the patient group neither leftward accuracy (r = 0.113;
p = 0.18) or rightward accuracy (r = 0.033; p = 0.39) correlated
with IQ.

The reduction in leftward accuracy observed in the patient
group is more complex than implied by the average data. There
was a significant negative correlation between leftward and right-
ward accuracy for both patients and controls (controls r =−0.444,
p < 0.001; patients r = −0.468, p < 0.001) such that, for most
subjects, accuracy for one direction was better than the other.
This relationship is illustrated in Figure 1B where a line is drawn
for each subject connecting their leftward and rightward accuracy
scores. While some subjects have approximately equivalent accu-
racy for leftward and rightward directions (horizontal lines), the
majority have an asymmetrical bias (diagonal line). We derived an
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index of directional bias for each subject to further explore this
issue (rightward accuracy – leftward accuracy; > 0 = rightward
bias, < 0 = leftward bias; 0 = no bias). In controls, mean leftward
bias was 17% ± 11 and mean rightward bias was 18% ± 11 with the
magnitude of leftward and rightward bias balancing out such that,
overall, mean accuracy was equivalent for leftward and rightward
directions. In the schizophrenia group the distribution of bias was
such that the rightward bias outweighs the leftward bias (mean
leftward bias 18% ± 14; mean rightward bias 21% ± 12), with
a consequent overall reduction in mean leftward accuracy. This
effect is hidden in the within-subject ANOVA (group by direction
interaction F1,126 = 1.285, p = 0.26) due to the high variance of
accuracy difference across subjects with leftward and rightward
direction bias. For the same reason, the within-subject t-test of
leftward v rightward accuracy in the patient group is only at trend
significance (patients mean difference 4.7% ± 23, t63 = 1.66,
p = 0.10; controls mean difference 0.48% ± 20, t63 = 0.197,
p = 0.84).

We next examined whether the directional bias index was
linked to functional outcome. For the patient group as a whole
there was a trend significant association for the functional out-
come total score (rho = −0.175, p = 0.083) but significant and
trend significant correlations with subscales of working produc-
tivity (rho = −0.208, p = 0.049), independent living/self-care
(rho = −0.194, p = 0.063) and immediate social network rela-
tionships (rho = −0.173, p = 0.086). PANSS negative symptoms
were strongly associated with functional outcome (rho = −0.577,
p < 0.001) and controlling for negative symptoms, the relation-
ship between directional bias index and functional outcome was
strengthened (total score r = −0.272, p = 0.016; working pro-
ductivity r = −0.225, p = 0.038; independent living/self-care
r = −0.212, p = 0.047 and immediate social network relationships
r = −0.235, p = 0.032).

FMRI RESULTS
Of the six subjects taking part in the fMRI study, four had
leftward bias on the asymmetry index (32 ± 14%) and two
had rightward bias (43 ± 0%). Pooling both sets of subjects
we identified regions activated more for leftward than right-
ward translation of biological motion and vice versa. Given the
exploratory nature of the study and small number of subjects
and trials, a lenient threshold of p < 0.05 uncorrected and 10
contiguous voxels was used. Figure 2 shows regions activated at
this threshold by leftward motion (blue bars) more than right-
ward motion (red bars; Figure 2A) or rightward motion more
than leftward motion (Figure 2B). Areas preferentially activated
by leftward motion included bilateral regions of dorsolateral pre-
frontal cortex (MNI co-ordinates ± 56 30 28) bilateral regions
in the intra-parietal sulcus (MNI co-ordinates ± 32 -68 40)
and right cuneus (MNI co-ordinates 14 -80 40). Areas prefer-
entially activated by rightward motion included bilateral regions
in the supramarginal gyrus (MNI co-ordinates ± 52 -62 22),
left STS/middle temporal gyrus (MNI co-ordinates -54 -32 -
14) and bilateral medial frontal regions (MNI co-ordinates ± 4
60 28). The pattern of preferential leftward and rightward acti-
vation was the same when the analysis was restricted to the
four subjects with leftward bias alone. The number of subjects

with rightward bias was too small to draw any conclusions as
to whether regions of preferential activation differed in this
subgroup.

DISCUSSION
We have sought evidence for an asymmetric sensitivity to direction
of biological motion translation in patients with schizophrenia
based on an asymmetry of atrophy within regions linked to bio-
logical motion found in previous studies. Although we found
evidence in support of an asymmetry, the findings suggest a
more complex relationship between direction and hemisphere
than envisaged. Below we discuss the findings in the light of
preliminary functional imaging evidence and explore their wider
implications.

LEFTWARD AND RIGHTWARD DIRECTION DISCRIMINATION
Although motion speed, coherence, local/global features and
direction have been studied extensively in schizophrenia (see Chen,
2011 for review), as far as we are aware no studies have reported
thresholds for leftward and rightward motion separately. Where
direction discrimination has been investigated in previous stud-
ies (e.g., Chen et al., 2003; Slaghuis et al., 2005; Brittain et al.,
2010a) the methods used measure overall performance on a left-
ward/rightward discrimination task rather than thresholds for
leftward and rightward directions separately. The apparent deficit
in leftward motion reported here is therefore an entirely novel
finding. We were unable to explore whether it is also apparent in
the global coherent motion task reported in our previous stud-
ies (Brittain et al., 2010a,b) as the coherent motion task involved
upward and downward, not leftward and rightward directions.

The interpretation of the leftward direction deficit found in
schizophrenia is more complex than anticipated. Unexpectedly,
sensitivity for leftward and rightward directions were negatively
correlated in the group as a whole, with the deficit in schizophre-
nia reflecting a difference in relationship between leftward and
rightward accuracy rather than a deficit of sensitivity for leftward
translation alone. As far as we are aware, a negative correlation of
leftward and rightward direction sensitivity has not been reported
before. It is important to note that our analysis is retrospective,
based on previously collected data, and uses a non-conventional
analysis of a standard psychophysical staircase. The analysis poten-
tially introduces systematic biases as, for the ideal observer at the
staircase plateau that defines threshold, successive trials may be
seen and not seen in alternation because the number of distrac-
tor dots alternately increases and decreases. If the randomization
of directions in the plateau allocates alternating leftwards and
rightwards trials, one direction would be seen and the other not.
However, this chance occurrence would not favour one direction
over the other, i.e., could equally be “left seen, right not seen”
as “right seen, left not seen”. Any small bias in one direction
for a block of trials would even out across repeated blocks and
through combining data from different subjects. Furthermore,
longer sequences of alternating directions lead to higher % accu-
racy for one direction but have no effect on % accuracy for the
other so that such biases do not account for the negative corre-
lation between directions found. It therefore seems unlikely our
results can be explained by the non-conventional nature of our
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FIGURE 2 | Brain regions selectively activated by leftward or rightward

translational biological motion. Coronal, axial, and sagittal slices of the
SPM single subject canonical image is shown (MNI x, y or z co-ordinate
indicated for each slice) through regions of activation in the group analysis
for: (A) leftward translation greater than rightward translation; (B) rightward

translation greater than leftward translation. Threshold p < 0.05
uncorrected, 10 contiguous voxels. The graphs show mean and
standard error beta values in regions indicated by the arrows
for correctly identified leftward (blue) and rightward (red) motion
trials.

analysis. Indeed, the use of a single staircase to compare accu-
racy for the two directions would be more likely to introduce a
spurious positive correlation between directions than the negative
correlation found. The negative correlation of direction accuracy
is also not explained by systematic differences in reporting in the
two groups. IQ in the patient group was lower than in the control
group and thus one might argue the patient group had greater dif-
ficulty understanding the task. However, while this might account
for an overall reduction in accuracy, it seems unlikely that it could
account for a deficit in one direction of translation but not the
other. Similarly, one might argue that the patient group had med-
ication and psychopathology not present in the control group that
could influence performance in the task but it seems improbable
that such effects could impact on one direction only. Sensitivity to
biological motion is influenced by a number of factors including
size and eccentricity (Gurnsey et al., 2008), body part (Takahashi
et al., 2011), facing direction for stimuli presented in a given
hemifield (de Lussanet et al., 2008) and executive control (Chan-
drasekran et al., 2010). However, apart from facing direction, these
factors were identical for leftward and rightward translation so it is

difficult to account for differences in sensitivity for the two direc-
tions in terms of these factors. The leftward translating stimulus
was presented as if facing left and the rightward translating stim-
ulus presented as if facing right; however, the trajectory of the
walking figure crossed both left and right hemifields so that dif-
ferential sensitivity to facing direction in one hemifield would be
offset by the opposite sensitivity in the other hemifield. In sup-
port of this view, we did not find differential activation in our
study within sub-regions of the fusiform gyrus sensitive to facing
direction (Michels et al., 2009). In summary, although the under-
lying mechanism of directional bias and leftward accuracy deficit
in schizophrenia requires further investigation, it does not seem to
be accounted for by non-specific differences between the patient
group and controls or by known factors influencing sensitivity to
biological motion.

Our fMRI analysis was exploratory and used a lenient threshold
in which many of the regions identified would not survive correc-
tion for multiple comparisons. However, it provides clues as to
the types of functional or structural change in schizophrenia that
could underlie the psychophysical findings. Importantly the fMRI
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findings suggest that our hypothesis of preferential representation
for leftward motion in the left hemisphere and rightward motion
in the right hemisphere derived from the coherent motion litera-
ture is over simplistic for biological motion. The areas identified
in this study are predominantly bilateral so it is unlikely that any
differences in structure or function in patients with schizophrenia
restricted to one hemisphere would cause the shift in bias and con-
sequent decrease in leftward accuracy found in the psychophysical
data. What is more likely is that, in schizophrenia, functional
changes in bilateral subsets of regions, for example decreased activ-
ity in bilateral dorso-lateral pre-frontal cortex or increased activity
in bilateral STG, is responsible for the psychophysical changes. The
fMRI data also raises the intriguing possibility that the negative
correlation of leftward and rightward accuracy described in the
psychophysical data might be linked to the reciprocal relationship
of leftward and rightward responses within brain areas.

DIRECTIONAL BIAS AND FUNCTIONAL OUTCOME
Why might functional outcome be linked to a bias in transla-
tional direction perception? It seems unlikely the small overall
deficit in leftward direction (a decrease in accuracy of 5% in the
patient group) would have specific effects on social function. What
seems more probable is that directional bias is an indirect mea-
sure of wider cognitive functions including (i) theory of mind
cognition, linked in previous studies to motion perception (Kele-
men et al., 2005) or (ii) the comprehension of action movements
(Bonda et al., 1996). The unexpected association of IQ with left-
ward accuracy in the cohort as a whole and with leftward and
(negative) rightward accuracy in the control group lends support
to this view. We assume an aspect of social cognition or wider

cognitive function, co-localized or localized in close proximity to
regions underlying directional bias, are responsible for these asso-
ciations. The correlation coefficient linking functional outcome to
directional bias is higher than that between functional outcome
and biological motion threshold although the difference is not
statistically significant (r = 0.129 for threshold versus outcome,
r = (−)0.272 for directional bias versus outcome, co-varying for
negative symptoms in both tests, p = 0.3 in Z transform test).
In contrast, both these associations with functional outcome are
lower than that reported by Kim et al. (2005) for biological motion
sensitivity (r = 0.7; difference p = < 0.01 Z transform test).
However, the Kim et al. (2005) study used a measure of outcome
weighted by age and education which might account for the higher
correlation.

CONCLUSION
The deficit in biological motion perception for leftward transla-
tion we have identified in patients with schizophrenia and its link
to functional outcome remains unexplained. However, it points
to direction of translation sensitivity as a potentially important
area of investigation in schizophrenia. The results presented here
suggest measures of leftward and rightward biological motion
translation may help explore cortical function in key frontal,
parietal and temporal regions serving social cognitive function
and their interaction across hemispheres to better understand the
neurobiology of cognitive change in schizophrenia.
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