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Gambling disorder sufferers prefer immediately larger rewards despite long term losses
on the Iowa Gambling Task (IGT), and these impairments are associated with dopamine
dysfunctions. Dopamine is a neurotransmitter linked with temporal and structural
dysfunctions in substance use disorder, which has supported the idea of impaired
decision-making and dopamine dysfunctions in gambling disorder. However, evidence
from substance use disorders cannot be directly transferred to gambling disorder. This
article focuses on three hypotheses of dopamine dysfunctions in gambling disorder,
which appear to be “fallacies,” i.e., have not been supported in a series of positron
emission tomography (PET) studies. The first “fallacy” suggests that gambling disorder
sufferers have lower dopamine receptor availability, as seen in substance use disorders.
However, no evidence supported this hypothesis. The second “fallacy” suggests that
maladaptive decision-making in gambling disorder is associated with higher dopamine
release during gambling. No evidence supported the hypothesis, and the literature on
substance use disorders offers limited support for this hypothesis. The third “fallacy”
suggests that maladaptive decision-making in gambling disorder is associated with
higher dopamine release during winning. The evidence did not support this hypothesis
either. Instead, dopaminergic coding of reward prediction and uncertainty might better
account for dopamine dysfunctions in gambling disorder. Studies of reward prediction and
reward uncertainty show a sustained dopamine response toward stimuli with maximum
uncertainty, which may explain the continued dopamine release and gambling despite
losses in gambling disorder. The findings from the studies presented here are consistent
with the notion of dopaminergic dysfunctions of reward prediction and reward uncertainty
signals in gambling disorder.
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INTRODUCTION
Impaired performance on the Iowa Gambling Task (IGT) is
associated with a range of substance use disorders and behavioral
addictions including gambling disorder. The term “gambling
disorder” was recently introduced in version 5 of the Diagnostic
Statistical Manual (DSM) (American Psychiatric Association
DSM 5, 2013) as a separate chapter on “behavioral addiction”
under the substance use classification. In DSM-IV (American
Psychiatric Association DSM-IV, 1994) the disorder was classified
as “pathological gambling” under “impulse control disorders.”
The change in classification and grouping has two important
implications. First it suggests that gambling disorder shares the
clinical characteristics of substance use disorders rather than
impulse control disorders. This change is significant because it
underscores the relevance of comparing gambling disorder with
other forms of addiction with regard to for instance clinical epi-
demiological and neurobiological aspects of the disorder. Second
it uniquely differentiates gambling disorder as a “behavioral
addiction” from other substance use disorders which emphasizes

that addiction can be purely behavioral and need not involve the
intake of exogenous substances.

The research approach on neurobiological markers of IGT
performance in gambling disorder presented here focuses on
these two distinctions. On the one hand it identifies com-
mon features of dopaminergic dysfunctions and impaired
IGT performance in gambling disorder and related sub-
stance use disorders; on the other hand it seeks to iden-
tify unique patterns of dopamine dysfunctions in relation to
impaired IGT performance of gambling disorder sufferers com-
pared with evidence from the literature on substance use
disorders.

The present article suggests that there are three hypotheses of
dopaminergic dysfunctions in gambling disorder, which appear
to be fallacies, i.e., it has not been possible to find support
for the hypotheses in a series of positron emission tomogra-
phy (PET) studies on gambling disorder. The first hypothesis
suggests that gambling disorder sufferers have lower baseline
binding potentials, as seen in substance use disorders; the second
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hypothesis suggests that gambling activity is associated with
higher dopamine release in gambling disorder, i.e., that gambling
disorder sufferers have dopaminergic hypersensitivity toward
gambling; the third hypothesis suggests that winning is associ-
ated with higher dopamine release in gambling disorder, i.e., that
gambling disorder sufferers have dopaminergic hypersensitivity
toward winning. Finally, it is suggested that reward prediction
and reward uncertainty signals, which are learning mechanisms
associated with dopamine release, might better account for the
dopaminergic dysfunctions and impaired IGT performance in
gambling disorder, and evidence is presented to support this
vantage point.

THE IOWA GAMBLING TASK IN SUBSTANCE USE DISORDERS AND
GAMBLING DISORDER
The IGT is an executive functions task, which simulates real
life decision making in the way that it factors reward and
punishment (Bechara et al., 1994). Individuals choose between
four decks of cards labeled A, B, C, and D, with the objec-
tive to win as much money as possible. In decks A and B
(“disadvantageous decks”), choosing a card is followed by an
immediately high gain of money, but at unpredictable trials the
selection is followed by a high loss, leading to a net loss over
time. In decks C and D (“advantageous decks”), the immedi-
ate gain is smaller, but the future loss is also smaller, leading
to a net gain over time. Other versions of the IGT have been
developed, where, for instance, the contingencies are reversed
(Bechara et al., 2002).

Originally, findings on the IGT showed that patients suffer-
ing from lesions in the ventromedial prefrontal cortex (some-
times referred to as the orbitofrontal cortex) have a higher
preference for immediate rewards despite negative future con-
sequences (Bechara et al., 1994, 2000). These findings led to
the suggestion that lesion patients suffer from insensitivity to
future consequences. The findings of impaired decision-making
in lesion patients were replicated in individuals suffering from
substance use disorders, suggesting that these individuals pre-
fer immediate rewards despite negative long-term consequences
(Bechara et al., 2001; Bechara, 2003). The impairments were
linked to prefrontal cortex dysfunctions, based on the evi-
dence from lesion patients. The findings were later extended
to gambling disorder, where gambling disorder sufferers show
decision-making impairments similar to individuals suffering
from substance use disorders (Grant et al., 2000; Petry, 2001;
Cavedini et al., 2002; Goudriaan et al., 2005, 2006a; Linnet et al.,
2006).

Linnet et al. (2006) investigated “chasing one’s losses,” a key
diagnostic symptom of gambling disorder. The authors com-
pared 61 gambling disorder sufferers with 39 healthy controls.
Gambling disorder sufferers were recruited through a treatment
center, and healthy controls were selected from a pool of first-
year psychology students. All participants completed a modified
version of the IGT called the “Mouse Game” where individuals
had to help a mouse gather cheese, rather than winning money.
The contingencies were the same as the IGT, but units were con-
verted into grams of cheese and the winning and losing sounds
were removed, in order to reduce the association with gambling.
The decks on the Mouse Game were stacked with 100 cards, such

that participants could not deplete the decks during trials; the last
40 cards were added to the original 60-card stack on the IGT.

The study aimed at developing a quantifiable behavioral
measure of chasing in a gambling situation where decision-
making and skill would determine the outcome of the game. It
was hypothesized that gambling disorder sufferers would have
impaired IGT performance and increased episodic chasing (i.e.,
sequences of persistent poor choices leading to losses) compared
with healthy controls, suggesting that they would be less likely to
use negative feedback to change their behavior. To define chas-
ing on the IGT, an index of behavior focused on choice sequences
was compiled. Advantageous choice sequence was defined as five
consecutive advantageous decisions (cards from deck C or D) and
a disadvantageous choice sequence as five consecutive disadvanta-
geous decisions (cards from deck A or B). The chance of choosing
five consecutive good or bad cards at random is 2−5 = 0.03125
(p < 0.05).

The result showed that gambling disorder sufferers had signif-
icantly higher chasing on the IGT than healthy controls (df =
4, F = 3.61, p ≤ 0.01). The advantageous and disadvantageous
chasing episodes were distributed evenly throughout the game. In
other words, individuals did not solely have, e.g., advantageous
decision-making sequences in the beginning of the game and
disadvantageous sequences toward the end of the game. Rather,
a pattern emerged for players with several behavior episodes in
which both advantageous and disadvantageous decisions were
present at the beginning of the game, developing into a “learn-
ing curve” of predominantly advantageous or disadvantageous
sequences as the game unfolded. These results are consistent with
the notion that gambling disorder sufferers are more impulsive
and less likely to adopt a long term advantageous strategy, even
in the face of negative feedback, than healthy controls. They are
also consistent with the notion of reduced PFC functions and/or
dopamine dysfunctions in the disorder.

SUBSTANCE USE DISORDERS AND THE DOPAMINE SYSTEM
Using drugs such as cocaine, amphetamine, and metham-
phetamine increases extracellular dopamine in the synaptic cleft,
and binds more dopamine to the dopamine receptors of the
synapses (Stahl, 2006). In healthy individuals increased dopamine
binding to dopamine D2/3 receptors is associated with a higher
self-reported hedonic pleasure (Volkow et al., 2002a). The hedo-
nic pleasure from drug liking is linked to two factors: (1) the
baseline level of dopamine receptor availability before drug use;
and (2) the change in dopamine receptor availability following
drug use. Dopamine receptor availability is measured using, for
instance, PET, where a radioactive ligand such as [11C]raclopride
is injected into the blood stream, and measured based on its
binding properties. Raclopride binds to available dopamine D2/3

receptors in the brain, and the raclopride binding potential is an
index of dopamine receptor availability:

BPND = Bmax − B

VdKd
(1)

where Bmax is the maximum binding capacity of the receptors, B
is the binding of the radioligand, Vd is the volume distribution,
and Kd is the ligand’s half-saturation concentration.
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A higher baseline raclopride binding potential is interpreted
as a higher number of dopamine receptors available for bind-
ing; a higher (positive) change in raclopride binding potential
from a baseline to an experimental condition is interpreted as an
increased release of dopamine because more dopamine is bound
to the receptors in the experimental condition. Substance use
disorders are associated with lower baseline dopamine receptor
availability and reduced dopamine release from drug use.

Baseline levels of dopamine receptor availability
Healthy individuals with lower baseline dopamine receptor avail-
ability have higher hedonic pleasure from drug use than individ-
uals with higher levels of dopamine receptor availability (Volkow
et al., 1999, 2002b). These findings have been interpreted to
suggest that lower baseline dopamine receptor availability is a
risk factor for developing substance use disorders, while higher
receptor availability could help prevent developing substance use
disorder.

In a study of 15 methamphetamine use disorder sufferers and
20 healthy control subjects Volkow et al. (2001) found that the
methamphetamine use disorder sufferers had significantly lower
dopamine binding than control subjects. The authors note that
the results could either reflect a pre-conditioned vulnerability
toward addiction, or a down-regulation of dopamine receptors or
loss of dopamine transporters following the methamphetamine
use disorder.

Later, Volkow et al. (2006) compared dopamine receptor avail-
ability of non-addicted family members from families with a
history of alcoholism and family members from families without
a history of alcoholism. Individuals from families with a history
of alcoholism had significantly lower baseline dopamine recep-
tor availability than individuals from families without alcoholism.
The results are consistent with the notion that higher base-
line dopamine receptor availability is a protective factor against
alcoholism and substance dependence. Individuals from families
without a history of alcoholism may have been “protected” from
developing substance use disorder by higher dopamine receptor
availability, while individuals from families with a history of alco-
holism may be at risk for developing substance use disorder due
to lower receptor availability.

Dopamine release and substance use
Healthy volunteers show a significant correlation between change
in dopamine binding and hedonic response to substance use;
individuals with larger dopamine release from substance use
report larger hedonic response (Volkow et al., 2002a). However,
the evidence of change in dopamine release and hedonic response
in substance use disorders is more complex (Volkow et al.,
1997, 2002a, 2008; Kalivas and Volkow, 2005). Volkow et al.
(1997) investigated dopamine release and hedonic response from
methamphetamine use in 20 detoxified cocaine use disorder
individuals and 23 healthy controls. Participants were given a
moderate dosage of intravenously injected methamphetamine,
a substance similar to cocaine. The results confirmed previous
reports that cocaine use disorder individuals had lower base-
line dopamine receptor availability than healthy controls. They
further showed that healthy controls had significantly increased

dopamine release throughout the striatum and felt significantly
more “high” and “restlessness” from drug use compared to
cocaine use disorder individuals.

The results suggest a blunted dopaminergic effect toward
methamphetamine and reduced feelings of “high” in cocaine use
disorder sufferers. In other words, individuals with cocaine use
disorder neither have increased dopamine release nor increased
pleasure from using drugs similar to cocaine compared with
healthy control individuals. Substance use disorders therefore
cannot be explained by increased dopamine release from sub-
stance use or higher pleasure from dopamine release per se. The
involvement of dopamine in substance use disorders is more
complex.

GAMBLING DISORDER AND THE DOPAMINE SYSTEM
The dopamine system is sensitive to behavioral stimulation
related to monetary reward (Koepp et al., 1998; Breiter et al., 2001;
Zald et al., 2004). For instance, Koepp et al. (1998) found that
skilled video game players had significant dopamine release in the
striatum when playing a video game for money.

Another line of evidence of the role of dopamine in gam-
bling disorder comes from the literature on gambling disorder
in Parkinson’s disease sufferers in agonist treatment. Parkinson’s
disease sufferers, who are treated with dopamine agonists, have
significantly higher prevalence of gambling disorder than indi-
viduals who receive other forms of treatment (Grosset et al.,
2006; Lu et al., 2006; Weintraub et al., 2006). Agonist treatment
is also associated with other impulse control disturbances such
as hypersexuality, compulsive shopping, and compulsive eating
(Steeves et al., 2009). These data suggest that certain changes to
the dopamine system is associated with increased risk of addic-
tion and impulse control disorders, including gambling disorder.
While the dopaminergic mechanism behind the increased risk
of gambling disorder is currently unknown, Steeves et al. (2009)
found significant dopamine release in the ventral striatum of
Parkinson’s disease patients suffering from gambling disorder
who gambled for money. Furthermore, de la Fuente-Fernandez
et al. (2002) found significant dopamine release in the ven-
tral striatum of Parkinson’s patients expecting a drug reward in
placebo trials. The authors concluded that the dopamine release
was mediated by the expectation of reward. Unlike gambling dis-
order sufferers, Parkinson’s disease sufferers in agonist treatment
with gambling disorder have reduced binding potentials as a con-
sequence of Parkinson’s disease, and they therefore represent an
atypical case of gambling disorder. For this reason the present
review predominantly focuses on dopaminergic dysfunctions in
gambling disorder without Parkinson’s disease.

While use of substances such as cocaine is associated with
dopamine release throughout the striatum, the ventral striatum
is specifically involved in drug expectation and monitoring of
reward (Delgado et al., 2000; de la Fuente-Fernandez et al., 2002),
and this region appears to be central to gambling disorder and
substance use disorder (Reuter et al., 2005; Abler et al., 2006;
Linnet et al., 2010, 2011a,b). Evidence from the animal litera-
ture also supports the involvement of the ventral striatum in drug
seeking and addictive behavior (Dalley et al., 2007; Uhl, 2007;
Doya, 2008). Dopaminergic dysfunctions in the ventral striatum
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might therefore contribute to the decision making impairments
on the IGT seen in gambling disorder. However, while substance
use disorder and gambling disorder may share a common neu-
robiological basis, there might be differences in dopaminergic
dysfunctions related to drug use and gambling.

The present review examines similarities and differences in
dopaminergic dysfunctions between substance use disorder and
gambling disorder based on a series of articles investigating the
relation between dopaminergic neurotransmission and IGT per-
formance in gambling disorder (Linnet et al., 2010, 2011a,b,
2012). In the study we scanned gambling disorder sufferers and
healthy controls with PET using the radioligand [11C]raclopride
to measure dopaminergic neurotransmission during a baseline
and a gambling condition of the IGT. In the baseline condition
participants played a non-decision IGT similar to that of Bolla
et al. (2003, 2004), where the computer automatically instructed
the participants which cards to choose, and no winning or los-
ing sounds were used; during the gambling scan participants
chose freely between the decks, and received auditory feedback
when winning or losing. Since each PET scan lasted 60 min,
and it only takes ∼20 min to administer the IGT, three ver-
sions of the IGT were used: the regular ABCD version, and
subsequent KLMN and QRST versions, where the contingencies
between decks become increasingly ambiguous. Raclopride bind-
ing potentials (BPND) and change in binding potential (�BPND)
between baseline and gambling condition were recorded. Higher
raclopride binding potentials (BPND) indicate a higher num-
ber of D2/3 receptors available for dopamine binding. Decreased
raclopride binding potentials from baseline to gambling condi-
tion indicate dopamine release because dopamine occupies more
receptors during gambling and leaves fewer receptors available for
raclopride binding. Raclopride binding potentials were measured
using the ERLiBiRD method (Gjedde et al., 2005), and a ventral
striatum mask using criteria similar to those of Mawlawi et al.
(2001) was used to determine the anatomical location of the ven-
tral striatum. Other masks were used for the putamen and caudate
nucleus. The raclopride emission recordings were co-registered
with structural MR images for each individual using MNI tools,
and transformed into a common stereotaxic coordinate space
(Talairach and Tournoux, 1988).

The study findings gave rise to the notion of the three “falla-
cies” of the role of dopamine in gambling disorders. Specifically,
we found no support for the hypotheses that: (1) gambling
disorder sufferers have lower baseline dopamine receptor avail-
ability; (2) gambling disorder sufferers have increased dopamine
release when gambling; and (3) gambling disorder sufferers have
increased dopamine release when winning.

Fallacy 1: gambling disorder sufferers have lower baseline
dopamine receptor availability
While studies of substance use disorder have consistently and
independently shown lower baseline dopamine receptor availabil-
ity throughout the brain in substance use disorder (Volkow et al.,
1997, 2001), we found no such differences in gambling disorder
(Linnet et al., 2010, 2011a,b, 2012). Linnet et al. (2010) compared
raclopride binding potentials (BPND) in the ventral striatum of 16
gambling disorder sufferers and 15 healthy controls. The results

showed no significant differences in baseline binding potentials
between the two groups. Follow-up studies expanding the cohort
to 18 gambling disorder sufferers and 16 healthy controls (Linnet
et al., 2012) confirmed these findings throughout the striatum.
Later independent studies support that gambling disorder suf-
ferers do not differ in baseline dopamine receptor availability
compared with healthy controls (Clark et al., 2012; Boileau et al.,
2013).

The findings differ from the literature on substance use disor-
der, where individuals with substance use disorder have signif-
icantly lower binding potentials than healthy controls (Volkow
et al., 2001). The differences in results may suggest a down-
regulation of receptor availability as a consequence of sub-
stance use disorder, which is not present in gambling disorder.
Co-morbidity between gambling disorder and substance use dis-
orders is generally high (Crockford and el-Guebaly, 1998; Ibanez
et al., 2001; Kausch, 2003; Petry et al., 2005; Dannon et al.,
2006; Kessler et al., 2008), and presence of substance use disor-
ders increases severity of gambling disorder (Rush et al., 2008)
or risk thereof (el-Guebaly et al., 2006). However, our popula-
tion of gambling disorder sufferers (Linnet et al., 2010, 2011a,b,
2012) was screened for substance use disorders. It is therefore,
possible that lower levels of baseline dopamine binding potentials
are found in individuals suffering from co-morbidity of gam-
bling disorder and substance use disorders. More importantly,
the findings might have implications for understanding the role
of dopamine in the behavioral addictions (Holden, 2001; Shaffer
and Kidman, 2003; Petry, 2006; Potenza, 2006; Grant et al., 2010),
and may indicate neurobiological distinctions between behavioral
addictions and substance use disorders at the level of the striatum
and ventral striatum.

Fallacy 2: gambling disorder sufferers have increased dopamine
release when gambling
Despite the evidence of a blunted dopamine response in substance
use disorder (Volkow et al., 1997), the fallacy of a hyperdopamin-
ergic response to reward in substance use disorder has tran-
scended into the field of gambling disorder. The dopamine system
is sensitive to behavioral stimulation related to monetary reward
(Koepp et al., 1998; Breiter et al., 2001; Zald et al., 2004), which
has lead to the suggestion of dopamine dysfunctions in gambling
disorder (Holden, 2001). However, the evidence of a hyper-
dopaminergic response to reward in gambling disorder is mixed.
Steeves et al. (2009) reported an increased dopamine response
to winning in a PET study of Parkinson’s disease patients with
gambling disorder compared with Parkinson’s disease patients
without gambling disorder. However, we (Linnet et al., 2011b)
found that some gambling disorder sufferers and healthy controls
had significant dopamine release in the ventral striatum when
gambling on the IGT, compared with the no-gambling condi-
tion, but we did not find differences between the two groups
in the magnitude of dopamine release (see Figure 1). Figure 1
shows gambling disorder sufferers (PG) and healthy controls
(HC) with positive changes in binding potential (BPND ≥ 0, black
bars) from baseline to gambling condition, suggesting dopamine
release. It can be seen from the figure that the two groups do
not differ in the magnitude of dopamine release from gambling.
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Similarly, we found no group differences in negative changes in
binding potential (BPND < 0, white bars), suggesting dopamine
inhibition. Comparing gambling disorder sufferers and healthy
controls throughout the striatum revealed similar results (Linnet
et al., 2012).

Even if the evidence supported the fallacy of a hyperdopamin-
ergic response to reward in substance use disorder, PET activation
paradigms used to study substance use disorder and gambling dis-
order may be too different to enable conclusions about differences
or similarities in dopamine release toward reward in the two pop-
ulations, because administering a drug may activate the dopamine
system in a very different way than a gambling simulation.

More importantly, the blunted dopamine response to reward
in substance use disorder might poorly explain the mechanisms
of addiction and a possible common neurobiological pathway of
addiction. What then, might explain dopaminergic dysfunctions
in addiction? Robinson and Berridge (1993, 2000, 2003, 2008)
have suggested that dopaminergic response to anticipated reward
(“wanting”), rather than the reward itself (“liking”) constitutes a
fundamental dopaminergic mechanism in addiction. In addiction
“wanting” increases, while “liking” decreases, and this decrease in
“liking” might correspond with the blunted dopamine response
to reward. Dysfunctions in dopaminergic response to anticipated
reward, on the other hand, might constitute a common mecha-
nism of addiction, because it occurs in the absence of reward, and
therefore may have similar (dys)function, whether the reward is
food, drugs or gambling. This mechanism might correspond to
the common clinical symptoms in addictions such as preoccupa-
tion or craving. It might also be involved in continued use despite
negative consequences such as depressed mood or loss chasing.

FIGURE 1 | Binding potential changes (�BPND) in ventral striatum.

Gambling disorder sufferers (PG, n = 8) and healthy controls (HC, n = 5)
show no significant differences in magnitude of dopamine release from
baseline to gambling condition (�BPND = 0, black bars). Similarly, gambling
disorder sufferers (PG, n = 8) and healthy controls (HC, n = 9) show no
significant differences in magnitude of dopamine inhibition from baseline to
gambling condition (�BPND < 0, white bars). The ordinate shows the
change in binding potential (�BPND), while the error bars indicate Standard
Error Means (SEM). Star symbols (∗) indicate p-values in comparison to
baseline. Reprint with permission from Linnet et al. (2011b).

In gambling disorder dopaminergic coding of uncertainty
might represent a dysfunctional reward anticipation, which rein-
forces the gambling behavior despite losses (see the section on
“Dopaminergic coding of reward prediction and uncertainty in
gambling”).

Fallacy 3: gambling disorder sufferers have increased dopamine
release when winning
Steeves et al. (2009) found that Parkinson’s disease sufferers with
gambling disorder had increased dopamine release when win-
ning on a modified version of the IGT compared with Parkinson’s
disease sufferers without gambling disorder. The task was rigged
with a 3:1 reward vs. penalty ratio, so it always produced an over-
all gain. The authors attributed the increased dopamine release
in gambling disorder to the gains from gambling, and suggested
that the increase might reflect a priming effect or premorbid
dopaminergic hypersensitivity of the ventral striatal circuits.

However, the results, are in contrast to findings by Linnet
et al. (2010). We found that gambling disorder individuals who
lost money had significantly higher dopamine release in the left
ventral striatum than healthy controls, F(1, 29) = 5.52, p < 0.05
(p < 0.02 one-tailed). Furthermore, a Two-Way ANOVA showed
a significant interaction effect, F(2, 28) = 4.18, p = 0.05, where
dopamine release was associated with losses in the gambling dis-
order group and gains in the healthy control group, see Figure 2.
No group differences were found in the right ventral striatum.

FIGURE 2 | Binding potential changes (�BPND) in left ventral striatum.

Gambling disorder sufferers who lose money (PG, black bar, n = 8) have
significantly higher dopamine release in the left ventral striatum than
healthy controls (HC, white bar, n = 5). Gambling disorder sufferers who
win money (PG, black bar, n = 8) do not differ in dopamine release from
healthy controls (HC, white bar, n = 10). Mean and Standard Errors are
illustrated in the bars and error bars, respectively. Dopamine release results
in positive values because raclopride binding potentials decrease from
baseline to gambling condition (baseline > gambling = positive value).
Conversely, dopamine inhibition results in negative values because
raclopride binding potentials increase from baseline to gambling condition
(baseline < gambling = negative value). Reprint with permission from
Linnet et al. (2010).
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These apparent differences raise the question of whether or
not alternative models can better explain the role of dopamine
release in relation to gains and losses in gambling disorder.
Dopaminergic coding of reward prediction and uncertainty
might offer such a model.

DOPAMINERGIC CODING OF REWARD PREDICTION AND
UNCERTAINTY IN GAMBLING
Reward prediction error in the dopamine system refers to a
mechanism that updates positive and negative reward predictions
of a stimulus. The mechanism constitutes a neural correlate of
the mathematical and behavioral Rescorla-Wagner learning rule
(Schultz, 2006). For instance, in random binary outcome situa-
tions (e.g., reward vs. no-reward) the expected value (EV) is the
average value that can be expected from a given stimulus, which
is a linear function of reward probability (Figure 3A). In contrast,
uncertainty, defined as the variance (σ2) of the probability distri-
bution is the mean squared deviation from the expected value,
which is an inverted quadratic function of reward probability
(Schultz et al., 2008) (Figure 3B).

Midbrain and striatal dopamine coding of expected value and
uncertainty follow linear and quadratic functions similar to their
mathematical expressions (Fiorillo et al., 2003; Preuschoff et al.,
2006; Schultz, 2006). Fiorillo et al. (2003) found distinct pha-
sic and sustained midbrain activation toward reward probability
in monkeys using electrophysiological measures of dopamine
neurons in the ventral midbrain areas A8, A9, and A10. Phasic
dopamine activation was larger in anticipation of stimuli with
larger reward probability, and smaller in anticipation of stim-
uli with smaller reward probability. The sustained activation was
largest toward stimuli with maximum uncertainty (P = 0.5) and

FIGURE 3 | Expected value and uncertainty as a function of reward

probability and dopamine release (�BPND). (A) Expected value is a linear
function of reward probability, where the expected value is minimal at
p = 0.0 and maximal at p = 1.0. (B) Uncertainty, defined as variance, is a
quadratic function of reward probability, where uncertainty is maximal at
p = 0.5 and minimal at p = 0.0 and p = 1.0. (C) Gambling disorder sufferers
(PG) show an inverted U-shaped function between binding potential
(�BPND) in the combined striatum and probability of selecting
advantageous decks [P(IGT)]. The interaction is significant (p < 0.005) and
accounts for 53.4% of the variation, R2(18) = 0.534. The dashed lines
indicate confidence intervals (95% CE). Positive �BPND values suggest
dopamine release, because dopamine occupies more receptors during the
gambling condition, while negative �BPND values suggest that dopamine
occupies fewer receptors. Reprint with permission from Linnet et al. (2012).
(A, B) are amended from Figure 1, (C) is amended from Figure 2.

declined toward higher and lower probabilities. The phasic and
sustained activation patterns were distinct both in terms of timing
of signal and dopamine neurons coding the response.

Preuschoff et al. (2006) found distinct neural coding of
expected value and uncertainty in the ventral striatum of healthy
men and women in a monetary card-guessing task. Expected
value was linearly associated with early anticipatory blood oxy-
gen level dependent (BOLD) activation, such that higher reward
probabilities were associated with higher anticipatory BOLD acti-
vation, and lower reward probabilities were associated with lower
anticipatory BOLD activation. In contrast, uncertainty showed an
inverse quadratic association with late anticipatory BOLD acti-
vation, such that the highest BOLD activation was seen around
maximum uncertainty (P = 0.5) and the lowest BOLD activation
was seen around maximum certainty (P = 1.0 and P = 0.0).

Linnet et al. (2012) hypothesized that dopaminergic coding
of outcome uncertainty on the IGT in gambling disorder would
follow the reward prediction error signal, i.e., have the prop-
erties of an inverted U-shaped curve. The IGT consists of two
“advantageous” and two “disadvantageous” decks that will lead
to long-term gains and losses, respectively. The person is free to
chose between decks, and the IGT performance can therefore be
expressed as the probability (P) of advantageous deck selection,
such that the variance is (1 − P)∗P.

The results confirmed the hypothesis of a significant inverse
quadratic relationship between dopamine release and IGT
performance among gambling disorder sufferers, which was
strongest in the combined striatum, F(2, 15) = 9.28, p = 0.002
(see Figure 3C). The quadratic relationship between dopamine
release and IGT performance did not reach significance level in
the healthy control group.

These results have implications for the findings by Steeves et al.
(2009) and Linnet et al. (2010). In the study by Steeves et al.
(2009) the computer program used a random sequence generator
to determine the card sequence, and the outcome was therefore
random, or uncertain, even though it always resulted in an over-
all gain. It is therefore possible that the dopaminergic coding in
gambling disorder was also related to the variance of the task
and not solely to the overall gain. The findings by Linnet et al.
(2010) that gambling disorder sufferers had increased dopamine
release during periods of losing—not winning—could suggest
that dopamine release reinforces the gambling behavior despite
losses, and preclude the individual from inhibiting the gambling
behavior in order to stop gambling or avoid further losses. Both
studies can be explained in terms of dopaminergic coding of
reward prediction and uncertainty.

Since variance is a common feature in all forms of gam-
bling, and since uncertainty and variance is maximized in most
forms of gambling, the dopaminergic response to maximum vari-
ance might reinforce the gambling behavior despite losses, and
this might constitute a common underlying mechanism in gam-
bling disorder. The odds structure in the most addictive forms
of gambling are optimized toward maximum uncertainty and
variance, where the payback percentage is around 80–99% (e.g.,
slot machines typically have payback rates of 82–90%, and black
jack has payback rates as high as 99%). Since the odds only
slightly favor the house, and the variance is maximized, these
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games provide the optimal conditions for dopaminergic coding
of uncertainty and reinforcement of gambling behavior despite
losses, which may underlie clinical behavior such as “chasing one’s
losses.”

From the perspective of gambling disorder, the outcome of
winning or losing does not matter in the short term. What matters
is that the game properties will always lead to losses in the long
run, and the variance in outcome will always lead to dopamin-
ergic reinforcement of the gambling behavior. This combination
constitutes an inherent risk for gambling disorder sufferers and
individuals at risk for developing gambling disorder.

Dopaminergic coding of reward prediction and uncertainty
offers a model for explaining why: (1) gambling disorder suf-
ferers are drawn toward the risk and uncertainty of gambling;
(2) gambling disorder sufferers continue gambling despite losses;
and (3) gambling disorder sufferers do not adapt an advan-
tageous strategy despite negative feedback. At the same time
it is clear that this model does not account for all behavior.
For instance, our data are limited to PET and dopamine D2/3
receptors. While our findings are consistent with findings from
fMRI studies (e.g., Preuschoff et al., 2006) the temporal reso-
lution of PET does not allow us to differentiate between antic-
ipation and outcome evaluation in gambling. Furthermore, it
is possible that other dopamine receptors, e.g., D1-class recep-
tors, might interact with- and contribute to the dopamine
dysfunctions in gambling disorder. Finally, the IGT perfor-
mance in healthy controls was not reinforced by dopamin-
ergic coding of uncertainty. The following sections therefore
addresses the possible differences of dopamine functions in IGT
performance between gambling disorder sufferers and healthy
controls.

DOPAMINE RELEASE AND IGT PERFORMANCE IN GAMBLING
DISORDER
To investigate adaptive learning functions of dopamine in IGT
performance we (Linnet et al., 2011a) compared IGT perfor-
mance in relation to dopamine release in the ventral striatum of
16 gambling disorder sufferers and 14 healthy controls. We used

the regular ABCD version and the combined ABCD, KLMN and
QRST versions, where group differences were measured as the
average performance across the three different versions (ABCD
+ KLMN + QRST/3). The study compared overall group dif-
ferences in IGT performance as well as group differences of
IGT performance in relation to dopamine release in the ventral
striatum.

A previous IGT study (Sevy et al., 2006) showed that phar-
macological reduction of dopaminergic activity is associated with
impaired IGT performance in healthy control volunteers, while
increase of dopamine is associated with better IGT performance.
We (Linnet et al., 2011a) therefore hypothesized that dopamine
release in the ventral striatum would improve performance in
healthy controls. Based on suggestions that risk and outcome
uncertainty is associated with dopamine release in gambling dis-
order (Fiorillo et al., 2003), it was further hypothesized that
dopamine release in the ventral striatum of gambling disorder
sufferers would be associated with more risky decision-making,
reflected in lower IGT performance.

The results showed that gambling disorder sufferers and
healthy controls did not differ in IGT performance on the
ABCD version or combined performance across the three
tasks. However, when comparing IGT performance between
gambling disorder sufferers and healthy controls dependent
on dopamine release, a highly significant pattern emerged.
Healthy controls with dopamine release in the ventral stria-
tum had significantly higher IGT performance on the ABCD
version than gambling disorder sufferers, F(4, 11) = 14.40, p <

0.0005 (Figure 4A). In contrast, gambling disorder sufferers and
healthy controls without dopamine release (dopamine inhibi-
tion) did not differ in IGT performance, F(4, 15) = 1.78, ns
(Figure 4B). Gambling disorder sufferers who released dopamine
in the ventral striatum had significantly lower IGT perfor-
mance than gambling disorder sufferers who did not release
dopamine, F(4, 14) = 8.25, p = 0.005, while healthy controls
who released dopamine had significantly higher IGT perfor-
mance than healthy controls who did not, F(4, 12) = 4.85,
p < 0.05.

FIGURE 4 | IGT performance on ABCD version in relation to decrease

(�BPND ≥ 0) and increase (�BPND < 0) in binding potential of ventral

striatum. (A) �BPND ≥ 0. Healthy controls (HC, black squares, n = 5) with
binding potentials decrease (�BPND ≥ 0) in ventral striatum have
significantly higher IGT performance on the ABCD version than gambling
disorder sufferers (PG, white squares, n = 8), F(5, 13) = 14.40, p < 0.0005.
The abscissa shows trial blocks (1–20, 21–40, and so forth), while the

ordinate shows the IGT performance across all versions. Mean and
Standard Errors are illustrated in the squares and error bars, respectively.
(B) �BPND < 0. Healthy controls (HC, black squares, n = 9) with increased
binding potentials (�BPND ≥ 0) do not differ in IGT performance on the
ABCD version compared with gambling disorder sufferers (PG, white
squares, n = 8), F(5, 17) = 1.78, ns. Reprint with permission from Linnet
et al. (2011b).
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The findings suggest that dopamine release was associated
with adaptive behavior in healthy control individuals, but mal-
adaptive behavior in gambling disorder sufferers. This might
suggest that the function of dopamine differed between the
two groups. Among gambling disorder sufferers the dopamine
function appears to code uncertainty and reinforce risky and
disadvantageous decision making. Among healthy controls the
dopamine function appears to code outcome and reinforce adap-
tive and advantageous decision making. The dopamine dysfunc-
tions and maladaptive gambling behavior in gambling disorder
could further be fueled by the subjective experience of gambling.
To address this aspect, the levels of gambling excitement were
investigated.

Dopamine and subjective experience
Subjective gambling experiences such as increased excitement is
central to gambling disorder (Neighbors et al., 2002; Rockloff
and Dyer, 2006; Pantalon et al., 2008; Vachon and Bagby, 2009).
Gambling excitement is associated with physiological measures of
arousal (Moodie and Finnigan, 2005; Wulfert et al., 2005, 2008),
and physiological arousal is generally increased during gambling
(Leary and Dickerson, 1985; Dickerson et al., 1992; Coventry
and Constable, 1999; Coventry and Hudson, 2001; Ladouceur
et al., 2003; Moodie and Finnigan, 2005; Wulfert et al., 2005).
Individuals with problem gambling or gambling disorder do
not necessarily differ in physiological arousal from individuals
without gambling problems (Griffiths, 1993; Sharpe et al., 1995;
Coventry and Norman, 1997; Brown et al., 2004; Sodano and
Wulfert, 2010), but some studies find an interaction between
specific patterns of excitement and physiological arousal in gam-
bling disorder (Goudriaan et al., 2006b). It is therefore, possible
that a similar interaction exists between gambling excitement and
dopaminergic neurotransmission in gambling disorder.

We (Linnet et al., 2011a) investigated the relation between sub-
jective experience of gambling excitement and dopamine release
in the ventral striatum of 18 gambling disorder sufferers and
16 healthy controls. It was hypothesized that dopamine release
would be associated with increased excitement levels in gambling
disorder sufferers compared with healthy controls.

Measures of excitement levels were obtained during PET scans,
after each gambling round (ABCD, KLMN, and QRST). The com-
puter automatically asked participants to rate their excitement
level (“How exciting do you think the game is right now?”) on
a scale ranging from 1 to 10, where 1 was the lowest rating and 10
was the highest.

The results showed that gambling disorder sufferers had signif-
icantly higher excitement levels than healthy controls throughout
the three games, F(2, 31) = 6.45, p = 0.01. However, these dif-
ferences were due to increased excitement levels in gambling
disorder sufferers with dopamine release. Gambling disorder
sufferers with dopamine release had significantly higher excite-
ment levels throughout the games than healthy controls with
dopamine release, F(2, 12) = 10.69, p < 0.005 (Figure 5A), while
no differences in excitement levels were found between gambling
disorder sufferers and healthy controls without dopamine release
(dopamine inhibition) (Figure 5B). Gambling disorder sufferers
with dopamine release also had significantly higher excitement

levels than gambling disorder sufferers without dopamine release,
F(2, 15) = 6.94, p = 0.01, while there were no differences between
healthy controls with dopamine release and healthy controls
without dopamine release.

Furthermore, there was a significant positive correlation
between dopamine release and excitement level in gambling dis-
order sufferers, r(18) = 0.52, p < 0.05, which did not reach sig-
nificance level among healthy controls (see Figure 6). No linear
interaction was found between excitement level and IGT per-
formance or between IGT performance and dopamine release
in either group. This suggests that the higher excitement lev-
els in gambling disorder sufferers was specifically associated

FIGURE 5 | Excitement levels between gambling disorder sufferers and

healthy controls. (A) Gambling disorder sufferers (PG, filled circles) with
dopamine release (�BPND ≥ 0) have significantly higher excitement across
games than healthy controls (HC, open circles) with dopamine release. (B)

Gambling disorder sufferers (PG) and healthy controls (HC) without
dopamine release (�BPND < 0) do not differ in excitement level across
games. Reprint with permission from Linnet et al. (2011b).

FIGURE 6 | Correlation between binding potential changes and

excitement level. Gambling disorder sufferers (PG, filled circles) show a
significant correlation between excitement level on the abscissa and
change in binding potential (�BPND) on the ordinate, while the correlation
fail to reach significance level in Healthy Controls (HC, open circles). Values
above zero indicate dopamine release, while values below zero indicate
dopamine inhibition. Reprint with permission from Linnet et al. (2011b).
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with increased dopamine release and not with better IGT
performance.

These data might suggest that individuals with gambling dis-
order suffer from a dopaminergic “double deficit” condition,
where dopamine release is associated with both impaired gam-
bling behavior and increased excitement levels, and that both
factors may contribute to the gambling disorder.

CONCLUSION
The studies presented here point in the direction that gam-
bling disorder sufferers: (1) do not have lower baseline dopamine
binding; (2) do not have dopaminergic hypersensitivity toward
gambling per se; (3) do not have dopaminergic hypersensitiv-
ity toward winning; (4) show dopaminergic sensitivity toward
uncertainty in outcomes consistent with reward prediction error;
(5) show maladaptive gambling behavior with dopamine release;
and (6) show increased gambling excitement with dopamine
release.

Together, the evidence suggests that dopamine is involved
in adaptive as well as maladaptive decision making in gam-
bling. Dopamine may guide and reinforce advantageous deci-
sion making, as seen in healthy controls, and may have
helped these individuals develop a strategy and stay on task.
From the perspective of reward prediction error, healthy con-
trols might have taken a problem solving approach to the
IGT, where the dopamine release was associated with a pha-
sic dopamine response from the adaptive decision making of
identifying advantageous decks. In other words, healthy con-
trols received a dopaminergic “reward” from developing good
strategies.

On the other hand dopamine might also be linked to disad-
vantageous decision making, and lead to long term losses, as seen
in gambling disorder sufferers. From the perspective of dopamin-
ergic coding of uncertainty, these individuals might have seen
the IGT as a game of chance and assumed a more risk taking
approach, where the dopamine release was associated with a sus-
tained dopamine response from uncertainty. In other words, these
individuals received a dopaminergic “reward” from uncertainty.
Altogether, the dopaminergic dysfunctions may represent a “dou-
ble deficit” condition, where dopaminergic dysfunctions toward

risk and uncertainty reinforce maladaptive gambling behavior
and increase excitement levels in gambling disorder.

However, the role of dopamine in gambling is complex and
the suggestion of the three “fallacies” is therefore limited to the
presented research. For instance, while there were no differences
in PET measures of dopamine release between gambling disor-
der sufferers and healthy controls playing the IGT, there may be
dopaminergic group differences in other contexts such as tim-
ing (e.g., dopaminergic activation in early or late anticipation
or evaluation), type of game (e.g., real life gambling vs. IGT),
motivational state etc.. For instance, the temporal resolution of
PET does not allow differentiation between phasic and sustained
dopamine response. Furthermore, the findings are limited to the
level of dopamine D2/3 receptors; dopaminergic neurotransmis-
sion may differ at, e.g., the level of dopamine D1 receptors.
Finally, the list is not exhaustive, i.e., there may be other types
of “fallacies,” which challenge our understanding of the role of
dopamine in gambling disorder and addiction.

In conclusion, the suggested “fallacies” and role of dopamin-
ergic dysfunctions in the coding of reward prediction and uncer-
tainty in gambling disorder presented here may serve as a starting
point for further development of a dopaminergic model of addic-
tion in gambling disorder and substance use disorders.
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