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During functional magnetic resonance imaging studies of meditation the cortical salience
detecting and executive networks become active during “awareness of mind wandering,”
“shifting,” and “sustained attention.” The anterior cingulate (AC) is activated during
“awareness of mind wandering.” The AC modulates both the peripheral sympathetic
nervous system (SNS) and the central locus coeruleus (LC) norepinephrine systems, which
form the principal neuromodulatory system, regulating in multiple ways both neuronal
and non-neuronal cells to maximize adaptation in changing environments. The LC is the
primary source of central norepinephrine (C-NE) and nearly the exclusive source of cortical
norepinephrine. Normally activated by novel or salient stimuli, the AC initially inhibits the
SNS reflexively, lowering peripheral norepinephrine and activates the LC, increasing C-NE.
Moderate levels of C-NE enhance working memory through alpha 2 adrenergic receptors,
while higher levels of C-NE, acting on alpha 1 and beta receptors, enhance other executive
network functions such as the stopping of ongoing behavior, attentional set-shifting, and
sustained attention.The actions of the AC on both the central and peripheral noradrenergic
systems are implicated in the beneficial effects of meditation.This paper will explore some
of the known functions and interrelationships of the AC, SNS, and LC with respect to their
possible relevance to meditation.
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INTRODUCTION
During a recent functional magnetic resonance imaging (fMRI)
study of focused mindfulness meditation the cortical salience
detecting and executive networks, were shown to become active
during “awareness of mind wandering,” “shifting,” and “sus-
tained attention,” while the default mode network (DMN) was
active during “mind wandering” (Hasenkamp et al., 2012). This
paper will primarily address mindfulness meditation, but aware-
ness of mind wandering, shifting, and sustained attention could
be expected to be involved, at least initially, in all forms of
meditation.

The salience detecting and executive networks include the
anterior insula, anterior cingulate (AC), anterior inferior pari-
etal, dorsolateral prefrontal cortex (DLPFC), and anterior medial
prefrontal cortex (Sturm et al., 1999; Sridharan et al., 2008;
Vincent et al., 2008). These areas are essentially the same as those
of the highly interconnected frontoparietocingulate (FPC) sys-
tem thought to represent the cortical component of the orienting
system (Halgren et al., 1998) and to underlie intrinsic alertness
(Sturm et al., 1999; Kiehl et al., 2001, 2005; Dien et al., 2003;
Calhoun et al., 2006).

The AC is a major component of the medial prefrontal cortex
(mPFC). In much of the relevant literature, the mPFC is roughly
divided into two subregions, relative to the genu of the corpus
callosum: the dorsal medial prefrontal cortex (dmPFC) and the
ventral medial prefrontal cortex (vmPFC) (Kim et al., 2011a).

Broadly defined, the dmPFC includes areas of the salience
detecting/executive FPC network including the dorsal AC [BA24

and BA32], the anterior medial frontal cortex [BA10], and
the DLPFC [BA9/46]. The areas of the medial frontal gyrus
encompassing the dorsal attention network (DAN), including the
pre-supplementary motor area (pre-SMA) and frontal eye fields
[BA8], and the supplementary motor area (SMA) [BA6] are also
a part of the dmPFC. The vmPFC includes the subgenual AC area
[BA25], the vmPFC [ventral portions of BA32 and BA10], and
the medial orbitofrontal cortex [BA11 and BA12], areas associated
with the DMN and the amygdala (AM).

The salience detecting/executive FPC network shifts between
and relates to both the externally directed DAN, which receives the
stimuli of the present moment from the external environment, and
to the internally directed hippocampal–cortical memory system, a
part of the DMN (Sridharan et al., 2008; Vincent et al., 2008).

The salience detecting anterior insula and AC of the FPC net-
work also receive the interoceptive information from within the
organism, which underlies the sense of oneself and of one’s emo-
tions (Craig, 2009). The interoceptive information is carried to
the cortical anterior insula and AC, as well as to the somatosensory
cortex, ventrolateral medulla (VLM), and the locus coeruleus (LC)
(Craig, 1992) from the peripheral noradrenergic sympathetic ner-
vous system (SNS) via its ascending lamina 1 spinothalamocortical
tract (STT) (Craig, 2009).

In turn, the dorsal AC (Verberne, 1996; Verberne et al., 1997;
Verberne and Owens, 1998; Viltart et al., 2003) and the insula
(Hardy, 1994; Ter Horst et al., 1996) modulate activity in the
SNS via the rostral VLM. Inhibition of the rostral VLM causes
a reflex fall in SNS nerve activity, resulting in decreased peripheral
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norepinephrine (P-NE), and decreased blood pressure (Standish
et al., 1995).

The more ventral, emotion associated, portions of the AC [BA
25 and BA32] also project to the parasympathetic vagal nuclei
including the dorsal motor nucleus (DM), the nucleus of the soli-
tary tract (NTS), and to both the periambiguus and core areas of
the nucleus ambiguus (NA) (Hurley et al., 1991; Buchanan et al.,
1994).

The NA contains primary source nuclei for the cardiopul-
monary branch of the vagus and has myelinated axons thought
to rapidly modulate the function of the heart and lungs (Standish
et al., 1995). Some neurons in the NA simultaneously innervate
both the adrenal gland and the stellate sympathetic ganglion
(Jansen et al., 1995) through which it can rapidly modulate the
SNS.

The NA is also closely linked to the rapid expression and regu-
lation of emotional state (Porges, 1995; Tonhajzerova et al., 2013).
A withdrawal of the cardiopulmonary vagal efferent outflow from
the NA is seen during both acute and chronic stress, which, in
healthy individuals, is accompanied by increased sympathetic tone
(Porges, 1995), by increased levels of P-NE.

Rapid autonomic changes, including cardiovascular and res-
piratory changes, such as respiratory rate, respiratory sinus
arrhythmia, and heart rate variability (Reyes Del Paso et al., 2013;
Tonhajzerova et al., 2013), are thought to occur by way of the
parasympathetic NA (Porges, 1995; Standish et al., 1995; Wong
et al., 2007; Tonhajzerova et al., 2013), in conjunction with the
rostral and caudal VLM (Standish et al., 1995).

Central and autonomic interactions altered by short-term med-
itation suggest control of parasympathetic activity by the AC
[BA25 and BA32] (Tang et al., 2009). This control of parasym-
pathetic activity and the resultant inhibition of the SNS during
meditation may occur by way of the AC [BA 25 and BA 32] pro-
jections to the NA (Hurley et al., 1991; Buchanan et al., 1994).
During meditation greater parasympathetic activity is observed in
the lower heart rate and skin conductance, increased belly respi-
ratory amplitude, decreased chest respiration rate and increased
high-frequency heart rate variability (HF-HRV) (Tang et al., 2009).

The AC also directly modulates the central norepinephrine
(C-NE) levels by increasing activity in the LC (Jodo et al.,
1998; Rajkowski et al., 2000), the principal central noradrenergic
nucleus.

The AC is normally activated by novel or significant stimuli
(Aston-Jones and Cohen, 2005). In turn, the AC activates the LC
(Jodo et al., 1998; Rajkowski et al., 2000) exerting a tonic influence
(Jodo et al., 1998) on LC baseline firing, while LC burst firing to
stimuli is thought to reflect AC decisions following the stimuli
(Clayton et al., 2004; Nieuwenhuis et al., 2005a).

The LC projects throughout the brain, is the principal source of
C-NE in the thalamus (McCormick et al., 1991; Robertson et al.,
2013), and the only known source of C-NE in the hippocampus
and cortex, with the exception of a recently described projection
to the insular and orbital prefrontal cortex of C-NE (r4-derived)
neurons from the subcoeruleus nuclei and from the caudal por-
tions of the C2/A2 and C1/A1 sympathetic nuclei of the medulla
thought to receive visceral sensory, interoceptive input from the
peripheral nervous system (Robertson et al., 2013).

The LC acts both synaptically and by volume transmission
(O’Donnell et al., 2012) on its target neurons in the brain and dif-
ferentially effects the different types of neurons found within each
section of the areas to which it projects (Chandler and Waterhouse,
2012). C-NE participates in the rapid modulation of cortical cir-
cuits and cellular energy metabolism, and on a slower time scale
in neuroplasticity and inflammation (O’Donnell et al., 2012).

Silent only during rapid eye movement (REM) sleep (Hobson
and Stickgold, 1994), increases in LC baseline firing progressively
increases wakefulness, cortical arousal (Berridge et al., 2012a),
the neuronal signal to noise ratio (Aston-Jones et al., 1999),
and receptivity to the sensory signals of the present moment
(Foote et al., 1991). Although the LC can be activated by stress
(Aston-Jones and Cohen, 2005), this wakeful receptivity and
cortical arousal are not the same as the SNS arousal under
stress; there is an inverse relationship between cortical arousal
and peripheral sympathetic arousal (Nagai et al., 2004a,b, 2009;
Duschek et al., 2007, 2013).

The integrated P-NE and C-NE systems form the principal neu-
romodulatory system, a homeostatic system regulating in multiple
ways the activity of both neuronal and non-neuronal (astrocytes
and microglial) cells (O’Donnell et al., 2012) to adapt the state of
both the body and the brain for optimal functioning in changing
environments.

As a part of the salience detecting/executive FPC network, the
AC is in a position to integrate the information (Wang et al., 2005;
Vincent et al., 2008) concerning the state of the external, the inter-
nal (Vincent et al., 2008), and the interoceptive environments in
the present moment. By rapidly modulating the activity levels of
both the principal NE systems, the AC is in a position to adapt the
state of the whole organism to optimize attention and behavior as
changes are detected in any of these environments.

The LC is thought to optimize attention and behavior in chang-
ing environments (Aston-Jones and Cohen, 2005). Activation of
the AC is accompanied by a widespread coactivation of other
areas of the brain (Wang et al., 2005). A number of fMRI stud-
ies of the cortical orienting response of intrinsic alertness have
indicated that activity in the salience detecting/executive FPC net-
work is accompanied by an activation of the LC (Sturm et al.,
1999; Kiehl et al., 2001, 2005; Dien et al., 2003; Calhoun et al.,
2006). This activation of the LC is associated with the widespread
coactivation of other areas until the event-encoding cycle ends
(Halgren et al., 1998). As the cycle ends activity decreases in the
initial areas associated with orienting, while effective connectiv-
ity between relevant cortical areas increases (Büchel et al., 1999;
McIntosh et al., 1999).

All the areas of the brain activated by the intentional, impartial,
sustained attention of meditation are of significant, interrelated
importance, including the insula, the other cortical salience detect-
ing network area (Craig, 2009; Menon and Uddin, 2010). One
of the largest activations at the moment of awareness of mind
wandering, however, is seen in the AC (Hasenkamp et al., 2012).
In this paper we will briefly explore some of the known func-
tions and interrelationships of the AC, the SNS, and the LC
with respect to their possible relevance to the process of medi-
tation. The LC core and the subcoerulear (Westlund and Coulter,
1980) or pericerulear (Shipley et al., 1996; Aston-Jones et al., 2004)
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areas will be, here, treated as one, except where specifically
mentioned.

UNCONSCIOUS DETERMINANTS OF CONSCIOUS DECISIONS
Immediately prior to the conscious awareness of voluntary, self-
determined conscious decisions there is a consistent decrease in
heart rate (Tallon-Baudry,2012). Studies of the unconscious deter-
minants of voluntary conscious decisions (Soon et al., 2008; Bode
et al., 2011; Fried et al., 2011; Kreiman, 2012) have shown that
the anterior medial prefrontal cortex, also called the rostral AC
[BA10] (Soon et al., 2008; Bode et al., 2011; Fried et al., 2011),
the SMA, pre-SMA, and the dorsal AC are active prior to con-
scious awareness (Fried et al., 2011; Kreiman, 2012). The SMA,
pre-SMA, and AC are known to inhibit the SNS via the rostral VLM
(Viltart et al., 2003) causing a reflex fall in sympathetic nerve activ-
ity and blood pressure (Standish et al., 1995). The ventral AC
(Hurley et al., 1991; Buchanan et al., 1994) and the pre-SMA (38
Buchanan et al., 1994) can also modulate the SNS through their
projections to the parasympathetic vagal nuclei, while the ante-
rior medial prefrontal cortex [BA10], along with ventral portions
of BA 32, has been found to covary inversely with skin conduc-
tance (Critchley et al., 2000; Nagai et al., 2004c) and directly with
HF-HRV (Lane et al., 2009).

HEART RATE VARIABILITY
Ventral AC activation has been found in fMRI studies to be signifi-
cantly correlated with HF-HRV suggesting AC control of parasym-
pathetic autonomic activity (Tang et al., 2009). The pregenual
mPFC [BA10/BA32], right superior frontal gyrus [BA10/46)],
and left and right parietal cortex [BA40] of the salience detect-
ing/executive FPC cortical orienting system are also positively
correlated with HF-HRV, indicating that as activity increases in
these cortical areas the vagal breaking action on the heart also
increases, reflecting a vagal inhibition of sympathetic influences
(Lane et al., 2009).

As mentioned, rapid autonomic changes, including cardiovas-
cular and respiratory changes, such as respiratory rate, respiratory
sinus arrhythmia, and heart rate variability (Reyes Del Paso et al.,
2013; Tonhajzerova et al., 2013), are thought to occur by way of
the parasympathetic NA (Porges, 1995; Standish et al., 1995; Wong
et al., 2007; Tonhajzerova et al., 2013), in conjunction with the
rostral and caudal VLM (Standish et al., 1995).

Central and autonomic interactions altered by short-term med-
itation suggest control of parasympathetic activity by the ventral
AC [BA25 and BA32] (Tang et al., 2009). This control of parasym-
pathetic activity and the resultant inhibition of the SNS during
meditation may occur by way of the AC [BA 25 and BA 32] pro-
jections to the NA (Hurley et al., 1991; Buchanan et al., 1994).
During meditation greater parasympathetic activity is observed in
the lower heart rate and skin conductance, increased belly respi-
ratory amplitude, decreased chest respiration rate, and increased
HF-HRV (Tang et al., 2009).

The decreases in respiratory rate, whether spontaneous or
intentional, and the increases in HF-HRV that occur during med-
itation may all reflect the same vagal inhibition of sympathetic
influences.

The positive correlation of the FPC cortical areas with HF-HRV
also suggests that HF-HRV is low when peripheral arousal is high
(Lane et al., 2009). As mentioned, a withdrawal of vagal efferent
outflow from the NA is seen during both acute and chronic stress,
accompanied, in healthy individuals, by increased sympathetic
tone (Porges, 1995; Tonhajzerova et al., 2013). The influence of
FPC cortical activity on the vagal nuclei may also contribute to the
inverse correlation between cortical and peripheral arousal (Nagai
et al., 2004a,b, 2009).

THALAMUS AND CORTEX
The C-NE of the LC has potent and long-lasting effects on thalamic
and cortical neurons (McCormick et al., 1991; Coull et al., 1999)
and is intimately involved in determining both the level of neu-
ronal excitability and the pattern of activity generated by neurons
in thalamocortical systems (McCormick et al., 1991). C-NE, for
example, was shown, via alpha 2 adrenergic receptors, to increase
functional integration and connectivity from the LC to the pari-
etal cortex and from the parietal cortex to the thalamus and frontal
cortex, implicating the LC-noradrenergic system in mediating the
functional integration of attentional brain systems (Coull et al.,
1999).

Increases in C-NE and serotonin in both the thalamic reticu-
lar nucleus (RN) and the lateral geniculate nucleus (LGN) shift
the thalamic firing pattern from a spontaneous rhythmic burst-
ing mode to a single-spike mode (McCormick and Wang, 1991).
These modes of firing are associated, respectively, with inattention,
drowsiness, and sleep or with wakefulness and arousal (Steriade
and Llinás, 1988).

Stimulation of the LC, simulating LC burst firing, increases
neuronal firing in the LGN resulting in a highly discriminable
signal in the LGN. During waking, LGN neurons have a single-
spike firing mode when sensory information is faithfully relayed
from the retina to the cortex and a burst-firing mode when the
transfer of this information is degraded (Holdefer and Jacobs,
1994). During REM sleep the transfer of retinal information to
the cortex ceases when the LC and the serotonergic dorsal raphe
nucleus stop firing (Hobson and Stickgold, 1994).

EEG WAVES
Large-scale cortical synchrony, which depends on the integrity
of corticothalamic feedback, is thought to act predomi-
nantly through the RN (Destexhe et al., 1998). Although the
fusiform gyrus is implicated in the generation of high ampli-
tude gamma synchrony during meditation (Lutz et al., 2004),
it has been suggested that the RN plays a pacemaker func-
tion in the genesis of 40-Hz gamma oscillations in the tha-
lamus and cortex during states of focused arousal (Pinault
and Deschênes, 1992a). Bilateral lesions of the LC, and local
application of the alpha 1 adrenergic antagonist, prazosin, abol-
ished reticular thalamic 40-Hz, gamma firing (Pinault and
Deschênes, 1992b), indicating a modulation of this system by
the LC.

Data suggests that the AC generates electroencephalographic
(EEG) task-related theta waves (Wang et al., 2005). Frontal
midline theta rhythm is associated with activation of the
parasympathetic nervous system (Tang et al., 2009) and negatively
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correlated with sympathetic activation (Kubota et al., 2001).
The phase of the low-frequency theta rhythm modulates power
in the high gamma wave band, with stronger modulation
occurring at higher theta amplitudes (Canolty et al., 2006).
The task-related increase in theta-phase locking indicates AC
theta-phase locking forms part of a large network involving
widespread cortical locations, consistent with the widespread
coactivation of the AC with other areas as observed with
fMRI (Wang et al., 2005). The widespread coactivation has
been associated with an activation of the LC (Sturm et al.,
1999; Kiehl et al., 2001, 2005; Dien et al., 2003; Calhoun et al.,
2006).

There are both direct cholinergic and serotonergic pathways
and indirect modulatory LC and AM pathways in EEG activa-
tion (Dringenberg and Vanderwolf, 1997, 1998). Increases in
LC neuronal activity increases EEG activity in both the hip-
pocampal theta and cortical high-frequency gamma wave bands
(Berridge and Foote, 1991, 1996; Berridge, 1998) through its
action on the medial septum (Berridge et al., 1996; Smiley et al.,
1999).

Alpha waves, on the other hand, are associated with the DMN,
which was found to be active during mind wandering in a focused
mindfulness meditation study (Hasenkamp et al., 2012). Alpha
waves are seen in novice mindfulness meditators, however, a
decrease in alpha waves accompanies increased experience in
longer term mindfulness meditators (Saggar et al., 2012).

Alpha waves spontaneously occur intermittently during an
awake, relaxed, resting state, particularly with closed eyes
(Goldman et al., 2002; DiFrancesco et al., 2008), when the vmPFC
and DMN are active and they normally stop during salience detect-
ing orienting responses to novel or significant stimuli, or with
mental effort (Goldman et al., 2002), when the dmPFC and DAN
are active.

Understanding of the origins of the occipital alpha rhythm is
incomplete, but a plausible scheme is thought to include a com-
plex interplay between the LGN and RN of the thalamus and the
visual cortex (DiFrancesco et al., 2008). The central role of the
thalamus in resting state networks is correlated with alpha activity
(DiFrancesco et al., 2008) and it has been suggested that the alpha
rhythm may be in part generated by the thalamus (Goldman et al.,
2002).

In the resting state a decrease in the release of C-NE and sero-
tonin in the thalamus may promote the occurrence of rhythmic
oscillations (McCormick and Wang, 1991).

Alpha EEG waves are frequently recorded during studies of
transcendental meditation (Travis and Shear, 2010). Beyond the
categories of focused and open monitoring meditation, a third
meditation category of automatic self-transcending has been pro-
posed to explain the differences in the prevalence of alpha waves
(Travis and Shear, 2010).

During mindfulness meditation, increased EEG activity in both
theta (Kubota et al., 2001; Cahn and Polich, 2006; Slagter et al.,
2009; Tang et al., 2009; Cahn et al., 2013) and gamma (Lutz
et al., 2004; Cahn and Polich, 2006; Cahn et al., 2010, 2013)
wave lengths have been recorded. The AC and its relationship
with the LC may contribute to the changes in theta and gamma
waves.

DECISIONS, EVENT-RELATED POTENTIALS, AND THE
ATTENTIONAL BLINK
Anterior cingulate activity elevates LC baseline firing (Jodo et al.,
1998), and LC phasic burst responses are thought to reflect AC
decisions following novel or significant known stimuli (Clayton
et al., 2004; Aston-Jones and Cohen, 2005; Nieuwenhuis et al.,
2005a).

The P300 event-related potential (ERP) is thought to index
AC activated LC phasic burst responses to stimuli (Murphy et al.,
2011) and the LC is hypothesized to play a role in mediating
the attentional blink (Nieuwenhuis et al., 2005b) as well as the
accompanying pupil dilations (Zylberberg et al., 2012).

Lower (phasic) baseline firing in the LC is associated with
large phasic bursts of firing to selectively attended stimuli
(Aston-Jones and Cohen, 2005) accompanied by proportionately
longer refractory periods, thought to be due to the autoinhibitory
alpha 2 adrenergic receptors in the LC (Nieuwenhuis et al., 2005b).
In contrast, higher (tonic) baseline firing is associated with more
frequent smaller bursts to the various stimuli of the present
moment, including low salience “distractor” stimuli (Aston-
Jones and Cohen, 2005), followed by shorter refractory periods
(Nieuwenhuis et al., 2005b).

In meditators, the P3a ERP amplitude to distractor stimuli
is reduced (Cahn and Polich, 2009) and they demonstrate an
enhanced receptivity to the second target in an attentional blink
paradigm (Slagter et al., 2007, 2009; van Leeuwen et al., 2009). A
reduced brain-resource allocation to the first target is hypothe-
sized to underlie the enhanced receptivity to the second target
(Slagter et al., 2007, 2009) and the shorter refractory periods asso-
ciated with the reduced phasic burst release of C-NE by the LC are
thought to contribute to the enhanced availability to the second
target (Nieuwenhuis et al., 2005b).

The increased activation of the AC during meditation would
be expected to cause higher tonic LC baseline firing in medita-
tors, while the associated more frequent smaller bursts to various
stimuli and their shorter refractory periods may underlie the med-
itators’ enhanced receptivity to the second target as suggested by
the existing hypotheses (Nieuwenhuis et al., 2005b; Slagter et al.,
2007, 2009).

PUPIL DILATION
Pupil dilation, under constant illumination, is mediated almost
exclusively via C-NE release by the LC (Koss, 1986; Einhäuser
et al., 2010). Pupil diameter has been hypothesized to reflect both
the tonic and the phasic aspects of LC activity, with large baseline
pupil diameter equating with high tonic LC activity (Rajkowski
et al., 1993) and brief increases in diameter with phasic activity
following stimuli.

Pupil dilation following stimuli reflects AC decisions
(Aston-Jones and Cohen, 2005; Einhäuser et al., 2010; Preuschoff
et al., 2011). The dilation further reflects perceptual selection and
predicts subsequent stability in perceptual rivalry (Einhäuser et al.,
2008). During meditation, long-term meditators demonstrate
enhanced pupil dilation to stimuli (Carter et al., 2005; Brefczynski-
Lewis et al., 2007) and, in a study of binocular vision in long-term
meditators, their larger pupil dilation was predictive of their sub-
sequent longer durations between binocular shifts (Carter et al.,
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2005). This again suggests enhanced LC activation in long-term
meditators. Humans with dopamine beta hydroxylase deficiency
have a complete absence of C-NE and P-NE and they exhibit
an abnormally small or absent task-evoked pupil dilation (Jepma
et al., 2011).

ATTENTIONAL SET-SHIFTING, SUSTAINED ATTENTION, AND
THE STOP OF ON GOING BEHAVIOR
In the cortex, relatively low, moderate levels of C-NE act on the
alpha 2 adrenergic receptors to enhance working memory in the
DLPFC in an inverted U shaped manner (Arnsten, 2011). Higher
levels of C-NE are required to act on alpha 1 adrenergic receptors
in order to enhance the executive network functions of attentional
set-shifting and sustained attention (Berridge and Arnsten, 2012;
Berridge et al., 2012b). Improvement was blocked by the alpha
1-antagonist prazosin (Berridge et al., 2012b). Higher levels of C-
NE, from the activation of the LC by the AC, may contribute to
the attentional shifting and sustained attention observed during
meditation.

During the salience detecting orienting response there is an
initial inhibition of ongoing behavior (Foote et al., 1980, 1991;
Rasmussen et al., 1986), a stop, including a cessation of movement
(Ball et al., 1999).

A stop of on going behavior is required for attentional set-
shifting, as seen in meditators. As with attentional set-shifting and
sustained attention, the stopping of on going behavior is improved
by higher levels of C-NE acting on cortical alpha 1 and beta adren-
ergic receptors (Lapiz and Morilak, 2006; Berridge and Arnsten,
2012; Berridge et al., 2012b), while more moderate levels, act-
ing on alpha 2-adrenoreceptors, improve working memory in the
DLPFC (Arnsten, 2011). Elevated C-NE in the “prelimbic” AC
[BA32] improves the stopping of ongoing behavior (Bari et al.,
2010).

TASK DIFFICULTY
The synaptic specializations of the dorsal AC area BA32 indicate it
has complementary roles, potentially enhancing the inhibition of
spontaneous firing in the working memory DLPFC area [BA46]
and strengthening excitation in the anterior medial prefrontal cor-
tex [BA10], enhancing the capacity for more difficult, complex
multi task operations (Medalla and Barbas, 2010). LC activity, sim-
ilarly, increases with task difficulty (Rajkowski et al., 2004; Raizada
and Poldrack, 2007).

SMA AND PRE-SMA
The AC has connections to the SMA, which mediates the prepa-
ration and initiation of movement (Devinsky et al., 1995). The
intermediate SMA has been found to inhibit the primary motor
area (M1) until a decision is made by the AC, before releasing it
to action (Ball et al., 1999), while the pre-SMA has been shown
to switch from habitual automatic to volitionally controlled sac-
cades by inhibiting the habitual, automatic action (Hikosaka and
Isoda, 2008). The pre-SMA has also been shown to contribute to
the free choice of self-initiated actions (Thimm et al., 2012) and
to be more active and functionally correlated with the DLPFC
during internally compared to externally guided action planning
(Rosenberg-Katz et al., 2012).

The SMA and pre-SMA are considered part of the exter-
nally directed DAN (Vincent et al., 2008), but they are active
during meditation along with the salience detecting/executive
FPC network (Brefczynski-Lewis et al., 2007; Manna et al., 2010;
Hasenkamp et al., 2012). The length of practice time of medita-
tors, interestingly, was negatively correlated with all of these areas
during the shifting phase, indicating that more meditation expe-
rience is associated with less activity during the shifting phase
(Hasenkamp et al., 2012).

SPINAL MOTOR NEURONS
The supplementary eye fields, frontal eye fields, pre-motor and
motor cortices all share reciprocal connections with the LC (Shook
et al., 1990). The LC projects extensively to the spinal cord depolar-
izing and enhancing spinal motor neuron excitability (Fung et al.,
1991; White et al., 1991), making them receptive to the initiation
of movement, while exercise, itself, spontaneously activates the LC
(Warren et al., 1984; Haxhiu et al., 2003). These capacities of the
LC may play a role in the attentive enhancement of movement
during yoga.

LC BEHAVIOR PATTERNS
TONIC BASELINE FIRING
Higher baseline (tonic) firing in the LC is associated with enhanced
labile attention and modest burst firing to various low salience
distracter stimuli. This enhanced receptivity to the stimuli of the
present moment is thought to optimize learning in unknown novel
environments (Aston-Jones and Cohen, 2005).

During one of the earliest western scientific studies of medi-
tation, the Zen masters reported that during meditation they had
“more clearly perceived each stimulus than in their ordinary awak-
ening state” (Kasamatsu and Hirai, 1966). Long-term meditators
have repeatedly been found to exhibit an enhanced receptivity to
stimuli (Jha et al., 2007; Slagter et al., 2007, 2009; Kerr et al., 2008;
MacLean et al., 2010; Naranjo and Schmidt, 2012; Cahn et al., 2013;
Mirams et al., 2013), including to low salience and habituated stan-
dard stimuli (Cahn et al., 2013), suggestive of higher tonic baseline
LC activity.

Increased receptivity to stimuli, as initiated by the activation of
the FPC orienting system to oddball stimuli, causes a subjective
expansion of time (Tse et al., 2004). Such a subjective expansion
of time has recently been observed in meditators (Kramer et al.,
2013).

PHASIC BASELINE FIRING
In contrast, lower, intermediate, more synchronous phasic baseline
firing in the LC promotes larger, robust bursts to attended signifi-
cant known stimuli, rapid well-learned dominant, autoassociative
responses, enhanced selective attention, and reduced responding
to distractor stimuli. This pattern is thought to optimize behavior
in known familiar environments (Aston-Jones and Cohen, 2005)
with a well-known coping response available.

SNS MODULATION OF LC BASELINE FIRING
In the LC, changes in baseline firing, along with their associated
subsequent bursting patterns, differentially modulate the state
of the brain, the central nervous system, to optimize behavior
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in either novel or familiar environments, particularly if they are
stressful environments.

Similarly, in the peripheral SNS, epinephrine (P-E) and P-NE
are differentially released from the adrenal medulla (Mason et al.,
1961; Brady, 1967; Frankenhaeuser, 1971; Stoddard et al., 1987;
Morrison and Cao, 2000) under stress. Although they do not cross
the blood brain barrier, P-E (Holdefer and Jensen, 1987) and P-NE
(Svensson et al., 1980; Elam et al., 1984) inversely modify baseline
firing in the LC.

During circumstances of novel stress a substantial amount of
P-E is released from the adrenal medulla along with a small amount
of P-NE (Mason et al., 1961; Brady, 1967; Frankenhaeuser et al.,
1968; Frankenhaeuser, 1971). P-E elevates the baseline tonic firing
in the LC (Holdefer and Jensen, 1987). This increases the release
of C-NE, causing increased cortical arousal, decreased selective
attention, and increased receptivity to the novel stimuli of the
present moment. By the elevating of tonic baseline firing in the
LC, P-E also enhances memory (Holdefer and Jensen, 1987) for
the novel events through the increase in C-NE (Lemon et al., 2009;
Reid and Harley, 2010).

In contrast to novel stress, under conditions of familiar stress
(Mason et al., 1961; Brady, 1967; Frankenhaeuser et al., 1968;
McCarty and Kopin, 1978; McCarty et al., 1978), especially
with a well-known coping response available (Mandler, 1967;
Frankenhaeuser et al., 1968), substantial amounts of P-NE are
released from the adrenal medulla with virtually no P-E (Brady,
1967; Frankenhaeuser and Rissler, 1970; Frankenhaeuser, 1971).
By elevating blood pressure, P-NE dose-dependently inhibits base-
line tonic firing in the LC via the vagus and the NTS (Svensson
et al., 1980; Elam et al., 1984). This causes rapid well-known
dominant, autoassociative coping responses, increased selective
attention, decreased responding to low salience distractor stimuli,
and increased resistance to extinction (Craigmyle, N. A., unpub-
lished data). Decreased perception of affect has also been observed
(McCubbin et al., 2011). This classic stress and arousal behavior
pattern (Easterbrook, 1959; Friedman et al., 1960, 1975; Zajonc,
1965; Eysenck, 1976; Geen, 1976; Geen and Gange, 1977) is consis-
tently associated with relatively low, intermediate, phasic baseline
LC activity (Aston-Jones and Cohen, 2005).

INVERSE RELATIONSHIP OF CORTICAL AND PERIPHERAL
SNS AROUSAL
As mentioned, there is an inverse relationship between cortical
arousal and peripheral SNS arousal (Nagai et al., 2004a,b, 2009;
Duschek et al., 2007, 2013). The contingent negative variation
(CNV) has been used as an index of cortical arousal during ori-
enting and attention, while changes in skin conductance were
measured and pharmacological and biofeedback methods were
used to elevate blood pressure, a measure of peripheral SNS
arousal. Elevated blood pressure was shown to decrease the CNV
amplitude in normotensive subjects (Duschek et al., 2007, 2013).

The dose-dependent inhibition of baseline firing in the LC by
elevated blood pressure (Svensson et al., 1980; Elam et al., 1984)
may contribute to this inverse correlation of peripheral SNS and
cortical arousal.

In contrast, enhanced CNV cortical arousal-related activity in
the AC, the midcingulate/SMA and the insula is associated with

decreases in peripheral SNS arousal (Nagai et al., 2004b), which
may be due to the capacity of these areas of the brain to inhibit the
rostral VLM (Viltart et al., 2003), causing a reflex fall in SNS nerve
activity and blood pressure (Standish et al., 1995). This relation-
ship may also contribute to the inverse relationship of cortical and
peripheral SNS arousal seen during meditation.

PRINCIPAL AREAS MODULATING THE LC AND SNS –
DIRECTLY AND RECIPROCALLY
A limited number of areas differentially influence activity in the
integrated central noradrenergic LC and the peripheral noradren-
ergic SNS systems.

AC, SMA, Pre-SMA
These areas have been briefly addressed above.

ORBITOFRONTAL CORTEX
The orbitofrontal cortex (OFC) is another prominent descend-
ing cortical projection to the LC (Aston-Jones and Cohen, 2005).
Activity in the AC and OFC is negatively correlated and they have
complementary and reciprocal roles in monitoring the outcome of
behavior (Aston-Jones and Cohen, 2005). While the AC is active in
relation to self-generated decision-making, the OFC is active when
the decisions are guided by the experimenter (Ullsperger and von
Cramon, 2004; Walton et al., 2004), when the decisions and the
reward characteristics of the stimuli are predictable (Baxter and
Croxson, 2013; Rudebeck et al., 2013), are essentially known, and
a coping response is available. Whereas the activity in the AC dur-
ing salience detection and decision-making elevates tonic baseline
firing in the LC enhancing receptivity to the various stimuli of the
present moment, activity in the OFC may lower baseline firing in
the LC potentiating selective attention and the rapid performance
of expected well-known, autoassociative responses.

ASCENDING AUTONOMIC TRACTS
The ascending autonomic tracts from the periphery also influence
the LC. Cardiorespiratory, visceral and somatosensory autonomic
stimuli regulate LC activity through ascending autonomic tracts
with putative implications for psychiatry and psychopharma-
cology (Svensson, 1987). The cardiovascular stimuli from the
autonomic environment seem to predominate over external envi-
ronmental stimuli with respect to the LC’s influence on behavior
(Svensson, 1987).

The parasympathetic vagus nerve influences activity in the LC,
primarily via the NTS, while the ascending sympathetic lamina 1
STT projects directly and reciprocally to the LC (Craig, 1992).

CENTRAL AUTONOMIC NUCLEI
The LC projects reciprocally to central autonomic nuclei including
the sympathetic VLM, the parasympathetic DM, and regions of the
NTS. The LC also projects to the region of the parasympathetic
NA (Sakai et al., 1977; Westlund and Coulter, 1980). The LC core
has been found to project extensively to regions giving rise to
parasympathetic outflow, while the subcoeruleus (peri-coeruleus)
region projects to sympathetic regions (Westlund and Coulter,
1980). The LC is a distinct part of the central neuronal circuit
innervating various regions of the rat heart (Standish et al., 1995).
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As mentioned, the NA contains primary source nuclei for the
cardiopulmonary branch of the vagus (Standish et al., 1995), has
myelinated axons thought to rapidly modulate the function of the
heart and lungs (Standish et al., 1995) and some of its neurons
simultaneously innervate both the adrenal gland and the stellate
sympathetic ganglion (Jansen et al., 1995) through which it can
rapidly modulate the SNS.

There are alpha 1 (Boychuk et al., 2012), alpha 2 (Haxhiu et al.,
2003), and beta 1 (Bateman et al., 2012) adrenergic receptors in the
NA, each differentially modulating NA function. Alpha 1 recep-
tors facilitate inhibitory neurotransmission (Boychuk et al., 2012),
while beta 1 adrenergic receptors decrease both inhibitory and
excitatory neurotransmission to cardiac vagal neurons (Bateman
et al., 2012).

Locus coeruleus activation dilates the airways via NA alpha 2
adrenergic receptors (Haxhiu et al., 2003), while fear and emo-
tional distress may facilitate bronchoconstrictive attacks (Lehrer
et al., 1993; Haxhiu et al., 2003; Rosenkranz et al., 2005, 2012).
Exercise spontaneously activates the LC (Haxhiu et al., 2003) and
dilates the airways (Warren et al., 1984; Haxhiu et al., 2003). The
dilation of the airways by the LC via the NA may contribute to
the decreased respiratory rate and HF-HRV, which are associated
with meditation (Lazar et al., 2005; Tang et al., 2009; Kodituwakku
et al., 2012) and yoga. The AC appears to be a critical compo-
nent in the circuitry that links the development of peripheral
symptoms with emotion and cognition in asthma (Rosenkranz
and Davidson, 2009). Activation of the LC by the AC may
play a role in the beneficial effects of mind–body influences in
asthma.

The NA is also, as previously mentioned, closely linked to the
rapid expression and regulation of emotional state (Porges, 1995;
Tonhajzerova et al., 2013). A withdrawal of the cardiopulmonary
vagal efferent outflow from the NA is seen during both acute and
chronic stress, which, in healthy individuals, is accompanied by
increased sympathetic tone (Porges, 1995), by increased levels of
P-NE.

Following bilateral lesions of the LC, animals fail to show nor-
mal cardioaccelerator responses to threatening stimuli (Redmond,
1977; Snyder et al., 1977). The loss of the inhibitory influence of
the LC on the NA, through its adrenergic receptors, may contribute
to this failure.

AMYGDALA
The AM is of particular importance in influencing the LC, SNS, and
the AC
The AM forms the core of a second, early-activated emotional
salience detecting network or orienting system comprised of
the superior colliculus, pulvinar, and AM (Liddell et al., 2005;
Luo et al., 2007; Tamietto and de Gelder, 2010; Van den Stock
et al., 2011; de Gelder et al., 2012). This system acts as a pre-
consciousness early warning system (Liddell et al., 2005; Luo et al.,
2007; Tamietto and de Gelder, 2010; Van den Stock et al., 2011; de
Gelder et al., 2012), particularly to threatening emotional stimuli,
including threatening subliminal stimuli (Liddell et al., 2005). An
early activation of the LC following subliminal stimuli has been
observed, indicating this AM system may initially activate the LC
(Liddell et al., 2005).

The early AM and the later cortical salience detecting orienting
networks are reciprocally interconnected, sequentially activated,
and both modulate the activity levels in the LC and in the SNS,
each contributing differentially to adapt the state of the whole
organism to environmental change.

The AM has reciprocal projections to the LC, the AC, and to the
NTS and DM, amongst various other regions including the VLM,
insula, and OFC (Price and Amaral, 1981; Amaral and Price, 1984;
Volz et al., 1990).

The AM projects reciprocally to both the dorsal AC of the
dmPFC and to the ventral AC of the vmPFC. The tract between the
AM and the ventral AC is a white matter tract (Kim and Whalen,
2009), allowing for rapid transmission. Increased activity in the
vmPFC is correlated with increased parasympathetic vagal activ-
ity (Lane et al., 2009; Tang et al., 2009) and the vmPFC is thought
to exert a tonic influence on the parasympathetic NA during the
resting state (Wong et al., 2007). Both the AM and the AC, indepen-
dently, are required for the occurrence of conditioned bradycardia,
the conditioned heart rate decrease that develops in response to
significant stimuli (Powell et al., 1997).

Although the AM was long presumed to project to the NA
(Schwaber et al., 1982; Volz et al., 1990) to rapidly activate the
SNS (Porges, 1995), more recently, this could not be confirmed
(Standish et al., 1995). The AM may, however, rapidly modulate
activity in the NA through its white matter tract with the vmPFC.

Following stimuli, the AM directly receives an early relatively
“crude” version of the stimuli via the superior colliculus and pulv-
inar in10–20 ms (Luo et al., 2007; Van den Stock et al., 2011). If the
stimulus is significant, the AM responds rapidly within 20–30 ms
and activates the LC (Liddell et al., 2005), in another10–20 ms
(Bouret et al., 2003). These activations occur before the cortical
frontal eye fields are activated at approximately 64 ms, the sup-
plementary eye field at 81 ms, and the AC at100 ms (Pouget et al.,
2005). All the above activations appear to commence prior to
conscious awareness of the stimuli (Fried et al., 2011; Kreiman,
2012).

When conditions allow for cortical processing, the mPFC, both
dorsal and ventral, is believed to regulate and control the AM,
either increasing or decreasing AM activity (Ohman, 2005; Kim
et al., 2011a,b). During rest, in normal low anxiety humans, activ-
ity in the vmPFC is positively correlated with the AM, while
dmPFC activity is negatively correlated (Kim et al., 2011b).

Following a familiar, stressful, significant stimulus, with a
known coping response available, the AM is thought to “take the
PFC “off line” to allow faster, more habitual responses mediated by
the posterior and/or subcortical structures to regulate behavior”
(Arnsten, 1997).

The cortical mPFC, however, can in turn regulate and control
the AM (Ohman, 2005; Kim et al., 2011a,b), to either enhance
activity in the AM or to take the AM, itself, “off line.”

Meditators exhibit lower activity in the AM (Brefczynski-Lewis
et al., 2007; Creswell et al., 2007; Lutz et al., 2008), an inhibition of
the AM occurs during meditation (Lutz et al., 2008) and decreased
gray matter density in the AM emerges over time (Hölzel et al.,
2010).

Arnsten (1997) has suggested the AM may take the PFC “off
line” by activating the LC, causing high levels of C-NE and
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dopamine in the cortex to inhibit the PFC – the DLPFC in partic-
ular. Interestingly, evidence points to the LC as a common origin
for both the C-NE and the dopamine in the cortex (Devoto and
Flore, 2006).

The central nucleus of the AM (CeA) projects to the LC. Stim-
ulation of the CeA stimulates the LC, producing a large single or
double burst, followed by an extended refractory period (Bouret
et al., 2003). In response to a familiar, stressful, significant stim-
ulus, the CeA would be expected to stimulate the LC, eliciting a
large burst of C-NE, followed by an extended refractory period,
SNS peripheral arousal and elevated blood pressure, resulting in
decreased cortical arousal (Duschek et al., 2007, 2013).

The LC projects to the basolateral amygdala influencing memory
Activation of the LC modulates activity in the basolateral amygdala
(BLA) by releasing C-NE. The C-NE inhibits spontaneous firing in
the majority of the BLA neurons via alpha 2 adrenergic receptors,
while exciting others via beta adrenergic receptors (Buffalari and
Grace, 2007).

Elevated activity in the LC acts via the BLA beta adrenergic
receptors to enhance the consolidation of memory (Roozendaal
and McGaugh, 2011) in the hippocampus (McReynolds et al.,
2010), and the cortex (Chavez et al., 2013), in both the mPFC
(Roozendaal et al., 2009) and in the insula (Bermudez-Rattoni
et al., 2005).

Arousal-induced release, or systemic injection of the periph-
eral adrenal hormones P-E and cortisol (corticosterone in rats)
enhances the consolidation of memory via the action of C-NE on
BLA beta receptors (Chavez et al., 2013).

Considerable evidence indicates that peripheral action on the
vagus nerve stimulates the LC to release this C-NE in the BLA
(McIntyre et al., 2012). Systemic administration of P-E has been
shown to dose-dependently elevate tonic baseline firing in the
LC (Holdefer and Jensen, 1987). In contrast, amphetamines, like
P-NE (Svensson et al., 1980; Elam et al., 1984), inhibit LC baseline
firing (Holdefer and Jensen, 1987).

Activation of the LC by exercise has also been shown to enhance
memory, including in older people and those with the early stages
of Alzheimer’s disease (Segal et al., 2012).

Following acute stress there is a period of increased connec-
tivity between the AC, LC, and AM, which may contribute to the
consolidation of memory for the significant events (van Marle
et al., 2010). The LC is active during slow wave sleep contributing
to the consolidation and the re-consolidation of memory (Sara,
2010; Eschenko et al., 2012) and is also involved in the successful
retrieval of emotional memory (Sterpenich et al., 2006).

Long-term stress induces homeostatic changes in the
interrelationship between the AM and the LC
In controls, increased norepinephrine in the BLA inhibited spon-
taneous firing in the majority of the BLA neurons, with some
showing excitation at lower doses but inhibition at higher doses.
Norepinephrine also decreased responsiveness of these neurons
to electrical stimulation of the entorhinal and sensory associ-
ation cortices (Buffalari and Grace, 2009). However, following
chronic cold stress, norepinephrine led to an increase in the exci-
tatory effects of norepinephrine on BLA neurons and a facilitation

of responses to the stimulation of the entorhinal and sensory
association cortices (Buffalari and Grace, 2009).

During stress, the CeA is a major source of elevated
corticotropin-releasing factor (CRF) in the peri-coerulear LC
(Van Bockstaele et al., 2001, 2010), the area of the LC that
projects to sympathetic regions (Westlund and Coulter, 1980).
CRF activates the LC raising C-NE levels in the posterior parts
of the ventral medial (VPm) thalamus (Devilbiss et al., 2012).
Although increased levels of LC output can facilitate sensory-
evoked responses of VPm thalamic and barrel field cortical
neurons in an inverted U dose–response relationship, high levels
of peri-coerulear LC infusions of CRF caused a dose-dependent
suppression of sensory-evoked discharge in the VPm thalamus
and in cortical barrel field neurons resulting in a net decrease
in signal-to-noise of sensory-evoked responses (Devilbiss et al.,
2012).

PAIN AND THE COERULEOSPINAL CENTRIFUGAL PAIN
CONTROL SYSTEM
The Vpm thalamus is the thalamic relay nucleus for the sympa-
thetic STT, which carries the afferent interoceptive information,
including pain, to the anterior insula (by way of the dorsal poste-
rior insula) and to the somatosensory BA3a (Craig, 2004, 2009).
The branch of the STT that projects to the AC relays in the ventro-
caudal portion of the medial dorsal thalamic nucleus (Craig,
2004).

The LC projects reciprocally to the STT (Craig, 1992; Westlund
and Craig, 1996). The descending coeruleospinal inhibitory path-
way from the LC and subcoeruleus (peri-coeruleus) is one of the
centrifugal pain control systems. The function of this LC system is
thought to maintain the accuracy of intensity coding in the dorsal
horn, while inhibiting nocioceptive signals in order to extract other
sensory information that is essential for circumstantial judgment
(Tsuruoka et al., 2011).

Activation of the LC can produce profound antinocicep-
tion (Tsuruoka et al., 2011, 2012; Hayashi et al., 2012) and can
inhibit the nociceptive activity of spinal dorsal horn neurons
and trigeminal subnucleus caudalis neurons (Hayashi et al., 2012).
Nocioceptive signals from visceral organs and cutaneous recep-
tive fields converge on single dorsal horn neurons. Electrical
stimulation of the LC inhibited both the visceral (colorectal dis-
tention) and the cutaneous pinch responses, with a reduction in
the intensity-response magnitude curve without a change in the
response threshold (Hayashi et al., 2012).

Fear-induced antinociception also occurs via LC pathways
(Biagioni et al., 2013), seizure-induced antinociception involves
LC alpha 2 and beta adrenergic receptors (Felippotti et al., 2011)
and the LC is thought to play a role in the antinociception caused by
stimulation of the motor cortex (Viisanen and Pertovaara, 2010).

Chronic pain stress changes the influence of the AM on the LC
from excitation to inhibition (Viisanen and Pertovaara, 2007).

Locus coeruleus responses to noxious stimulation were initially
enhanced following experimental neuropathy, however, after 10–
14 days microinjections of glutamate into the CeA produced a
dose-related inhibition of the discharge rate of LC neurons. There
was no significant effect on discharge rates in control groups.
Spinal antinociception due to LC electrical stimulation was also
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weaker in the nerve injured rats. The enhanced inhibition of the LC
by the CeA was thought to suppress the noradrenergic pain inhi-
bition and promote neuropathic pain (Viisanen and Pertovaara,
2007).

Long-term pain can increase the likelihood of mood or anxiety
disorders by as much as threefold (The Neuroscientist, 2012).

Long-term chronic pain (>28 days) caused an increase in LC
bursting activity, tyrosine hydroxylase expression and that of the
norepinephrine transporter; and enhanced expression and sen-
sitivity of the inhibitory alpha 2 adrenoceptors in the LC. This
was accompanied by an inability to cope with stressful situa-
tions, depressive and anxiogenic-like behaviors (Alba-Delgado
et al., 2013). As mentioned, increased LC bursting activity is
associated with lower, inhibited, LC baseline levels.

Meditation has been repeatedly found to reduce pain (Zeidan
et al., 2012).

In a 2012 review of meditation-related pain relief, mindful-
ness meditation was found to significantly reduce pain through a
number of unique brain mechanisms (Zeidan et al., 2012). In med-
itators during pain, higher activation was seen in the dorsal AC and
insula, but was reduced in the medial prefrontal-OFC (vmPFC),
DLPFC, and AM. Meditation significantly reduced lower level pro-
cessing in the primary somatosensory cortex, while the increased
activity in the rostral AC and anterior insula was associated with
intensity reductions and the decreased orbitofrontal and thalamic
activity was associated with reduced unpleasantness (Zeidan et al.,
2012).

In meditators, most of the areas of the brain associated with
the reduction of pain, including the salience detecting dorsal AC
and insula, the primary somatosensory area and the thalamus,
receive projections from the ascending STT (Craig, 2004, 2009).
The reduced lower level processing in the primary somatosensory
area, decreased thalamic activity and the intensity reductions asso-
ciated with the higher dorsal AC and insula activity could be the
result of the LC’s profound antinociceptive action on the ascend-
ing STT, reducing the response intensity magnitude curve without
a change in response threshold (Hayashi et al., 2012). By this route,
the AC activation of the LC may contribute to meditation-induced
reduction of pain.

VAGUS NERVE STIMULATION
Chemical or electrical stimulation of the vagus nerve alters LC
activity and that of its forebrain targets suggesting that the ther-
apeutic effects of vagal nerve stimulation (VNS) may involve the
LC-noradrenergic system (George and Aston-Jones, 2010). It has
been suggested that the effects of VNS on learning and memory,
mood, seizure suppression, and recovery of function following
brain damage are mediated, in part, by the release of C-NE in the
terminal fields of the LC (Roosevelt et al., 2006). VNS is also being
investigated with respect to anxiety (George et al., 2008), inflam-
mation, and the immune response (George and Aston-Jones,
2010).

The initiation of VNS activates the LC (Dorr and Debonnel,
2006), increasing not only the spontaneous (baseline) firing rate,
but also the percentage of LC neurons firing in bursts (Manta
et al., 2009). The LC has an excitatory influence on the dorsal
raphe (Dorr and Debonnel, 2006). Long-term (14 days) VNS

increased activity in the serotonin neurons of the dorsal raphe
nucleus, as seen with other antidepressant treatments (Manta
et al., 2009), through an activation of alpha 1 adrenergic neurons
and increased tonic activation of post-synaptic 5-HT1A recep-
tors in the hippocampus (Manta et al., 2013). Long-term VNS,
further, significantly increased extracellular C-NE levels in the
prefrontal cortex and hippocampus and enhanced the tonic activa-
tion of post-synaptic alpha 2 adrenoceptors on pyramidal neurons
(Manta et al., 2013).

A recent review discusses some of the beneficial effects of
mindfulness-based stress reduction, mindfulness-based cognitive
therapy, and Zen meditation to alleviate depression, anxiety, pain,
and psychological distress (Marchand, 2012).

The kinds of pain and suffering alleviated by meditative prac-
tices, are remarkably similar to those alleviated by stimulation of
the vagus. The increased activation of the LC by both practices
may contribute to the beneficial similarities.

BLOOD VOLUME, OXYGEN DEMAND, CELLULAR ENERGY
METABOLISM, AND INFLAMMATION
The LC–NE network optimizes coupling of cerebral blood volume
with oxygen demand through local vasodilation in active brain
areas, while constricting volume in other areas (Bekar et al., 2012).
Of increasing interest is the modulation by C-NE of glia, astrocytes,
oligodendrocytes, and microglia in their critical support functions
(Bekar et al., 2008; Chandley and Ordway, 2012; O’Donnell et al.,
2012). C-NE, for example, acts on astrocytes to enhance glutamate
uptake, while increasing production and breakdown of glycogen
(O’Donnell et al., 2012). Microglia, often thought of as the pri-
mary immune effector cells of the CNS, represent a major target
of C-NE signaling in the cortex (O’Donnell et al., 2012). C-NE
modulates microglia disease responses, suppressing inflammatory
gene transcription and reducing expression of pro-inflammatory
cytokines, while enhancing production of brain-derived neu-
rotrophic factor (BDNF) to promote neuronal survival (O’Donnell
et al., 2012). The mechanism by which C-NE reduces the expres-
sion of pro-inflammatory cytokines is still a topic of debate, but
may involve the regulation of the NF-kB signaling system by B2-
adrenergic receptor driven increases in cAMP (O’Donnell et al.,
2012).

Yogic meditation downregulated transcripts of pro-inflammat-
ory cytokines, decreasing expression of NF-kB associated pro-
inflammatory genes (Black et al., 2013). Mindfulness-based stress
reduction training also resulted in a significantly smaller post-
stress inflammatory response (Rosenkranz et al., 2013). The
regulation of gene expression by yoga, meditation, and related
practices has recently begun to be investigated (Saatcioglu, 2013).
The activation of the LC, by the AC and by exercise, may again be
a contributing factor.

NEUROPLASTICITY
In post-mortem studies of depressed humans a loss of glial cells has
been demonstrated in the AC, DLPFC, and OFC, amongst other
areas (Chandley and Ordway, 2012). It has been hypothesized that
given the intimate functional relationship between C-NE and glia,
particularly astrocytes, the glial deficits may be secondary to a
deficiency of C-NE (Chandley and Ordway, 2012). Humans with
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dopamine-B-hydroxylase deficiency, who have no norepinephrine,
exhibit a smaller total brain volume (Jepma et al., 2011).

Research indicates that LC neuron loss appears with aging (Shi-
bata et al.,2006) and depression (Shibata et al.,2007), and that such
loss is prominent in Parkinson’s and Alzheimer diseases (Bekar
et al., 2012). A diminished ability to couple blood volume to oxy-
gen demand (Bekar et al., 2012), and to support other neuronal
and non-neuronal cellular requirements (Bekar et al., 2008; Chan-
dley and Ordway, 2012; O’Donnell et al., 2012) due to a reduction
in C-NE from LC neurons, may contribute to their pathogenesis.

Structural changes are observed in various brain areas of med-
itators (Lazar et al., 2005; Hölzel et al., 2010; Tang et al., 2010,
2012; Luders et al., 2011, 2013; Grant et al., 2013; Kang et al., 2013;
Luders, 2013). The elevated C-NE due to the activation of the LC
by the AC may play a role.

DISCUSSION
In early 2012, when the Hasenkamp paper was published and
research for this paper began, some aspects of the AC’s activa-
tion of the LC and inhibition of the SNS to maximize adaptation
in changing environments were already known. Included were
the increased receptivity to the stimuli of the present moment
caused by activating the LC; the possible reduction of stress
through the inhibition of the stress associated SNS; the LC
behavior patterns and the potential importance of understand-
ing that the LC is not activated in tandem with the SNS, but that
stress associated elevated P-NE inhibits the LC dose-dependently
enhancing the phasic behavior pattern; that higher tonic base
line firing is not associated only with stress and arousal, but
with increased receptivity to the stimuli of the present moment,
with increased awareness. These aspects were already understood
and seemed of significant importance to understanding the neu-
roscientific process underlying the changes in state initiated by
meditation.

During 2012 and 2013, however, numerous papers have been
published that further implicate the integrated norepinephrine
systems in the enhancement of cortical executive network func-
tions and in the modulation of the AM, NA, VPm, STT, and pain,
as well as in the modulation of astrocytes and glia, blood vol-
ume, oxygen supply, cellular energy metabolism, inflammation,
and even of neuroplasticity.

These aspects were generally unknown in early 2012, and have
vastly expanded the understanding of the role of the AC’s activa-
tion of the LC and inhibition of the SNS in general, and potentially
in the beneficial changes initiated by meditation.

The AC and the anterior insula, together, form the cortical
salience detecting network, are usually jointly activated, contain
numerous recently evolved von Economo neurons, and undergo

structural changes in longer term meditators. Reviews of their
functions (Craig, 2009; Medford and Critchley, 2010; Menon and
Uddin, 2010) implicate them in the capacity for awareness of self
and awareness of the moment.

The AC is active during salience detecting and monitoring of
the stimuli in the present moment, is naturally activated by novel
or significant stimuli and normally ceases activity as the event-
encoding cycle ends. During mindfulness meditation the AC is
active “at the moment of awareness of mind wandering.” This sug-
gests the AC is active “at the moment of awareness” of whatever is
occurring now, in the present moment.

During meditation, following the initial “awareness of mind
wandering,” one “shifts” to “sustained attention,” one shifts to
sustain the attention of awareness of the present moment.

Without the development of a capacity to intentionally sustain
the attention of awareness of the present moment, this quality of
attention will normally be lost as the event-encoding cycle ends.
The various practices of meditation, however, can develop a capac-
ity to intentionally sustain the attention of awareness of whatever
is occurring in the present moment, irrespective of the nature of
the stimuli and irrespective of the environment from which they
come, whether external, internal, or interoceptive.

As mentioned, the salience detecting/executive FPC cortical
orienting network, including both the AC and the insula, shifts
between the external DAN and the internal DMN, while the AC
and insula receive information from the interoceptive STT. This
may allow the AC, in coordination with the insula, to monitor and
detect the salience of the stimuli of the present moment from all
environments, irrespective of the nature of the stimuli, whether
known or Unknown.

Meditation may develop the capacity for an intentional atten-
tion of awareness, which activates the AC of the salience detect-
ing/executive FPC cortical orienting network, initiating a variety
of physiological cascades through its modulation of the central LC
and peripheral SNS norepinephrine systems, via both parasym-
pathetic and sympathetic routes, to maximize receptivity and
adaptation in changing environments.

Buddha realized he had found a pathway to the elimination of
pain and suffering. The inhibition of the SNS and activation of
the LC by the AC during meditation may be a contributing factor
worthy of further scientific exploration.
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