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An emerging body of research is focusing on understanding and building artificial
systems that can achieve open-ended development influenced by intrinsic motivations. In
particular, research in robotics and machine learning is yielding systems and algorithms
with increasing capacity for self-directed learning and autonomy. Traditional software
architectures and algorithms are being augmented with intrinsic motivations to drive
cumulative acquisition of knowledge and skills. Intrinsic motivations have recently been
considered in reinforcement learning, active learning and supervised learning settings
among others. This paper considers game theory as a novel setting for intrinsic motivation.
A game theoretic framework for intrinsic motivation is formulated by introducing the
concept of optimally motivating incentive as a lens through which players perceive a game.
Transformations of four well-known mixed-motive games are presented to demonstrate
the perceived games when players’ optimally motivating incentive falls in three cases
corresponding to strong power, affiliation and achievement motivation. We use agent-
based simulations to demonstrate that players with different optimally motivating incentive
act differently as a result of their altered perception of the game. We discuss the
implications of these results both for modeling human behavior and for designing artificial
agents or robots.
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INTRODUCTION
Game theory is the study of strategic decision-making
(Guillermo, 1995). It has been used to study a variety of
human and animal behaviors in economics, political science,
psychology, biology, and other areas. Game theoretic approaches
have also been utilized in robotics for tasks such as multi-robot
coordination and optimization (Meng, 2008; Kaminka et al.,
2010) as well as for analyzing and implementing behavior in
software agents (Parsons and Wooldridge, 2002). This paper
presents a game theoretic framework for intrinsic motivation and
considers how motivation might drive cultural learning during
strategic interactions. The work provides stepping stones toward
intrinsically motivated, game theoretic approaches to modeling
strategic interactions. Potential applications include the study of
human behavior or modeling open-ended development in robots
or artificial agents.

In humans, individual differences in the strength of motives
such as power, achievement and affiliation have been shown to
have a significant impact on behavior in social dilemma games
(Terhune, 1968; Kuhlman and Marshello, 1975; Kuhlman and
Wimberley, 1976; Van Run and Liebrand, 1985) and during other
kinds of strategic interactions (Atkinson and Litwin, 1960). Some
models of these phenomena exist for artificial agents (Simkins
et al., 2010; Merrick and Shafi, 2011), but these models have not
yet been widely studied for strategic interactions, competition
and cooperation between artificial agents.

This paper presents a game theoretic approach to model-
ing differences in decision-making between individuals caused

by differences in their perception of the payoff during certain
strategic interactions. Specifically we consider cases where dif-
ferences in perception are caused by different motivational pref-
erences held by individuals. We study strategic decision-making
in the context of mixed-motive games. Four archetypical two-
by-two mixed-motive games are considered: prisoner’s dilemma
(PD), leader, chicken, and battle-of-the-sexes (BoS) (Rapoport,
1967; Colman, 1982). We introduce the concept of optimally
motivating incentive and demonstrate that agents with different
optimally motivating incentives perceive the four games differ-
ently. We show that the perceived games have different Nash
Equilibrium (NE) points (Nash, 1950) to the original games. This
causes agents with different optimally motivating incentives to act
differently. We discuss the implications of these results both for
modeling human behavior and for designing artificial agents or
robots with certain behavioral characteristics.

In the remainder of this Section, section Mixed-Motive Games
introduces mixed-motive games and section Solution Strategies
for Mixed-Motive Games reviews relevant existing models of
strategic decision-making. Section Solution Strategies for Mixed-
Motive Games also discusses the specific contributions of this
paper in that context and introduces the background formal
notations used in the rest of the paper. Section Incentive-Based
Models of Motivation reviews literature from motivational psy-
chology about the influence of incentive-based motivation on
decision-making as inspiration for the new models in sections
Materials and Methods. Sections Materials and Methods intro-
duces our new notation for incentives and shows how each of
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the four mixed-motive games are transformed into various new
games when different optimally motivating incentives are chosen
for agent players. Section Results presents a suite of agent-based
simulations demonstrating that players with different optimally
motivating incentive act differently as a result of their altered per-
ception of the game. We conclude in section Discussion with a
discussion of the implications of the work and future directions it
may take.

MIXED-MOTIVE GAMES
This paper will consider two-player mixed motive games with
the generic structure shown in Matrix 1. Each player, (Player 1
and Player 2) has a choice of two actions: C or D. Depending
on the combination of actions chosen by both players, Player 1 is
assigned a payoff value V1 and Player 2 is assigned a payoff value
V2. V1 and V2 can have values of T, R, P, or S. The value R is the
reward if both players choose C. In other words, R is the reward
for a (C, C) outcome. P is the punishment if both players defect
[joint D choices leading to a (D, D) outcome]. In a mixed-motive
game, P must be less than R. T represents the temptation to defect
(choose action D) from the (C, C) outcome and thus, in a mixed-
motive game T must be greater than R. Finally, S is the sucker’s
payoff for choosing C when the other player chooses D.

Formally, the game G presents players with a payoff matrix:

G =
[

P T
S R

]

The generic game G can be used to define a number of specific
games by fixing the relationships between T, R, P, and S. Four
well-known two-by-two mixed motive games and the relation-
ships that define them are (Colman, 1982):

1. Prisoner’s Dilemma: T > R > P > S
2. Leader: T > S > R > P
3. Chicken: T > R > S > P
4. Battle of the Sexes: S > T > R > P

A number of variations of these games do exist (as well as other
distinct games), but this paper will focus on the four games as
defined above.

Matrix 1. A generic two-by-two mixed-motive game G. T
must be greater than R and R must be greater than P.

Player 2

Player 1 D C

D P, P T, S

C S, T R, R

The PD game (Rapoport and Chammah, 1965; Poundstone,
1992) is perhaps the most well-known of the four games stud-
ied in this paper. It derives its name from a hypothetical strategic
interaction in which two people are arrested for involvement in
a crime. They are held in separate cells and cannot communi-
cate with each other. The police have insufficient evidence for a
conviction unless at least one of the prisoners discloses certain
incriminating information. Each prisoner has a choice between
concealing information from the police (action C) or disclosing it

(action D). If both conceal, both with be acquitted and the pay-
off to both will be V1 = V2 = R. If both disclose, both will be
convicted and receive minor punishments: V1 = V2 = P. If only
one prisoner discloses information he will be acquitted and, in
addition, receive a reward for his information. In this case, the
prisoner who conceals information will receive a heavy punish-
ment. For example if Player 1 discloses and Player 2 conceals,
the payoffs will be V1 = T and V2 = S. Player 2 in this situa-
tion is sometimes referred to as the “martyr” because he generates
the highest payoff for the other player and the lowest payoff for
himself.

The PD game has been used as a model for arms races,
voluntary wage restraint, conservation of scarce resources and
the iconic “tragedy of the commons” (see Colman, 1982, for
a review). More recently, however, biologists have argued that
individual variation in motivation and perception means that a
majority of strategic interactions do not, in fact, conform to the
PD model (Johnson et al., 2002). The models presented in our
paper demonstrate one possible explanation for this latter view.
Specifically, they show how a valid PD matrix can be transformed
into another game that no longer represents a PD scenario as a
result of individuals having different motives.

The game of Leader (Rapoport, 1967) is an analogy for real-
world interactions such as those between pedestrians or drivers
in traffic. For example, suppose two pedestrians wish to enter
a turnstile. Each must decide whether to walk into the turnstile
first (action D) or concede right of way and wait for the other
to walk in (action C). If both pedestrians wait, then both will be
delayed and receive payoffs V1 = V2 = R. If they both decide to
walk first, a socially awkward situation results in the worst payoff
V1 = V2 = P to both. If one decides to walk and the other waits,
the “leader” will be able to walk through unimpeded, receiving
the highest payoff T, while the “follower” will be able to walk
through afterwards giving the second best payoff S. Other exam-
ples of real world interactions abstracted by the Leader game
include two drivers at opposite ends of a narrow, one-lane bridge,
or two drivers about to merge from two lanes into one. In some
such real-world situations there are rules of thumb that prevent
the leader game from emerging, for example flashing headlights
at a bridge to concede right of way. However, when such commu-
nication fails or is impossible, individuals’ motivations have an
influential role in decision-making and in how individuals inter-
pret the scenario. We make the standard assumption that there is
no communication between agents.

In the game of Chicken two motorists speed toward each other
on a collision course. Each has the option of swerving to avoid a
collision, and thereby showing themselves to be “chicken” (action
C) or of driving straight ahead (action D). If both players are
“chicken,” each gets a payoff of V1 = V2 = R. If only one player
is “chicken” and the other drives straight on, then the “chicken”
loses face and the other player, the “exploiter,” wins a prestige
victory. For example if Player 1 is “chicken” and Player 2 drives,
the payoffs will be V1 = S and V2 = T. If both players drive a
collision will occur and both players will receive the worst pay-
off V1 = V2 = P. The game of Chicken has also been used to
model real-world scenarios in national and international poli-
tics involving bilateral threats, as well as animal conflicts and
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Darwinian selection of evolutionarily stable strategies (Maynard-
Smith, 1982).

Finally, the BoS game can be thought of as modeling a
predicament between two friends with different interests in enter-
tainment. Each prefers a certain form of entertainment that is
different to the other, but both would rather go out together than
alone. If both opt for their preferred entertainment, leading to
a (C, C) outcome, then each ends up going alone and receiv-
ing a payoff of V1 = V2 = R. A worse outcome (D, D) results
if both make the sacrifice of going to the entertainments they
dislike as they both end up alone and V1 = V2 = P. If, how-
ever, one chooses their preferred entertainment and the other
plays the role of “hero” and makes the sacrifice of attending the
entertainment they dislike then the outcome is better for both
of them (either V1 = T and V2 = S or V1 = S and V2 = T).
The payoff matrix for BoS is relatively similar to that of Leader,
with the only difference in the definition being the relation-
ship between T and S. In Leader T > S, while in BoS S > T.
This reflects the real-world relationship that is often perceived
between leadership and sacrifice (Van Knippenberg and Van
Knippenberg, 2005). We will see in section Results that some
of the game transformations that are perceived by agents using
our model of optimally motivating incentive also reflect this
relationship.

SOLUTION STRATEGIES FOR MIXED-MOTIVE GAMES
A strategy σ is a function that takes a game as input and out-
puts an action to perform according to some plan of play. This
paper will focus on pure strategies, such as “always choose action
C” and mixed strategies that make a stochastic choice between
two pure strategies with a fixed frequency. Suppose we denote
the probability that Player 2 will choose action C as P2(C), then
the expected payoff for the two pure strategies available to Player
1 (“always play C” or “always play D”) can be computed as
follows:

E1(C) = P2(C)R + [1 − P2(C)]S
E1(D) = P2(C)T + [1 − P2(C)]P

Using this information, a player can choose the strategy with the
maximum expected payoff. A variation on this idea that takes
into account individual differences in preference is utility the-
ory (Keeney and Raiffa, 1976; Glimcher, 2011). Utility theory
acknowledges that the values of different outcomes for different
people are not necessarily equivalent to their raw payoff values V.
Formally, a utility function U(V) is a twice differentiable func-
tion defined for V > 0 which has the properties of non-satiation
[the first derivative U ′(V) > 0] and risk aversion [the second
derivative U ′′(V) < 0]. The non-satiation property implies that
the utility function is monotonic, while the risk aversion property
implies that it is concave. Utility theories were first proposed in
the 1700s and have been developed and critiqued in a range of
fields including economics (Kahneman and Tversky, 1979) and
game theory (Von Neumann and Morgenstern, 1953).

Alternatives have also been proposed to model effects that
are inconsistent to utility theory. Examples include prospect the-
ory (Kahneman and Tversky, 1979) and lexicographic preferences

(Fishburn, 1974). The models in this paper can also be thought
of as an alternative to utility theory that uses theories of moti-
vation to determine how to compute individuals’ preferences.
Various other techniques have been proposed to model decision-
making under uncertainty, that is, when it is not possible to assign
meaningful probabilities to alternative outcomes. Many of these
techniques capture “rules of thumb” or heuristics used in human
decision-making (Gigerenzer and Todd, 1999). Examples include
the maximax, maximin, and regret principles.

The strategies chosen by players and their corresponding
payoffs constitute a NE (Nash, 1950) if no player can ben-
efit by changing their strategy while the other player keeps
theirs unchanged. This latter definition covers mixed strategies
M in which players make probabilistic random choices between
actions. Formally, if we consider a pair of strategies, σ1 and σ2,
and denote the expected payoff for Player 1 using σ1 against
Player 2 using σ2 as E1(σ1, σ2), then the two strategies are in
equilibrium if E1(σ1, σ2) ≥ E1(σ

′
1, σ2) for all σ′

1 �= σ1. In other
words, the strategies are in equilibrium if there is no alterna-
tive strategy for Player 1 that would improve Player 1’s expected
payoff against Player 2 if Player 2 continues to use strategy σ2

(Guillermo, 1995).
Suppose we consider the principles discussed above with refer-

ence to the four games described in section Mixed-Motive Games.
In the PD game there is a pure strategy equilibrium point (D, D)
from which neither player benefits from unilateral deviation,
although both benefit from joint deviation. We can visualize this
game in terms of expected payoff as shown in Figure 1. We denote
the probability of Player 2 choosing C as P2(C), the expected pay-
off if Player 1 chooses D as E1(D), and the expected payoff for
Player 1 choosing C as E1(C). The visualization shows that the
definition of PD (T > R > P > S) implies that E1(D) > E1(C)

regardless of P2(C). In other words, the strategy of choosing D
dominates the strategy of choosing C. The NE for this game
(D, D) is shown circled in Figure 1.

In contrast to the PD game, the Leader, Chicken and BoS
games all have E1(D) > E1(C) for P2(C) = 1 and E1(D) < E1(C)

for P2(C) = 0. In other words, these games have two asymmet-
ric equilibrium points (C, D) and (D, C). However, neither of
these equilibrium points is strongly stable because the players dis-
agree about which is preferable. The three games do, however,
have a mixed-strategy NE, meaning that players will tend to evolve
strategies that choose C with some fixed probability. We can also
visualize these games in terms of their expected payoff as shown

FIGURE 1 | Visualization of the Prisoner’s Dilemma payoff structure

T > R > P > S. The Nash Equilibrium (NE) is circled.
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A B C

FIGURE 2 | Visualization of the payoff structures for (A) Leader

T > S > R > P , (B) Chicken T > R > S > P and (C) Battle of the Sexes

S > T > R > P .

in Figure 2. The NE probability of players choosing C is defined
by the point at which E1(D) and E1(C) intersect, i.e.:

E1(C) = E1(D)

[R − S]P2(C) + S = [T − P]P2(C) + P

P2(C) = P − S

R − S − T + P

and likewise for P1(C).
Evolutionary game theory (Maynard-Smith, 1982) combines

classical game theory with learning. Evolutionary dynamics pre-
dict the equilibrium outcomes of a multi-agent system when
the individual agents use learning algorithms to choose actions
in iterative game-play. Two-population replicator dynamics, for
example, model learning when players may have different strate-
gies. In this model, suppose we combine the probabilities of Player
1 playing C and D in a vector form p = [pC, pD] such that pC =
P1(C) and pD = P1(D) and the probabilities of Player 2 playing C
and D q = [qC, qD] such that qC = P2(C) and qD = P2(D). The
replicator dynamics in this case are:

�pi = pi[(Gq)i − pGqT] (1)

�qi = qi[(pGT)i − pGT qT] (2)

where G is the payoff matrix defined by the game being played. In
this model, pure strategies tend to dominate over time and mixed-
strategies are unstable.

In this paper, we use two-population replicator dynamics to
model cultural learning (as opposed to biological evolution)
when mixed-motive games are played iteratively. Borgers and
Sarin (1997) showed that Cross’ learning model for two players
iteratively playing “habit forming games” converges to asym-
metric continuous time replicator dynamics. Our approach is a
stepping-stone toward simulating and analyzing strategic interac-
tions between agents modeling known motive profiles.

While classical game theory discussed above offers a wide
range of insights into behavior in strategic interactions, it is not
necessarily designed to model human decision-making. In fact,
there is evidence of humans not conforming to NE strategies in
many kinds of strategic interaction (Terhune, 1968; McKelvey and
Palfrey, 1992; Li et al., 2010). As a result, researchers have started
to develop alternative approaches. The field of behavioral game
theory (Camerer, 2003, 2004) is concerned with developing mod-
els of behavior under assumptions of bounded rationality. These

models take into account factors such as the heterogeneity of a
population, the ability of individuals to learn and adapt during
strategic interactions and the role of emotional and psychological
factors in strategic decision-making. The purposes of this work
fall into two broad categories: (1) to produce computational mod-
els that can explain and predict human behavior during strategic
interactions that does not conform to classical game theoretic
models (Valluri, 2006) and (2) to build artificial systems that can
exhibit certain desirable behavioral characteristics such as cooper-
ation or competitiveness (Sandholm and Crites, 1996; Claus and
Boutilier, 1998; Vassiliades and Christodoulou, 2010), coopera-
tion during strategic interactions (Valluri, 2006) and improved
performance against human adversaries who also have bounded
rationality and limited observation (Pita et al., 2010). The work
in our paper differs from previous work in this area by its focus
on the role of motivation in decision-making.

INCENTIVE-BASED MODELS OF MOTIVATION
In motivational psychology, incentive is defined as a situational
characteristic associated with possible satisfaction of a motive
(Heckhausen and Heckhausen, 2008). A range of incentive-based
motivation theories exist, dealing with both internal and exter-
nal incentives. Examples of internal incentives include the novelty,
difficulty or complexity of a situation. Examples of external incen-
tives include money and points or “payoff” in a game. For the
remainder of this paper we define incentive I as a value that is
proportional to payoff V defined in section Mixed-Motive Games.
The key aspect of incentive-based motivation to be embedded in
the game theoretic framework in this paper is that different indi-
viduals have different intrinsic preferences for incentives. These
different intrinsic motivations cause individuals to perceive the
payoff matrix specified by a game differently and act according to
their own transformation of that matrix.

The following sub-sections describe three incentive-based
models of motivation and the different motivational prefer-
ences they inspire. While we do not explicitly embed these
models in our proposed game theoretic framework, they inform
the cases of optimally motivating incentive and correspond-
ing game transformations that we study in section Materials
and Methods. The three motives considered are the “influential
trio” proposed by Heckhausen and Heckhausen (2008): achieve-
ment, affiliation, and power motivation. These theories are the
basis of competence-seeking behavior, relationship-building and
resource-controlling behavior in humans.

Achievement motivation
Achievement motivation drives humans to strive for excellence
by improving on personal and societal standards of performance.
Perhaps the foremost psychological model of achievement moti-
vation is Atkinson’s Risk-Taking Model (RTM) (Atkinson, 1957).
It defines achievement motivation in terms of conflicting desires
to approach success or avoid failure. Six variables are used:
incentive for success (equated with value of success); probabil-
ity of success (equated with difficulty); strength of motivation
to approach success; incentive for avoiding failure; probability of
failure; and strength of motivation to avoid failure. Success moti-
vated individuals perceive an inverse linear relationship between
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incentive and probability of success (Atkinson and Litwin, 1960;
Atkinson and Raynor, 1974). They tend to favor goals or
actions with moderate incentives which can be interpreted as
indicating a moderate probability of success or moderate dif-
ficulty. We examine the case of success-motivated individuals
in this paper, by examining the case where individuals with
a moderate optimally motivating incentive engage in strategic
interactions.

Affiliation motivation
Affiliation refers to a class of social interactions that seek contact
with formerly unknown or little known individuals and main-
tain contact with those individuals in a manner that both parties
experience as satisfying, stimulating and enriching (Heckhausen
and Heckhausen, 2008). The need for affiliation is activated when
an individual comes into contact with another unknown or lit-
tle known individual. While theories of affiliation have not been
developed mathematically to the extent of the RTM, affiliation
can be considered from the perspective of incentive and probabil-
ity of success (Heckhausen and Heckhausen, 2008). In contrast
to success-motivated individuals, individuals high in affiliation
motivation may select goals with a higher probability of success
and/or lower incentive. This often counter-intuitive preference
can be understood as avoiding public competition and conflict.
Affiliation motivation is thus an important balance to power
motivation, but can also lead to individuals with high affilia-
tion motivation underperforming their achievement motivated
colleagues.

Power motivation
Power can be described as a domain-specific relationship between
two individuals, characterized by the asymmetric distribu-
tion of social competence, access to resources or social status
(Heckhausen and Heckhausen, 2008). Power is manifested by
unilateral behavioral control and can occur in a number of differ-
ent ways. Types of power include reward power, coercive power,
legitimate power, referent power, expert power, and informational
power. As with affiliation, power motivation can be considered
with respect to incentive and probability of success. Specifically,
there is evidence to indicate that the strength of satisfaction of the
power motive depends solely on incentive and is unaffected by
the probability of success (McClelland and Watson, 1973). Power
motivated individuals select high-incentive goals, as achieving
these goals gives them significant control of the resources and
reinforcers of others.

Computational models of achievement, affiliation, and power
motivation
Previous work has modeled incentive-based motivation functions
computationally for agents with power, achievement, and affilia-
tion motive profiles making one-off decisions (Merrick and Shafi,
2011). For example, Figure 3 shows a possible computational
motive profile as a sum of three curves for achievement, affilia-
tion, and power motivation. Unlike utility functions, motivation
functions may be non-monotonic and non-concave. The highest
peak indicates the level of incentive I that produces the strongest
resultant motivational tendency m(I) for action. Assuming a

FIGURE 3 | A computational motive-profile as the sum of achievement,

affiliation and power motivation. The resultant tendency for action is
highest for incentive of 0.8 (the optimally motivating incentive for this
agent). This agent may be qualitatively classified as “power-motivated” as
its optimally motivating incentive is relatively high on the [0, 1] scale for
incentive. Image from (Merrick and Shafi, 2011).

[0, 1] scale for incentive, agents are qualitatively classified as
power, achievement or affiliation motivated if their optimally
motivating incentive is high, moderate or low, respectively.

MATERIALS AND METHODS
The previous section establishes that individuals can view incen-
tives differently. Broadly speaking, individuals with strong power,
achievement, or affiliation may favor high, moderate, and low
incentives, respectively. In a game theoretic setting this suggests
that individuals may not play an explicitly described game, but
rather act in response to their own idiosyncratic payoff matrix.
This phenomenon is not captured by classical game theory or util-
ity based models because of the non-monotonic and non-concave
nature of motivation functions.

Our approach in this paper brings the idea of a non-
monotonic intrinsic motivation function to game theory by
modeling players as having different “optimally motivating incen-
tives.” Optimally motivating incentives are scalar values that rep-
resent different motive profiles in a compressed form. Formally,
suppose we have two agents A1 and A2 playing a mixed-motive
game G. We denote the optimally motivating incentive of A1 as
I∗
1 and the optimally motivating incentive of A2 as I∗

2 . I∗
j is thus

the value that maximizes the motivation function mj(I) of agent
Aj. This paper is not concerned further with the definition of the
function m. We focus instead on the game transformations that
result from introducing I∗

j .
As we have seen, in a two-by-two game, there are four possible

outcomes: (C, C), (D, D), (C, D), and (D, C). The incentive val-
ues for each possible outcome from the perspective of the player
playing the first listed action are I = R, I = P, I = S, or I = T.
(See section Mixed-Motive Games and Matrix 1.) Suppose each
agent Aj wishes to adopt a strategy that results in an outcome that
minimizes the difference between I and their individual optimally
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motivating incentive I∗
j . That is, each agent wishes to minimize

|I − I∗
j |. This means that agents with different values of I∗

j will
perceive the incentives T, S, R, and P differently.

We define perceived incentive I′
j as a measure of the perceived

value of a particular incentive I, for a particular agent Aj. If we
further suppose that the maximum perceived incentive must be
equal to the maximum incentive Imax in the original game, then
we can formalize the notion of perceived incentive I′

j as:

I′
j = Imax − |I − I∗

j |
That is, perceived incentive is equal to maximum incentive minus
the error between actual and optimal incentive. This means that
Imax only has the highest perceived value if it is closest to the
agent’s optimally motivating incentive I∗

j . In practice the impli-
cations are that each incentive I will be perceived differently by
agents with different optimally motivating incentives I∗

j . In addi-
tion, the highest actual incentive may not be the highest perceived
incentive for all agents.

We can now define the perceived incentives T′, P′, S′, and R′ of
each incentive in the original game. In PD, Leader, and Chicken
the maximum incentive is Imax = T so we have:

T′
j = T − |T − I∗

j | R′
j = T − |R − I∗

j |
P′

j = T − |P − I∗
j | S′

j = T − |S − I∗
j |

This gives us the perceived game G′ in Matrix 2. For BoS the
maximum incentive is Imax = S giving:

S′
j = S − |S − I∗

j | T′
j = S − |T − I∗

j |
R′

j = S − |R − I∗
j | P′

j = S − |P − I∗
j |

This produces the perceived game G′ in Matrix 3. The next
sections examine these perceived games when different values
of I∗

j are assumed. We show that the games transform further
into a series of new games with different NE depending on the
value of I∗

j . There are numerous possible transformations of the
game, but the remainder of this section focuses in theory on
three cases of interest corresponding to individuals with strong
power, achievement, and affiliation motivation. The simulations
in section Results consider the intermediate cases as well.

Matrix 2. Perceived game G′ for PD, Leader, and Chicken.

Agent A2

Agent A1

D C

D T − |P − I∗
1 |, T − |P − I∗

2 | T − |T − I∗
1 |, T − |S − I∗

2 |
C T − |S − I∗

1 |, T − |T − I∗
2 | T − |R − I∗

1 |, T − |R − I∗
2 |

Matrix 3. Perceived game G′ for Battle of the Sexes.

Agent A2

Agent A1 D C

D S − |P − I∗
1 |, S − |P − I∗

2 | S − |T − I∗
1 |, S − |S − I∗

2 |
C S − |S − I∗

1 |, S − |T − I∗
2 | S − |R − I∗

1 |, S − |R − I∗
2 |

TRANSFORMING PRISONER’S DILEMMA
Using the PD game as an example, we can now consider how a
game is transformed into new games, depending on the value of

I∗
j . Three cases are considered corresponding to individuals with

strong power, achievement, and affiliation motivation.

Case 1 (Power): The first case examines a range of high opti-
mally motivating incentives: T > I∗

j > ½(T + R). We consider

this range “high” because I∗
j is closest to the maximum incen-

tive T. This gives us the following transformation of the PD game
using Matrix 2 and simplifying the absolute values using the
assumption that T > I∗

j > ½(T + R) > R > P > S:

T′
j = T − (T − I∗

j ) = I∗
j (3)

R′
j = T − (I∗

j − R) = T + R − I∗
j (4)

P′
j = T − (I∗

j − P) = T + P − I∗
j (5)

S′
j = T − (I∗

j − S) = T + S − I∗
j (6)

Theorem 1. For a PD game G with T > R > P > S, when T >

I∗
j > ½(T + R) the perceived game G′ is still a valid PD with T′

j >

R′
j > P′

j > S′
j.

Proof. If we assume R′
j ≥ T′

j then we have T + R − I∗
j ≥ I∗

j which

simplifies to ½(T + R) ≥ I∗
j . This contradicts the assumption

that T > I∗
j > ½(T + R) so it must be true that T′

j > R′
j. If we

assume that P′
j ≥ R′

j then we have T + P − I∗
j ≥ T + R − I∗

j or
P ≥ R which contradicts the definition of PD. Thus, it must be
true that R′

j > P′
j . Likewise, if we assume that S′

j ≥ P′
j then we

have T + S − I∗
j ≥ T + P − I∗

j which simplifies to S ≥ P which
contradicts the definition of PD. Thus, it must be true that
P′

j > S′
j

Case 2 (Achievement): The second case examines a range of
moderate optimally motivating incentives: ½(T + R) > I∗

j > R.

In other words, in this case I∗
j is closest to R. This gives us the

same basic transformation of the PD game as in Case 1 (Equations
3–6), but now defines a different set of perceived game as follows:

Theorem 2. For a PD game G with T > R > P > S, when ½(T +
R) > I∗

j > R the perceived game G′ has R′
j > T′

j and P′
j > S′

j.

Proof. If we assume T′
j ≥ R′

j then we have I∗
j ≥ T + R − I∗

j which

simplifies to I∗
j ≥ ½(T + R). This contradicts the assumption in

this case that ½(T + R) > I∗
j so it must be true that R′

j > T′
j . If

we assume that S′
j ≥ P′

j then we have T + S − I∗
j ≥ T + P − I∗

j
which simplifies to S ≥ P which contradicts the definition of PD.
Thus, it must be true that P′

j > S′
j

Case 3 (Affiliation): The third case examines a range of low
optimally motivating incentives: ½(P + S) > I∗

j > S. We con-

sider this range “low” because I∗
j is closest to S. This gives us

the following transformation of the PD game using Matrix 2 and
simplifying absolute values:

T′
j = T − (T − I∗

j ) = I∗
j
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R′
j = T − (R − I∗

j ) = T + I∗
j − R

P′
j = T − (P − I∗

j ) = T + I∗
j − P

S′
j = T − (I∗

j − S) = T + S − I∗
j

Theorem 3. For a PD game G with T > R > P > S, when ½(P +
S) > I∗

j > S the perceived game G′ has S′
j > P′

j > R′
j > T′

j .

Proof. If we assume P′
j = S′

j then we have T + I∗
j − P ≥ T +

S − I∗
j which simplifies to I∗

j ≥ ½(P + S). This contradicts the

assumption that ½(P + S) > I∗
j . Thus, it must be true that S′

j >

P′
j . If we assume R′

j ≥ P′
j then we have T + I∗

j − R ≥ T + I∗
j − P

which simplifies to P ≥ R. This contradicts the definition of
PD. Thus, it must be true that P′

j > R′
j. Likewise, if we assume

T′
j ≥ R′

j then we have I∗
j ≥ T + I∗

j − R which simplifies to R ≥ T.
This contradicts the definition of PD. Thus, it must be true that
R′

j > T′
j

The three cases above result in a number of different perceived
games. Case 1 still results in a valid PD game, but in Case 2 and
Case 3 the perceived games are new games. An example of the
payoff structure of the new perceived game from Case 2 is visual-
ized in Figure 4A. In this game E1(D) > E1(C) for P2(C) = 0 and
E1(D) < E1(C) for P2(C) = 1. E1(D) and E1(C) intersect at:

P2(C) = P′ − S′

R′ − S′ − T′ + P′ = M

There are now two pure NE and the strategy that emerges depends
on the initial values of P1(C) and P2(C). If P1(C) + P2(C) > 2M
at t = 0 then the (C, C) equilibrium will emerge. Alternatively if
P1(C) + P2(C) < 2M at t = 0 then the (D, D) equilibrium will
emerge.

In Case 3 the agents also do not perceive a PD game. The per-
ceived game in this case is visualized in Figure 4B. In this game
E1(C) > E1(D) for all P2(C). The (C, C) strategy is now dom-
inant, indicating that the agents will tend to evolve cooperative
(C, C) strategies over time.

TRANSFORMING LEADER
We can follow the same process to construct perceived versions of
Leader.

A B

FIGURE 4 | Visualization of the Prisoner’s Dilemma game when

perceived by agents with optimally motivating incentives of (A)

½(T + R) > I∗
j

> R and (B) ½(P + S) > I∗
L

> S. The pure strategy Nash
Equilibria (NE) are circled.

Case 1 (Power): The first case again examines a range of high
optimally motivating incentives: T > I∗

j > ½(T + S). This gives
us the same basic transformations in Equations 3–6, and the
perceived game is still a Leader game.

Theorem 1. In a Leader game G with T > S > R > P, when T >

I∗
j > ½(T + S) the perceived game G′ is still a valid Leader game

T′
j > S′

j > R′
j > P′

j .

Proof. If we assume S′
j ≥ T′

j then we have T + S − I∗
j ≥ I∗

j which

simplifies to ½(T + S) ≥ I∗
j . This contradicts the assumption in

this case that T > I∗
j > ½(T + S) so it must be true that T′

j > S′
j.

If we assume that R′
j ≥ S′

j then we have T + R − I∗
j ≥ T + S − I∗

j
which simplifies to R ≥ S which contradicts the definition of
Leader. Thus, it must be true that S′

j > R′
j. Likewise, if we assume

that P′
j ≥ R′

j then we have T + P − I∗
j ≥ T + R − I∗

j which sim-
plifies to P ≥ R which contradicts the definition of Leader. Thus,
it must be true that R′

j > P′
j

Case 2 (Achievement): The second case examines a range of
moderate-high optimally motivating incentive: ½(T + S) > I∗

j >

S. This also gives us the transformations in Equations 3–6, but the
perceived game is no longer a Leader game. In fact, a number of
interesting variations occur:

Lemma 1. In a Leader game G with T > S > R > P, when ½(T +
S) > I∗

j > S the perceived game G’ has S′
j > T′

j and R′
j > P′

j .

Proof. If we assume T′
j ≥ S′

j then we have I∗
j ≥ T + S − I∗

j which

simplifies to I∗
j ≥ ½(T + S). This contradicts the assumption in

this case that ½(T + S) > I∗
j so it must be true that S′

j > T′
j . If

we assume that P′
j ≥ R′

j then we have T + P − I∗
j ≥ T + R − I∗

j
which simplifies to P ≥ R which contradicts the definition of
Leader. Thus, it must be true that R′

j > P′
j

Theorem 2. In a Leader game G with T > S > R > P, when
½(T + S) > I∗

j > S and I∗
j > ½(T + R) the perceived game G′ is

a BoS game S′
j > T′

j > R′
j > P′

j

Proof. S′
j > T′

j and R′
j > P′

j by Lemma 3.2.2. I∗
j > ½(T + R)

expands to I∗
j > T + R − I∗

j . Substitution of Equations 3–4 gives

us T′
j > R′

j

Theorem 3. In a Leader game G with T > S > R > P, when
½(T + S) > I∗

j > S and I∗
j < ½(T + R) the perceived game G′ is

S′
j > R′

j > T′
j > P′

j .

Proof. S′
j > T′

j and R′
j > P′

j by Lemma 3.2.2. I∗
j < ½(T + R)

expands to I∗
j < T + R − I∗

j . Substitution of Equations 3–4 gives

us T′
j < R′

j.

Case 3 (Affiliation): The third case examines a range of low opti-
mally motivating incentives: ½(R+P) > I∗

j >P. This gives us the
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following transformation:

T′
j = T − [T − I∗

j ] = I∗
j (7)

R′
j = T − [R − I∗

j ] = T + I∗
j − R (8)

P′
j = T − [I∗

j − P] = T + P − I∗
j (9)

S′
j = T − [S − I∗

j ] = T + I∗
j − S (10)

Theorem 4. In a Leader game G with T > S > R > P, when
½(R + P) > I∗

j > P the perceived game G′ is P′
j > R′

j > S′
j > T′

j .

Proof. If we assume R′
j ≥ P′

j we have T + I∗
j − R ≥ T + P −

I∗
j which simplifies to I∗

j ≥ 1/2(R + P) which contradicts the

assumption that 1/2(R + P) > I∗
j . If we assume S′

j ≥ R′
j we have

T + I∗
j − S ≥ T + I∗

j − R or R ≥ S which contradicts the defi-

nition of Leader. Thus, it must be true that R′
j > S′

j. Likewise

if we assume T′
j ≥ S′

j we have I∗
j ≥ T + I∗

j − S or S ≥ T which
contradicts the definition of Leader. Thus, it must be true that
S′

j > T′
j

TRANSFORMING CHICKEN
We can follow the same process again to construct the perceived
versions of Chicken. Proofs are omitted for brevity.

Case 1 (Power): The first case again assumes a high optimally
motivating incentive: T > I∗

j > 1/2(T + R). This gives us the
transformation in Equations 3–6, and the perceived game is a
Chicken game:

Theorem 1. For a Chicken game G with T > R > S > P, when
T > I∗

j > 1/2(T + R) the perceived game G′ is still a valid

Chicken game T′
j > R′

j > S′
j > P′

j .

Proof. Omitted.

Case 2 (Achievement): The second case again assumes a
moderate-high optimally motivating incentive: ½(T + R) >

I∗
j > R. This also gives us the transformation in Equations 3–6,

but the perceived game is no longer a Chicken game:

Theorem 2. For a Chicken game G with T > R > S > P, when
½(T + R) > I∗

j > R the perceived game G′ has R′
j > T′

j and

S′
j > P′

j .

Proof. Omitted.

Case 3 (Affiliation): The third case again assumes a low opti-
mally motivating incentive: ½(S + P) > I∗

j > P. This gives us the
transformations in Equations 7–10.

Theorem 3. For a Chicken game G with T > R > S > P, when
½(S + P) > I∗

j > P the perceived game G′ is P′
j > S′

j > R′
j > T′

j

Proof. Omitted.

TRANSFORMING BATTLE OF THE SEXES
Finally, we can follow the process above to construct the perceived
versions of BoS.

Case 1 (Power): The first case again assumes a high optimally
motivating incentive: S > I∗

j > ½(T + S). This gives us the fol-
lowing transformation of the BoS game:

T′
j = S − (I∗

j − T) = S + T − I∗
j (11)

R′
j = S − (I∗

j − R) = S + R − I∗
j (12)

P′
j = S − (I∗

j − P) = S + P − I∗
j (13)

S′
j = S − (S − I∗

j ) = I∗
j (14)

Theorem 1. For a BoS game G with S > T > R > P, when S >

I∗
j > ½(T + S) the perceived game G′ is still a valid BoS game

S′
j > T′

j > R′
j > P′

j .

Proof. Omitted.

Case 2 (Achievement): The second case again assumes
a moderate-high optimally motivating incentive:
¡(T + S) > I∗

j > T. This gives us the transformation of the
BoS game in Equations 11–14, but the perceived game is no
longer a BoS.

Lemma 1. For a BoS game G with S > T > R > P, when ½(T +
S) > I∗

j > T the perceived game G′ has T′
j > S′

j and R′
j > P′

j .

Proof. If we assume S′
j ≥ T′

j then we have I∗
j ≥ S + T − I∗

j which

simplifies to I∗
j ≥ ½(T + S) which contradicts the assumption

that ½(T + S) > I∗
j . Thus, it must be true that S′

j > T′
j . If we

assume P′
j ≥ R′

j then we have S + P − I∗
j ≥ S + R − I∗

j which
simplifies to P ≥ R which contradicts the definition of BoS. Thus,
it must be true that R′

j > P′
j

Theorem 2. For a BoS game G with S > T > R > P, when ½(T +
S) > I∗

j > T and I∗
j > ½(S + R) the perceived game G′ is a

Leader game T′
j > S′

j > R′
j > P′

j .

Proof. T′
j > S′

j and R′
j > P′

j by Lemma 3.4.2. I∗
j > ½(S + R)

expands to I∗
j > S + R − I∗

j . Substitution of Equations 14 and 12

gives us S′
j > R′

j

Theorem 3. For a BoS game G with S > T > R > P, when ½(T +
S) > I∗

j > T and I∗
j < ½(S + R) the perceived game G′ is a

Chicken game T′
j > R′

j > S′
j > P′

j .

Proof. T′
j > S′

j and R′
j > P′

j by Lemma 3.4.2. I∗
j < ½(S + R)

expands to I∗
j < S + R − I∗

j . Substitution of Equations 14 and 12

gives us S′
j < R′

j

Case 3 (Affiliation): The third case again assumes a low opti-
mally motivating incentive: ½(R + P) > I∗

j > P. This gives us the
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following transformation of the BoS game:

T′
j = S − (T − I∗

j ) = S + I∗
j − T

R′
j = S − (R − I∗

j ) = S + I∗
j − R

P′
j = S − (I∗

j − P) = S + P − I∗
j

S′
j = S − (S − I∗

j ) = I∗
j

Theorem 4. For a BoS game G with S > T > R > P, when ½(R +
P) > I∗

j > P the perceived game G′ is P′
j > R′

j > T′
j > S′

j.

Proof. If we assume R′
j ≥ P′

j then we have S + I∗
j − R ≥ S +

P − I∗
j or I∗

j ≥ ½(R + P) which contradicts the assumption that

½(R + P) > I∗
j . Thus, it must be true that P′

j > R′
j. If we assume

that T′
j ≥ R′

j then we have S + I∗
j − T ≥ S + I∗

j − R or R ≥ T
which contradicts the definition of BoS. Thus, it must be true
that R′

j > T′
j . Likewise, if we assume that S′

j ≥ T′
j then we have

I∗
j ≥ S + I∗

j − T or T ≥ S which contradicts the definition of

BoS. Thus, it must be true that T′
j > S′

j

RESULTS
This section presents simulations of the each of the four games
studied in section Materials and Methods played by agents with
optimally motivating incentives conforming to the three cases
studied, as well as the intermediate cases not studied above.
We use two-population replicator dynamics to model cultural
learning when mixed-motive games are played iteratively. We
demonstrate that individuals with different optimally motivating
incentives may adopt different strategies when playing a particu-
lar game, or may learn at different rates. We also discuss how the
NE of the transformed games reflects a number of results from
human experiments that are not well-modeled by the NE of the
original game.

PRISONERS’ DILEMMA
Figures 5, 6 use the two population replicator dynamics in
Equations 1 and 2 to simulate one hundred pairs of agents (A1

and A2) playing the iterated PD (IPD1) game:

G =
[

2 4
1 3

]

The initial probabilities pC (for agents A1) and qC (for agents A2)
are randomized and the agent pairs learn while playing thirty con-
secutive games. A range of [1, 4] is assumed for incentive. The
lines in Figure 5 trace the learned values of pC and qC over time.
In Figure 5 all agents have a “high” optimally motivating incen-
tive I∗

1 = I∗
2 = 4.0, representing power-motivated individuals. We

see that the perceived games are identical to the original game, ie:
G′

1 = G′
2 = G and all agent pairs tend to converge on the (D, D)

equilibrium over time.
In Figure 6 the agents share progressively lower values of I∗

1
and I∗

2 , ranging from I∗
1 = I∗

2 = 3.8 in Figure 6A to I∗
1 = I∗

2 =
1.0 in Figure 6O. Figures 6A,B show Case 1 games in which
the (D, D) outcome emerges as the equilibrium as predicted by

FIGURE 5 | Simulation of one hundred pairs of agents playing thirty

iterations of the Prisoner’s Dilemma game. All agents have I∗j = 4.0, but
initial values of pC and qC are randomized.

Theorem 2.1.1. These agents still perceive a PD game. In contrast,
Figures 6C,D show Case 2 games in which some agents converge
on the (C, C) equilibrium and some on the (D, D) equilibrium, as
predicted by Theorem 2.1.2. The equilibrium approached by the
agent pairs in this case depends on their initial values of pC and
qC . In Figures 6E–L the (C, C) outcome becomes more frequent
as the values of I∗

1 and I∗
2 decrease. Figures 6M,N shows Case 3

games in which all agents converge on the (C, C) equilibrium as
predicted by Theorem 2.1.3.

In general, these results support the idea proposed by Johnson
et al. (2002), that individual variation means that true PD scenar-
ios occur relatively infrequently in nature. Johnson et al. (2002)
show that if there is variance in perception of twice the pay-
off interval in a linear PD game (a game in which the intervals
between T, R, S, and P are the same) then only 15.8% remain
valid PD games. Our transformations show that a true PD sce-
nario will only occur if both agents have optimally motivating
incentives that fall in the range T > I∗ > ½(T + R). If we assume
I∗ can only fall within the range of T ≥ I∗ ≥ S, the fraction v of
valid PD games will be:

v = T − 1/2(T + R)

T − S
= T − R

2(T − S)

In a linear PD game 3(T − R) = (T − S) so v = 1/6 = 16.6% if
we assume a uniform distribution of optimally motivating incen-
tives. This is, qualitatively speaking, similar to the result proposed
by Johnson et al. (2002), and offers support for our methodology
for modeling differences in motivations.

Case 1 and Case 2 also provide computational insight into
some of the findings reported by Terhune (1968). Terhune
observed pairs of humans classified as either power, affiliation
and achievement motivated playing single-shot and iterative
PD games in controlled conditions. One of these experiments
observed the influence of the first trial outcome on different
types of people. He found that if the first outcome was (C, C),
pairs of achievement motivated individuals had the highest sub-
sequent proportion of (C, C) outcomes (46.8%). In contrast,
power motivated individuals had (C, C) outcomes only 9.4%
of the time after a (C, C) outcome on the first trial. In other
words people with different motives respond differently to the
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FIGURE 6 | Simulations of one hundred pairs of agents playing thirty

iterations of the Prisoner’s Dilemma game. Agents share different values
of I∗j in each simulation. (A) I∗j = 3.8; (B) I∗j = 3.6; (C) I∗j = 3.4; (D) I∗j = 3.2;

(E) I∗j = 3.0; (F) I∗j = 2.8; (G) I∗j = 2.6; (H) I∗j = 2.4; (i) I∗j = 2.2; (J) I∗j = 2.0;
(K) I∗j = 1.8; (L) I∗j = 1.6; (M) I∗j = 1.4; (N) I∗j = 1.2; (o) I∗j = 1.0. Initial values
of pC and qC are randomized. See Figure 5 for legend.

same experience (in this case the first trial outcome). The results
above suggest that this can be captured computationally using
our model by using high values of I∗ for power motivated indi-
viduals, so that they tend to perceive a Case 1 game and lower
values of I∗ for achievement motivated individuals, so that they
tend to perceive a Case 2 game. A further discussion of this
avenue for future work is made in section Human-Computer
Interaction.

The Case 3 result is perhaps less instructive from a human
modeling perspective, but is still useful from an artificial sys-
tems perspective. If we wish to design agents that will cooperate
when faced with PD situations, then we can use agents with low
optimally motivating incentives in the range ½(P + S) > I∗

1 > S.
These agents perceive a game with a dominant (C, C) strategy
and will thus tend to evolve cooperative strategies over time.
Likewise, if we wish to model “martyrs” then an agent A1 with
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½(P + S) > I∗
1 > S will be a martyr (C chooser) when playing

an agent A2 with T > I∗
2 > ½(T + R). This type of personality

modeling has application to areas such as believable non-player
characters (NPCs) in computer games.

LEADER
If we consider Case 1(power-motivated) agents playing the leader
game, we see that E1(C) > E1(D) for P2(C) = 0 and E1(D) >

E1(C) for P2(C) = 1. E1(C) and E1(D) intersect at the point:

P2(C) = S − P

2I∗ + S − P − T − R

Now, suppose we have two pairs of players. The first pair of players
have optimally motivating incentives I∗

1 = I∗
2 = I∗

j . The second

pair of players have optimally motivating incentives I∗
1 = I∗

2 = I∗
k

such that I∗
j > I∗

k . Substitution gives us

S − P

2I∗
j + S − P − T − R

<
S − P

2I∗
k + S − P − T − R

That is, Pj(C) < Pk(C). In other words the probability of conced-
ing right of way increases in games between players with weaker
power motivation, although the equilibria are still at (C, D)
and (D, C) as indicated by Theorem 2.2.1. This phenomenon is
evident in the simulations in Figure 7. Figure 7 uses the two pop-
ulation replicator dynamics in Equations 1 and 2 to simulate one
hundred pairs of learning agents (A1 and A2) playing the Leader
game:

G =
[

1 4
3 2

]

The Case 1 simulations are shown in Figures 7A,B and the trend
to concede is evident in the progressively less direct paths the
agent’s take to the equilibria. As I∗

j is further decreased in Case
2 (achievement motivated agents), two types of perceived games
occur. Either the game is perceived as a BoS game (Theorem
2.2.3), or as a game with a dominant (C, C) strategy (Theorem
2.2.4).

The Leader game is perceived as a BoS game when ½(T + S) >

I∗
j > S and I∗

j = ½(T + R). The payoff structure for a BoS game
is visualized in Figure 2C. Figures 7C,D simulates the behavior of
agents that perceive a Leader game as a BoS game. The paths taken
to the (C, D) and (D, C) equilibria by these agents are quite indi-
rect as both are initially motivated to concede right of way by their
perception of leadership as an act of sacrifice. Leader-follower
behavior [(C, D) or (D, C)] does emerge, but it does so more
slowly than for agents with high values of I∗

j because leadership
is now perceived as an act of sacrifice.

Figures 7E–J shows simulations of games between agents with
S > I∗

j > R. These agents perceive games of the form S′
j > R′

j >

T′
j > P′

j with dominant (C, C) strategies. As a result, leadership
behavior does not emerge as an equilibrium as the agents always
concede right of way. In Case 3(affiliation motivated agents) there
are two pure equilibria in the perceived game: (D, D) and (C, C).

The Case 3 payoff structure is simulated in Figures 7M,N. The
emergent equilibrium strategy for any pair of agents depends
on the initial values of P1(C) and P2(C). If P1(C) + P2(C) >

2M at t = 0 then the (C, C) equilibrium will occur over time.
Alternatively if P1(C) + P2(C) < 2M at t = 0 then the (D, D)
equilibrium will occur over time. These pure strategy equilibria
preclude the emergence of leader-follower behavior and result,
instead, in collisions (both players driving) or procrastination
(both players conceding right of way). Thus, to achieve leaders
and followers agents with high values of I∗ are required.

CHICKEN
In the chicken game, Case 1(power-motivated) agents also per-
ceive a valid Chicken game resulting in the emergence of an
“exploiter” agent. However, with a small reduction in I∗

j Case 2
(achievement motivated) agents perceive a transformed game in
which the more cautious (C, C) strategy is dominant (Theorem
2.3.2). This is, in fact, the most common perceived game, covering
½(T + R) > I∗

j > ½(S + P). This can be thought of as reflecting
the real-world reluctance to engage in a game of Chicken, which is
in principle the same as playing and choosing C (Colman, 1982).

The prevalence of the perceived dominant (C, C) strategy is
evidenced in the simulations in Figure 8. Figure 8 uses the two
population replicator dynamics in Equations 1 and 2 to simu-
late one hundred pairs of learning agents (A1 and A2) playing the
Chicken game:

G =
[

1 4
2 3

]

Figures 8C–L all show agents approaching the (C, C) equilib-
rium. One other case does exist (Case 3) in which the perceived
game has two pure NE: (D, D) and (C, C). The emergent equi-
librium for two agents depends on the initial values of P1(C) and
P2(C). If P1(C) + P2(C) > 2M at t = 0 then the (C, C) equilib-
rium will occur over time. Alternatively if P1(C) + P2(C) < 2M
at t = 0 then the (D, D) equilibrium will occur over time. These
pure strategy equilibria result in either certain collision (both
players driving on) or mutually cautious behavior (both play-
ers swerving to avoid a collision). Examples of Case 3 agents
interacting are shown in Figures 7M,N.

Comparison of Case 1 and Case 3 demonstrates how the same
outcome may result from different motives. In Case 1 the (D, D)
outcome results from a preference for high incentives. In Case 3
the (D, D) outcome results from a preference for low incentives
to avoid conflict. The strategy clearly backfires, but this sort of
trend has been observed in a general sense in humans. Individuals
with high affiliation motivation have been observed to underper-
form their achievement motivated colleagues precisely because
their desire to avoid conflict situations often means they also
miss opportunities to cooperate (Heckhausen and Heckhausen,
2008).

BATTLE OF THE SEXES
If we consider Case 1 (power-motivated) agents playing BoS, we
see that E1(C) > E1(D) for P2(C) = 0 and E1(D) > E1(C) for
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FIGURE 7 | Simulations of one hundred pairs of agents playing thirty

iterations of the Leader game. Agents share different values of I∗j in each
simulation. (A) I∗j = 3.8; (B) I∗j = 3.6; (c) I∗j = 3.4; (D) I∗j = 3.2; (E) I∗j = 3.0;

(F) I∗j = 2.8; (G) I∗j = 2.6; (H) I∗j = 2.4; (I) I∗j = 2.2; (J) I∗j = 2.0; (K) I∗j = 1.8;
(L) I∗j = 1.6; (M) I∗j = 1.4; (N) I∗j = 1.2; (O) I∗j = 1.0. Initial values of pC and
qC are randomized. See Figure 5 for legend.

P2(C) = 1. E1(C) and E1(D) intersect at the point:

P2(C) = 2I∗ − S − P

2I∗ − S − P + T − R

Now, suppose we have two pairs of learning agents playing
a BoS game. The first pair of agents has optimally moti-
vating incentives I∗

1 = I∗
2 = I∗

j . The second pair has optimally

motivating incentives I∗
1 = I∗

2 = I∗
k such that I∗

j < I∗
k . This

implies Pj(C) < Pk(C) as the (T − R) term in the denominator
becomes increasingly significant as I∗ decreases. In other words,
the probability of choosing C decreases in agents with lower val-
ues of I∗ as they begin to perceive the D choice as a desirable act
of leadership rather than as a less desirable act of sacrifice. This is
evident in the simulations in Figure 9. Figure 9 uses the two pop-
ulation replicator dynamics in Equations 1 and 2 to simulate one
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FIGURE 8 | Simulations of one hundred pairs of agents playing thirty

iterations of the Chicken game. Agents share different values of I∗j in each
simulation. (A) I∗j = 3.8; (B) I∗j = 3.6; (C) I∗j = 3.4; (D) I∗j = 3.2; (E) I∗j = 3.0;

(F) I∗j = 2.8; (G) I∗j = 2.6; (H) I∗j = 2.4; (I) I∗j = 2.2; (J) I∗j = 2.0; (K) I∗j = 1.8;
(L) I∗j = 1.6; (M) I∗j = 1.4; (N) I∗j = 1.2; (O) I∗j = 1.0. Initial values of pC and
qC are randomized. See Figure 5 for legend.

hundred pairs of agents (A1 and A2) playing the BoS game:

G =
[

1 3
4 2

]

Figures 9A,B show Case 1 simulations while Figures 9C,D show
Case 2 simulations in which the learning agents perceive a
Leader game (Theorem 2.4.3) rather than the original BoS game.

Progressively more direct trajectories towards the (C, D) and
(D, C) outcomes are evident in these simulations as I∗

j decreases.
Figures 9E–G show simulations in which the agents perceive

a Chicken game rather than a BoS game. This is followed by
another change in perception in Figures 9H,L. In these simula-
tions, and in the Case 3 games in Figures 9M,N the perceived
games have two pure NE: (D, D) and (C, C). The strategy chosen
by the agents depends on the initial values of pC and qC . These
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FIGURE 9 | Simulations of one hundred pairs of agents playing thirty

iterations of the Battle-of-the-Sexes game. Agents share different values
of I∗j in each simulation. (A) I∗j = 3.8; (B) I∗j = 3.6; (C) I∗j = 3.4; (D) I∗j = 3.2;

(E) I∗j = 3.0; (F) I∗j = 2.8; (G) I∗j = 2.6; (H) I∗j = 2.4; (I) I∗j = 2.2; (J) I∗j = 2.0;
(K) I∗j = 1.8; (L) I∗j = 1.6; (M) I∗j = 1.4; (N) I∗j = 1.2; (O) I∗j = 1.0. Initial values
of pC and qC are randomized. See Figure 5 for legend.

pure strategy equilibria result in both players attending entertain-
ment alone. For the best outcome to emerge, either a “hero,” a
“leader,” or a “chicken” personality is required.

STRATEGIC INTERACTIONS BETWEEN AGENTS WITH DIFFERENT
MOTIVES
The simulations so far consider pairs of agents with the same
optimally motivating incentives. However, it is also possible to

simulate the outcomes when pairs of learning agents with dif-
ferent optimally motivating incentives interact. Figures 10A–D
simulates such pairs of agents playing each of the four games, PD,
Leader, Chicken, and BoS, respectively. In each pair, one agent A1

has a high optimally motivating incentive I∗
1 = 3.9 and the other

A2 has a low optimally motivating incentive I∗
1 = 1.1.

The results in Figure 10 show that agents with high opti-
mally motivating incentive tend to be the “exploiters” in PD and
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FIGURE 10 | Simulations of one hundred pairs of agents playing thirty

iterations of (A) the Prisoner’s Dilemma game; (B) the Leader game;

(C) the Chicken game; and (D) the Battle-of-the-Sexes game. In each
simulation, one agent in each pair has I∗1 = 3.9 and the other has I∗2 = 1.1.
Initial values of pC and qC are randomized. See Figure 5 for legend.

Chicken games, the “leaders” in a Leader game, and the “heroes”
in a BoS game. In contrast, agents with low optimally motivat-
ing incentive (less than the average of the lowest two payoffs of a
game) tend to be the “martyrs” in a PD game, the “followers” in a
Leader game, the “chickens” in a Chicken game and the “selfish”
in a BoS game.

DISCUSSION
In this paper we have represented agents with an optimally moti-
vating incentive that influences the way they perceive the pay-
offs in strategic interactions. By using two-by-two mixed-motive
games to represent different kinds of strategic interactions, we
have shown that agents with different optimally motivating incen-
tives perceive the original game differently. In many cases the
perceived games have different equilibrium points to the origi-
nal game. We can draw a number of general conclusions about
the perceptions of agents with different optimally motivating
incentives:

• Agents with high optimally motivating incentive (greater than
the average of the highest two payoffs of a game) perceive a
game that still conforms to the conditions defining the original
game. For example, an agent with high optimally motivating
incentive playing a PD game will still perceive a valid PD game
and so on.

• Agents with moderate or lower optimally motivating incen-
tive perceive new games that do not conform to the conditions
defining the original game. This changes the NE and the
behavior of the agents over time.

When agents with different optimally motivating incentives
interact:

• Agents with high optimally motivating incentive will tend
to be the “exploiters” in PD and Chicken games, the

“leaders” in a Leader game, and the “heroes” in a BoS
game.

• Agents with low optimally motivating incentive (less than the
average of the lowest two payoffs of a game) will tend to be the
“martyrs” in a PD game, the “followers” in a Leader game, the
“chickens” in a Chicken game and the “selfish” in a BoS game.

The concept of optimally motivating incentive thus provides an
approach to building artificial agents with different personalities
using motivation. Personality in this case is expressed through
behavior. For example, using the language of Colman (1982),
agents in the simulations in section Results can be interpreted
as demonstrating behavioral characteristics such as “aggression,”
“leadership,” “heroism,” “martyrdom,” and “caution.” This sug-
gests a number of possible applications including the design of
more believable agents, human-computer interaction and sim-
ulation of human decision-making. These are discussed in the
following sub-sections.

BELIEVABLE AGENTS
Agents with distinguishable personalities have applications in
areas such as animated entertainment where believable agents
increase the sense of immersion in a virtual environment.
According to Loyall (1997), believable agents should “allow people
to not just watch, but also interact with. . . powerful, personality-
rich characters.” The work in this paper specifically explores the
role of intrinsic motivation for artificial agents engaged in social
interactions. While the experiments in this paper are abstracted
to the decision-making level, it is feasible to imagine an extension
of this work in which this decision making controls the animated
behaviour of a virtual character.

Some existing work has studied self-motivated behavior such
as curiosity and novelty-seeking in NPCs in computer games
(Merrick and Maher, 2009). Merrick and Maher (2009) demon-
strate that intrinsically motivated reinforcement learning agents
can learn in open-ended environments by generating goals in
response to their experiences. The simulations in this paper
combined optimally motivating incentive with learning using
replicator dynamics, to complement the analytical description
of each game transformation. However, in future it is feasible
that motive profiles may be combined with learning algorithms
that learn from actual interaction and experimentation with their
environment during strategic interactions. Reinforcement learn-
ing variants such as frequency adjusted Q-learning (Kaisers and
Tuyls, 2010) have been specifically developed for such multi-agent
systems and suggest a starting point for such work. This would
permit a wider range of motives to be used in NPCs. It would
also extend existing work with intrinsically motivated NPCs from
scenarios in which individual agents interact with their environ-
ment to scenarios in which multiple intrinsically motivated agents
interact with each other.

HUMAN-COMPUTER INTERACTION
Just as the study of computational models of motivation lies
at the intersection of computer science and cognitive science,
another area of future work lies at the boundary where com-
puter and human interact. In particular, computers are increas-
ingly applied to problems that require them to develop beliefs
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about the motives and intentions of the humans with whom they
interact. Maher et al. (2007) for example, propose “curious places”
in which a building is an “immobile robot” with sensors an actu-
ators permitting it to monitor and control the built environment.
The aim of the immobile robot is to intervene proactively on
behalf of the human and modify the environment in a manner
that supports the human’s goals. In order to do this, it must first
identify those goals.

The framework in this paper can be conceived as a foundation
for agents to simulate and reason about the decision-making of
other agents or humans. As discussed in section Mixed-Motive
Games, the four games studied in this paper represent abstrac-
tions of real-world interaction scenarios. A robot equipped with
appropriate sensors might monitor the behavior of a given human
in such scenarios and deduce their motive profile from their
behavior. By engaging in such “autonomous mental simulation”
of the intrinsically motivated reasoning of another, such an agent
may ultimately be better equipped to estimate and support the
goals of humans.

SIMULATION OF HUMAN DECISION-MAKING
The theories presented in this paper provide a starting point
for developing populations of agents that can reproduce certain
aspects of human decision-making during strategic interactions.
Merrick and Shafi (2011) showed that it is possible to calibrate
power, achievement and affiliation motivated agents such that

they can accurately simulate human decision-making under cer-
tain constrained conditions. Specifically, their work focused on
single-shot decisions by individual agents. The work in this paper
provides a foundation for extending their work to scenarios in
which agents interact. In future, such simulations may permit
us to examine hypotheses about how individuals with different
motives may behave during strategic interactions.

Key research challenges in this area include understanding
the ranges of optimally motivating incentives that best repre-
sent motivation types such as power, affiliation and achieve-
ment motivated individuals. In practice it seems that there is
significant overlap between individuals in the three groups. In
addition, motivation psychologists have identified hybrid pro-
files where more than one motive is dominant (Heckhausen
and Heckhausen, 2008). For example in the leadership profile
both power and achievement motivation are believed to have
approximately equal strength. In terms of the work in this paper,
this would mean that agents have more than one optimally
motivating incentive. Exploration of profiles such as this is a
direction for future work that can provide insight into both
the role of motivation in humans and its modeling in artificial
systems.
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