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One of the main challenges in the field of embodied artificial intelligence is the open-ended
autonomous learning of complex behaviors. Our approach is to use task-independent,
information-driven intrinsic motivation(s) to support task-dependent learning. The work
presented here is a preliminary step in which we investigate the predictive information
(the mutual information of the past and future of the sensor stream) as an intrinsic drive,
ideally supporting any kind of task acquisition. Previous experiments have shown that
the predictive information (PI) is a good candidate to support autonomous, open-ended
learning of complex behaviors, because a maximization of the PI corresponds to an
exploration of morphology- and environment-dependent behavioral regularities. The idea
is that these regularities can then be exploited in order to solve any given task. Three
different experiments are presented and their results lead to the conclusion that the
linear combination of the one-step PI with an external reward function is not generally
recommended in an episodic policy gradient setting. Only for hard tasks a great speed-up
can be achieved at the cost of an asymptotic performance lost.
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1. INTRODUCTION
One of the main challenges in the field of embodied
artificial intelligence (EAI) is the open-ended autonomous
learning of complex behaviors. Our approach is to use task-
independent, information-driven intrinsic motivation to support
task-dependent learning in the context of reinforcement learning
(RL) and EAI. The work presented here is a first step into this
direction. RL is of growing importance in the field of EAI, mainly
for two reasons. First, it allows to learn the behaviors of high-
dimensional and complex systems with simple objective func-
tions. Second, it has a well-established theoretical (Sutton and
Barto, 1998; Bellman, 2003) and biological foundation (Dayan
and Balleine, 2002). In the context of EAI, where the agent has
a morphology and is situated in an environment, the concepts of
the agent’s intrinsic and extrinsic perspective rise naturally. As a
direct consequence, several questions about intrinsic and extrin-
sic reward functions, denoted by IRF and ERF, follow from the
EAI’s point of view. The questions that are of interest to us are;
what distinguishes an IRF from an ERF, what is a good candidate
for a first principled IRF, and finally, how should IRFs and ERFs
be combined?

The first question, of how to distinguish between IRF and
ERF is addressed in the second section of this work, which starts
with the conceptual framework of the sensorimotor loop and its
representation as a causal graph. This leads to a natural distinc-
tion of variables that are intrinsic and extrinsic to the agent. We
define an IRF that models an internal drive or motivation as a

task-independent function which operates on the agent’s intrin-
sic variables only. In general, an ERF is a task-dependent function
that may operate on intrinsic and extrinsic variables.

The main focus of this work is the second question, which
deals with finding a first principled IRF. We propose the predictive
information (PI) (Bialek et al., 2001) for the following reasons.
Information-driven self-organization, by the means of maximiz-
ing the one-step approximation of the PI has proved to produce
a coordinated behavior among physically coupled but otherwise
independent agents (Ay et al., 2008; Zahedi et al., 2010). The
reason is that the PI inherently addresses two important issues
of self-organized adaptation, as the following equation shows:
I(St; St + 1) = H(St + 1) − H(St + 1|St), where St is the vector of
intrinsically accessible sensor values at time t. The first term leads
to a diversity of the behavior, as every possible sensor state must
be visited with equal probability. The second term ensures that the
behavior is compliant with the constraints given by the environ-
ment and the morphology, as the behavior must be predictable.
This means that an agent maximizing the PI explores behavioral
regularities, which can then be exploited to solve a task. In a dif-
ferently motivated work, namely to obtain purely self-organizing
behavior, a time-local version of the PI was successfully used to
drive the learning process of a robot controller (Martius et al.,
2013). A similar learning rule was obtained from the principle
of Homeokinesis (Der and Martius, 2012). In both cases a gradi-
ent information was derived to pursue local optimization. For the
integration of external goals a set of methods have been proposed
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by (Martius and Herrmann, 2012), which, however, cannot deal
with the standard reinforcement setting of arbitrary time-delayed
rewards that we study here. Prokopenko et al. (2006) used the
PI, estimated on the spatio-temporal phase-space of an embodied
system, as part of fitness function in an artificial evolution setting.
It was shown that the resulting locomotion behavior of a snake-
bot was more robust, compared to the setting, in which only the
traveled distance determined the fitness.

The third question, which deals with how to combine the IRF
and ERF, is in the focus of the ongoing research that was briefly
described above and of which this publication is a first step. As
the PI maximization is considered to be an exploration of behav-
ioral regularities, it would be natural to exchange the exploration
method of a RL algorithm by a gradient on the PI. The work pre-
sented here is a preliminary step in which we concentrate on the
effect of the PI in a RL context to understand for which type of
learning problems it is beneficial and in which it might not be.
Therefore, we chose a linear combination of IRF and ERF in an
episodic RL setting to evaluate the PI as an IRF in different exper-
iments. Combining an IRF and an ERF in this way is justified as
ERFs are often linear combinations of different terms, such as one
term for fast locomotion and another for low energy consump-
tion. Nevertheless, the results of the experiments presented in this
work show that the one-step PI should not be combined in this
way with an ERF in an episodic policy gradient setting.

We are not the first to address the question of IRF and ERF
in the context of RL and EAI. This idea goes back to the pio-
neering work of Schmidhuber (1990) and is also in the focus
of more recent work (Kaplan and Oudeyer, 2004; Schmidhuber,
2006; Oudeyer et al., 2007) which are based on the prediction
progress and Barto et al. (2004), who considers the predic-
tion error. In Storck et al. (1995); Yi et al. (2011) an intrin-
sic reward for information gain was proposed (KL-divergence
between subsequent models), which results in their experiments
in a state-entropy maximization. A different approach (Little and
Sommer, 2013) uses a greedy policy on the predicted informa-
tion gain of the world model to select the next action of an
agent. However, only discrete state/action spaces have been con-
sidered in both approaches. A similar work (Cuccu et al., 2011)
uses compression quality as the intrinsic motivation, which was
particularly beneficial because it performed a reduction of the
high-dimensional visual input space. In comparison to our work
only one experiment (comparable to the self-rescue task below)
with a one-dimensional action-space was used without consid-
ering asymptotic performance, which is where we found most
problems.

This paper investigates continuous space high-dimensional
control problems where random exploration becomes difficult.
The PI, measured on the sensor values, accompanies (and might
eventually replace) the exploration of a RL method such that the
policy adaptations are conducted compliant to the morphology
and environment. The actual embodiment is taken into account,
without modeling it explicitly in the learning process.

The work is organized in the following way. The next section
gives an overview of the methods, beginning with the sensorimo-
tor loop and its causal representation. This is then followed by a
presentation of the PI and the episodic RL method PGPE (Sehnke

et al., 2010). The third section describes the results received by
applying the methods to three experiments, and the last section
closes with a discussion.

2. METHODS
This section describes the methods used in this work. It begins
with the conceptual framework of the sensorimotor loop. This is
then followed by a discussion of the PI and entropy, which both
are used as IRF in all presented experiments. Finally, the RL algo-
rithm utilized in this work is introduced as far as it is required to
understand how the results were obtained.

2.1. EMBODIED AGENTS AND THE SENSORIMOTOR LOOP
There are three main reasons why we prefer to experiment with
embodied agents (EA). First, scalability: EA are high-dimensional
systems which live in a continuous world. Hence, the algorithms
face the curse of dimensionality if they are evaluated on different
EAs. Second, validation: we are interested in understanding natural
cognitive systems by the means of building artificial agents (Brooks,
1991). Using EA ensures that the models are validated against
the same (or similar) physical constraints that natural systems
are exposed to. Third, guidance: there is good evidence that the
constraints posed by the morphology and environment can be used
to reduce the required controller complexity, and hence, reduce
the size of the search space for a learning algorithm (Zahedi et al.,
2010; Pfeifer and Bongard, 2006). Consequently, understanding
the interplay between the body, brain and environment, also called
the sensorimotor loop (SML, see Figure 1), is a general focus of
our work. The next paragraph will introduce the general concept
of the SML and discuss its representation as a causal graph.

A cognitive system consists of a brain or controller that sends
signals to the system’s actuators, which then affect the system’s
environment. We prefer the notion of the system’s Umwelt (von
Uexkuell, 1934; Clark, 1996; Zahedi et al., 2010; Zahedi and Ay,
2013), which is the part of the system’s environment that can be
affected by the system, and which itself affects the system. The
state of the actuators and the Umwelt are not directly accessible to
the cognitive system, but the loop is closed as information about
both, the Umwelt and the actuators are provided to the controller
by the system’s sensors. In addition to this general concept, which
is widely used in the EAI community (see e.g., Pfeifer et al., 2007),
we introduce the notion of world to the sensorimotor loop, and by
that we mean the system’s morphology and the system’s Umwelt.
We can now distinguish between the agent’s intrinsic and extrin-
sic perspective in this context. The world is everything that is
extrinsic from the perspective of the cognitive system, whereas
the controller, sensor and actuator signals are intrinsic to the
system.

The distinction between intrinsic and extrinsic is also cap-
tured in the representation of the sensorimotor loop as a causal or
Bayesian graph (see Figure 1, right-hand side). The random vari-
ables C, A, W , and S refer to the controller state, actuator signals,
world and sensor signals, and the directed edges reflect causal
dependencies between the random variables (see Klyubin et al.,
2004; Ay and Polani, 2008; Zahedi et al., 2010). Everything that is
extrinsic to the system is captured in the variable W , whereas S,
C, and A are intrinsic to the system.
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FIGURE 1 | The sensorimotor loop. Left: Schematic diagram of a cognitive system with its interaction with the world. Right: Corresponding causal graph.

In this context, we distinguish between internal and external
reward function (IRF, ERF) in the following way. An ERF may
access any variable, especially those that are not available to an
agent by its sensors, i.e., anything that we summarized as the
world state W . An IRF may access intrinsically available informa-
tion only (St ,At ,Ct , see Figure 1). We are interested in first princi-
pled model of an intrinsic motivation, i.e., a model that requires
as few assumptions as possible. The idea is that IRF should not
depend on a specific task but rather be a task-independent inter-
nal driving force, which supports any task-dependent learning.
This is why we refer to it as task-independent internal motivation
or drive. This closes the discussion of embodied agents and their
formalization in terms of the sensorimotor loop. The next section
describes the information-theoretic measures that are used in the
remainder of this work.

2.2. PREDICTIVE INFORMATION
The predictive information (PI) (Bialek et al., 2001), which is
also known as excess entropy (Crutchfield and Young, 1989) and
effective measure complexity (Grassberger, 1986) is defined as the
mutual information of the entire past and future of the sensor
data stream:

Ipred(S) := I(Sp; Sf ) (1)

where Sp = {S1, S2, . . . , St} is the entire past of the system’s
sensor data at some time t ∈ N and Sf = {St + 1, St + 2, . . .} its
entire future. The PI captures how much information the past
carries about the future. Unfortunately, it cannot be calculated
for most applications because of technical reasons. Hence, we use
the one-step PI, which is given by

I∗
pred(S) := I(St + 1; St)

= H(St + 1)︸ ︷︷ ︸
diversity

−H(St + 1|St)︸ ︷︷ ︸
compliance

, (2)

which was previously investigated in the context of EAI (Ay
et al., 2008) and as a first principle learning rule (Zahedi et al.,
2010; Martius et al., 2013). A different motivation for the PI

is based on maximizing the mutual information of an inten-
tion state S̃t , which is internally generated by the agent, and the
next sensor state St + 1 (Ay and Zahedi, 2013). The Equation
(2) displays how maximizing the PI affects the behavior of a
system. The first term in Equation (2) leads to a maximiza-
tion of the entropy over the sensor states. This means that the
agent has to explore its world in order to sense every state with
equal probability. The second term in Equation (2) states that
the uncertainty of the next sensor state must be minimal if the
current sensor state is known. This means that an agent has
to choose actions which lead to predictable next sensor states.
This can be rephrased in the following way. Maximizing the
entropy H(St + 1) increases the diversity of the behavior whereas
minimizing the conditional entropy −H(St + 1|St) increases the
compliance of the behavior. The result is a system that explores
its sensors space to find as many regularities in its behavior as
possible.

For completeness we will also maximize the entropy H(St)

only and compare the results to the maximization of the PI. This
concludes the presentation of the PI (and entropy) as a model for
a task-independent internal motivation in the context of RL. The
next section presents the utilized RL algorithm.

2.3. POLICY GRADIENTS WITH PARAMETER-BASED EXPLORATION
(PGPE)

We chose an episodic RL method named PGPE (Sehnke et al.,
2010) to investigate the effect of the PI as an IRF, because it is
not restricted to a specific class of policies. Any policy, which
can be represented by a vector μ ∈ R

n with fixed length n ∈
N

+ can be optimized by this method. In the work presented
here, we use it to learn the synaptic strengths and bias val-
ues of neural networks with fixed structures only. Nevertheless,
we can apply the framework to other parametrizations, in par-
ticular to stochastic policies, which is why PGPE attracted
our attention for ongoing the project in which this work is
embedded.

The algorithm can be summarized in the following way (for
details, see (Sehnke et al., 2010)). In each roll-out or episode,
two policy instances are drawn from μ by adding and sub-
tracting a random vector ε ∼ N (0, σ) to it. The resulting two
policy parametrizations �+ = μ + ε and �− = μ − ε are then
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evaluated and their final rewards r+, r− are used to determine the
modifications on μ and σ according to the following equations

mn = max(mn − 1, r+, n, r−, n) (3)

bn = (1 − δ)bn − 1 + δ
∑

n

r+, n + r−, n

2
(4)

Δμi = αεi(r+ − r−)

2m − r+ − r− (5)

Δσi = α

m − b

(
r+ − r−

2
− b

)(
ε2 − σ2

i

σi

)
. (6)

Roll-outs can be repeated several times before a learning step is
performed. Every learning step concludes a batch. PGPE requires
an initial μinit, an initial σinit, a learning rate α, baseline b, baseline
adaptation parameter δ, and an initialized maximal reward m =
minit. We have set δ to the recommended value of 0.1, μinit = 0,
and we have achieved the best results in all experiments by set-
ting minit small enough that m is definitely overwritten in the first
roll-out (see Equation (3)). The other parameters are evaluated
in each experiment, such that the best results were achieved when
no IRF was used and then fixed for the remaining experiments.

3. RESULTS
This section presents three different experiments and their results.
The first experiment is the cart-pole swing-up, a standard con-
trol theory problem that is also widely used in machine learning
(Barto et al., 1983; Geva and Sitte, 1993; Doya, 2000; Pasemann
et al., 1999). The cart-pole experiment is also chosen because bal-
ancing a pole minimizes the entropy, and hence, it contradicts
the maximization of the PI. The second experiment is the learn-
ing of a locomotion behavior for a hexapod and it was chosen to
demonstrate the effect of the PI maximization on a more com-
mon, well-structured experimental setting. By well-structured we
mean that the controller, morphology, environment, and ERF
are chosen such that they result in a good hexapod locomotion
without any additional support by an IRF in only a few policy
updates. The third experiment is designed to be challenging, as it
combines a high-dimensional system, an unconventional control
structure, an unsteady ERF with an unsteady environment. We
believe that these three experiments span a broad range of pos-
sible applications for information-theoretic IRF in the context of
episodic RL.

3.1. CART-POLE SWING-UP
The cart-pole swing-up experiment is ideal to investigate the
effect of the PI on an episodic RL task, mainly for two reasons.
First, the experiment is well-defined by a set of equations and
parameters that are widely used in literature (Barto et al., 1983;
Geva and Sitte, 1993; Doya, 2000; Pasemann et al., 1999). This
ensures that the results are comparable and reproducible by oth-
ers with little effort. Second, the successful execution of the task
contradicts the maximization of the PI. The task is to balance the
pole in the center of the environment, and hence, to minimize the
entropy of the sensor states. The maximization of the PI demands

a maximization of the entropy (see Equation 2). The remainder of
this section first describes the experimental and controller setting
and then closes with a discussion of the results.

The experiment was conducted by implementing the equa-
tions that can be found in (Barto et al., 1983; Geva and Sitte, 1993;
Doya, 2000). The state of the cart-pole is given by x, ẋ, ϑ, ϑ̇ , which
are the position of the cart, the speed of the cart, the pole angle
and the pole’s angular velocity. The cart is controlled by a force
F ∈ [−10N, 10N] that is applied to its center of mass. The four
state variables and the force define the input and output config-
uration of our controllers for this task. The initial controller (see
Figure 2A) was chosen from (Pasemann et al., 1999), where net-
work structures were evolved for the same task. To ensure that
the evolved structure is not especially unsuitable for RL, different
variations were chosen for evaluation too (see Figures 2B–D). In
this approach, the input neurons are simple buffer neurons, with
the identity as transfer-function, whereas all other neurons use
the hyperbolic tangent transfer-function.

The evaluation time was set to T = 2000 iterations, which cor-
responds to 20 seconds (c.f. Doya, 2000). Different values, starting
from the values proposed in (Sehnke et al., 2010), for the learning
rate α ∈ {0.1, 0.2, 0.5}, the initial variation σinit ∈ {2, 5}, and the
initial maximal reward minit ∈ {−∞, 10, 100, 1000} were evalu-
ated in experiments without applying an IRF to the learning of the
task. The underlined values showed the best results, and hence,
are chosen for presentation here. Each experiment consisted of
B = 10000 batches, i.e., updates of μ and σ (see Equations 5 and
6) with two roll-outs each (i.e., four evaluated policies θ

+, −
1, 2 ).

The results are obtained by conducting every experiment 100
times. To ensure comparability among the experiments with dif-
ferent parameters and controllers, the random number generator
was initialized from a fixed set of 100 integer values for each
experiment.

The presentation of the reward function is split into two parts.
The first part handles the ERF, whereas the second part handles
the IRF. We use the terms intrinsic/internal and extrinsic/external
with respect to the agent’s perspective, as discussed in the previous
section (see Section 2.1). The controller has access to the full state
of the system, and hence, the separation into internal and external
is artificial in this case. Nevertheless, we keep this terminology for
consistency, as the next experiments will reflect this distinction
in a natural way. We denote IRF by Rin and ERF by Rex, where a
super-script is added to distinguish between the different reward
functions (PI and entropy).

The ERF for the cart-pole swing-up task is defined such that it
is not a smooth gradient in the reward space, and therefore, does
not directly guide the learning process. The controller is only
rewarded if the pole is pointing upwards and the reward is scaled
with the distance of the pole to the center of the environment,
which is given by

Rex(t) :=
{

2 − |x(t)| if |ϑ(t)| < 5◦
0 otherwise.

(7)

The IRF is calculated at the end of each episode based on
the recordings of the pole angles {St = ϑ(t)|t = 1, 2, . . . , T}.
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FIGURE 2 | Controller architectures for the cart-pole swing-up

task. The input neurons are bare buffer neurons whereas the
hidden and output neurons have tanh transfer-function. (A) from

Pasemann et al. (1999); (B) with 4 hidden neurons and fully
connected; (C,D) recurrent variations without and with lateral
connections.

We use a discrete-valued computation of the PI, and hence, the
data is binned prior to the calculation. All IRFs are normalized
with respect to their theoretical upper bound of I(St + 1; St) ≤
H(St) ≤ log |S| (see (Cover and Thomas, 2006)). This leads to the
two following IRFs:

RPI
in := |I(St + 1; St)| and RH

in := |H(St)|. (8)

The overall reward functions are then given by

RPI :=
T∑

t = 1

Rex(t) + β(γ)RPI
in ,

RH :=
T∑

t = 1

Rex(t) + β(γ)RH
in, β(γ) = γ · T · max

x, ϑ, t
{Rex(t)} (9)

where β(γ) is a factor to scale the IRF with respect to the maximal
possible value of the ERF. This allows us to compare the effects of
RPI

in and RH
in across different experiments.

The results are discussed only for the fully connect feed-
forward network (see Figures 3A–D) in detail as this controller
shows the most distinguishable results with respect to the varia-
tion of the IRF scaling parameter γ ∈ {0, 1.25, 2.5, 3.75, and 5%}.
It is important to note that the plots only show the averages of the
100 experiments and not the standard deviation for the following
reason. Few controllers succeed early, others later during the pro-
cess. Due to the unsteady ERF the resulting standard deviation
is very large, as those controllers that succeed receive signifi-
cantly higher reward compared to those not succeeding (which
remain close to zero, as a rotational behavior is not permitted).
We intentionally chose an unsteady ERF, that returns zero for
almost all states, and hence, we know beforehand that the stan-
dard deviation is large and no further information is provided if
it is plotted.

Figures 3A,B show the progress of the ERF RPI
ex and IRF RPI

in
for the PI maximization. It is shown that there is a significant
speed-up in learning during the first 4000 batches for all γ > 0%
(see Figure 3A). At this point in time the average ERF of γ = 0%
succeeds that of γ = 5%. After approximately 5000 batches the
ERF for γ = 2.5% and γ = 3.75% are very close to or slightly
succeeded by the ERF for γ = 0%, whereas the ERF for γ =

1.25% remains higher. The conclusion from this experiment is
that small values of γ < 5% are beneficial in this learning task
as less batches are required to solve this task and the asymp-
totic learning performances are almost identical to γ = 0%. The
results, however, are not significant and the choice of γ is crit-
ical. This leads to the conclusion that the one-step PI is not
significantly beneficial in the learning of this task.

Figures 3C,D show the progress of the ERF RH
ex and IRF RH

in
for the entropy maximization. The results show a different pic-
ture. Any parameter γ > 0% speeds up the learning and improves
the overall performance. The comparison of entropy and PI is
addressed in the discussion again.

3.2. HEXAPOD LOCOMOTION
If a specific task should be learned by an embodied agent, it
is more common to choose an environment, morphology, con-
trol structure and a smooth ERF which are well-suited for the
desired task. In order to investigate which effect the PI has on
such a well-defined learning task, the set-up of the experiment
presented in this section is chosen such that all components
are known to work well if there is no IRF present. The goal
is to learn a locomotion behavior of a hexapod, where the
maximal deviation angles ensure that it cannot flip over. The
controller is known to perform well in a similar task (Markelić
and Zahedi, 2007) and its modularity significantly reduces the
number of parameters that must be learned. The ERF defines
a smooth gradient in the reward space, ensuring that small
changes in the controller parameters show an immediate effect
in the ERF. The environment is an even plane without any
obstacles.

The experimental platform (see Figure 4) is a hexapod, with 12
degrees of freedom (two actuators in each leg) and with 18 sensors
(angular positions of the actuators and binary foot contact sen-
sors). The two actuators of each leg are positioned in the shoulder
(Thorax-Coxa or ThC joint) and in the knee (Femur-Tibia or
FTi joint) of the walking machine, similar to the morphology
presented in (von Twickel et al., 2011). We omit the second
shoulder-joint (CTr) because it is not required for locomotion.
Each joint accepts the desired angular position as its input and
returns the actual current angular position as its output. The sim-
ulator YARS (Zahedi et al., 2008) was used for all experiments
conducted in this section.
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FIGURE 3 | Results for cart-pole experiments. Each row shows the
results for one controller architecture, see Figure 2. The
corresponding connection matrix is provided in the first column
(gray: connection, black: no connection). For simplicity only the row

for the second controller is discussed in detail. (A,B) ERF and IRF
for PI maximization—small values of γ > 0 are advantageous.
(C,D) ERF and IRF for entropy maximization—all values of γ > 0
have positive effect.

FIGURE 4 | Hexapod for locomotion task and controller set-up. (A) Hexapod robot with marked actuated joints and sensors; (B) leg module of controller;
(C) entire controller; and (D) schematic pairings for PI and entropy calculation.

Different values for the PGPE parameters were evaluated. The
best results for γ = 0 (see Equation 9) were achieved with σinit =
2 and α = 0.1. To ensure comparability with the previous experi-
ment, two roll-outs were chosen here, although it is not required
to obtain the following results. The evaluation time was set to
T = 1000 and B = 250 batches were sufficient to observe a con-
vergence of the policy parameters μ. The values for γ were chosen
from the previous experiment.

The ERF is calculated once at the end of each episode and
it is defined as the euclidean distance between the hexapod

at time T and its initial position (0, 0) projected onto the
xy-plane:

Rex :=
√

x2
T + y2

T, (10)

where (xT, yT) are the coordinates of the center of the robot in
world coordinates at time t = T.

The IRF is calculated differently compared to the previous
experiment. In a high-dimensional system as the hexapod, it is
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not possible to compute the PI of the entire system with a rea-
sonable effort, as the computational cost of I(St; St + 1) grows
exponentially for every new sensor. It would be natural to reduce
the computational cost by calculating the PI based on a model
of the morphology, but this would violate our claim that the
PI incorporates the morphology without the need of explicitly
modeling it. Hence, we decided to use the following method
to approximate the PI and the entropy H (see Figure 4D). Let
Si(t), i = 1, 2, . . . , 12, be the angular position sensors for the 12
actuators. We then chose two sensors k, l with 1 ≤ k, l ≤ 12, k �=
l, randomly from the 12 possibles sensors, and calculated

PIu := I (Sk(t + 1), Sl(t + 1); Sk(t), Sl(t))

Hu := H (Sk(t), Sl(t)) . (11)

The overall PI and entropy are then calculated as the sum of n ran-
domly chosen PIu and Hu pairings, with the additional constraint
that each sensor pair k, l appears only once in the approximations.
The resulting IRFs are then given by:

RPI
in :=

n∑
u = 1

PIu and RH
in :=

n∑
u = 1

Hu, (12)

where n is the number of pairings. For n > 20 no difference was
found for the approximated PI, which is why n = 20 was chosen
for the remainder of this work.

The overall reward functions are then given by:

RPI := Rex + β(γ)RPI
in RH := Rex + β(γ)RH

in (13)

where β(γ) is defined as in the cart-pole swing-up experiment (see
Equation 9).

A common recurrent neural network central pattern genera-
tor layout is chosen, which can also be found in literature (e.g.,
Campos et al., 2010; von Twickel et al., 2011; Markelić and Zahedi,
2007), thereby using the same neuron model as in the cart-pole
experiment (see above). As all legs in the hexapod are morpholog-
ically equivalent, only the synaptic weights of one leg controller
are open to parameter adaptation in the PGPE algorithm. The
values are then copied to the other leg controllers. This reduces
the number of parameters for the entire controller to 32 (see
Figures 4B,C).

The results (see Figure 5) show that neither the PI nor the
entropy have a noticeable effect on the learning performance. The
mean values of the 100 experiments for each parameter as well
as the standard deviation are almost identical. This point will be
addressed in the discussion of this work (see Section 4).

3.3. HEXAPOD SELF-RESCUE
The third experiment is designed to combine and extend the two
previous experiments. It combines them as a high-dimensional
morphology, similar to that used in the locomotion experiment,
is trained with an unsteady ERF, which is similar to that used
in the cart-pole experiment. It extends the previous experiments
as the number of parameters in the controller is a magnitude
larger and because an unconventional control structure is used for
the desired task. The most distinctive difference to the previous
experiments is the non-trivial environment. The next paragraphs
will explain the experimental set-up in detail before the section
closes with a discussion of the results.

We used the simulated hexapod robot of the LPZROBOTS sim-
ulator (Martius et al., 2012). The hexapod has 12 active and 16
passive degrees of freedom (see Figure 6). The active joints take
the desired next angular position as their input and deliver the
current actual angular position as their output. The controller is
a fully connected one-layer feed-forward neural network without
lateral connections and the hyperbolic transfer function at + 1 =
tanh(Wst + v), where at + 1 and st are the next action and the cur-
rent sensor values, W is the connection matrix, and v is the vector
of biases. The resulting controller is parameterized by 156 param-
eters, 144 for the synaptic weights and 12 for the bias values. Note,
that the controller is generic and has no a priori structuring or
other robot-specific details.

The task for the hexapod is to rescue itself from a trap. For this
purpose, it is placed in a closed rectangular arena (see Figure 7).
The difficulty of the task is determined by the height of the
arena’s walls, denoted by h ∈ {0.0m, 0.1m, 0.2m} (see Figure 6).
For comparison, the length of the lower leg (up to the knees) is
0.45 m. The size-proportion of the robot and the trap can be seen
in Figure 6B.

The ERF is given by

Rex :=
{√

x2
T + y2

T − r if
√

x2
T + y2

T − r > 0

0 otherwise,
(14)

FIGURE 5 | Results for hexapod locomotion task. ERF and IRF with PI maximization (A,B) and entropy maximization (C,D). No significant effect is observed.
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FIGURE 6 | Hexapod robot for self-rescue and the experimental

setup. (A) The robot has 6 legs where the hind legs are 10%
larger than the other legs. Each leg has two active DoF in the hip
joint and one passive DoF in both the knee and the ankle joint

equipped with a spring. Additionally the whiskers have each two
spring-joints. (B) The robot starts in the center of the trap with a
certain barrier height and has to escape from it. The reward is the
distance from the outside of the trap or zero otherwise.

FIGURE 7 | Performance in the self-rescue task depending on the

internal reward type and factor γ. Plotted are the ERF and the IRF in case
of PI (A,B,E,F,I,J) and entropy (C,D,G,H,K,L) over the number of batches for
different values of γ and barrier heights h: (A–D) no barrier (h = 0), (E–H) low

barrier (h = 0.1) and (I–L) high barrier (h = 0.2). For each value of γ the mean
and standard deviation of 30 experiments are displayed. In all cases a
speed-up in learning is achieved with IRF, however, the asymptotic
performance is worse.

where r is the radius of the trap (Figure 6) and (xT, yT) is the posi-
tion of the center of the robot in world coordinates at the end of a
roll-out (t = T). The IRFs and overall reward functions are iden-
tical to those used in the previous experiment (see Equations (11)
and (12)).

As before, the performance of PGPE with γ = 0 for different
values for σinit and α were evaluated, and the best are chosen
for presentation here, which are σinit = 2 and α = 0.5. A differ-
ent learning rate ασ = 0.05 was chosen for the update of σ (see
Equation 3). Each episode consisted of T = 1250 iterations (25s)
with one roll-out per episode. A total of B = 5000, 7000, and
35000 batches were conducted for the different heights h.

We compare the performance for different values of the IRF
factor γ ∈ {0, 0.05, 1, 5, and 25%} and performed 30 experiments
for each setting. Figure 7 displays the results. As for the cart-pole
experiment, the plots for the PI and entropy in Figure 7 report a
clear picture of an exploration phase (high value) followed by an
exploitation phase (lower value).

To compare the results, we set two threshold values at Rex = 5
and Rex = 20 which refer to a 5m and 20m distance between the
hexapod and the walls of the arena. The first threshold reflects
a successful learning of the task, because it means that hexapod
reliably escapes the arena. The second threshold represents the
case when in addition also a high locomotion speed is achieved
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after a successful escape. For the simplicity of argumentation,
we compare two cases, i.e., γ = 0% and γ = 1%. If there is no
wall (h = 0m) the system with IRF γ = 1% requires only half
the amount of batches compared to no IRF (250 batches vs. 500
batches, see Figures 7A,C). For the arena with a medium height
(h = 0.1m), the learning success speed ratio increases to approx-
imately three (350 batches vs. 1100 batches, see Figures 7E,F).
The results are decisive for the arena with high walls (h = 0.2m),
as the system with IRF requires about 1000 batches on average
compared to the 5000 batches on average that a required by the
systems without IRF (see Figures 7I,K).

This leads to the conclusion that both, PI and entropy, are ben-
eficial if the short-term learning success is of the primary interest.
However, the asymptotic learning success of those hexapods with
IRF is either equal or lower compared to those without an IRF
in all experiments. This is valid for the one-step PI and for the
entropy. Thus, both are not necessarily beneficial if the long-term,
asymptotic learning performance in an episodic policy gradient
setting is important.

4. DISCUSSION
This paper discussed the one-step PI (Bialek et al., 2001) as an
information-driven intrinsic reward in the context of an episodic
policy gradient method. The reward is considered to be intrinsic,
because it is task-independent and it relies only on the informa-
tion of the sensors of an agent, which, by definition, represent the
agent’s intrinsic view on the world. We chose the maximization
of the one-step PI as an IRF, because it has proved to encourage
behaviors which show properties of morphological computation
without the need to model the morphology (Zahedi et al., 2010).

The IRF was linearly combined with a task-dependent ERF in
an episodic RL setting. Specifically, PGPE (Sehnke et al., 2010)
was chosen as RL method, because it allows to learn arbitrary
policy parametrizations. Within this set-up, three different types
of experiments were performed. The following paragraph will
summarize the results before they are discussed.

The first experiment was the learning of the cart-pole swing-
up task. Four controllers were evaluated of which three were less
successful and one showed good results. The ERF was designed
to be difficult to maximize without the IRF, and the task con-
tradicted the maximization of the entropy and PI. The best
controller did not show a significant improvement of the learning
performance with respect to its asymptotic behavior. An improve-
ment could only be observed during the first learning steps.
Moreover, the choice of the linear combination factor γ is criti-
cal. For all controllers a minor and not significant improvement
is observable. In case of the entropy maximization, any factor
γ > 0% showed an improvement in learning speed and learning
performance.

A locomotion behavior was learned for a hexapod in the sec-
ond experiment. The entire set-up used well-known components
for the environment, modular controller, ERF, and morphology
so that the task was solved without IRF in only a few learning
steps. No effect of the PI and entropy was observed.

The third experiment combined the previous two and
extended them by a non-trivial environment. A hexapod had to
escape from a trap and was only rewarded outside of it. The

results showed no significant difference between the PI and the
entropy as IRFs. The learning speed was significantly improved
by both IRFs with increasing difficulty of the task. The asymp-
totic performance was either equal or worse when an IRF was
introduced.

The hexapod locomotion experiment teaches us that the
information-theoretic reward functions (PI and entropy) has no
effect in well-defined experimental set-ups.

The cart-pole and the hexapod self-rescue experiments teach
us that the maximal values of the IRF should be around one per-
cent of the maximal ERF value to improve the learning speed and
learning performance in the short-term. The asymptotic behav-
ior is either not or negatively effected by the one-step PI. The
cart-pole experiment indicates that maximizing the entropy is
superior to maximizing the PI, whereas the hexapod self-rescue
does not show such a clear picture. The success of the entropy in
both experiments is explained by the ERFs. Due to their nature,
random changes in the policy parameters are unlikely to result in
changes in the ERF during the first batches. Hence, maximizing
the entropy results in an exploration until the ERF is triggered.

The PI, defined as the entropy over the sensor states subtracted
by the conditional entropy of consecutive sensor states does not
result in superior results for the cart-pole compared to just using
the entropy for the following reason. In this set-up, the mor-
phology and environment are very simple and deterministic, and
therefore, do not produce any noise or other uncertainties in the
sensor data stream. The uncertainty about the next possible angu-
lar position of the pole is small, if the current pole position is
known. In other words, the cart-pole system is regular by defi-
nition and no further regularities can be found by maximizing
the PI. We speculate that the conditional entropy, which cannot
be reduced by the learning in this setting, dampens the explo-
ration effect of the entropy term in the PI maximization. For the
hexapod rescue experiment, the situation is different. There is an
uncertainty about the next sensor state, given the current sensor
state which result from the morphology and the construction of
the arena. The PI maximization is able to find regularities which
can then be exploited to maximize the ERF in the RL setting.

The results contradict our intuition, as the one-step pre-
dictive information has shown good results when applied as
an information-driven self-organization principle in the context
of embodied artificial intelligence (Zahedi et al., 2010; Martius
et al., 2013). The intuitively plausible next step was to guide
the information-driven self-organization toward solving a goal
by combining it with an external reward signal in an reinforce-
ment learning context. The approach evaluated in this paper was
to linearly combine the PI with and external reward signal in an
episodic policy gradient learning. If anything, then the PI showed
positive short-term results, if the world was considerably prob-
abilistic and if the external reward was sparse. Compared to no
intrinsic reward the PI showed negative results for its asymp-
totic behavior. The performance of the PI was either equal or
worse compared to the entropy in all cases. This leads to the
conclusion that research in the context of information-driven
intrinsic rewards and reinforcement learning should be carried
out in other directions, which are briefly described in the final
paragraph.
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We have used a constant combination factor γ for all experi-
ments presented in this work. It is known from general learning
theory that a decaying learning rate is required for the conver-
gence of a system. We chose not to use a decaying learning factor,
because this means that the internal drive is slowly dampened
until its effect is neglectable (at least in a technical applica-
tion). This would contradict the idea of motivation-driven and
open-ended learning of embodied agents. However, the results of
our present paper reveal a disadvantage of this approach in the
asymptotic limit, and therefore, suggest, contrary to our origi-
nal thoughts, to pursue a strategy with a decaying combination
factor. The second possible modification of this approach is to
exchange the linear combination of the internal and external
reward by a non-linear function, of which multiplicative and
exponential functions are two examples. Third, using a gradi-
ent of the PI instead of a random exploration in the context

of RL is a promising approach that is currently investigated. In
this approach, we will use a gradient on an estimate of the PI
and not the error of a predictor as in e.g., (Schmidhuber, 1991).
Fourth, we will continue to evaluate other information-theoretic
measures in the context of task-dependent learning with the
support of information-driven intrinsic motivation. In addition
to using correlation measures, such as the mutual information,
we believe that causal measures in the sensorimotor loop (Ay
and Zahedi, 2013), such as the measure considered in (Zahedi
and Ay, 2013), are good candidates for future research in this
field.
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