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Most visual advertisements are designed to attract attention, often by inducing a pleasant
impression in human observers. Accordingly, results from brain imaging studies show
that advertisements can activate the brain’s reward circuitry, which is also involved in
the perception of other visually pleasing images, such as artworks. At the image level,
large subsets of artworks are characterized by specific statistical image properties, such
as a high self-similarity and intermediate complexity. Moreover, some image properties
are distributed uniformly across orientations in the artworks (low anisotropy). In the
present study, we asked whether images of advertisements share these properties.
To answer this question, subsets of different types of advertisements (single-product
print advertisements, supermarket and department store leaflets, magazine covers and
show windows) were analyzed using computer vision algorithms and compared to other
types of images (photographs of simple objects, faces, large-vista natural scenes and
branches). We show that, on average, images of advertisements and artworks share a
similar degree of complexity (fractal dimension) and self-similarity, as well as similarities
in the Fourier spectrum. However, images of advertisements are more anisotropic than
artworks. Values for single-product advertisements resemble each other, independent of
the type of product promoted (cars, cosmetics, fashion or other products). For comparison,
we studied images of architecture as another type of visually pleasing stimuli and obtained
comparable results. These findings support the general idea that, on average, man-made
visually pleasing images are characterized by specific patterns of higher-order (global)
image properties that distinguish them from other types of images. Whether these
properties are necessary or sufficient to induce aesthetic perception and how they
correlate with brain activation upon viewing advertisements remains to be investigated.
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dimension, Fourier spectrum, Pyramid of Histograms of Oriented Gradients (PHOG)

INTRODUCTION
Neuroeconomics and neuroaesthetics are two areas of experi-
mental aesthetics, which study responses of the human brain
to advertisements and beautiful images or objects, respectively.
Both types of visual stimuli can induce the experience of pleas-
antness in human observers. At least in part, they also activate
similar regions of the brain’s self-reflective and reward circuitries,
for example, the medial orbitofrontal cortex, the ventromedial
prefrontal cortex, the ventral pallidum and the ventral stria-
tum (Erk et al., 2002; O’Doherty et al., 2003; Cela-Conde et al.,
2004; Kawabata and Zeki, 2004; Vartanian and Goel, 2004;
Jacobsen et al., 2006; Schaefer et al., 2006; Simmons et al.,
2013). Other brain systems that are associated with the percep-
tion of visually pleasing stimuli, such as artworks, are involved
also in moral judgment (Zaidel and Nadal, 2011; Avram et al.,
2013) or belong to the default mode network (Vessel et al.,
2012).

Along another line of research in experimental aesthetics, the
computational approach aims to identify the statistical properties
of visually pleasing images and to relate them to visual perception
(Hoenig, 2005; Datta et al., 2006; Li and Chen, 2009; Graham and

Redies, 2010; Amirshahi et al., 2012, 2013). For example, recent
studies revealed that subsets of artworks possess a scale-invariant
Fourier power spectrum (Graham and Field, 2007; Redies et al.,
2007a,b; Alvarez-Ramirez et al., 2008). Images of natural scenes
also show this property (Field, 1987; Burton and Moorhead,
1987; Field and Brady, 1997; Simoncelli, 2003). Interestingly, the
human visual system is adapted to process natural scene statis-
tics efficiently (Parraga et al., 2000; Olshausen and Field, 2004).
Taylor and colleagues demonstrated fractal-like structure in both
natural scenes and abstract expressionist paintings (Taylor, 2002;
Taylor et al., 2011). Based on these similarities, it has been specu-
lated that visually pleasing images follow universal regularities so
that they can be processed efficiently by the human visual system
(Zeki, 1999; Redies, 2007). In a similar vein, it was proposed that
stimuli that can be processed fluently are more aesthetic in general
(Reber et al., 2004). In the computational approach, a particu-
lar focus was placed on visual artworks and photographs (Datta
et al., 2006; Li and Chen, 2009; Amirshahi et al., 2012; Redies et al.,
2012), but other types of visually pleasing images, such as graphic
novels (Koch et al., 2010) and aesthetic writings (Melmer et al.,
2013) have also been studied.
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Advertisements are another type of man-made images that
attract human attention, often by using pleasant visual stimuli.
Many psychological studies have investigated what contents are
suited for advertisements in order to evoke a pleasant feeling in
the observer, and there are elaborate practical instructions on how
to produce an appealing visual layout for print advertisements
(Assael et al., 1967; Edell and Staelin, 1983; Finn, 1988; Bushko
and Stansfield, 1997). Basic features of print advertisements, such
as color, size, and spacing of dominant pictorial and text elements,
have been examined (Assael et al., 1967), also in cross-cultural
studies (Cutler and Javalgi, 1992). However, to the best of our
knowledge, there are no studies to date on higher-order global sta-
tistical image properties of print advertisements that may possibly
relate to aesthetic perception.

Another source of man-made, visually pleasing stimuli is
architecture. The biophilia concept of architecture conjectures
that urban planning and architectural design should be based
on fractal (self-similar) geometry (Joye, 2007, 2011; Taylor and
Sprott, 2008). This theory is based on the observation that
humans prefer fractal geometry in their environment (Hagerhall
et al., 2004; Taylor et al., 2005), possibly because the natural
surroundings of our ancestors had fractal characteristics (“savan-
nah hypothesis”; Orians, 1986; Forsythe et al., 2011). However,
Torralba and Oliva (2003) studied simple image statistics, such
as Fourier spectral signatures in images of street scenes and
buildings, and showed that cardinal (horizontal and vertical) ori-
entations are more prevalent in these images than in images of
natural scenes.

In the present work, we investigate higher-order image proper-
ties that have been studied in visually pleasing stimuli before. On
the one hand, we used a modern computational method that was
developed for object recognition and categorization, the Pyramid
of Histograms of Oriented Gradients (PHOG) method (Dalal and
Triggs, 2005; Bosch et al., 2007). With this method, the following
measures were calculated:

(1) Self-similarity. Fractal-like image structure can evoke aes-
thetic experience in humans (see above). Using the PHOG
method, it has been shown that museum paintings are self-
similar (Amirshahi et al., 2012, 2013; Redies et al., 2012).

(2) Complexity. Berlyne (1974) postulated that images of inter-
mediate complexity are considered more aesthetic than sim-
ple or highly complex images in general (Berlyne, 1974).
Several studies confirm that complexity plays an important
role in aesthetic perception (Jacobsen and Hofel, 2002; Rigau
et al., 2008; Forsythe et al., 2011; Redies et al., 2012).

(3) Anisotropy. This measure describes the statistical variance
(heterogeneity) of image features across orientations in an
image. For museum paintings and graphic artworks, a low
degree of anisotropy was found both for the Fourier spec-
tral profile (Koch et al., 2010; Melmer et al., 2013) and for
histograms of oriented gradients (Redies et al., 2012).

(4) Birkhoff-like measure. Birkhoff (1933) proposed that the aes-
thetic appeal of visual stimuli is a function of the ratio of
order and complexity in an image. We proposed to substitute
order by self-similarity in this ratio (Redies et al., 2012).

On the other hand, the above measures were compared to the
following features that have been calculated for visually pleasing
images before, also by other groups (for references, see above):

(5) Slope of log-log plots of radially averaged Fourier power. For
large subsets of monochrome artworks, the slope of the
Fourier spectrum is about -2, i.e., the spectra are scale-
invariant and the images have a fractal-like structure.

(6) Fractal dimension. This measure reflects the density of edges
in binarized images and is closely related to complexity
(Mureika and Taylor, 2013). In a series of experiments, Taylor
and colleagues showed that humans prefer intermediate val-
ues for the fractal dimension in both natural and artificial
images (Taylor et al., 2011).

Using these six measures, we compared images of advertisements
and architecture with various previously studied image categories,
including colored artworks of Western provenance, and asked the
following questions:

(1) Can the above measures be used to discriminate the diverse
image categories?

(2) Given their intended visual appeal, do advertisements and
images of architecture share statistical image properties with
artworks and complex natural scenes?

(3) In how far do different categories of advertisements vary with
respect to the types of products promoted (cars, fashion,
cosmetics etc.)?

MATERIALS AND METHODS
IMAGE DATASETS
We investigated 15 different categories of images, focusing
on advertisements, artworks and architecture. For comparison,
datasets of images that were studied before, including faces,
simple objects, and natural scenes and patterns, were analyzed
(control images). Each dataset consisted of about 200 color
images.

The images of artworks and advertisements (except for show
windows) were scanned from high-quality art books and adver-
tisement brochures or magazines, respectively. For scanning, a
calibrated digital scanner (Perfection 3200 Photo, Epson, Owa,
Japan) was used, as described before (Redies et al., 2012). Images
of the other datasets and show windows were taken with a digital
camera (EOS 500D with EF- S15- 85 mm f/3.5-5.6 IS USM lens;
Canon, Tokyo, Japan) by the authors (Julia Braun and Christoph
Redies).

Artworks
For this category, we selected 197 colored (mostly oil) paint-
ings from a previously analyzed dataset (Redies et al., 2012). The
images were selected so that they represented a wide variety of
subject matters (21 paintings of architecture, 52 portraits, 23 nat-
ural scenes, 60 abstract paintings and 41 other subject matters).
The following art periods were covered: Renaissance (20 paint-
ings from 18 artists), Baroque (20 paintings from 18 artists),
Romanticism (12 paintings from 9 artists), Realism (20 paintings
from 11 artists), Impressionism (20 paintings from 18 artists), Art
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Nouveau (5 paintings from 3 artists), Expressionism (20 paintings
from 9 artists), Fauvism (7 paintings from 4 artists), Cubism (15
paintings from 7 artists), Surrealism (12 paintings from 4 artists),
Suprematism (10 paintings from 6 artists), and abstract paintings
(36 paintings from 25 artists, including 16 abstract expression-
ist paintings from 14 artists). Examples are shown in Figure 1A.
Images were scanned at a size higher than about 4 million pixels.
In the statistical measures analyzed, the sample of 197 paintings
did not differ from the previously published dataset (Redies et al.,
2012).

Advertisements
First, single pages that represented advertisements of one prod-
uct were scanned from current magazines that were purchased
in two newspaper kiosks. An effort was made to include as
many different categories of magazines available in the shops.
The group of single-product advertisements was further divided
into advertisements for cars and automobile accessories (200
images; Figure 1B), fashion (mostly for women, 200 images;
Figure 1C), cosmetics (198 images; Figure 1D) and others prod-
ucts (204 images; Figure 1E). Brochures obtained from local car

sellers complemented the car image category. Second, other types
of advertisements were scanned. They included covers of var-
ious womens’ and TV magazines (196 images; Figure 1F) and
leaflets from supermarkets and department stores with adver-
tisements for grocery, furniture, hardware and other stores (212
images; Figure 1G). Members of the laboratory contributed this
material. The cover page, the middle sheet and the rear page
of the leaflets were used and typically contained advertise-
ments for several products on each page. In addition, one of
the authors (Julia Braun) took 85 photographs of show win-
dows of fashion shops in Jena and Berlin, Germany, with a
digital camera, as described above (Figure 1H). Photographs
were taken during two walks in major shopping districts. All
store windows encountered were photographed, except for those
with strong light reflections. The photographs were cropped
so that the height of the window fitted the height of the
image.

For a general comparison of advertisement images with the
other categories of images, we created a dataset that consisted of
30 images randomly selected from each of the seven advertise-
ment subsets described above (210 images in total).

FIGURE 1 | Examples from the image datasets of artworks and

advertisements. Three images each are shown from the dataset
of artworks (A), advertisements for automobiles and accessories

(B), fashion (C), cosmetics (D), other products (E), magazine
covers (F), supermarket and department store leaflets (G), and
show windows (H).
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Architecture
Photographs of architecture in Austria, Germany and Spain
were obtained for three different ranges of distance to the pho-
tographed objects. First, 200 photographs of urban scenes, which
represent street views or a group of buildings, sometimes with
horizon, were taken (Figure 2A). Second, 200 entire buildings
were photographed (Figure 2B). Third, 3–4 floors of 175 facades
were photographed; an attempt was made not to include cars or
people in front of the ground floor (Figure 2C).

For comparison with other types of images, we included previ-
ously analyzed datasets (control images; Redies et al., 2012) in the
present study. These image datasets are available on the following
webpage: www.inf-cv.uni-jena.de/en/aesthetics.

Simple objects
This dataset included 200 photographs of ordinary household
and laboratory equipment (Figure 2D).

Face images
This dataset comprised 200 face photographs of about 100 per-
sons of both genders who were either smiling (72 images) or
showed a neutral facial expression (123 images). These pho-
tographs were randomly selected from the AR face database
(Martinez and Benavente, 1998). Similar photographs are shown
in Figure 2E.

Natural scenes and patterns
Images of artworks share statistical similarities with images of
natural scenes and patterns, in particular large-vista natural
scenes (Redies et al., 2007a,b), also in the PHOG analysis (Redies
et al., 2012). For comparison, the following datasets were used

in the present study: 200 images of large-vista natural scenes of
different landscapes (Figure 2F), including the horizon, and 200
images of branches that were taken in winter without foliage
(Figure 2G).

IMAGE CALCULATIONS
For each image, values for self-similarity, complexity and
anisotropy were obtained with the PHOG method, as described
before (Amirshahi et al., 2012; Redies et al., 2012). Because
halftone dots were visible in a small number of the scanned
artworks, image size was reduced to 100,000 pixels by bicubic
interpolation. This reduction was carried out for all image cat-
egories because the measured values depend on the image size
(Redies and Groß, 2013). Color images were transformed into the
Lab color space. The general procedure to calculate the PHOG
measures is described in the Appendix.

Three different possibilities to calculate self-similarity were
compared (Figure 3). The histograms of each section can be
compared to the histograms (i) of the parent section at the pre-
vious level (parent approach; Figure 3B), (ii) of all the adjacent
(neighboring) sections at the same level (neighbor approach;
Figure 3C), (iii) of the entire image at level 0 (ground approach;
Figure 3D). Self-similarity values obtained for the three levels of
the pyramid (Figure 3A) were averaged, with each level carrying
the same weight.

The slope of log-log plots of the radially averaged Fourier
power spectrum was determined as described for natural scenes
and artworks before (Burton and Moorhead, 1987; Field, 1987;
Graham and Field, 2007; Redies et al., 2007a,b). In brief, images
were padded according to square ones by adding a uniform
border with a gray level that was equal to the mean gray level

FIGURE 2 | Examples from the image datasets of architecture and other

image categories. Three images each are shown from the photography
dataset of urban scenes (A), buildings (B), facades (C), simple objects (D),

faces (E), large-vista natural scenes (F), and branches (G). Because of
copyright issues, original face photographs from the AR face database are
not shown in (E), but similar photographs of three of the authors.
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of the image. All images were reduced to a size of 1024 × 1024
pixels by bicubic interpolation and isotropic scaling. A discrete
Fourier transform (2d Fast Fourier Transform) was calculated
to obtain the 2d power spectrum, which was then transformed
into a 1d spectrum by rotational averaging for each frequency.
In the log-log plane, power was plotted as a function of spa-
tial frequency. To measure the slope of the resulting frequency
spectrum, a least-squares fit of a line was performed in the
range of 10–256 cycles/image and the slope of the line was
determined.

The fractal dimension can be seen as an indicator for the
complexity of a pattern: A high fractal dimension indicates high
complexity, while a low fractal dimension indicates low complex-
ity (Mureika and Taylor, 2013). The fractal dimension was esti-
mated with the box-counting method, as described by Hagerhall
et al. (2004). Because the box-counting method requires binarized
images, we applied the canny-edge filter (Canny, 1986) to each
image. Next, each image was covered by a mesh of “boxes” that
represented equally sized squares. This procedure was repeated
for decreasing box sizes ε, which results in an increasingly finer
mesh. Let N(ε) be the number of boxes that are occupied by the
pattern in relation to a specific box size ε. According to the power
law relation N(ε) ∼ ε−D, the box-counting dimension D can be
estimated by fitting a line to the plot log N(ε) vs. log(1/ε) and
measuring the slope of this line. All calculations were performed
with the MatLab program.

STATISTICAL ANALYSIS
For the statistical verification, we carried out the non-parametric
Wilks-Lambda multivariate analysis of variance test on all 15

image categories with all the six measurements, followed by the
Tukey post-hoc test for individual comparisons for all pairs of
categories.

RESULTS
We measured statistical properties in 15 different categories of
images, with a particular focus on advertisements, artworks and
architecture. Six features that were previously studied in visu-
ally pleasing images were calculated (self-similarity, complexity,
anisotropy, the Birkhoff-like measure, the slope of the 1d Fourier
spectrum, and the fractal dimension; see Introduction). Statistical
testing showed overall differences between all 15 groups and all six
measures (p < 0.001).

Median values of the measured properties for all 15 image
categories are provided in Tables 1–5 and are summarized in
Figure 4. Figures 5, 7A compare the results for advertisements
with five datasets of image categories that were analyzed previ-
ously by our group (artworks and photographs of branches, sim-
ple objects, natural scenes and passport-type face photographs;
Redies et al., 2012). Results show that images of advertisements
can be characterized by a specific combination of the measured
properties on average, as discussed in more detail below (sec-
tion Comparison of Advertisements to Other Image Categories).
The other image categories can also be characterized by specific
combinations of the six measures (Redies et al., 2012).

In the following sections, we will first evaluate the three dif-
ferent methods to calculate self-similarity by the PHOG method.
Second, we will compare results for advertisements with the pre-
viously studied image categories. This comparison was of interest
in particular with respect to man-made images vs. natural images

FIGURE 3 | Different approaches to measure self-similarity. The
construction of the pyramid for the calculation of the histogram
of oriented gradients (HOG) features is shown in (A). The
numbers in (A) indicate the levels of the pyramid. To determine

self-similarity, a section at a given level of the pyramid (orange)
can be compared to the parent section (yellow in B), to the
neighboring sections (yellow in C) or the entire image at the
ground level (yellow in D).

Table 1 | Comparison of different approaches to calculate self-similarity.

Image dataset Self-similarity [median (mean ± SD)]

Parent approach Neighbor approach Ground approach

Advertisement (n = 210) 0.68 (0.68 ± 0.07) 0.37 (0.38 ± 0.10) 0.62 (0.62 ± 0.09)

Artworks (n = 197) 0.74 (0.73 ± 0.06)* 0.50 (0.50 ± 0.11)* 0.68 (0.67 ± 0.09)*

Simple objects (n = 200) 0.62 (0.62 ± 0.05)* 0.28 (0.29 ± 0.08)* 0.53 (0.54 ± 0.07)*

Faces (n = 200) 0.56 (0.56 ± 0.04)* 0.26 (0.26 ± 0.05)* 0.43 (0.43 ± 0.04)*

Natural scenes (n = 200) 0.73 (0.73 ± 0.07)* 0.65 (0.62 ± 0.12)* 0.64 (0.64 ± 0.10)

Branches (n = 200) 0.83 (0.82 ± 0.05)* 0.69 (0.69 ± 0.07)* 0.78 (0.77 ± 0.07)*

*Significantly different from advertisement (p < 0.001).
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Table 2 | Average values for the four PHOG-derived image properties.

Image dataset Self-similarity Complexity Anisotropy(× 10−3) Birkhoff-like measure

Artworks (n = 197) 0.68 (0.67 ± 0.09)c, d 7.23 (8.33 ± 4.30)a, d 0.49 (0.51 ± 0.16)c, d 0.09 (0.10 ± 0.04)c, d

Advertisemente (n = 210) 0.62 (0.62 ± 0.09) 9.00 (9.73 ± 3.66) 0.70 (0.71 ± 0.16)d 0.07 (0.07 ± 0.02)

Urban scenes (n = 200) 0.56 (0.55 ± 0.08)c, d 11.28 (11.21 ± 2.77)b 0.72 (0.72 ± 0.12)d 0.05 (0.05 ± 0.01)c, d

Buildings (n = 200) 0.63 (0.63 ± 0.08) 12.44 (12.56 ± 3.65)c, d 0.75 (0.78 ± 0.16)c, d 0.05 (0.05 ± 0.02)c, d

Facades (n = 175) 0.76 (0.75 ± 0.06)c, d 13.80 (13.75 ± 3.68)c, d 0.83 (0.85 ± 0.18)c, d 0.05 (0.06 ± 0.02)c, d

Simple objects (n = 200) 0.53 (0.54 ± 0.07)c, d 6.18 (6.46 ± 2.40)c, d 0.93 (0.95 ± 0.18)c, d 0.09 (0.09 ± 0.03)c, d

Faces (n = 200) 0.43 (0.43 ± 0.04)c, d 3.99 (4.09 ± 0.58)c, d 0.86 (0.86 ± 0.08)c, d 0.11 (0.11 ± 0.01)c, d

Natural scenes (n = 200) 0.64 (0.64 ± 0.10) 10.63 (10.41 ± 3.51) 0.42 (0.44 ± 0.12)c 0.06 (0.07 ± 0.02)

Branches (n = 200) 0.78 (0.77 ± 0.07)c, d 28.25 (28.30 ± 6.99)c, d 0.33 (0.33 ± 0.07)c, d 0.03 (0.03 ± 0.01)c, d

Values represent median (mean ± SD), calculated on the basis of the ground approach.
a, b, cSignificantly different from advertisement (ap < 0.05; bp < 0.01; cp < 0.001).
d Significantly different from natural scenes (p < 0.001).
eImages were randomly sampled from all seven advertisement subcategories.

Table 3 | Average values for the Fourier slope and fractal dimension.

Image dataset Fourier slope Fractal dimension

Artworks (n = 197) −2.77 (−2.74 ± 0.29)c, e 1.49 (1.49 ± 0.16)e

Advertisement (n = 210) −2.57 (−2.54 ± 0.24)e 1.51 (1.50 ± 0.12)

Urban scenes (n = 200) −2.45 (−2.46 ± 0.14)b, e 1.62 (1.61 ± 0.08)c

Buildings (n = 200) −2.53 (−2.51 ± 0.24)e 1.65 (1.64 ± 0.10)c, d

Facades (n = 175) −2.47 (−2.47 ± 0.21)a, e 1.68 (1.66 ± 0.11)c, e

Simple objects (n = 200) −2.83 (−2.84 ± 0.22)c, e 1.44 (1.44 ± 0.10)c, e

Faces (n = 200) −3.51 (−3.53 ± 0.14)c, e 1.29 (1.29 ± 0.05)c, e

Natural scenes (n = 200) −2.21 (−2.24 ± 0.19)c 1.61 (1.60 ± 0.16)c

Branches (n = 200) −1.81 (−1.83 ± 0.17)c, e 1.87 (1.86 ± 0.06)c, e

Values represent median (mean ± SD).
a, b, cSignificantly different from advertisement (ap < 0.05; bp < 0.01;
cp < 0.001).
d, eSignificantly different from natural scenes (d p < 0.05; ep < 0.001).

and for images that differ in their degree of their aesthetic appeal.
Third, we will compare results obtained for the different types of
advertisements. Fourth, results for images of architecture will be
described.

METHODOLOGICAL CONSIDERATIONS
The values that are derived from the PHOG method critically
depend on several parameters, for example, the resolution of the
images and the level of the image pyramid, on which the analysis
was performed (Amirshahi et al., 2012). For this reason, we car-
ried out PHOG calculations for all images at the same resolution
(100,000 pixels) and at the same level (level 3).

To calculate self-similarity, three different approaches were
considered in the present work (see Materials and Methods,
Section Image Calculations; Table 1). In two earlier studies from
our group, self-similarity was calculated based on the parent
approach (Figure 3B; Amirshahi et al., 2012; Redies et al., 2012).
The average self-similarity for advertisements assumes interme-
diate values (0.68; Figure 5A). Values for artworks (0.74), natural
scenes (0.73) and branches (0.83) are higher (p < 0.001) whereas

values for faces (0.56) and simple objects (0.62) are lower (p <

0.001). These values are similar to those from our earlier study
(Redies et al., 2012).

For the second method of calculating self-similarity (neigh-
bor approach; Figure 3C), overall results follow the same pattern,
but self-similarity values were generally lower than for the par-
ent approach (Figures 5A,B, Table 1). This decrease is especially
prominent for images of advertisements (0.37), artworks (0.50),
faces (0.26) and simple objects (0.28). The decrease of average
values for natural scenes (0.65) and branches (0.69) is smaller.

Results for the ground approach (Figures 3D, 5C, Table 1) are
intermediate between those of the parent approach and the neigh-
bor approach. Again, the overall pattern of differences is similar
compared to the two other approaches.

In conclusion, these results demonstrate that the different
PHOG-derived approaches to calculate self-similarity are rela-
tively robust with regard to relative differences between image
categories, although absolute values differ. In the following com-
parison, we chose the ground approach.

COMPARISON OF ADVERTISEMENTS TO OTHER IMAGE CATEGORIES
The scatter plots shown in Figures 5C,D, 7A compare the results
for advertisements and the other image categories. The plot of
self-similarity vs. complexity (Figure 5C), of anisotropy vs. the
Birkhoff-like measure (Figure 5D) and Fourier slope vs. fractal
dimension (Figure 7A) reveal distinct but partially overlapping
clusters for each image category.

For advertisements, self-similarity values (0.62; Figure 4C,
Table 2) differ significantly from artworks (0.68, p < 0.001),
simple objects (0.53, p < 0.001), faces (0.43, p < 0.001) and
branches (0.78, p < 0.001) but not from natural scenes (0.64).
Complexity values (Figure 4C) obtained for advertisements
(9.00) are higher than values for artworks (7.23, p < 0.05), simple
objects (6.18; p < 0.001), and faces (3.99; p < 0.001), but much
lower than for branches (28.25; p < 0.001). The complexity of
natural scenes (10.63; Table 2) is similar to that of advertisements.
This pattern of differences is similar to the previously published
results (Redies et al., 2012) although absolute values differ because
of the resolution of the images used (1 million pixels vs. 100,000
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Table 4 | Comparison of different types of advertisements.

Image dataset Self-similarity Complexity Anisotropy (× 10−3) Birkhoff-like measure

Advertisement, all (n = 1295) 0.63 (0.63 ± 0.10)c 9.61 (10.17 ± 3.63)c 0.68 (0.70 ± 0.16)c, f 0.06 (0.07 ± 0.02)c

Advertisement, subset (n = 210) 0.62 (0.62 ± 0.09)c 9.00 (9.73 ± 3.66)b 0.70 (0.71 ± 0.16)c, f 0.07 (0.07 ± 0.02)c

Cars (n = 200) 0.58 (0.57 ± 0.09)c, f 8.73 (8.81 ± 2.16)f 0.78 (0.80 ± 0.17)c, f 0.07 (0.07 ± 0.01)c

Fashion (n = 200) 0.58 (0.58 ± 0.08)c, f 7.64 (8.16 ± 2.84)f 0.69 (0.71 ± 0.17)c, f 0.08 (0.08 ± 0.02)c, e

Cosmetics (n = 198) 0.60 (0.59 ± 0.07)c, f 7.48 (7.92 ± 2.34)f 0.68 (0.70 ± 0.14)c, f 0.08 (0.08 ± 0.02)c, f

Others (n = 204) 0.62 (0.61 ± 0.08)c 8.96 (9.16 ± 3.17)d 0.65 (0.67 ± 0.16)c, f 0.07 (0.07 ± 0.03)c

Magazine covers (n = 196) 0.67 (0.67 ± 0.07)e 13.46 (13.75 ± 3.93)c, f 0.59 (0.62 ± 0.15)c, f 0.05 (0.05 ± 0.01)c, f

Leaflets (n = 212) 0.76 (0.75 ± 0.06)c, f 13.34 (13.10 ± 2.41)c, f 0.63 (0.64 ± 0.12)c, f 0.06 (0.06 ± 0.01)c, e

Show windows (n = 85) 0.64 (0.64 ± 0.07)a 10.15 (10.23 ± 2.31)b 0.80 (0.80 ± 0.17)c, f 0.06 (0.06 ± 0.01)c

Values represent median (mean ± SD), calculated on the basis of the ground method.
a,b,cSignificantly different from artworks (ap < 0.05; bp < 0.01; cp < 0.001; Table 2)
d, e, f Significantly different from natural scenes (d p < 0.05; ep < 0.01; f p < 0.001; Table 2).

Table 5 | Comparison of different types of advertisements.

Image dataset Fourier slope Fractal dimension

Advertisement (n = 1295) −2.49 (−2.50 ± 0.24)c 1.50 (1.51 ± 0.12)c

Cars (n = 200) −2.50 (−2.51 ± 0.21)a, c 1.48 (1.49 ± 0.08)c

Fashion (n = 200) −2.74 (−2.74 ± 0.19)c 1.44 (1.45 ± 0.09)a, c

Cosmetics (n = 198) −2.55 (−2.54 ± 0.24)a, c 1.42 (1.42 ± 0.08)a, c

Others (n = 204) −2.48 (−2.45 ± 0.23)a, c 1.46 (1.46 ± 0.09)c

Magazine covers (n = 196) −2.33 (−2.35 ± 0.16)a, c 1.59 (1.58 ± 0.08)a

Leaflets (n = 212) −2.30 (−2.31 ± 0.16)a, b 1.60 (1.59 ± 0.07)a

Show windows (n = 85) −2.70 (−2.70 ± 0.15)c 1.58 (1.58 ± 0.09)a

Values represent median (mean ± SD).
aSignificantly different from artworks (p < 0.001; Table 3)
b, cSignificantly different from natural scenes (bp < 0.05; cp < 0.001; Table 3).

pixels) and the approaches to calculate self-similarity varied (see
above).

We obtained distinct clusters for each image category in the
scatter plot of anisotropy vs. the composite Birkhoff-like measure
(Figure 5D, Table 2). For example, compared to advertisements
(0.70 × 10−3), anisotropy is lower for artworks (0.49 × 10−3, p <

0.001), natural scenes (0.42 × 10−3, p < 0.001) and branches
(0.33 × 10−3, p < 0.001), whereas it is higher for simple objects
(0.93 × 10−3, p < 0.001) and faces (0.86 × 10−3, p < 0.001). For
the Birkhoff-like measure, values are similar for advertisements
and natural scenes (Figure 5D, Table 2). The comparison to all
other image categories yields significantly different values.

The Fourier slope values of images of advertisements (−2.57)
and architecture (−2.45 to −2.53) are similar (Table 3). Artworks
have slope values (−2.77) lower than advertisements (−2.77; p <

0.001). Images of natural scenes and branches have slope values
close to −2 (Figure 7A) while face images have much lower values
than advertisements (−3.51; p < 0.001; Figure 7A). For the frac-
tal dimension, as expected, the overall pattern of values is similar
to that of complexity (Figures 4C,D).

COMPARISON OF DIFFERENT ADVERTISEMENT CATEGORIES
Figures 6, 7B–D illustrate the results for single-product advertise-
ments (Figures 6A,B, 7B) and the other types of advertisement

(magazine covers, supermarket and department store leaflets,
and show windows; Figures 6C,D, 7C). Detailed results are listed
in Tables 4, 5 and compared to the other image categories in
Figure 4.

Compared to the image categories described in the previous
section, the dot clusters of the individual advertisement cate-
gories overlap to a much larger degree with each other and
also with the artworks cluster (Figures 6A–D, 7B,C). Single-
product advertisements (cars, fashion, cosmetics and others) tend
to have lower complexity, fractal dimension, and self-similarity
than the other types of advertisements whereas anisotropy
and the Fourier slope tend to be more variable in general
(Figure 4, Tables 4, 5). Compared to artworks, single-product
advertisements tend to be less self-similar (p < 0.001) and more
anisotropic (p < 0.001) but they do not differ in average com-
plexity (Figures 6A,B, Table 4). Values for the Birkhoff-like mea-
sure are lower than for artworks (p < 0.001; Figure 6B). The
Fourier slope values for single-product advertisements are higher
than for artworks (p < 0.001), except for fashion images. The
fractal dimension is smaller for fashion (1.44, p < 0.001) and cos-
metics (1.42, p < 0.001) than for artworks (1.49) (Figure 7B).
The other types of advertisement are more complex (p < 0.05
to p < 0.001), more anisotropic (p < 0.001) and have a lower
Birkhoff-like measure and a higher fractal dimension than art-
works (p < 0.001; Figures 6C,D, 7C, Tables 4, 5). Self-similarity
for magazine covers is as high as for artworks, higher for
leaflets (p < 0.001) and lower for show windows (p < 0.05;
Figures 4, 6C).

IMAGES OF ARCHITECTURE
The images of architecture (urban scenes, buildings, and facades)
are more complex than artworks and single-product advertise-
ments (p < 0.001; Figures 4C, 6E; Table 2) but tend to be similar
to the other types of advertisements. A similar trend is observed
for the fractal dimension (Figures 4D, 7D, Tables 3, 5). The
degree of anisotropy resembles that of single-product adver-
tisements and show windows but is higher than for artworks
(p < 0.001; Figure 6F, Table 2). Self-similarity for buildings is as
high as for the combined dataset of advertisements; it is higher
for facades (p < 0.001) and lower for urban scenes (p < 0.001;
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FIGURE 4 | Whisker plots of the means for self-similarity (A), Fourier

slope (B), complexity (C), fractal dimension (D) and anisotropy (E). The
image categories are indicated below the y-axis in panels (D,E) for all panels.

The colors represent the different image categories (red, artworks; light blue,
advertisement; orange, architecture; dark blue and green, other image
categories). Whiskers represent means ±1 SD.

Figure 6E, Table 2). The Birkhoff-like measure is lower for archi-
tecture than for artworks (Figure 6F; p < 0.001). The Fourier
slope for images of architecture is similar to that of single-
product advertisements (Figures 4D, Tables 3, 5) and artworks
(Figure 7D).

DISCUSSION
In this work, we studied statistical image properties in images
of advertisements and architecture, and compared them to
results of other man-made, visually pleasing images, such as art-
works (Graham and Redies, 2010; Redies et al., 2012; Amirshahi
et al., 2013; Melmer et al., 2013). Given the similarities in
brain responses to these different types of rewarding stimuli
(see Introduction), we speculated that the images might also
share structural features at the stimulus level. This notion was
challenged by measuring image features that have been stud-
ied in visually pleasing stimuli before (self-similarity, complexity,
anisotropy, slope of the radially averaged Fourier spectrum, and
fractal dimension; see Introduction). A particular focus of our
study was the question of whether the images of advertisements
differ from the other image categories.

In the following paragraphs, we will first point out similarities
and differences between advertisements and the other image cate-
gories, such as artworks and large-vista natural scenes. Second, we
will address the question of whether the measured values relate to
the content and layout of different types of advertisements. Third,

we will compare images of architecture to the other types of visual
stimuli.

DIFFERENCES BETWEEN IMAGES OF ADVERTISEMENTS AND OTHER
IMAGE CATEGORIES
In an earlier study, we showed that the PHOG measures (self-
similarity, complexity and anisotropy) allow distinguishing art-
works from many other image categories on average (Amirshahi
et al., 2012; Redies et al., 2012). In the present work, we add
images of advertisements to this comparison (Figure 5). In addi-
tion, we compare the results with previously obtained measure-
ments of the Fourier slope and the fractal dimension (Figure 7).

Our results indicate that, like the other image categories,
advertisements can be characterized by a specific combination of
these measures (Figures 4, 5C,D, 7A, Tables 2, 3). The results for
the combined dataset of advertisements largely resemble those
of artworks and natural scenes, although some differences were
observed. All three image categories have relatively high values
for self-similarity and intermediate values for complexity and
the fractal dimension, compared to, for example, photographs
of faces and branches. This finding supports the notion that
subsets of visually pleasing images share specific statistical prop-
erties in general. However, we note that the different measures
are not independent. For all images analyzed together, Table 6
provides the Spearman correlation coefficients for the mea-
sures. As expected, the strongest correlation is found between
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FIGURE 5 | Scatter plots of the PHOG-derived measures for the

different image categories. (A–C) compares results for the three different
approaches to calculate self-similarity [parent approach (A), neighbor
approach (B), and ground approach (C); see Materials and Methods].
Self-similarity is plotted as a function of complexity. (D) Shows a plot of
anisotropy vs. the Birkhoff-like measure for the ground approach. Each dot
represents one image. The image categories are illustrated by the different
colors, as indicated in panel (A).

complexity and the fractal dimension. Other correlations, e.g.,
between complexity and self-similarity, are also relatively strong.
The precise relation between the different measures remains to be
determined.

An intermediate level of complexity has been previously linked
to aesthetic perception. Berlyne (1974) described a u-shaped
dependence of the hedonic value of aesthetic stimuli on com-
plexity (or information content). He postulated that this curve
could be explained by the different degrees of activation of two
antagonistic systems in the human brain, a reward system and
an aversion system. For visually pleasing stimuli, the dependence
of beauty on complexity is not straightforward, partially because
physical measures of complexity differ between studies (Forsythe
et al., 2011) and there is a general lack of well-controlled studies
that manipulate complexity in such images, with few excep-
tions (Jacobsen and Hofel, 2002; Taylor et al., 2005; Forsythe
et al., 2011). Nevertheless, the present results support the notion
that the different categories of visually pleasing images have an
intermediate degree of complexity in general.

Furthermore, the present results indicate that the PHOG-
derived self-similarity measure used by us attains a similar degree
in advertisements, artworks and natural scenes. The Fourier
slope is not highly correlated with the self-similarity measure
(Table 6). The Fourier slope of subsets of monochrome artworks
and monochrome images of natural scenes share a slope value
of around −2 (Graham and Field, 2007; Redies et al., 2007a,b;
Alvarez-Ramirez et al., 2008), but the slope value of colored art-
works converted to grayscale images is much lower (−2.8 in the

FIGURE 6 | Scatter plots of the PHOG-derived measures for the

different advertisement categories (A–D) and architecture categories

(E,F). Scatter plots of self-similarity vs. complexity are shown in (A,C,E) and
of anisotropy vs. the Birkhoff-like measure in (B,D,F). Each dot represents
one image. For comparison, results for artworks are represented by the red
dots. The image categories are illustrated by the different colors, as
indicated in panels (in A, for A and B; in C, for C and D; and in E, for
E and F).

present study; -2.9 for colored art portraits in the study by Redies
et al., 2007b). However, monochrome artworks are not equiv-
alent to grayscale versions of colored paintings because color
plays a pivotal role in aesthetic appreciation (Palmer et al., 2013).
Consequently, conversion of colored artworks to grayscale version
may destroy their aesthetic appeal.

Median anisotropy is higher for advertisements than for aes-
thetic artworks and natural scenes. This finding may relate to the
presence of vertical text and image divisions along cardinal (hor-
izontal and vertical) orientations in advertisements. Strikingly,
all image categories studied are significantly more anisotropic on
average than artworks, except for the natural categories (natural
scenes and branches), although there is some degree of overlap
(Figures 5C,D). A relatively low degree of anisotropy of artworks
has been observed before in other studies (Koch et al., 2010;
Redies et al., 2012; Melmer et al., 2013). This result is remarkable
because, conceivably, artists can also produce highly anisotropic
images. Note that specific natural patterns, such as lichen growth
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FIGURE 7 | Scatter plots of the Fourier slope values and the fractal

dimension for the different image categories. (A) Compares results for
previously studied image categories and artworks. Results for
single-product advertisements are shown in (B), for other advertisements
in (C), and for architecture in (D). The image categories are illustrated by
the different colors, as indicated in each panel.

Table 6 | Spearman correlation coefficients r for the measures studied

(p < 0.001 for all comparisons).

Self- Complexity Anisotropy Fourier Fractal

similarity slope dimension

Self-similarity – 0.73 −0.53 0.52 0.60

Complexity 0.73 – −0.45 0.66 0.82

Anisotropy −0.53 −0.45 – −0.59 −0.45

Fourier slope 0.52 0.66 −0.59 – 0.63

Fractal 0.60 0.82 −0.45 0.63 –

dimension

patterns and branches, can have even lower anisotropy values
(Redies et al., 2012). In how far the responses of the visual sys-
tem to isotropic and anisotropic visual stimuli relate to aesthetic
perception is unclear at present.

The separation of the different image categories is especially
clear in the scatter plots of anisotropy vs. the Birkhoff-like mea-
sure, which we defined as self-similarity divided by complexity
(Figure 5D). Each image category, including advertisements and
artworks, is characterized by a specific pattern of values defined by
the three measures. Whether this pattern is required or sufficient
for aesthetic perception remains to be studied.

DEPENDENCE OF AESTHETIC MEASURES ON ADVERTISEMENT
CONTENT
Within the seven subcategories of advertisements, differences
were observed, some of which were anticipated. For example,

single-product advertisements are generally less complex than
leaflets that promote multiple products on each page. Magazine
covers, which contain a relatively large amount of printed text,
are also more complex. It is likely that the high complexity of
leaflets and magazine covers relates to the fact that they dis-
play multiple visual elements that can each attract attention
separately (e.g., headings, text banners and price information)
whereas single-product advertisements are the result of a more
integrated visual composition that encompasses the entire image.
As a consequence, in single-product advertisements, the appeal
of the product may be carried by the global appearance of the
entire image and not by its parts, such as in leaflets. In this respect,
single-product advertisements may resemble artworks. For this
reason, it is perhaps not surprising that the two types of images
have similar statistical image properties.

Like complexity, self-similarity differs significantly between
the various types of advertisements. Nevertheless, single-product
advertisements and show windows exhibit a similar degree of
self-similarity in general, when compared to the other image cat-
egories. Also, differences in anisotropy between single-product
advertisements are relatively small (Figure 4, Table 4).

In conclusion, for the single-product advertisements studied,
image properties are similar irrespective of the type of product
shown. Whether and by what perceptual mechanisms these prop-
erties lead to a higher efficiency in promoting products remains
to be studied.

IMAGES OF ARCHITECTURE AND THEIR “BIOPHILIC” STRUCTURE
As expected, self-similarity of buildings and facades is relatively
high (Figure 4), possibly because they are composed of repetitive
visual elements, such as windows and architectural ornaments.
In contrast, urban scenes contain elements of more diverse forms
(e.g., cars, trees, street surfaces and buildings) and are less self-
similar. The complexity of architectural images is higher than in
artworks in general. Compared to natural scenes, images of build-
ings and facades tend to be more complex while urban scenes
share a similar degree of complexity. The relatively high degree
of anisotropy in architectural images was anticipated because car-
dinal orientations are prominent in most types of architecture
and urban scenes, as demonstrated before (Oliva and Torralba,
2006).

Natural environments are thought to be particularly rich in
stress-reducing, restorative elements (Kaplan, 1995). It has been
proposed that humans possess a visual preference for natural,
fractal-like patterns in architecture and urban scenes (“biophilia”
hypothesis; see Introduction). The overall similarities between
architectural images and natural scenes in self-similarity and
complexity support this idea. However, anisotropy in our set
of architectural images is much higher than in natural scenes
and natural patterns, such as branches. Most likely, anisotropy
is lower in specific types of architecture that prominently fea-
ture oblique orientations, for example the buildings by Antoni
Gaudí or Friedensreich Hundertwasser. Other styles of archi-
tecture, for example the Bauhaus style, are characterized by a
conspicuous lack of oblique orientations (Salingaros, 1999), lead-
ing to high anisotropy. The role of anisotropy in architectural
aesthetics therefore remains unclear.
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CONCLUSION AND HYPOTHESIS
The present study demonstrates that images of advertisements
are characterized by a specific combination of higher-order
image properties (high self-similarity, intermediate complexity
and intermediate anisotropy) on average. For single-product
advertisements, these properties do not depend on the type of
product promoted. We hypothesize that the processing of such
higher-order image features can be fast and may be mediated
at a lower level of the visual system, similar to gist perception
of scenes (Torralba and Oliva, 2003; Oliva and Torralba, 2006),
possibly occurring even before the content of the advertisements
(e.g., the depicted object, brand name etc.) is recognized. The
degree of self-similarity and complexity in advertisements is close
(but is not identical) to that of artworks and natural scenes. It has
been shown that higher-order image properties similar to natural
scenes allow an efficient processing in the visual system (Parraga
et al., 2000; Simoncelli and Olshausen, 2001). This idea has been
extended to visual artworks (Redies, 2007; Graham and Redies,
2010). Here, we speculate that the idea may also apply to print
advertising, at least to some degree. Possibly, specific higher-order
image properties enhance the visual effectiveness of advertise-
ments. At higher levels of (cognitive) processing, the effectiveness
of advertisements also depends on other factors, such as the psy-
chological condition of the observer and the real or stimulated
demand for the product. Interestingly, images of architecture
share statistical properties with advertisements to a large extent. It
remains to be investigated whether any of these image properties
(or a combination thereof) plays a causative role in judging visual
stimuli as perceptually pleasing.

ACKNOWLEDGMENTS
The authors thank Dr. Schlattmann for statistical advice, mem-
bers of the Denzler and Redies groups for constructive sugges-
tions, discussion and comments on the manuscript.

REFERENCES
Alvarez-Ramirez, J., Ibarra-Valdez, C., Rodriguez, E., and Dagdug, L. (2008).

1/f-noise structures in Pollock’s drip paintings. Physica A 387, 281–295. doi:
10.1016/j.physa.2007.08.047

Amirshahi, S. A., Koch, M., Denzler, J., and Redies, C. (2012). PHOG anal-
ysis of self-similarity in esthetic images. Proc. SPIE 8291, 82911J. doi:
10.1117/12.911973

Amirshahi, S. A., Redies, C., and Denzler, J. (2013). “How self-similar are
artworks at different levels of spatial resolution?” International Symposium
on Computational Aesthetics in Graphics, Visualization, and Imaging. New
York, NY: Association for Computing Machinery. doi: 10.1145/2487276.
2487282

Assael, H., Kofron, J. H., and Burgi, W. (1967). Advertising performance as a
function of print Ad characteristics. J. Advert. Res. 7, 20–26.

Avram, M., Gutyrchik, E., Bao, Y., Poppel, E., Reiser, M., and Blautzik, J. (2013).
Neurofunctional correlates of esthetic and moral judgments. Neurosci. Lett. 534,
128–132. doi: 10.1016/j.neulet.2012.11.053

Barla, A., Franceschi, E., Odone, F., and Verri, A. (2002). Image kernels.
International Workshop on Pattern Recognition with SVM, ICPR 2002. Lect. Notes
Comp. Sci. 2388, 83–96. doi: 10.1007/3-540-45665-1_7

Berlyne, D. E. (1974). “The new experimental aesthetics,” in Studies in the
New Experimental Aesthetics, ed D. E. Berlyne (Washington, DC: Hemisphere
Publishing), 1–25.

Birkhoff, G. D. (1933). Aesthetic Measure. Cambridge: Harvard University Press.
Bosch, A., Tisserman, A., and Munoz, X. (2007). “Representing shape with a spa-

tial pyramid kernel,” in Proceedings of the 6th ACM International Conference

on Image and Video Retrieval, (New York, NY: Association of Computing
Machinery), 401–408. doi: 10.1145/1282280.1282340

Burton, G. J., and Moorhead, I. R. (1987). Color and spatial structure in natural
scenes. Appl. Opt. 26, 157–170. doi: 10.1364/AO.26.000157

Bushko, D., and Stansfield, R. H. (1997). Dartnell’s Advertising Manager’s
Handbook. Chicago: Dartnell.

Canny, J. (1986). A computational approach to edge detection. IEEE Trans. Pattern
Anal. Mach. Intell. PAMI-8, 679–698, doi: 10.1109/TPAMI.1986.4767851

Cela-Conde, C. J., Marty, G., Maestu, F., Ortiz, T., Munar, E., Fernandez,
A., et al. (2004). Activation of the prefrontal cortex in the human visual
aesthetic perception. Proc. Natl. Acad. Sci. U.S.A. 101, 6321–6325. doi:
10.1073/pnas.0401427101

Cutler, B. D., and Javalgi, R. G. (1992). A cross-cultural-analysis of the visual com-
ponents of print advertising - the United-States and the European-Community.
J. Advert. Res. 32, 71–80.

Dalal, N., and Triggs, B. (2005). Histograms of oriented gradients for
human detection. Int. Conf. Comput. Vis. Pattern Recognit. 2, 886–893. doi:
10.1109/CVPR.2005.177

Datta, R., Joshi, D., Li, J., and Wang, J. Z. (2006). “Studying aesthetics in
photographic images using a computational approach,” in Proceedings of
the 9th European Conference on Computer Vision, (Graz), 3, 288–301. doi:
10.1007/11744078_23

Edell, J. A., and Staelin, R. (1983). The information-processing of pictures in print
advertisements. J. Consum. Res. 10, 45–61. doi: 10.1086/208944

Erk, S., Spitzer, M., Wunderlich, A. P., Galley, L., and Walter, H. (2002).
Cultural objects modulate reward circuitry. Neuroreport 13, 2499–2503. doi:
10.1097/01.wnr.0000048542.12213.60

Field, D. J. (1987). Relations between the statistics of natural images and the
response properties of cortical cells. J. Opt. Soc. Am. A 4, 2379–2394. doi:
10.1364/JOSAA.4.002379

Field, D. J., and Brady, N. (1997). Visual sensitivity, blur and the sources of vari-
ability in the amplitude spectra of natural scenes. Vis. Res. 37, 3367–3383. doi:
10.1016/s0042-6989(97)00181-8

Finn, A. (1988). Print ad recognition readership scores - an information-processing
perspective. J. Mark. Res. 25, 168–177. doi: 10.2307/3172648

Forsythe, A., Nadal, M., Sheehy, N., Cela-Conde, C. J., and Sawey, M. (2011).
Predicting beauty: fractal dimension and visual complexity in art. Br. J. Psychol.
102, 49–70. doi: 10.1348/000712610X498958

Graham, D., and Redies, C. (2010). Statistical regularities in art: rela-
tions with visual coding and perception. Vis. Res. 50, 1503–1509. doi:
10.1016/j.visres.2010.05.002

Graham, D. J., and Field, D. J. (2007). Statistical regularities of art images and nat-
ural scenes: spectra, sparseness and nonlinearities. Spat. Vis. 21, 149–164. doi:
10.1163/156856807782753877

Hagerhall, C. M., Purcell, T., and Taylor, R. (2004). Fractal dimension of landscape
silhouette outlines as a predictor of landscape preference. J. Env. Psychol. 24,
247–255. doi: 10.1016/j.jenvp.2003.12.004

Hoenig, F. (2005). “Defining computational aesthetics,” in Proceedings of
the First Eurographics conference on Computational Aesthetics in Graphics,
Visualization and Imaging, eds L. Neumann, M. Sbert, B. Gooch,
and W. Purgathofer (Geneva: Eurographics Association), 13–18, doi:
10.2312/COMPAESTH/COMPAESTH05/013-018

Jacobsen, T., and Hofel, L. (2002). Aesthetic judgments of novel graphic pat-
terns: analyses of individual judgments. Percept. Mot. Skills 95, 755–766. doi:
10.2466/pms.2002.95.3.755

Jacobsen, T., Schubotz, R. I., Hofel, L., and Cramon, D. Y. (2006). Brain
correlates of aesthetic judgment of beauty. Neuroimage 29, 276–285. doi:
10.1016/j.neuroimage.2005.07.010

Joye, Y. (2007). Architectural lessons from environmental psychology: the case
of biophilic architecture. Rev. Gen. Psych. 11, 305–328. doi: 10.1037/1089-
2680.11.4.305

Joye, Y. (2011). A review of the presence and use of fractal geometry in architectural
design. Environ. Plann. B. Plann. Des. 38, 814–828. doi: 10.1068/b36032

Kaplan, S. (1995). The restorative benefits of nature: toward an integrative frame-
work. J. Environ. Psychol. 15, 169–182. doi: 10.1016/0272-4944(95)90001-2

Kawabata, H., and Zeki, S. (2004). Neural correlates of beauty. J. Neurophysiol. 91,
1699–1705. doi: 10.1152/jn.00696.2003

Koch, M., Denzler, J., and Redies, C. (2010). 1/f2 Characteristics and isotropy in
the fourier power spectra of visual art, cartoons, comics, mangas, and different

www.frontiersin.org November 2013 | Volume 4 | Article 808 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Cognition/archive


Braun et al. Statistical image properties of advertisements

categories of photographs. PLoS ONE 5:e12268. doi: 10.1371/journal.pone.
0012268

Li, C., and Chen, T. (2009). “Aesthetic visual quality assessment of paintings,” in
IEEE Journal of Selected Topics, in Signal Processing, (New York, NY: IEEE),
236–252. doi: 10.1109/JSTSP.2009.2015077

Martinez, A. M., and Benavente, R. (1998). The AR Face Database. Columbus, OH:
Ohio State University.

Melmer, T., Amirshahi, S. A., Koch, M., Denzler, J., and Redies, C. (2013).
From regular text to artistic writing and artworks: fourier statistics of
images with low and high aesthetic appeal. Front. Hum. Neurosci. 7:106. doi:
10.3389/fnhum.2013.00106

Mureika, J. R., and Taylor, R. P. (2013). The abstract expressionists and les
automatistes: a shared multi-fractal depth? Sign. Proc. 93, 573–578. doi:
10.1016/j.sigpro.2012.05.002

O’Doherty, J., Winston, J., Critchley, H., Perrett, D., Burt, D. M., and Dolan,
R. J. (2003). Beauty in a smile: the role of medial orbitofrontal cortex in
facial attractiveness. Neuropsychologia 41, 147–155. doi: 10.1016/S0028-3932
(02)00145-8

Oliva, A., and Torralba, A. (2006). Building the gist of a scene: the role of global
image features in recognition. Prog. Brain Res. 155, 23–36. doi: 10.1016/S0079-
6123(06)55002-2

Olshausen, B. A., and Field, D. J. (2004). Sparse coding of sensory inputs. Curr.
Opin. Neurobiol. 14, 481–487. doi: 10.1016/j.conb.2004.07.007

Orians, G. (1986). “An ecological and evolutionary approach to landscape aes-
thetics,” in Landscape Meanings and Values, eds E. C. Penning-Rowsell and D.
Lowenthal (London: Allen and Unwin), 3–25.

Palmer, S. E., Schloss, K. B., and Sammartino, J. (2013). Visual aesthetics and
human preference. Ann. Rev. Psychol. 64, 77–107. doi: 10.1146/annurev-psych-
120710-100504

Parraga, C. A., Troscianko, T., and Tolhurst, D. J. (2000). The human
visual system is optimised for processing the spatial information in nat-
ural visual images. Curr. Biol. 10, 35–38. doi: 10.1016/S0960-9822(99)
00262-6

Reber, R., Schwarz, N., and Winkielman, P. (2004). Processing fluency and aesthetic
pleasure: is beauty in the perceiver’s processing experience? Pers. Soc. Psychol.
Rev. 8, 364–382. doi: 10.1207/s15327957pspr0804_3

Redies, C. (2007). A universal model of esthetic perception based on
the sensory coding of natural stimuli. Spat. Vis. 21, 97–117. doi:
10.1163/156856807782753886

Redies, C., Amirshahi, S. A., Koch, M., and Denzler, J. (2012). PHOG-derived aes-
thetic measures applied to color photographs of artworks, natural scenes and
objects. ECCV 2012 Ws/Demos, Part I. Lect. Notes Comp. Sci. 7583, 522–531.
doi: 10.1007/978-3-642-33863-2_54

Redies, C., Hänisch, J., Blickhan, M., and Denzler, J. (2007a). Artists portray human
faces with the Fourier statistics of complex natural scenes. Network 18, 235–248.
doi: 10.1080/09548980701574496

Redies, C., Hasenstein, J., and Denzler, J. (2007b). Fractal-like image statis-
tics in visual art: similarity to natural scenes. Spat. Vis. 21, 137–148. doi:
10.1163/156856807782753921

Redies, C., and Groß, F. (2013). Frames as visual links between paintings and the
museum environment: an analysis of statistical image properties. Front. Psychol.
4:831. doi: 10.3389/fpsyg.2013.00831

Rigau, J., Feixas, M., and Sbert, M. (2008). Informational aesthetics measures. IEEE
Comput. Graph. Appl. 28, 24–34. doi: 10.1109/MCG.2008.34

Salingaros, N. A. (1999). Architecture, patterns, and mathematics. Nexus Netw. J. 1,
75–86. doi: 10.1007/s00004-998-0006-0

Schaefer, M., Berens, H., Heinze, H. J., and Rotte, M. (2006). Neural correlates of
culturally familiar brands of car manufacturers. Neuroimage 31, 861–865. doi:
10.1016/j.neuroimage.2005.12.047

Simmons, W. K., Rapuano, K. M., Ingeholm, J. E., Avery, J., Kallman, S., Hall, K.
D., et al. (2013). The ventral pallidum and orbitofrontal cortex support food
pleasantness inferences. Brain Struct. Funct. doi: 10.1007/s00429–00013-0511-0

Simoncelli, E. P. (2003). Vision and the statistics of the visual environment. Curr.
Opin. Neurobiol. 13, 144–149. doi: 10.1016/S0959-4388(03)00047-3

Simoncelli, E. P., and Olshausen, B. A. (2001). Natural image statis-
tics and neural representation. Ann. Rev. Neurosci. 24, 1193–1216. doi:
10.1146/annurev.neuro.24.1.1193

Taylor, R. P. (2002). Order in Pollock’s chaos - Computer analysis is helping to
explain the appeal of Jackson Pollock’s paintings. Sci. Am. 287, 116–121. doi:
10.1038/scientificamerican1202-116

Taylor, R. P., Spehar, B., Van Donkelaar, P., and Hagerhall, C. M. (2011). Perceptual
and physiological responses to Jackson Pollock’s fractals. Front. Hum. Neurosci.
5:60. doi: 10.3389/fnhum.2011.00060

Taylor, R. P., Spehar, B., Wise, J. A., Clifford, C. W., Newell, B. R., Hagerhall, C. M.,
et al. (2005). Perceptual and physiological responses to the visual complexity of
fractal patterns. Nonlinear Dynamics Psychol. Life. Sci. 9, 89–114.

Taylor, R. P., and Sprott, J. C. (2008). Biophilic fractals and the visual journey of
organic screen-savers. Nonlinear Dynamics Psychol. Life. Sci. 12, 117–129.

Torralba, A., and Oliva, A. (2003). Statistics of natural image categories. Network
14, 391–412. doi: 10.1088/0954-898x/14/3/302

Vartanian, O., and Goel, V. (2004). Neuroanatomical correlates of
aesthetic preference for paintings. Neuroreport 15, 893–897. doi:
10.1097/01.wnr.0000118723.38067.d6

Vessel, E. A., Starr, G. G., and Rubin, N. (2012). The brain on art: intense aesthetic
experience activates the default mode network. Front. Hum. Neurosci. 6:66. doi:
10.3389/fnhum.2012.00066

Zaidel, D. W., and Nadal, M. (2011). Brain intersections of aesthetics and morals:
perspectives from biology, neuroscience, and evolution. Perspect. Biol. Med. 54,
367–380. doi: 10.1353/pbm.2011.0032

Zeki, S. (1999). Art and the brain. J. Conscious. Stud. 6–7, 76–96.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 28 June 2013; accepted: 13 October 2013; published online: November
2013.
Citation: Braun J, Amirshahi SA, Denzler J and Redies C (2013) Statistical image
properties of print advertisements, visual artworks and images of architecture. Front.
Psychol. 4:808. doi: 10.3389/fpsyg.2013.00808
This article was submitted to Cognition, a section of the journal Frontiers in
Psychology.
Copyright © 2013 Braun, Amirshahi, Denzler and Redies. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | Cognition November 2013 | Volume 4 | Article 808 | 12

05

http://dx.doi.org/10.3389/fpsyg.2013.00808
http://dx.doi.org/10.3389/fpsyg.2013.00808
http://dx.doi.org/10.3389/fpsyg.2013.00808
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Cognition
http://www.frontiersin.org/Cognition
http://www.frontiersin.org/Cognition/archive


Braun et al. Statistical image properties of advertisements

APPENDIX A
This appendix gives an overview of the method that was used
to calculate values for self-similarity, complexity and anisotropy
(Amirshahi et al., 2012; Redies et al., 2012). The method is
based on the Pyramid Histogram of Oriented Gradients (PHOG)
approach. PHOG descriptors are spatial shape descriptors that
were originally introduced by Bosch et al. (2007) for image clas-
sification. They are global feature vectors based on a pyramidal
subdivision of an image into sub-images, for which Histograms of
Oriented Gradient (HOG; Dalal and Triggs, 2005) are computed.
In computer vision, such a data structure is called a quadtree.

In this approach, the following steps are taken to calculate a
gradient image G (shown in Figure A1) for a given color image I.

1. In the Lab color space, the image I is separated into its three
channels (IL, Ia, and Ib). The L channel represents the lumi-
nance. The a and b channels are the red-green and blue-yellow
opponent channels, respectively.

2. The gradient image is then calculated for each of the three
images, which we have introduced in step 1 and are repre-
sented as ∇IL, ∇Ia, and ∇Ib in Figure A1. In this work, the
gradient is calculated using the Matlab function gradient.

3. For each pixel in the three gradient images calculated in step
2, the maximum value among the three available values is

selected and placed in a new image, G. From here on, we
will refer to G as the gradient image. The following equation
represents this approach in another way:

G(x, y) = max
(∥∥IL(x, y)

∥∥ ,
∥∥Ia(x, y)

∥∥ ,
∥∥Ib(x, y)

∥∥)

As an example, Figure A2C shows the gradient image G of the
photograph displayed in Figure A2A.

Next, the HOG features are calculated (Dalal and Triggs, 2005).
HOG is based on the orientation of gradients in an image.
Using image G, we separate the orientations of the gradients
(Figure A2D) into n bins resulting in a HOG feature

h = (h1, h2, · · · , hn)

of size n. Although the value for n and the range of orientations
could be any arbitrary number, using 8 or 16 bins with 180 or 360
degrees is common. In the present study, we used 16 bins covering
360 degrees (Figure A2E). To obtain the HOGs, the strength of all
gradients is calculated for each bin. As the last step in the HOG
calculation, the histogram values are normalized so that the sum
of the values for all 16 bins is one.

The self-similarity measure is obtained by calculating the HOG
features for each sub-image of the quadtree (Figure A2B) as
follows:

FIGURE A1 | Method to obtain the gradient image G. From left to
right, the original image I , the image divided into the three channels of
the Lab color space (IL, Ia and Ib ), their respective gradient images

(∇ IL, ∇Ia, and ∇Ib ), and the resulting gradient image G are displayed.
The brightness scale for the images in the two columns on the right hand
side was expanded so the brightness changes can be seen more readily.
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FIGURE A2 | Calculation of self-similarity by the PHOG method. (A)

Original photograph. Note the prominence of vertical orientations in the
image. (B) Schematic diagram of the different levels of spatial
resolution (1–3), superimposed onto the photograph shown in (A).
Level 1 contains four sections, level 2 sixteen sections, and level 3 64
sections. (C) Image of gradient strength, indicated by rainbow
pseudocolor coding. (D) Gradient orientation image. Colors indicate
different orientations (e.g., red for horizontal orientations, and green for
vertical orientations). (E) HOG features at the different levels of spatial
resolution (levels 0–3). The orientations of the 16 bins used for
calculating the HOG features are displayed at the upper left side of the
panel. The Arabic numerals indicate the binned orientations [see panel
(B)]. The Roman numerals in the level 1 histogram indicate the
subsections [compare to level 1 in (B)].

1. First, we calculate the HOG feature for the entire gradient
image at level 0 (ground level).

2. Next, we divide the image into four equal sub-sections and
calculate HOG features for each sub-section (level 1).

3. Each sub-section introduced at level 1 is divided again into
four equal sub-sections (level 2) and the HOG features are
calculated for the resulting 16 sub-sections.

4. The division and calculation can be continued as long as
desired. In the present study, the highest level was level 3 (64
sub-sections). Higher levels result in even smaller sections with
increasingly uniform distributions of luminance and fewer
gradients, producing unstable results (Amirshahi et al., 2012).

The results of all HOG features at the individual levels of the
quadtree (step 1–4) are concatenated to a features vector being the
PHOG representation of the image. An example of the underlying
histograms is depicted in Figure A2E.

To calculate the degree of self-similarity of an image, the
Histogram Intersection Kernel (HIK; Barla et al., 2002) is used

HIK
(
h, h′) =

n∑
i = 1

min
(
hi, h′

i

)

to determine how similar two HOG features are. In the above
equation, h and h′ represents two sets of HOG vectors for two
sub-sections in the image and hi represents the value in the ith
bin in h. The range of HIK is between 0 and 1. As it can be
seen from the equation, the HIK function will result in the value
of one in the case of two matching HOG features. The value of
zero is reached if the entries for hi or h′

i is zero for all bins. The
self-similarity for image I at any level L is calculated by

mss(I, L) = median
(
HIK

(
h(S), h(N(S))

))
.

In this equation, h(N(S)) corresponds to the nod (section) in the
quadtree of the section, to which sub-section S is compared (par-
ent section, ground section or neighboring sections; see Figure 3),
and h represents the HOG vectors. Sample values for the self-
similarity measure are given in the main text. By selecting the
median value among the different values, we avoid taking the
overshoots into account.

The mean of all gradient strengths in the gradient image G
serves us as a measure of the complexity of the image in the
present study. A uniform original image with small changes in
pixel values would result in a gradient image of low mean values
(low complexity) while an image with large changes would result
in a gradient image of high mean values (high complexity). To
calculate complexity for image I,

mCo(I) = 1

N · M

∑
(x,y)

G(x, y)

the mean value over the gradient image, G is calculated. In
this equation, N and M are the height and width of image I,
respectively.

The HOG approach also allows deriving a measure for how
different the strengths of the gradients are across orientations in
an image (anisotropy). Low anisotropy means that the strengths
of the orientations are uniform across orientations and high
anisotropy means that orientations differ in their overall promi-
nence. For example, in the photograph shown in Figure A2A,
anisotropy is high because vertical orientations (0 and 180◦) are
more prominent than the other orientations. As a measure of
anisotropy, we calculate

mAnI(I, L) = σ
(
H(L)

)
,

over the HOG feature entries for image I at the last level (L = 3 in
our calculation). In this equation, H(L) corresponds to the HOG
feature at level L and σ is the standard deviation,

σ
(
H(L)

) =
√√√√ 1

m

m∑
i = 1

(
hi − μH(L)

)
.
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In this equation, μH(L) corresponds to the mean value of all the
bins at level L, while m represents the number of bins at level L. If
each section of the images is divided to sec new subsections,

m = (sec)l

at level l. An image with a high degree of anisotropy will result in
values that change a lot over the feature entries, while an image

with a low degree of anisotropy will result in feature values that
are approximately equal.

According to Birkhoff (1933), the aesthetic value depends
on the ratio of order and complexity. Following this idea,
we substituted order by self-similarity to obtain a Birkhoff-
like measure, as described in Redies et al. (2012). This
measure was calculated for level 3 based on the ground
approach.
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