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We posit that a person’s gaze behavior while freely viewing a scene contains an abundance
of information, not only about their intent and what they consider to be important in the
scene, but also about the scene’s content. Experiments are reported, using two popular
image datasets from computer vision, that explore the relationship between the fixations
that people make during scene viewing, how they describe the scene, and automatic
detection predictions of object categories in the scene. From these exploratory analyses,
we then combine human behavior with the outputs of current visual recognition methods
to build prototype human-in-the-loop applications for gaze-enabled object detection and
scene annotation.
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1. INTRODUCTION
Every day we consume a deluge of visual information, either by
looking at images and video on the web, or more generally by
looking at the visual world unfolding around us. For the first
time in history, this viewing behavior is accompanied by a rapidly
increasing number of cameras turned toward the user that could
conceivably watch us back. Whether it is webcams on laptops,
front-facing cell phone cameras, or Google Glass, the media that
we use to access imagery increasingly has the potential to observe
our viewing behavior. This provides an unprecedented oppor-
tunity to harness these devices and to make use of eye, head,
and body movements for human-in-the-loop intelligent systems.
In particular, cues from our behavior during natural viewing
of imagery provide information regarding the content we find
important and the tasks that we are trying to perform. This is par-
ticularly true in the case of gaze behavior, which provides direct
insight into a person’s interests and intent.

We envision a day when reliable eye tracking can be performed
using standard front facing cameras, making it possible for visual
imagery to be tagged with individualized interpretations of con-
tent, each a unique “story,” simply through the act of a person
viewing their favorite images and videos. In this paper we provide
a glimpse into this exciting future by analyzing how humans inter-
act with visual imagery in the context of scene memory and scene
description tasks, and propose a system that exploits this behavior
to assist in the detection (or tagging/annotation) of objects that
people find important. We see the potential for a symbiotic rela-
tionship between computer scientists and behavioral scientists to
advance understanding of how humans interact with visual data
and to construct new human-computer collaborative systems for
automatic recognition of image content. For computer scien-
tists, understanding how humans view and interpret images will

lead to new methods of designing, training, evaluating, and per-
haps augmenting computer vision systems for improved image
understanding. For behavioral scientists, these methods from
computer vision will inform the relationship between viewing
behavior and image content that will be essential to building
comprehensive theories and models of scene understanding.

1.1. VISUAL RECOGNITION AND DETECTION
In computer vision, visual recognition algorithms are making
significant progress. Recent advances are enabling recognition
problems to be approached at a human scale, classifying or local-
izing thousands of object categories with reasonable accuracy
(Deng et al., 2010, 2012; Lin et al., 2011; Krizhevsky et al., 2012;
Perronnin et al., 2012). However, despite rapid advances in meth-
ods for detecting and recognizing objects in images (Deng et al.,
2012; Everingham et al., 2012), they are still far from perfect.
As evidenced in Figure 1, running 120 common object detectors
on an image produces unsatisfactory results. Detectors still make
noisy predictions. In addition, even if the detectors were com-
pletely accurate, they would produce an indiscriminate labeling
of all objects in an image. Although knowing all of the objects in
a scene would be useful for some applications, it would probably
not make a good model for human scene understanding. Scene
understanding, at its minimum, must reflect the fact that some
objects are interpreted as being more important than others, and
that different viewers may place different levels of importance on
these objects. Current computer vision approaches therefore treat
scene understanding as image understanding, attaching equal
importance to every object that can be recognized in a pattern
of pixels. This is probably not how people understand scenes and
might not be the right output for end-user applications which by
definition should be guided by human interpretations.
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1.2. INFORMATION FROM GAZE
It has long been known that eye movements are not directly
determined by an image, but are also influenced by task Yarbus
(1967). The clearest examples of this come from the extensive
literature on eye movements during visual search (Neider and
Zelinsky, 2006a; Zelinsky, 2008; Judd et al., 2009; Zelinsky and
Schmidt, 2009); specifying different targets yields different pat-
terns of eye movements despite the image remaining the same
(the same pixels). However, clear relationships also exist between
the properties of an image and the eye movements that people
make during free viewing. For example, when presented with
a complex scene, people overwhelmingly choose to direct their
initial fixations toward the center of the image, probably in an
attempt to maximize the extraction of information from the scene
(Renninger et al., 2007). Figure/ground relationships play a role as
well; people prefer to look at objects even when the background
is made more relevant to the task (Neider and Zelinsky, 2006b).
All things being equal, eye movements also tend to be directed
to corners and regions of high feature density (Mackworth and

FIGURE 1 | Detection results for 120 common object categories.

Morandi, 1967; Tatler et al., 2006), sudden onsets (Theeuwes,
1994; Theeuwes et al., 1999), object motion (Itti, 2005; Itti and
Baldi, 2009), and regions of brightness, texture, and color con-
trast (Itti and Koch, 2000, 2001; Parkhurst et al., 2002). These
latter influences can all be considered saliency factors affecting
object importance. Behavioral research has therefore provided a
wealth of information about the objects in a scene that people
find important, and how this is affected by the properties of these
objects, but very little is known about how one’s ability to detect
these objects factors into their scene understanding.

Rather than focusing on object salience, in our experiments
we ask: how categories of objects or events, and their detectabil-
ity, might influence gaze [see also, Einhäuser et al. (2008)],
and how we can use gaze to predict semantic categories. Eye
movements can inform image understanding in two different
but complementary ways. First, they can be used to indicate
the relative importance of content in an image by providing a
direct measure of how a person’s attention was spatially and
temporally distributed. Second, the patterns of saccades and fix-
ations made during image viewing might be used as a direct
indication of content information. For example, to the extent
that gaze is drawn to oddities and inconsistencies in a scene
(Tatler, 2007), fixations might be used to predict unusual events
(Baldi and Itti, 2010).

1.3. HUMAN-COMPUTER COLLABORATION
In this paper we explore the potential for combining behavioral
and computational inputs into integrated collaborative systems
for image understanding. There are many recognition tasks that
could benefit from gaze information, with the prototype sys-
tem for human-computer collaborative image classification by
De Campos et al. (2012) being just one example. In this paper we
focus on object detection and annotation. Figure 2 suggests the
potential benefits of such a human-computer collaborative object
detection system. Rather than applying object detectors at every
location in an image arbitrarily, they could be more intelligently
applied only at important locations, as indicated by gaze fixations.
This would not only minimize the potential for false positives, but
also constrain the true positives to only the content considered

FIGURE 2 | Left: Baseline detection results using 20 deformable part
models from Felzenszwalb et al. (2010) with default thresholds including
correct detections (green) and incorrect detections (blue).

Middle: Gaze-enabled detection results with fixations (yellow). Right:

Objects described by people and detected objects from each method
(green - correct, blue - incorrect).
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most important by the viewer. It might also have implications for
efficiency in real-time detection scenarios.

Central to making these systems work is our belief that humans
and computers provide complimentary sources of information
for interpreting the content of images.

Humans can provide:

• Passive indications of content through gaze patterns. These
cues provide estimates about “where” important things are, but
not “what” they are.

• Active indications of content through descriptions. These cues
indicate “what” content in an image is important to a viewer,
but may give only a rough idea of “where" this content is
located.

Computer vision recognition algorithms can provide:

• Automatic indications of content from recognition algorithms;
estimates of “what” might be “where” in visual imagery. But,
these predictions will be noisy and will lack knowledge of
relative content importance.

• Computer vision can piece together these various cues as to
“what" important content is located “where” in a scene.

Human-Computer collaborative systems have the potential to
make great strides in semi-automated scene understanding, or
image understanding, as it is referred to in the computer vision
community. It is our position that image understanding is ulti-
mately a human interpretation, making it essential that inputs
from humans be integrated with computational recognition
methods. Attempts to solve this problem through analysis of pix-
els alone are unlikely to produce the kind of image understanding
that is useful to humans, the ultimate consumers of imagery.
However, in order to build such a collaborative system we first
have to better understand the relationship between these various
“what” and “where” cues.

In this study, we describe several combined behavioral-
computational analyses aimed at exploring the relationships
between the pixels in an image, the eye movements that peo-
ple make while viewing that image, and the words that they
produce when asked to describe it. To the extent that stable rela-
tionships can be discovered and quantified, this will serve the
synergistic goals of informing image interpretation algorithms
and applications, and contribute to the basic scientific knowl-
edge about how people view and interpret visual imagery. For
these analyses we collected gaze fixations and image descrip-
tions from two commonly used computer vision datasets. Our
data, the SBU Gaze-Detection-Description Dataset, is available at
http://www.cs.stonybrook.edu/∼ial/gaze.html.

2. DATASET AND METHODS
We conducted two sets of experiments, using two commonly
explored computer vision image datasets with varying task sce-
narios, designed to address slightly different questions. We will
refer to these experiments by their respective dataset name, the
Pascal VOC dataset (Everingham et al., 2008) and the SUN 2009
dataset (Choi et al., 2010).

2.1. PASCAL VOC
The goal of this experiment was to determine the relationships
between object detections and gaze fixations, and object detec-
tions and scene descriptions, for a large number of images. The
Pascal VOC dataset is well suited to this purpose. The Pascal
VOC is a visual recognition challenge widely known in the
computer vision community where models of object category
detection (among other tasks) are evaluated. We used the 1000
images selected by Rashtchian et al. (2010) from the 2008 dataset
(Everingham et al., 2008), which included at least 50 images
depicting each of 20 object categories. Deformable-part model
object detectors for each of these categories were provided by
Felzenszwalb et al. (2010). These 1000 images were then shown
to three participants (experimentally naïve and with normal or
corrected to normal vision), who were instructed to freely view
the scenes in anticipation of a memory test; after every 20 image
presentations, a test image would appear and the participant
would have to indicate whether it was shown previously (50%
yes, 50% no). Each image was presented for 3 s and subtended
18 degrees of visual angle. Eye position was sampled at 1000 Hz
using an EL1000 eye tracker (SR Research) with default saccade
detection settings. Descriptions of each scene were obtained using
Amazon’s Mechanical Turk (AMT), provided by Rashtchian et al.
(2010), and generally captured image content relating to objects
(“man”), relationships between objects (“man drinking a beer”),
and occasionally the scene category name (“man drinking a beer
in a kitchen”). Given the goals of the experiment, note that scene
descriptions were not obtained from the behavioral participants,
as this would have required a prohibitively long time for 1000
images. Instead, this allowed us to determine gaze and descrip-
tion patterns that hold across different people—something that
would be necessary in the context of end-user applications such
as image search. Figure 3 (bottom) shows a sample scanpath and
a AMT provided description for one scene.

2.2. SUN09
The goal of this experiment was to determine the three-way rela-
tionships between object detections, gaze, and scene descriptions,
for a modest number of more complex images. The SUN 09
dataset (Choi et al., 2010) is well suited to this purpose, as the
images tend to be more cluttered compared to Pascal (which typ-
ically depict only a small number of objects). We selected 104
images of 8 scene categories, each of which had hand-labeled
object segmentations. We then trained 22 deformable-part model
object detectors (Felzenszwalb et al., 2010) using images with
associated bounding boxes from ImageNet (Deng et al., 2009).
These object detectors were selected to cover, as much as pos-
sible, the main object content of our selected scenes. Each of
these scenes, subtending 29 degrees of visual angle (1280 x 960
pixels) were presented for 5 s to eight participants, who were
asked to perform a scene description task. Immediately follow-
ing each presentation, participants were given 20 s to verbally
describe the previously viewed scene. These descriptions were
recorded and later transcribed to text. Additional text descriptions
were also obtained using AMT following the procedure out-
lined in Rashtchian et al. (2010). Eye movements were recorded
throughout scene viewing using the same eye tracker and saccade

www.frontiersin.org December 2013 | Volume 4 | Article 917 | 3

http://www.cs.stonybrook.edu/~ial/gaze.html
http://www.frontiersin.org
http://www.frontiersin.org/Perception_Science/archive


Yun et al. Gaze, description, and vision

FIGURE 3 | Examples of scanpaths and descriptions for the SUN09 (top)

and Pascal (bottom) experiments. Left: Gaze patterns where each dot
indicates a fixation. Colors indicate earlier (blue) to later (red) fixations.

Right: Descriptions of the images, together with the object ground truth and
the objects that were fixated. Red words indicate objects automatically
extracted from the text description.

detection settings. Figure 3 (top) shows a sample scanpath and
description for one scene from one participant.

3. RESULTS
In this section we address several general relationships between
fixation, description, and image content: (1) What do people
look at? (Section 3.1), (2) Do people look at the same things?
(Section 3.2), (3) What do people describe? (Section 3.3), and (4)
What is the relationship between what people look at and what
they describe? (Section 3.4).

3.1. WHAT DO PEOPLE LOOK AT?
3.1.1. Fixations on selected objects
All analyses will be restricted to those selected object categories
from the image datasets for which we have trained detectors. For
the Pascal dataset, the 20 selected categories constitute the entire
set of object categories available for the 1000 images used in our
study. However, there are an unknown number of other objects
depicted in these images for which no object segmentations or
detectors are available. For the SUN09 dataset, the 22 object
categories that we selected represent only a subset of the total

number objects appearing in our 104 images, many of which were
densely labeled (almost every pixel was associated with an object).
However, many of these objects were very small or infrequent
categories (e.g., a television remote control) or corresponded to
background regions (e.g., walls, ceilings). On average, the num-
ber of objects per image from the SUN09 ground truth was 32.8,
46.1% of which were objects from our selected categories. More
importantly, we found that 76.3 and 65.6% of fixations made
during scene viewing fell within bounding boxes surrounding
the selected object categories for the Pascal and SUN09 datasets,
respectively. Therefore, while we are not able to make conclusions
about all of the objects appearing in these images, the objects that
we are able to evaluate seem to capture the content of these scenes
that participants found most interesting.

3.1.2. Fixations vs. object type
What types of objects in a scene most strongly attracted a per-
son’s attention? We estimated this by computing a normalized
proportion of fixations on objects, where objects of different types
are normalized for size differences (larger objects might be fix-
ated more frequently simply by chance). More specifically, given
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an image, a normalized proportion of fixations for each object
type is defined as, NF(I, b):

F(I, b) = # fixations in bounding box b

# fixations in image I
(1)

B(I, b) = size of bounding box b

size of image I
(2)

NF(I, b) = F(I, b)

B(I, b)
(3)

where F(I, b) indicates the proportion of fixations falling into
bounding box b in image I, and B(I, b) indicates the ratio of the
size of bounding box b to the whole image. NF(I, b) denotes the
normalized proportion of fixations of bounding box b in image I.

Figure 4 shows results for each object category from the two
datasets. For the Pascal dataset people tend to look preferentially
at animals and people, and at less typical vehicles (planes and
boats) relative to common household items like tables, chairs,
and potted plants. For the SUN09 dataset, which depicted far
fewer animals, people were more likely to look at other peo-
ple, and content elements like televisions (when they were on),
ovens, and boxes. Collapsing across the two datasets, we found
that more fixations were devoted to inspecting animate objects
(P(fixated | present) = 0.636) compared to inanimate categories
(P(fixated | present) = 0.495).

Figure 5 shows the probability of an object category being fix-
ated, grouped by whether at least one instance of an object type
in the scene was fixated (red bars) or whether each instance of
the object was fixated (blue bars; measured as the average propor-
tion of fixated instances for a given object type). This distinction
is important when evaluating the relationship between fixations
and objects in scene understanding; whereas the fact that sheep

are present in a scene is likely to be important for understand-
ing the scene, resulting in a fixation on a sheep, it is probably
unnecessary to fixate on every sheep instance in order to inter-
pret the scene’s content. Our analysis would seem to bear this
out. Continuing with the sheep example, whereas only 45% of
all sheep were fixated, at least one sheep was fixated in 97% of
the images containing sheep. The other categories show a sim-
ilar pattern, although not as extreme in difference. Note that
categories showing no difference between these measures, such
as dishwasher and toilet, reflect the fact that only one instance
of these categories appeared in the scene, and not the fact that
each of multiple instances was fixated. Note also, that object cat-
egories such as person, cat, and dog are nearly always fixated
at least once when they are present, but inanimate and com-
mon objects such as bottles and potted plants are fixated much
less frequently. Collectively, we interpret these data as suggest-
ing that some objects are more important than others for scene
understanding, although it is typically unnecessary to fixate every
instance of even the important objects.

3.1.3. Locations of fixations on objects
The previous analyses focused on what object categories were fix-
ated. Here we analyze where these fixations tended to land on
objects, and how these preferred viewing positions tended to vary
by object type. To do this, we first computed a fixation den-
sity map over the object bounding box using a two-dimensional
Gaussian distribution with a sigma chosen for each image to
approximate a one-degree fovea. Gaussians were summed to
obtain fixation density maps, and these were then averaged over
all the bounding boxes for a given object category. Figure 6A
shows some particularly interesting examples of these averaged
object-based fixation density maps. Consistent with previous
work (Nuthmann and Henderson, 2010), fixations on some

FIGURE 4 | Normalized proportion of fixations by category for the Pascal

(top) and SUN09 (bottom) datasets. A baseline indicating chance fixation was
computed for individual participants by finding for each trial another trial with

the same number of fixations, but for a different scene. The red lines indicate
the average of these by-subject baselines. By doing this, factors such as central
fixation biases and individual scanning strategies are partially controlled.
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FIGURE 5 | Proportion of fixated categories. Blue bars show the average proportion of fixated instances per category. Red bars show the percentage of
images where a category was fixated when present (at least one fixated instance in an image).

FIGURE 6 | Average fixation density maps for select object categories.

(A) Examples showing the category dependent nature of fixation patterns.
(B) Representative samples of a face fixation bias, shown here for horses.

(C) A bias to fixate the tops of bicycles was driven by cases showing a
rider, but the tops of chairs and tables were fixated regardless of the
depiction of a person.

objects, such as buses and trains and televisions, tended to cluster
on the centers of the objects. However, for other objects, such as
plants, this distribution was far more uniform, as was the case for
objects occupying a large percentage of the image, such as cabinets
and curtains [but see Pajak and Nuthmann (2013)]. Moreover, we
found that fixations on animals (people, horses, birds) tended to

be skewed to the top of the bounding boxes, reflecting the fact
that people tend to look at faces during scene viewing. We ver-
ified this observation by dividing these animal categories based
on the where the face appeared in image and found that fixation
preference indeed followed the location of the face (Figure 6B).
Interestingly, similar fixation biases were found for objects that
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have strong functional associations that place differential impor-
tance on parts of the objects. For example, fixations were clustered
towards the tops of bicycles, chairs and tables (Figure 6A), per-
haps because people often sit on the tops of chairs and the seats
of bicycles, and place things on the tops of tables. This observa-
tion, however, is potentially confounded by the fact that some of
the images depicted people sitting on bicycles and chairs, thereby
making it unclear whether fixations were biased toward the tops
of these objects or rather the centers of the bicycle+person or
chair+person objects. To tease apart these possibilities we again
divided images into those showing isolated bicycle/chair/table
objects and those showing these objects with a person sitting
on them (Figure 6C). We found that, whereas subjects did tend
to look at the center of bicycles and motorbikes when they did
not also depict a rider, subjects preferred to fixate the tops of
chairs and tables even when these objects appeared without a
person. This analysis therefore partially supports previous work
showing that fixations tend to land on the centers of objects, but
qualifies this work by showing that this center-fixation bias does
not hold for objects that typically interact with another object,
such as people sitting on chairs, and boxes and magazines sitting
on tables. This analysis also suggests that where people tend to
distribute their fixations on a particular type of object may pro-
vide information that can assist in the recognition of that object
class.

We also analyzed the relationship between gaze, bounding
boxes, and the true object segmentations from the SUN09 dataset.
We did this by computing the percentages of the bounding box
areas that overlapped with the actual object segmentations (a
measure of bounding box—segmentation difference), and com-
paring these to the percentages of fixations in the bounding
boxes that also fell on the segmented objects. These results are
shown in Table 1 for all of the selected SUN09 categories, and
some representative examples. We found that the mean percent-
age of fixations on the actual object segmentations were similar
to the mean percentage of bounding box area occupied by the
segmented objects. This suggests that distributions of fixations,
while potentially useful in indicating the category of object being
fixated, will probably not be useful in refining bounding box
predictions to object segmentations.

3.2. DO PEOPLE LOOK AT THE SAME THINGS?
To analyze the consistency of fixations across participants, we
adopted the agreement score used in Judd et al. (2011). Using
the leave-one-out procedure, we first created a fixation density
map averaged over n-1 of the participants, then used this map to
predict the fixations of the participant who was left out. Fixation

Table 1 | Comparison between segmentations and bounding boxes.

All Person Chair Painting

% of area 68.41 52.74 57.51 91.09

% of fixations 68.97 58.84 59.14 91.47

Reported is the percentage of the bounding box area occupied by the seg-

mented object, and the percentage of the bounding box fixations that fell on

the segmented object.

density maps were computed using a Gaussian, with a sigma
corresponding to one degree of visual angle, centered on each
fixation and weighted by fixation duration. An agreement score
was computed in terms of area under the curve (AUC) using the
procedure described in Judd et al. (2011). These scores ranged
from 0.5, indicating chance agreement, to 1, indicating perfect
agreement.

Figure 7 shows some examples of high-agreement scenes (top)
and low-agreement scenes (bottom) from the Pascal dataset, with
their corresponding agreement scores. In general, we found that
agreement in participant’s fixation behavior tended to decrease
with the number of objects in the scene (r = −0.755). This was
to be expected; the fewer objects in a scene, the less oppor-
tunity there is for participants to look at different things. We
also found an effect of object animacy on fixation agreement
(Figure 8); participants fixated animate objects (cats, dogs, cows)
more consistently than inanimate objects (bottles, chairs, sofas).
This may in part reflect an innate bias for faces to attract atten-
tion Banks and Ginsburg (1985). There was also a difference in
participant agreement between the datasets. Mean agreement in
fixation behavior was .88 (0.012 SEM) for the Pascal dataset but
0.85 (0.007 SEM) for the SUN09 dataset. This difference in fix-
ation agreement likely reflects the difference in object content
between these two datasets; Pascal images tend to depict a rela-
tively small number of typically animate objects (a dog and cat
sleeping on a sofa) whereas the SUN09 images tend to depict
scenes of rooms containing many inanimate objects (a bedroom
with lamps and end tables and chairs). Based on our observations
and analyses, if one desires agreement in fixation behavior during
scene viewing, one should use scenes depicting a small number
of animate objects with clearly visible faces. This also has impli-
cations for scene understanding, suggesting that interpretations
may be biased toward a small number of animate agents and the
actions that they are performing.

3.3. WHAT DO PEOPLE DESCRIBE?
Descriptions are our measure of a person’s scene understand-
ing and reflect the relative importance placed on different con-
tent elements. To analyze the descriptions we first extracted the
object words from the transcribed scene descriptions using a
Part of Speech tagger (Phan, 2006) to tag the nouns. We then
compared the extracted nouns to our selected object categories
using WordNet distance (Wu and Palmer, 1994), keeping those
nouns having a small distance (≤0.95). Because WordNet dis-
tance is not perfect, we supplemented this automated analysis
with a manual inspection of the extracted word-object mappings
to obtain our final sets of described nouns for each scene for
analysis.

We found that people included in their descriptions 85.4 and
58.8% of the selected ground truth objects from the Pascal and
SUN09 datasets, respectively. These differences are again likely
due to the differing numbers of objects, and their animacy,
between these datasets. Because there are more objects in the
SUN09 scenes, people are less likely to describe all of the selected
object categories. Previous work has also reported large differ-
ences between object categories in their probability of description
(Berg et al., 2012). Paralleling our analyses of fixation preference
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FIGURE 7 | Examples of high (top) and low (bottom) fixation agreement among participants using the Pascal dataset. The red, green, and yellow dots
indicate fixations from our three participants.

FIGURE 8 | Fixation agreement by object type for the Pascal dataset.

and agreement, we found that animate objects were more likely to
be described than inanimate objects. This is clearly illustrated in
Figure 9, which orders the object categories based on their proba-
bility of description. For the Pascal dataset (top), animate objects
such as horses and sheep were described with higher probability
than inanimate objects such as chairs and potted plants. People
were also more likely to be described in the SUN09 dataset (bot-
tom), reflecting a similar trend, although the limited number of
animate objects in this dataset makes the relationship less con-
clusive. No consistent description patterns were found among
non-living objects capable of animacy, such as trains and cars

and televisions. This suggests that the presence of faces, and not
animacy, may be the more important factor in determining prob-
ability of description and fixation preference, and teasing apart
these two possibilities will be an important direction for future
research into scene understanding. Finally, we found that peo-
ple often included a scene category name in their descriptions,
and that the probability of this happening varied with the cat-
egory of the scene (Figure 10). Determining the source of this
variability, and whether fixation behavior can be used to pre-
dict scene naming, will be another important direction for future
research.
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FIGURE 9 | Probability that an object category was described when present for the Pascal (top) and SUN09 (bottom) datasets.

FIGURE 10 | Probability that a scene name was included in a description as a function of category.

3.4. WHAT IS THE RELATIONSHIP BETWEEN GAZE AND DESCRIPTION?
There have been several studies exploring the relationship
between object fixations and object descriptions [e.g., (Griffin
and Bock, 2000), Meyer (2004), and Meyer et al. (2004)], but
here we will focus on the two most fundamental: (1) whether
people describe the objects they look at, and (2) whether people
look at the objects they describe. We quantified these relation-
ships by computing the probability that an object was fixated
given that it was described, P(fixated | described) and the prob-
ability that an object would be described given that it was fixated,
P (described | fixated). Note that we analyzed these probabilities
under conditions in which the viewer and describer were the same
person (SUN09) and when they were different people (Pascal).

Table 2 | The fundamental relationships between object fixations and

objects descriptions.

P(fixated|described) P (described|fixated)

Pascal 86.56% 95.22%

SUN09 72.28% 21.98%

This latter scenario is interesting in that it speaks to the robustness
of the relationships - that they might hold even across different
individuals.

These results are shown in Table 2. We found a strong and
clearly above chance relationship between gaze and description
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in the Pascal dataset (when the viewers and describers were dif-
ferent people)—the objects that were fixated affected the ones
that were described, and vice versa. Potentially more interest-
ing is the fact that these conditional probabilities were about
equally high. We had expected the probability of fixating an
object given that it was described to be higher than the prob-
ability of describing an object given that it was fixated. We
thought this because, intuitively, one might fixate many more
objects in a scene than they choose to describe, but to describe
an object one might often need to fixate it. However, the Pascal
dataset may have painted a distorted picture of these relation-
ships, due to the fact that the scenes contained very few objects.
Obviously, if every object was fixated and every object was
described these probabilities would be 1. Indeed, when we con-
ducted the same analyses for the SUN09 dataset we found a
different, and more expected result. Subjects were far more likely
to have fixated the objects that they described than to have
described the objects that they fixated. This suggests that scene
descriptions in our task were not simply a rote characterization
of the fixated objects, but rather a higher-level interpretation
assembled from the fixated objects that were deemed to be most
important.

4. GAZE-ENABLED COMPUTER VISION
In this section we discuss the potential for using human gaze as
an input signal for two computer vision tasks—object detection
and image annotation.

4.1. ANALYSIS OF HUMAN GAZE WITH OBJECT DETECTORS
What are the correlations between the confidence of visual
object detection systems and the objects that are fixated in a
scene? Positive or negative correlations would provide insight into
whether fixations have the potential to improve object detection
performance. To evaluate this potential we obtained detection
scores for the selected object categories from the Pascal dataset
and plotted these as a function of fixation probability (Figure 11).
We found that, averaged over category, participants tended to
fixate on objects (in their bounding boxes) having higher detec-
tor confidence scores (r = 0.906). However, this varied by object
category. As shown for the person category in Figure 11 (and
also birds, boats, cars, cows, horses, sheep, and trains), there was
a strong positive correlation between the probability of fixat-
ing these objects and their detection scores. For other categories,
such as cats and tables, detection scores did not vary with their
probability of fixation. This suggests that the value of integrating

human gaze with object predictions from computer vision may
depend on the object category.

Given that the value of human gaze inputs is category specific,
we estimated the percentage of cases when fixations could be use-
ful for object detection, when they would have no effect at all, and
when they might actually be detrimental1. Specifically, we evalu-
ated the potential for four scenarios. First, it is possible that no
object detector box overlaps with the ground truth object (no
true positive detection). For these cases, illustrated by the blue
bars in Figure 12, gaze cannot be used to improve detection per-
formance. A second possibility is that there are both true positive
(TP) and false positive (FP) detection boxes overlapping with the
object ground truth, and that there are more fixations falling in
the FP box than in the TP box. In these cases biasing detection
based on gaze would be expected to hurt object detection per-
formance (yellow bars). A third possibility is that there would be
more fixations in a TP box than in any other FP box, and for these
cases gaze might improve object detection (pink bars). The green
bars show cases in which the object detector already correctly pre-
dicted the object and no FP boxes overlapped with the ground
truth. Under this fourth scenario, adding gaze would neither hurt
nor help detection performance.

4.2. OBJECT DETECTION
The previous section estimated the potential object detection
benefits that might result from a gaze-enabled object detection
system; in this section we attempt to realize those benefits. We
used deformable part models (Felzenszwalb et al., 2010) with
their default thresholds to make detection predictions. We first
considered the simplest possible method of using gaze—filter
out all detections that do not contain any fixations within the
bounding boxes (or, equivalently, to run object detectors only on
those parts of the image containing fixations). Detection perfor-
mance using this simple filtering algorithm is shown in Table 3
for the 20 Pascal categories. As predicted, many false positive
detection boxes were removed, especially for lower-performing
detectors such as bottles, chairs, plants, and people. However,
it also removed many true positive detections for objects that
were less likely to be fixated, such as bottles and plants. This
resulted in improvements for some categories, but decreased

1Note that we restricted this analysis to the Pascal dataset for our initial
evaluation. Although the SUN09 dataset might have proved a more challeng-
ing test of our system, the reason for this would be uninteresting from our
perspective– because object detectors trained for SUN09 showed generally
poorer performance, poorer gaze-enabled object detection would be expected.

FIGURE 11 | Probability of fixation plotted as a function of object detector confidence score. Scores are binned such that bin 10 indicates the top 10%,
bin 9 indicates the top 10–20%, etc.
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FIGURE 12 | Analyses indicating the potential for gaze to increase

(pink), decrease (yellow), or to not affect (green and blue) the

performance of object detectors. For categories marked as (+)

adding gaze would probably increase detection performance; for
categories marked as (−) adding gaze would likely decrease
performance.

Table 3 | Average precision of baseline, simple filtering, and gaze-enabled object detection methods for the Pascal dataset.

Bike Bird Boat Bottle Bus Car Cat Chair Cow Dog

Baseline 61.7 38.2 44.1 27.9 55.0 50.8 42.9 30.3 66.6 65.7 overall

Simple filtering 62.5 39.7 38.8 15.2 55.3 41.9 44.1 24.6 67.4 67.5 (mAP)

Gaze-enabled 61.1 40.9 42.2 27.8 55.5 49.4 47.1 29.6 64.8 66.3 55.2

Horse Mbike Person Plane Plant Sheep Sofa Table Train Tv
52.3

Baseline 65.7 63.3 43.9 63.6 32.7 45.3 82.2 78.7 72.7 72.5
55.3

Simple filtering 63.8 60.2 40.6 63.6 16.6 38.5 82.6 79.3 73.9 70.4

Gaze-enabled 66.1 63.1 43.6 60.4 32.9 45.0 83.4 78.5 75.2 73.4

The values in bold indicate best performance by the gaze-enabled model.

Table 4 | Average precision baseline, simple filtering, and gaze-enabled annotation prediction methods for the Pascal dataset.

Bike Bird Boat Bottle Bus Car Cat Chair Cow Dog

Baseline 75.8 42.6 57.1 49.3 74.9 71.4 44.8 49.2 84.9 66.2

Simple filtering 76.8 44.8 51.9 51.8 75.1 76.1 46.1 48.6 85.4 67.9 overall

Gaze-enabled 72.9 47.2 55.0 49.5 75.2 72.7 49.1 50.3 85.2 67.9 (mAP)

Horse Mbike Person Plane Plant Sheep Sofa Table Train Tv 66.0

Baseline 85.9 81.9 64.5 67.6 39.8 63.3 73.0 76.3 82.9 68.7 66.8

Simple filtering 86.2 82.3 65.1 67.6 41.1 63.5 73.3 76.9 84.5 71.0 66.9

Gaze-enabled 87.1 82.6 65.6 66.4 38.6 63.8 72.9 76.3 85.1 74.1

The values in bold indicate best performance by the gaze-enabled model.

detection performance overall. If the goal is to detect all of the
objects in an image, even those ÒuninterestingÓ objects not
usually fixated by people, then simple filtering by gaze is not
advisable.

We next tried a discriminative method in which classifiers
were trained to distinguish between the true positive detec-
tions and the false positive detections output by the baseline
detectors. Features used for classification included the base-
line detection scores and features computed from gaze. To
obtain the gaze features, we first created a fixation density map

for each image (as described in Section 3.1), removed out-
liers by weighting these maps by fixation duration (Henderson,
2003), then averaged across participants to create an average
fixation density map for each image. For each detection box
we used as gaze features the average and maximum values
on this fixation density map computed over the image patch
described by the box. Classification was based on these three-
dimensional feature vectors, consisting of the object detector
score and the average and maximum values on the fixation
density map.
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FIGURE 13 | Results of annotation prediction on the Pascal dataset. Left images: Baseline detection, Right images: Gaze-enabled detection.
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The 1000 images from the Pascal dataset were split evenly into
training and testing sets. Following convention, testing was eval-
uated using a standard 0.5 overlap required for true positives.
However, for training we defined positive samples to be detec-
tion boxes having a lower overlap criterion (>0.30). We did this in
order to obtain enough positive samples to train our classifier. For
negative samples a stricter criterion was applied, overlap <0.01,
and three iterations of hard-negative mining (Felzenszwalb et al.,
2010) was used to iteratively add hard negative samples. Finally,
we trained 20 classifiers, one per each of the selected object cat-
egories, using Support Vector Machines (SVMs) with an RBF
Kernel and parameters set using 5-fold cross validation.

The results for this gaze-enabled detection are also provided in
Table 3. Comparing these results to the baseline detectors and the
simple filtering method, we see that gaze-enabled classifiers out-
performed these other methods for many animal categories (e.g.,
birds, cats, dogs, and horses), trains and televisions, but perfor-
mance was worse for planes, boats, cars, and cows. In general,
we again found that gaze helped object detection for categories
that are usually fixated, while it can hurt detection performance
for those that are not (e.g., chairs). Additionally, we observed
some cases where performance decreased due to detector con-
fusion. For example, because the boat detector tended also to
fire to planes, and given that people preferred to look at planes,
gaze-enabled classification sometimes increased this confusion.
To summarize, although overall detection performance (the mean
of average precision across categories) was not greatly increased
using gaze-enabled detection, we believe that this technique could
be useful for detecting categories of objects that are consistently
fixated.

4.3. ANNOTATION PREDICTION
Image annotation, the outputting of a set of object tags that
are descriptive of an image, is another application that might
benefit from gaze cues. We obtained an annotation predic-
tion by outputting the unique set of categories detected in an
image, and considered a successful annotation to be one that
matched the objects described by a person viewing the scene.
Doing this for the simple filtering and gaze-enabled classifica-
tion methods described in Section 4.2, we found gaze to be a
slightly more useful cue for annotation than it was for object
detection. Overall, both methods improved average annotation
performance over baseline (Table 4), and were again especially
helpful for those categories that where preferentially fixated and
described (e.g., birds, cats, dogs, televisions). For other object cat-
egories, such as planes, bikes, and boats, we observed a decrease
in annotation prediction, but this was often quite small. These
benefits and costs can be broadly attributed to two sources:
the removal of false positives (as shown for the televisions in
Figure 2) and the gaze-enhanced potential for detector con-
fusion (as for the detection of a person among the cows in
Figure 13).

5. CONCLUSIONS AND FUTURE WORK
Scene understanding is more than just the knowledge of what
objects appear in a scene, but equally true is that object detec-
tion plays an important role in scene understanding. In this

exploratory study we examined the relationships between the
content of a scene (the categories of objects appearing in an
image), how the scene is viewed (the objects that people find
most interesting), and how the scene is described (our measure
of scene understanding). This exploration led to several findings:
that people preferentially fixate animate objects having faces, that
the locations of these fixations on objects can convey informa-
tion about the object category, that people’s agreement on which
objects to fixate decreases with the number of objects in the scene
but increases with the animacy of these objects, and that peo-
ple are more likely to fixate the objects that they describe than
to describe the objects that they fixate. Additionally, we found
that fixation probability increases with object detector confidence
for some categories, and we evaluated the potential for combin-
ing gaze and computer vision to improve the accuracy of object
detection and annotation prediction. This effort, while revealing
only modest benefits of adding gaze to standard object detectors,
might inform future work on this topic by highlighting those
cases in which gaze helped and hurt performance. Future work
will build on this exploratory study by developing more intelligent
and robust human-computer collaborative systems, and inves-
tigating more systematically the complex relationship between
scene (and video) understanding and the object content of these
images and how these objects and events are viewed.
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