
ORIGINAL RESEARCH ARTICLE
published: 31 December 2013

doi: 10.3389/fpsyg.2013.00980

Flexibility in data interpretation: effects of representational
format
David W. Braithwaite* and Robert L. Goldstone

Percepts-Concepts Laboratory, Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA

Edited by:

Daniel Casasanto, University of
Chicago, USA

Reviewed by:

Daniel Casasanto, University of
Chicago, USA
Denis O’Hora, National University of
Ireland Galway, Ireland

*Correspondence:

David W. Braithwaite,
Percepts-Concepts Laboratory,
Department of Psychological and
Brain Sciences, Indiana University,
1101 E. 10th Street, Bloomington,
IN 47405, USA
e-mail: baixiwei@gmail.com

Graphs and tables differentially support performance on specific tasks. For tasks requiring
reading off single data points, tables are as good as or better than graphs, while for
tasks involving relationships among data points, graphs often yield better performance.
However, the degree to which graphs and tables support flexibility across a range
of tasks is not well-understood. In two experiments, participants detected main and
interaction effects in line graphs and tables of bivariate data. Graphs led to more efficient
performance, but also lower flexibility, as indicated by a larger discrepancy in performance
across tasks. In particular, detection of main effects of variables represented in the graph
legend was facilitated relative to detection of main effects of variables represented in
the x-axis. Graphs may be a preferable representational format when the desired task or
analytical perspective is known in advance, but may also induce greater interpretive bias
than tables, necessitating greater care in their use and design.
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INTRODUCTION
Humans employ external representations of information, such as
graphs, diagrams, tables, and equations, to assist in performing
a wide variety of tasks in a wide variety of domains. Often, the
same information may be represented using more than one rep-
resentational format. Two different representations of the same
information are said to be informationally equivalent if either can
be reconstructed perfectly on the basis of the other (Simon, 1978).
Even when two representations are informationally equivalent,
some tasks may be performed more accurately or efficiently with
one than the other (Larkin and Simon, 1987). Thus, extensive
research has been devoted to understanding the relative strengths
and weaknesses of different representational formats for different
tasks.

Many representational formats may be classified as either
graphical or symbolic. Graphical representations, such as graphs
and diagrams, use spatial features such as height and distance
to convey information, while symbolic representations, such as
tables and equations, employ formal symbols such as Arabic
numerals and algebraic symbols for the same purpose. The dis-
tinction is relative rather than absolute: Symbols such as numerals
may appear in graphs, and spatial information such as row or
column location may convey information in tables. For an in-
depth discussion of types of representational format, see Stenning
(2002; see also Paivio, 2007).

The present study aims to contribute to a deeper understand-
ing of the relative advantages of one common graphical format,
Cartesian statistical graphs (henceforth simply “graphs”), and one
common symbolic format, tables. Understanding the relative util-
ity of graphs and tables is important from a practical viewpoint
because of the extensive use of both representational formats for
data analysis and communication in fields such as science, busi-
ness, and education. The comparison between graphs and tables

is also interesting from a theoretical point of view because they
are often informationally equivalent in the sense described above.
As such, differences between these formats in accuracy or effi-
ciency of task performance may be attributed to the effects of
representational format per se, rather than to differences in infor-
mational content. Thus, understanding how task performance
differs depending on whether graphs or tables are used can sup-
port a more general theory of the cognitive effects of external
representational format.

Extensive research has yielded fairly clear conclusions regard-
ing the relative strengths of graphs and tables for a variety of
individual tasks. In general, tasks that can be performed by read-
ing individual data points are performed with tables as well as
or better than with graphs (Vessey and Galletta, 1991; Coll, 1992;
Meyer et al., 1999; Meyer, 2000; Porat et al., 2009). In an early
study of Vessey and Galletta (1991), accuracy was higher and
reaction time faster with tables than with line graphs for tasks
requiring participants to read off individual values of a depen-
dent variable for specified levels of two independent variables. A
more recent study of Porat et al. (2009) found no difference in
performance between graphs and tables for a task which could be
achieved by attending to individual data points, namely detecting
increases in amplitude of periodic functions (such increases may
be detected by attending to any of the function’s maxima).

By contrast, many studies have shown clear advantages for
graphs over tables for tasks involving relationships among mul-
tiple data points (Vessey and Galletta, 1991; Meyer et al., 1999;
Porat et al., 2009; Schonlau and Peters, 2012; but see Meyer, 2000,
for a contrary result). Performance was better with graphs than
with tables for tasks requiring participants to compare differences
between pairs of data points in the study of Vessey and Galletta
(1991) mentioned above, and for tasks requiring comparing dif-
ferences between multiple adjacent points in that of Porat et al.
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(2009). Consistent with the relative importance of relationships
between points, rather than values of individual points, in graph
reading, Maichle (1994) found that skilled graph readers tended
to focus spontaneously on data trends rather than individual data
points when interpreting graphs, and required more effort to
recover information about the latter than about the former.

Models of graph comprehension (Pinker, 1990; Carpenter and
Shah, 1998; Freedman and Shah, 2002; Trickett and Trafton, 2006;
Ratwani et al., 2008) suggest a possible explanation for the rela-
tive advantage of graphs on tasks involving relationships among
data points. While these models differ in many respects, they gen-
erally agree that the process of graph comprehension includes
at least the following processes: encoding of visual features such
as spatial patterns, interpreting these features using prior knowl-
edge, and relating the interpretations back to the graph referents,
such as the specific variables represented by the graph axes. Visual
features are, therefore, the raw material on which graph interpre-
tation processes operate (Pinker, 1990). “Features” is employed
here in a broad sense (Tversky, 1977), including simple visual
relations such as distances between points as well as complex
visual patterns such as curving or crossing lines.

Relations between multiple data points can be represented in
graphs by single visual features. For example, the difference in
values represented by two bars in a bar graph may be ascer-
tained from the vertical distance between the tops of the bars,
the rate of acceleration in a function graph from the degree of
curvature of the graph line, and so on. Importantly, it may be
possible for graph readers to encode and, subsequently, interpret
such visual features as single units, without separately encod-
ing and interpreting the individual data points they comprise
(Pinker, 1990; Pomerantz and Portillo, 2012). Even complex
visual features may be detected efficiently through automatized
visual routines (Ullman, 1984). Consistent with this view, eye-
tracking studies provide evidence that graph readers are sensitive
to complex visual elements such as distinct functional forms in
line graphs (Carpenter and Shah, 1998) or similarly-colored clus-
ters in choropleth graphs (Ratwani et al., 2008). Thus, graphs
may offer a shortcut to the recognition of relationships among
data points. Such shortcuts are likely unavailable in the case of
tables, in which visual patterns like those just mentioned are
either absent or far less salient than in graphs. Thus, the relative
advantage of graphs for recognition of relationships among data
points may reflect a facilitatory function of visual patterns for the
process of graph comprehension, which has no analog in the pro-
cess of table comprehension. In short, in graphs, relationships can
often be depicted by easily encoded visual features.

While much is already known about the relative advantages of
graphs and tables for performing various individual tasks, less is
known about their relative advantages with respect to flexibility
across a range of different tasks. “Flexibility” refers, here, to the
ability to perform different tasks equally well. Equally good per-
formance across tasks would indicate high flexibility, while lower
performance on some tasks than on others would indicate low
flexibility. How might representational format affect flexibility?

To make this question concrete, we introduce the stimuli
and tasks employed in the present study. The stimuli were
representations of simulated results from fictional experiments.

Each fictional experiment involved two binary independent vari-
ables, one representing an experimentally manipulated treatment,
and the other representing an observed demographic variable
assumed to be of secondary interest. For generality across differ-
ent stimuli, the terms “treatment factor” and “secondary factor”
will be used to refer to the first and second types of variable,
respectively.

Example stimuli are shown in Figures 1A–E. These figures
show simulated results of a taste test study soliciting likeability
ratings for soft drinks. In these examples, the treatment factor is
drink flavor, and the secondary factor is age group. Figures 1A–E
all represent the same data, in graphical (Figures 1A,C), tabular
(Figures 1B,D), or text (Figure 1E) format. The assignment of
visual dimensions to factors varies between representations. For
example, line color represents the treatment factor in Figure 1A,
but the secondary factor in Figure 1C, while x-axis position repre-
sents the secondary factor in Figure 1A, but the treatment factor
in Figure 1C. Similarly, table rows and table columns represent
different factors’ levels in Figures 1B,D. However, the assign-
ments of visual dimensions to factors were fixed for all stimuli
within each of the experiments reported below.

The tasks involved judging the presence or absence, in each
simulated result, of three statistical effects: main effects of the
treatment factor, main effects of the secondary factor, and inter-
action effects of the two factors. The corresponding tasks will
be referred to as the treatment task, the secondary task, and the
interaction task. Note that the treatment and secondary tasks are
similar, in that the formal criteria for judging the presence of a
main effect of a variable do not depend on whether that vari-
able was experimentally manipulated, as for the treatment task,
or observed, as for the secondary task. However, these tasks do
differ for a given assignment of visual dimensions to factors.
For example, if graph legends/table rows are assigned to rep-
resent treatment factors, and x-axes/table columns to represent
secondary factors (Figures 1A,B), then the treatment and sec-
ondary tasks require attending to different visual dimensions in
the stimuli and, therefore, do constitute different tasks.

In the context of these tasks, the idea of flexibility can be opera-
tionalized in two ways. The first involves comparing performance
between different tasks performed with the same representation.
For example, one might compare performance between the treat-
ment and secondary tasks with the graph in Figure 1A, or again
with the table in Figure 1B. The second way involves compar-
ing performance on a given task across assignments of visual
dimensions to factors. For example, one might compare perfor-
mance on the treatment task between the graph in Figure 1A,
which represents the treatment factor in the legend, and that in
Figure 1C, which represents the treatment factor by x-axis posi-
tion. Similarly, one might compare performance on the treatment
task between the tables in Figures 1B,D. In either case, the smaller
the difference in performance for a given representational format,
the higher the flexibility of that format. The present study focuses
on the first way of assessing flexibility, i.e., comparing perfor-
mance between different tasks for a given representation, but the
second way, i.e., comparing performance for a given task between
alternate assignments of visual dimensions to factors, was also
investigated in Experiment 2.
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FIGURE 1 | Test stimuli showing possible outcomes of a fictional taste test study. (A) Graphical format, Experiment 1. (B) Tabular format, Experiment 1.
(C) Graphical format, Experiment 2. (D) Tabular format, Experiment 2. (E) Text format, Experiments 1–2.

All three tasks involve relationships among data points.
Therefore, an overall facilitatory effect might be expected from
graphs relative to tables, for the reasons given in the previous
sub-section. For example, separated graph lines (as in Figure 1A)
suggest an effect of the legend variable, while consistent upward
or downward slope for both graph lines (as in Figure 1C) sug-
gests an effect of the x-axis variable. Once such associations
between spatial configurations and statistical effects are learned,
faster and more accurate recognition of such effects could be
expected with graphs. Analogous cues are unavailable with tables,
which might therefore lead to slower and/or less accurate perfor-
mance. However, existing research is less clear on the question of
whether graphs or tables would lead to greater flexibility that is,
to smaller differences in performance across tasks. Two possibil-
ities for how representational format might affect flexibility are
discussed below.

The first possibility, termed “intrinsic bias,” is that a format
might make certain tasks intrinsically easier at the expense of
others, thus reducing flexibility. To illustrate this possibility, con-
sider the treatment and secondary tasks. These tasks involve the
same mathematical operations, i.e., calculating and comparing
marginal means between levels of a designated factor, and so
should be equally easy, absent effects of representational format.
However, if representational properties relevant to one task are
more salient than those relevant to another, the former task could
be facilitated and the latter inhibited, resulting in bias favoring
the former. For example, x-axis position might be more salient
than line color in line graphs, or column position more salient
than row position in two-dimensional tables. For graphs and
tables like those in Figures 1A,B, such differences in salience
would create bias favoring the secondary task relative to the treat-
ment task, because the secondary factor is represented in the
x-axis in Figure 1A and the table columns in Figure 1B. In both

cases, such bias could be a cause of reduced flexibility across
tasks.

Evidence suggests that such effects are likely to be present for
graphs. Graph interpretation is influenced by attributes, such as
color brightness that affect the visual salience of different rep-
resentational dimensions (Hegarty et al., 2010). Moreover, the
visual dimensions chosen to represent variables in graphs affects
the ease with which particular tasks are performed (Gattis and
Holyoak, 1996; Zacks et al., 1998; Peebles and Cheng, 2003;
Hegarty et al., 2010; Kessell and Tversky, 2011; Tversky et al.,
2012, 2013). More direct evidence comes from studies inves-
tigating interpretation of graphs of bivariate data (Shah and
Carpenter, 1995; Carpenter and Shah, 1998; Shah and Freedman,
2011), which have consistently found that the choice of which
variable to represent on the x-axis, and which in the graph leg-
end, can strongly impact graph interpretation. For example, Shah
and Freedman (2011) found that spontaneous interpretations
of bivariate bar and line graphs with categorical independent
variables tended to interpret interaction effects preferentially as
mediating effects of the legend variable on effects of the x-
axis variable, rather than vice versa. However, analogous effects
on performance for predefined tasks, rather than spontaneous
interpretations, have not been shown.

A more important limitation to existing evidence is the lack of
research comparing graphs and tables with respect to the presence
of bias favoring some tasks over others. However, there is some
reason to think that such bias might be greater for graphs than
for tables. In multivariate data, different variables are typically
represented by quite different visual dimensions in graphs, but by
similar visual dimensions in tables. For example, in the graph in
Figure 1A, one factor is represented by a non-spatial dimension
(line color) and the other by a spatial dimension (x-axis posi-
tion), but in the table in Figure 1B, both factors are represented
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by spatial dimensions (row and column position). The greater
difference in the visual dimensions used to represent different
variables in graphs suggests that the ease of accessing informa-
tion about each variable might also differ more for graphs than
for tables. Furthermore, as discussed previously, complex visual
patterns in graphs serve to convey information in a manner for
which tables have no obvious analog. For example, various con-
figurations, such as the sideways “v” shape in Figure 1A, indicate
the presence of an effect of the legend variable. These visual pat-
terns may vary in salience. If the patterns relevant to a particular
task happen to be highly salient, performance of that task would
be facilitated relative to other tasks. Thus, the importance of com-
plex visual patterns for graph interpretation creates an additional
opportunity for intrinsic bias toward specific tasks that is absent
or reduced for tables.

The possibility of differences in salience of representational
properties relevant to different tasks has the interesting impli-
cation that the more salient representational properties could
influence performance even on tasks for which they are not rel-
evant. For example, in line graphs, line slope is relevant for
detecting effects of the x-axis variable, whereas differences in
line heights are not relevant for this purpose, but are relevant
for detecting effects of the legend variable. However, if differ-
ences in line heights are highly salient, their presence might affect
judgments regarding effects of the x-axis variable, despite their
irrelevance to such judgments. More generally, if representational
properties relevant to judging the presence of a given effect are
highly salient on average, the presence of that effect might be
expected to influence performance on other tasks to which the
given effect is irrelevant. The high salience of representational
properties relevant to the given effect might also be expected
to create bias in favor of the task associated with that effect.
Thus, examining influence from each effect on performance of
tasks to which it is irrelevant provides a means of understanding
differences in salience of representational properties relevant to
different tasks, which is a potential source of intrinsic bias. With
this goal in mind, the concept of influence is formalized in the
analyses presented subsequently.

The second possible way in which representational format
might affect flexibility across tasks is termed “transfer of practice.”
In general, “transfer” refers to any influence of experience with
one task on subsequent performance of a different task (Lobato,
2006). Such influence could be positive if learners are able to
improve performance on the later task by applying or adapting
methods learned from experience with the earlier task. On the
other hand, such influence could be negative if performance on
the later task is inhibited by learners’ persistence in applying,
without adaptation, methods learned for the earlier task but inap-
propriate for the later task. These two types of effect are termed
“positive transfer” and “negative transfer,” respectively.

In the present study, participants performed the treatment,
interaction, and secondary tasks in separate blocks, always start-
ing with the treatment task and ending with the secondary task,
with a fixed assignment of visual dimensions to factors for each
representational format. Facilitation of the secondary task by
experience with the previous tasks, e.g., the treatment task, would
constitute positive transfer, whereas inhibition of the secondary

task by such experience would constitute negative transfer. In this
context, positive transfer for a given representational format is
presumed to result from flexible adaptation of previous learning,
and therefore would indicate high flexibility. By contrast, negative
transfer for a given format is presumed to indicate inappropriate
persistence in applying previously learned methods, and there-
fore would indicate low flexibility. The specific effects that positive
and negative transfer would have on task performance are compli-
cated by details of the experimental methodology, so examination
of such effects is deferred until the Discussion of Experiment 1.

Previous research offers no clear prediction regarding the like-
lihood of positive or negative transfer of practice between tasks for
graphs. In general, practice with a given task is likely to increase
learners’ sensitivity to visual features of graphs that are relevant to
performing that task. The effects of such increased sensitivity on
subsequent performance of other tasks could be negative, neutral,
or positive, depending on whether the learned features are rele-
vant to the subsequent tasks. For example, assume the treatment
factor to be represented by graph line color and the secondary fac-
tor by x-axis position, as in Figure 1A. In this case, the sideways
“v” shape in Figure 1A would be a useful cue for the treatment
task, because its presence signifies the presence of a treatment
effect, but not for the secondary task, because its presence is
consistent with either the presence or absence of a secondary
effect 1. Thus, if practice with the treatment task increased sen-
sitivity to sideways “v” shapes, subsequent performance on the
secondary task would likely not be facilitated, and might even be
inhibited. On the other hand, line height is a useful visual fea-
ture for both the treatment and secondary tasks, because line
height represents taste rating, which is relevant for both tasks.
Thus, if practice with the treatment task increased sensitivity to
line height, subsequent performance on the secondary task might
be facilitated. In sum, whether graphs afford positive or nega-
tive transfer of practice between tasks may depend on the types
of visual features relied upon during task performance.

To our knowledge, very few studies have explored the possi-
bility of transfer of practice between tasks with graphs, and even
fewer with tables. Suggestive evidence that transfer of practice
may occur with graphs comes from studies finding positive effects
of graph literacy on performance of specific graph interpretation
tasks (Maichle, 1994; Shah and Freedman, 2011). For example,
relative to less graph-literate participants, more graph-literate
participants in Maichle’s (1994) study demonstrated greater sen-
sitivity to high-level visual features of graphs, i.e., configurations
of data points, and paid more attention to labels. However, effects
of graph literacy do not necessarily demonstrate transfer of prac-
tice between tasks, because graph literacy may in part reflect
practice with the same graph interpretation tasks used in the
studies. Very few studies have examined effects of experience
with one task on performance of a different task in a controlled
setting.

As an exception, Porat et al. (2009) had participants detect
either increases or decreases in the amplitude of functions
displayed in graphical or tabular format following practice

1If the “v” is vertically symmetric, a secondary effect is not present, but if
vertically asymmetric, a secondary effect is likely present.
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performing either the same task (e.g., detecting increases fol-
lowing detecting increases) or a different task (e.g., detecting
decreases following detecting increases) requiring a different
strategy. When the second task was different from the first, but not
when it was the same, participants showed poorer initial perfor-
mance on the second task with tables than with graphs, suggesting
higher flexibility with graphs. However, this effect was only found
among a sub-group of participants selected based on strategy
use displayed during the experiment, leaving open the possibil-
ity of selection bias. Thus, while suggestive, these findings require
further validation. It is, additionally, desirable to investigate the
question of flexibility over a wider range of representations and
tasks.

To summarize, studies demonstrating differences in sponta-
neous attention to different visual dimensions in graphs (e.g.,
Shah and Freedman, 2011) and theories emphasizing the impor-
tance of complex visual configurations for graph reading (e.g.,
Pinker, 1990) both suggest the possibility of intrinsic bias in
graphs, while there is presently no evidence that similar factors
affect table reading. These considerations imply that graphs may
be a less flexible representational format than tables, although
they do not provide direct evidence for this view, due to the
sparsity of relevant evidence for tables. On the other hand, there
is limited evidence of greater positive transfer between tasks
performed with graphs rather than with tables (Porat et al.,
2009), implying that graphs may be the more flexible represen-
tational format. The present study was designed to investigate
whether graphs or tables afford greater flexibility over a spe-
cific range of tasks and to evaluate intrinsic bias and transfer of
practice as possible explanations for any observed differences in
flexibility.

EXPERIMENT 1
METHODS
Participants
Participants were N = 127 undergraduate students from the
Indiana University Psychology Department who participated in
partial fulfillment of a course requirement. Participants were
approximately evenly split between males (N = 67) and females
(N = 60). Most (N = 120) were aged 18–21, with the remain-
der (N = 7) aged 22 or older. The majority (N = 80) reported
never having learned about main and interaction effects before
the experiment. As reported previous experience had no effect
on test accuracy, p = 0.947, it was not included as a factor in the
subsequent analyses.

Design
The experiment employed a 3 × 3× 3 mixed design with task
(treatment, interaction, or secondary) and format (graph, table,
or text) as within-subjects factors and training condition as a
between-subjects factor. The different training conditions are not
described in detail below, as the training manipulation had no
significant effects or interactions on our dependent measures.

Materials
A set of tables (Figure 1A), graphs (Figure 1B), and text pas-
sages (Figure 1E) were developed as stimuli to be used for testing

participants. The test stimuli showed possible results of a drink
taste test involving two binary factors: drink flavor and age group.
As mentioned in the Introduction, the term “treatment factor”
is used to refer to the experimentally manipulated variable, i.e.,
drink flavor, and to the analogous factor in the training stim-
uli. Similarly, the term “secondary factor” is used to refer to the
observed demographic variable assumed to be of secondary inter-
est to the experimenter, i.e., age group, and to the analogous factor
in the training stimuli. Main effects of the treatment and sec-
ondary factors are referred to as treatment and secondary effects,
respectively, and interactions of both factors as interaction effects.

The test stimuli were developed as follows. First, 16 datasets
were generated quasi-randomly, with two datasets representing
each possible combination of presence or absence of each of the
three effects just mentioned. The datasets thus generated included
a wide variety of data configurations, e.g., main effects with and
without interactions, interactions with and without interactions,
both crossover and non-crossover interactions, etc. Importantly,
each effect was present in exactly half of the datasets, and no
effect’s presence was correlated with the presence of any other
effect. Next, three stimuli were created from each dataset by dis-
playing the dataset in each of three formats: graph (Figure 1A),
table (Figure 1B), and text (Figure 1E), yielding a total of 48 stim-
uli. While the training stimuli, described below, included both
graphs and tables, text representations were only included in the
test stimuli. Performance with the text format was intended pri-
marily for assessing the relative effectiveness of different training
conditions in promoting transfer. Importantly, the treatment fac-
tor was always displayed in the legends of the graphs and in the
rows of the tables, leading to a vertical orientation in both cases,
which was reversed in the case of the text passages. Similarly,
the secondary factor was always displayed in the x-axis of the
graphs and in the columns of the tables, leading to a horizon-
tal orientation, which was again reversed in the text passages.
The complete set of test stimuli is available in the Supplementary
Materials.

A different fictional study, regarding effects of cognitive
enhancers on test scores, was used as a basis for examples to be
shown during training. This study, like that used to generate the
test stimuli, involved two binary factors: drug type and partic-
ipant sex, drug type being the treatment factor and participant
sex the secondary factor. For each of the three effect types, two
datasets were created, with the given effect present in one and
absent in the other. One graph and one table were created for each
dataset. Thus, there were four examples for each effect, including
two examples illustrating the effect’s presence and two illustrating
its absence, with one graph and one table in each case. Critically,
the same orientation conventions were used as for the test stimuli.
Thus, for both the training and test stimuli, the treatment factor
was displayed in the legend of the graphs and in the rows of the
tables, while the secondary factor was displayed in the x-axis of
the graphs and in the columns of the tables.

The decision to employ line graphs for the graph stimuli
requires some justification. Line graphs may induce some read-
ers to perceive x-axis variables as continuous even when they
are in fact categorical (Zacks and Tversky, 1999). For this rea-
son, bar graphs might be considered preferable for the stimuli
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of the present study because the x-axis variables were categorical.
However, Kosslyn (2006) has argued, to the contrary, that even in
such cases, line graphs are to be preferred over bar graphs when
graph readers are expected to attend to the presence or absence
of interaction effects. The reason is that interaction effects are
associated with particularly salient visual effects in line graphs,
such as the “x” shape produced by crossed lines or the sideway
“v” shape discussed earlier, and therefore facilitate the identifica-
tion of such effects relative to bar graphs. Thus, line graphs were
preferred for the present study because detection of interaction
effects constituted one of the three tasks participants were asked
to perform.

Numeric data labels showing the exact value associated with
each data point were included in the graphical stimuli for both
test and training (e.g., Figure 1A). Although the inclusion of such
labels is not standard in graph interpretation research, it has been
shown to improve graph reading accuracy and speed (Calcaterra
and Bennett, 2003). Numeric data labels were included in the
present study to ensure that the graphs were informationally
equivalent to the tables and text passages, so that any effects of
format on task performance could not be due to the absence of
precise numeric information in graphs. While this design decision
would appear likely to decrease any differences in performance
between graphs and tables, to anticipate our results, such differ-
ences were found nevertheless. It is expected that such differences
would be as large or larger between tables and more typical graphs
in which data labels are not included.

Procedure
The experiment was divided into 3 sections, i.e., one for each
of the three effects described in the Materials: treatment, inter-
action, and secondary effect. The treatment effect section was
always presented first, followed by the interaction effect section,
with the secondary effect section always last. Each section con-
sisted of a tutorial followed by a test. The tutorials and tests were
administered through a computer interface.

The tutorials regarding treatment and interaction effects each
provided instruction as to how to judge the presence or absence
of the effect in question. In each of these tutorials, participants
first read a description of the cognitive enhancer study used as the
basis for all training examples. They were then provided with an
explicit standard for how to judge whether the relevant effect was
present or not, namely that the effect should be deemed present
if a certain pair of numbers differed by a large amount, i.e., at
least 5, and absent otherwise 2. For the treatment effect section,
the numbers in question were the marginal means for the two
levels of the treatment factor, while for the interaction effect sec-
tion, the numbers were the differences in means of the two levels
of the treatment factor for the two levels of the secondary factor.
Participants practiced applying this standard to the four training
examples for the relevant effect, i.e., one graph and one table each

2For simplicity, the issue of variance was not raised during the tutorials. In
other words, participants were instructed to judge the presence or absence of
effects based on the mean values alone. The standard that a difference was to
be deemed large if greater than or equal to 5, and small otherwise, was used
throughout both experiments.

for the two datasets illustrating the presence and absence of that
effect, and received feedback on their responses. The examples
were presented in pairs, with the details of which examples were
paired together being varied according to a training manipulation
which, because it had no significant effect on any of the measures
discussed in the Results, is not described here. Details regard-
ing the training manipulation are available in the Supplementary
Materials.

The tutorial regarding secondary effects followed a similar pro-
cedure, except that participants were not provided with an explicit
standard for judging whether a secondary effect was present, nor
did they receive feedback on their responses. Because participants
were not trained to perform the secondary task, this task consti-
tuted a stringent test of transfer which can be used to compare the
different training conditions. In the absence of positive transfer
due to training, participants were expected to perform worse on
the secondary task compared to the other tasks, and in particular
compared to the treatment task.

The test for each task was administered immediately following
the corresponding tutorial. At the beginning of each test, partic-
ipants were shown a description of the taste test study used as a
basis for all test stimuli, and were told they would need to deter-
mine whether the given effect was present or absent in a series
of possible results of the study. Each of the 48 test stimuli was
shown once, in random order. Each stimulus remained on screen
until participants indicated whether the given effect was present
or absent using the mouse. No feedback was given.

The experiment may be viewed online at http://percepts con-
cepts.psych.indiana.edu/experiments/dwb/MRIS_02/experiment_
demo_live.html.

Measures
For each combination of task and format, accuracy was calculated
as the percent of trials answered correctly. Note that participants
completed 16 trials for each combination of task and format, i.e.,
one trial for each of the 16 datasets used to generate the test stim-
uli. Mean response time (RT) for each such combination was
calculated as a second dependent measure.

RESULTS
Accuracy
Mean accuracy across tasks and formats was 68.8%, indicating
that the task was challenging for participants. The accuracy data
were submitted to a mixed logit model, using the glmer function
from the lme4 library for R (Bates et al., 2013). Mixed logit mod-
els have been recently recommended in preference to ANOVA
applied to either raw or arcsine-square-root-transformed data
resulting from binary forced-choice tasks (Jaeger, 2008), which
may violate various assumptions of ANOVA.

A significant main effect of task on accuracy was found,
χ2(2) = 50.91, p < 0.001. Accuracy was highest for the treatment
task (74.0%), intermediate for the interaction task (69.1%), and
lowest for the secondary task (63.3%), for which participants did
not receive explicit training. However, accuracy was significantly
higher than chance (i.e., 50.0%) in all three cases, ps < 0.001.

While the main effect of format did not reach significance,
χ2(2) = 5.75, p = 0.056, its interaction with task did, χ2(4) =
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55.15, p < 0.001. The data relevant to this interaction are shown
in Figure 2A. Because some of the research questions relate to the
comparison between graphs and tables and focus on the compari-
son between the treatment and secondary tasks, the above analysis
was repeated with the data for text stimuli and for the interaction
task excluded. The interaction of format with task was still signif-
icant, χ2(1) = 7.57, p = 0.006. As shown in Figure 2A, accuracy
was highest for the treatment task, intermediate for the interac-
tion task, and lowest for the secondary task for both graphs and
tables, but the difference in accuracy between the treatment and
secondary tasks was greater for graphs (treatment task: 77.0%,
secondary task: 61.0%, difference: 16.0%) than for tables (treat-
ment task: 74.8%, secondary task: 62.7%, difference: 12.0%). No
other significant effects on accuracy were found.

Response time
For analysis of RT, for each participant, trials with RT differing
from that participant’s mean RT by more than 2 standard devi-
ations were discarded. In the remaining data, the mean RT was
6.00 s, and ranged from 1.59 to 18.14 s. The RT data were ana-
lyzed using the same ANOVA model structure as was used for the
accuracy data. As in the case of accuracy, a significant main effect
of task on RT was found, F(2, 248) = 56.28, p < 0.001, η2

G =
0.078. Participants were slowest on the treatment task (7.48 s),
intermediate on the interaction task (5.69 s), and fastest on the
secondary task (4.84 s).

More important to the objectives of the research, the main
effect of format was also significant, F(2, 248) = 37.96, p <

0.001, η2
G = 0.010. Participants performed the tasks reliably faster

with graphs (5.46 s) than with tables (6.25 s) or text (6.29 s). This
main effect was qualified by a significant interaction of format
with task, F(2, 248) = 37.96, p = 0.029, η2

G < 0.001. As shown
in Figure 3A, while all three tasks were performed faster with
graphs than with tables or text, but the difference was largest for
the treatment task and smallest for the secondary task. As for
accuracy, the above analysis was repeated with the data for text

stimuli and interaction effects excluded. The main effect of format
remained significant, F(1, 124) = 58.55, p < 0.001, η2

G = 0.012,
but the interaction of format with task did not, F(1, 124) = 3.59,
p = 0.060. No other significant effects on RT were found.

Influence
As described in the Introduction, a possible factor influencing
flexibility of representational formats is intrinsic bias, and one
possible cause of intrinsic bias is differences in the salience of the
representational properties relevant to detecting different effects.
This possibility led to the prediction that, if intrinsic bias is
present and caused by such differences in salience, the more
salient representational properties could influence responses even
in tasks for which they are irrelevant. Additional analyses were
conducted to test this prediction.

Because the specific representational properties on which par-
ticipants relied to perform the tasks are not known, our analysis
of influence is conducted at the level of effects, essentially treating
each effect as a single feature corresponding to the presence or
absence en masse of all properties relevant to that effect. Influence
Ix,t from each effect x on each task t was calculated using the
following formula:

Ix,t = P (r|x, t) − P(r| ∼ x, t)

P (r|t) signifies the probability of a positive response, indicating
that the effect being queried is present, when the present task is t.
In other words, P (r|t) is the probability of hits plus the probabil-
ity of false alarms. P (r|x, t) and P (r| ∼ x, t) signify, respectively,
the probabilities of positive response on task t when effect x is
present and when effect x is absent. Thus, Ix,t represents the
degree to which the presence of effect x increases the probability
of positive response on task t.

Because P (r|x, t) and P(r| ∼ x, t) each may range from 0
to 100%, and are in principle independent of each other, Ix,t

may range from −100% to 100%. When x = t, i.e., effect x

FIGURE 2 | Test accuracy by task and format. (A) Experiment 1. (B) Experiment 2. Error bars indicate standard errors, here and elsewhere.
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FIGURE 3 | Response time by task and format. (A) Experiment 1. (B) Experiment 2.

is the effect relevant to task t, perfect responding would yield
P (r|x, t) = 100% and P (r| ∼ x, t) = 0%, resulting in Ix,t =
100%, while random responding would yield P (r|x, t) = 50%
and P (r| ∼ x, t) = 50%, resulting in Ix,t = 0%. Thus, for x = t,
values of Ix,t greater than 0% indicate positive influence of the
effect x on the task to which it is relevant. On the other hand,
when x �= t, i.e., effect x is irrelevant to task t, perfect responding
would yield P (r|x, t) = 50% and P (r| ∼ x, t) = 50%, resulting
in Ix,t = 0%. Random responding would also yield Ix,t = 0%, for
the same reason given above. Thus, for x �= t, values of Ix,t other
than 0% would indicate that responses for task t were influenced
by the irrelevant effect x.

Figure 4 shows the average values of influence Ix,t from each
influencing effect x on each influenced task t, excluding the
data for text stimuli, as the possibility of intrinsic bias was
mainly of interest with respect to graphs and tables. Influence
was greater than 0% for all combinations of influencing effect
and influenced task, ps < 0.001, including, in particular, all
cases of irrelevant influence, shown in the off-diagonal cells of
Figure 4. Thus, responses were influenced by irrelevant effects
more than either perfect responding or random guessing would
predict.

For graphs, such irrelevant influence increased from the ear-
lier tasks to the later tasks. Irrelevant influence was 16.3% on the
treatment task, 19.5% on the interaction task, and 25.6% on the
secondary task. By contrast, for tables, irrelevant influence was
about the same for all three tasks: treatment: 18.2%, interaction:
18.8%, secondary: 19.2%. Paired Wilcoxon signed ranks tests
were conducted for each pair of tasks separately for graphs and
tables, using a Bonferroni correction for multiple comparisons.
For graphs, irrelevant influence was greater on the secondary task
than on the treatment task, p < 0.001, and marginally greater on
the secondary task than on the interaction task, p = 0.099. No
other differences were significant, ps > 0.95. In sum, while accu-
racy decreased more across tasks with graphs than with tables,
irrelevant influence increased across tasks with graphs, and did

not do so with tables. This result is consistent with the possibility
that, for graphs, the representational properties relevant to detect-
ing treatment and interaction effects were more salient than those
relevant to detecting secondary effects, while for tables, no such
difference existed3.

For both influence and accuracy, the effect of task was greater
for graphs than for tables. The similarity of these results sug-
gests the possibility of a statistical association between influence
and accuracy. To test for this possibility, for each participant,
average influence from irrelevant effects was calculated for each
combination of task and format, and influence score was then
added as a predictor to the mixed logistic regression model used
to analyze the accuracy scores. (The data for text stimuli were
again excluded.) This analysis found a significant negative effect

3Differences in the salience of different effects is one possible explanation for
influence from irrelevant effects, as described above. An alternate explanation
is that the different effects were difficult to disentangle psychologically, resem-
bling integral rather than separable dimensions (Goldstone and Steyvers,
2001; Jones and Goldstone, 2013). If this explanation is correct, both rele-
vant and irrelevant effects should exert similar influence on a given task, i.e.
It,t ≈ Ix,t for x �= t. To test this possibility, influence from relevant effects
(shown in the on-diagonal cells of Figure 4) was compared to influence from
irrelevant effects (shown in the off-diagonal cells) separately for each task
using Wilcoxon signed rank tests, using a Bonferroni correction for multiple
comparisons. Influence from relevant effects was significantly greater for both
the treatment and interaction tasks, ps < 0.001, although this was not true for
the secondary task, p > 0.95. Additionally, if influence from irrelevant effects
is caused by inseparability of the effects, such influence should be symmetric,
i.e., Ix,t ≈ It,x for x �= t. In other words, the values in the off-diagonal cells of
Figure 4 should be equal to their reflections across the diagonal. To the con-
trary, influence from the treatment and interaction effects on the secondary
task was greater than influences from the secondary effect on, respectively,
the treatment and interaction tasks according to Wilcoxon signed rank tests,
p s < 0.006, although influence from treatment effects on the interaction task
did not differ from influence from interaction effects on the treatment task,
p > 0.95. Thus, the patterns of influence are not consistent with psychological
inseparability of different effects.
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FIGURE 4 | Influence by influencing effect and influenced task for graphs and tables (Experiment 1).

of irrelevant influence on accuracy, χ2(1) = 105.39, p < 0.001,
indicating that accuracy tended to be lower when irrelevant influ-
ence was higher. Importantly, this negative effect is not necessi-
tated by the way influence was calculated. For example, random
guessing would lead both to low influence and low accuracy.

DISCUSSION
Across three data interpretation tasks requiring attention to rela-
tionships among data points, accuracy did not vary significantly
with representational format, while RTs were significantly faster
with graphs than with tables. Faster performance without loss
of accuracy suggests that graphs induce more efficient process-
ing than tables for the present tasks. This result is consistent with
advantages found in other studies of graphical over tabular for-
mat for tasks involving relationships among data points (Vessey
and Galletta, 1991; Meyer et al., 1999; Porat et al., 2009; Schonlau
and Peters, 2012).

In addition to this main effect of format, a significant inter-
action of format with task was found with respect to accuracy.
The difference in performance across tasks was greater with
graphs than with tables, suggesting lower flexibility with graphs.
The intuition that graphs can be used to favor certain perspec-
tives for data interpretation over others is common, and implies
that graphs may not support flexible switching between different
perspectives, as required between the treatment and secondary
tasks, for example. To our knowledge, the present results are
novel in providing experimental evidence for this intuition of
low flexibility, and for demonstrating that tables exhibit relatively
higher flexibility by the same standard. Consistent with this result,
graphs, but not tables, showed differences in irrelevant influence

across tasks, suggesting that certain visual features of graphs may
be highly salient and, furthermore, participants may have had dif-
ficulty ignoring these salient features when they were irrelevant to
the task at hand.

However, the results of Experiment 1 are ambiguous in two
respects. First, as discussed in the Introduction, low flexibility
might result from at least two different causes: intrinsic bias, in
which some tasks are intrinsically easier than others to perform
with a given representation, and transfer of practice, in which
experience with one task has a negative effect on performance
with a subsequent task. Thus, the format ∗ task interaction could
result either from greater intrinsic bias or from greater (negative)
transfer of practice for graphs, compared to tables. The design
of Experiment 1 does not permit disambiguation between these
possibilities because the order of tasks was fixed. For example, the
secondary task was always encountered last, so low performance
on the secondary task could be due either to negative transfer of
practice from the preceding tasks, or to intrinsic bias favoring the
preceding tasks. Experiment 2 was designed to address this issue.

If the format ∗ task interaction is assumed to result from
intrinsic bias, the results are ambiguous in another respect.
Specifically, because participants were trained on the treatment
task but not on the secondary task, better performance on the
former would be expected even without an effect of format. As
a result, intrinsic bias due to representational format could have
caused the observed format ∗ task interaction in two different
ways. First, graphs could facilitate detection of effects of the leg-
end variable, relative to the x-axis factor. Because the legend
always represented the treatment factor, such facilitation would
have increased accuracy on the treatment task, adding to the
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performance improvement expected due to training, and thus
increasing the difference in accuracy between that task and the
secondary task. Alternatively, tables could facilitate comparison
between columns, relative to comparison between rows. Because
the columns always represented levels of the secondary factor,
such facilitation would have increased accuracy on the secondary
task, partially counteracting the performance decrement due to
the absence of training, and thus decreasing the difference in
accuracy between that task and the treatment task. Thus, the
observed format ∗ task interaction could have been caused either
by intrinsic bias for graphs favoring the legend variable, or by
intrinsic bias for tables favoring column comparison. While either
of these explanations are compatible with the results regarding
accuracy, the first possibility is supported by the analysis of irrel-
evant influence, which found larger effects of task, suggesting
larger differences in the saliences of relevant stimulus properties,
with graphs than with tables. This issue was further addressed in
Experiment 2.

EXPERIMENT 2
Experiment 2 employed largely the same methodology as
Experiment 1, with one crucial change. During the generation of
graphs and tables as training examples and test stimuli, the visual
dimensions previously assigned to treatment factors were re-
assigned to secondary factors, and vice versa. That is, for graphs
(Figure 1C), the legend now represented secondary factors and
the x-axis treatment factors, while for tables (Figure 1D), the rows
now represented secondary factors and the columns treatment
factors. However, the tutorial and test for the treatment task were
still administered first, and those for the secondary task last. The
different possible explanations of the results of Experiment 1 lead
to different predictions for how the changes made in Experiment
2 would affect those results.

First, if the format ∗ task interaction found in Experiment 1
was due to transfer of practice effects, then the same interaction
should appear in Experiment 2, because the temporal sequence
of tasks allowed transfer effects for the same tasks, i.e., the inter-
action and, especially, secondary tasks, in both experiments. By
contrast, if the interaction was due to greater intrinsic bias in
one or the other representational format favoring visual features
relevant to some tasks more than those relevant to others, then
that interaction should be significantly changed in Experiment 2
due to the alteration in the visual features relevant to each task.
In particular, for the treatment and secondary tasks, a reversal
of the interaction would be expected, because the visual dimen-
sions relevant to each of these tasks in Experiment 1 were precisely
reversed in Experiment 2.

Second, two different explanations involving intrinsic bias
were mentioned earlier. These explanations also lead to different
predictions regarding Experiment 2. If the results of Experiment 1
were due to intrinsic bias favoring comparison between columns
with tables, then accuracy with tables in Experiment 2 should
improve for the treatment task and worsen for the secondary
task, because treatment factors are represented by table columns,
but secondary factors by table rows, in Experiment 2. On the
other hand, if the results of Experiment 1 were due to intrin-
sic bias favoring detection of main effects of the legend variable

with graphs, then accuracy with graphs in Experiment 2 should
worsen for the treatment task and improve for the secondary
task, because treatment factors were represented by the x-axis, but
secondary factors by the graph legend, in Experiment 2.

Importantly, the latter version of the intrinsic bias explanation,
which assumes that graphs are biased in favor of detecting main
effects of the legend variable, does not necessarily predict better
performance on the secondary task than on the treatment task in
Experiment 2. Although, according to this explanation, represen-
tation of secondary factors in the graph legend should facilitate
performance on the secondary task relative to the treatment task,
any such facilitation could still be outweighed by participants’
receiving training on the treatment task and not on the sec-
ondary task. Also, even the presence of negative transfer from the
treatment to the secondary task in Experiment 2 would still be
compatible with the intrinsic bias explanation, which does not
deny the possibility of such negative transfer, but rather denies
that the format ∗ task interaction found in Experiment 1 was due
to format-related differences in the degree of negative transfer.

METHODS
The method employed in Experiment 2 was the same as that
employed in Experiment 1 in all respects except those mentioned
below.

Participants
Participants were N = 43 undergraduate students from the
Indiana University Psychology Department who participated in
partial fulfillment of a course requirement. Importantly, all par-
ticipants were drawn from the same source as in Experiment 1,
suggesting that systematic differences in samples between the two
experiments are unlikely. Participants were approximately evenly
split between males (N = 19) and females (N = 24). Most (N =
39) participants were aged 18–21, with the remainder (N = 4)
aged 22 or older. The majority of participants (N = 31) reported
never having learned about main and interaction effects before
the experiment, and as reported previous experience had no effect
on test accuracy, p = 0.882, it was not included as a factor in the
subsequent analyses.

Materials
The test and training stimuli were based on those used in
Experiment 1. For each of the graphical and tabular stimuli used
in Experiment 1 (Figures 1A,B), a modified version was cre-
ated by reversing the assignments of the x-axes/legends of graphs
(Figure 1C) or the columns/rows of tables (Figure 1D) to the
treatment and secondary factors. That is, while in Experiment 1,
the legends of graphs and the rows of tables always represented
the treatment factor, in Experiment 2, they represented the sec-
ondary factor. Similarly, while in Experiment 1, the x-axes of
graphs and the columns of tables represented the secondary fac-
tor, in Experiment 2, they represented the treatment factor. The
stimuli for Experiment 2 were generated using the same datasets
as in Experiment 1 and were in all other respects the same as those
used in Experiment 1. In contrast to the graphical and tabular
stimuli, the text passage stimuli were not changed, i.e., they were
exactly the same as those used in Experiment 1 (Figure 1E).
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Procedure
The same procedure was used in Experiment 2 as in Experiment
1, with the exception that the explanations of how to determine
the presence of treatment and interaction effects were modified
to take account for the changes made to the stimuli. For example,
references to table rows were changed to refer to table columns.

RESULTS
Accuracy
Mean accuracy across tasks and formats was 67.4%, compara-
ble to that observed in Experiment 1 (68.8%). While accuracy
across tasks showed the same trend as in Experiment 1, i.e.,
decreasing performance from the first to the last task (treatment
task: 71.6%, interaction task: 66.8%, secondary task: 64.9%),
the magnitude of this trend was reduced relative to Experiment
1. Nevertheless, analysis of the accuracy data using the same
mixed logit model structure as in Experiment 1 still found a reli-
able effect of task, χ2(2) = 7.90, p = 0.019. No other significant
effects or interactions were found, ps > 0.10.

The accuracy data by task and format are shown in Figure 2B.
Contrary to the prediction of the transfer of practice explanation
for the results of Experiment 1, but consistent with that of the
intrinsic bias explanation, the qualitative pattern of the format
∗ task interaction was reversed in Experiment 2, although the
interaction was not statistically reliable in Experiment 2 alone.
For example, the difference in performance between the treat-
ment and secondary tasks was greater for graphs than for tables in
Experiment 1, but was slightly greater for tables (treatment task:
73.1%, secondary task: 65.4%, difference: 7.7%) than for graphs
(treatment task: 70.5%, secondary task: 66.3%, difference: 4.2%)
in Experiment 2.

The intrinsic bias explanation of Experiment 1 allowed for two
variations. The first variation involved bias for graphs favoring
detection of effects of the legend variable, and predicted poorer
performance on the treatment task and improved performance on
the secondary task with graphs in Experiment 2, while the second
variation involved bias for tables favoring comparison between
columns, and predicted improved performance on the treatment
task and poorer performance on the secondary task with tables
in Experiment 2. In fact, accuracy on the treatment task was
poorer for both graphs (Experiment 1: 77.0%, Experiment 2:
70.5%) and tables (Experiment 1: 74.8%, Experiment 2: 73.1%),
while accuracy on the secondary task was improved for both
graphs (Experiment 1: 61.0%, Experiment 2: 66.3%) and tables
(Experiment 1: 62.7%, Experiment 2: 65.4%). Evidently, this
result is consistent with the explanation involving greater intrinsic
bias for graphs favoring detection of effects of the legend vari-
able, and not with that involving greater intrinsic bias for tables
favoring comparison between columns.

The data from both experiments were pooled in order to test
the reliability of the differences between their results. Although
the possibility of systematic differences between the experiments,
such as differences in the sample populations, cannot be ruled
out, the likelihood of such differences is reduced by the similarity
in methodology between experiments and their reliance on the
same source for experimental participants. Analysis of the pooled
data, with experiment number added as a between-subjects

factor, found significant effects of task, format, and their inter-
action, qualified by a significant three-way interaction of exper-
iment, task, and format, χ2(4) = 17.55, p = 0.002, suggesting
that the reversal between experiments of the task ∗ format inter-
action was reliable. To better understand this interaction, the data
for graphs and tables were analyzed separately without format
as a factor. The interaction of experiment and task was signif-
icant for graphs, χ2(2) = 11.14, p = 0.004, indicating that the
changes in performance for the treatment and secondary tasks
with graphs were reliable, supporting the first of the two intrin-
sic bias accounts described above. The interaction of experiment
and task was not significant for tables, χ2(2) = 2.71, p = 0.258,
providing no support for the second of the two intrinsic bias
accounts (and as described above, the qualitative trend of the data
was opposite to that predicted by the second account). All of the
results just described were qualitatively unchanged when the data
for text stimuli and interaction effects were excluded.

Response time
The RT data were filtered in the same way, and analyzed using
the same model, as in Experiment 1. Average RT was 5.82 s,
and ranged from 1.20 to 16.3 s. As in Experiment 1, signifi-
cant effects of task and format were found, F(2, 80) = 38.24,
p < 0.001, η2

G = 0.179 for task and F(2, 80) = 14.08, p < 0.001,
η2

G = 0.014 for format. As shown in Figure 3B, participants were
slowest on the treatment task and fastest on the secondary task,
and were faster with graphs than with tables for all three tasks. In
contrast to Experiment 2, the interaction of format with task was
not significant, F(4, 160) = 0.82, p = 0.514, nor were any other
significant effects found, ps > 0.05.

Influence
Influence Ix,t was calculated in the same manner as in
Experiment 1. Figure 5 shows average influence from each effect
on each task, excluding data for text stimuli. As in Experiment 1,
influence was greater than 0% for all combinations of influencing
effect and influenced task, ps < 0.001, including in particu-
lar all cases of irrelevant influence, shown in the off-diagonal
cells of Figure 5. Influence from irrelevant effects decreased
slightly across tasks with graphs (treatment: 21.2%, interaction:
17.2%, secondary: 19.5%) and increased slightly across tasks
with tables (treatment: 16.3%, interaction: 17.2%, secondary:
22.4%), showing the opposite trend as in Experiment 1. However,
paired Wilcoxon signed ranks tests comparing irrelevant influ-
ence between tasks for each pair of tasks separately for graphs and
tables found no significant differences, ps > 0.80.

To ascertain whether the negative association between influ-
ence from irrelevant effects and accuracy found in Experiment 1
was replicated in Experiment 2, irrelevant influence was added as
a predictor to the model used to analyze the accuracy scores, as
in Experiment 1. Just as in Experiment 1, this analysis found
a significant negative effect of irrelevant influence on accuracy,
χ2(1) = 41.22, p < 0.001, indicating that accuracy tended to be
lower when irrelevant influence was higher.

DISCUSSION
The results of Experiment 2 serve to disambiguate between several
possible explanations for those of Experiment 1. First, the reversal
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FIGURE 5 | Influence by influencing effect and influenced task for graphs and tables (Experiment 2).

between experiments of the format ∗ task interaction effect on
accuracy confirms the predictions of the intrinsic bias explana-
tion and disconfirms those of the transfer of practice explanation.
Although negative transfer of practice may have occurred, as evi-
denced by the decrease in accuracy from the treatment to the
secondary task in both experiments, the assumption that one
representational format led to more negative transfer than the
other cannot account for the reversal of the format ∗ task interac-
tion observed in Experiment 2. Second, the fact that the reversed
assignments of visual dimensions to factors used in the stimuli
of Experiment 2 resulted in lower accuracy on the treatment task
and higher accuracy on the secondary task for graphs confirms
the predictions of the intrinsic bias account involving an advan-
tage for detecting effects of the legend variable with graphs, while
the fact that the opposite trends were not observed for tables dis-
confirms that predictions of the intrinsic bias account involving
an advantage for comparison between columns with tables. In
summary, the results of Experiment 2 support an interpretation
of the format ∗ task interaction in Experiment 1 as due to lower
flexibility for graphs, and in particular, to greater intrinsic bias for
graphs, favoring comparison of levels of the legend variable rather
than of the x-axis factor.

It is worth noting that for both the treatment and interac-
tion tasks, the difference in performance between experiments
was greater for graphs than for tables. For example, perfor-
mance on the treatment task was much better in Experiment
1 than in Experiment 2 for graphs (77.0 vs. 70.5%), but only
slightly better for tables (74.8 vs. 73.1%). This comparison
relates to the second possible operationalization of flexibility
mentioned in the Introduction, i.e., differences in performance

on a single task depending on assignment of visual dimen-
sions to factors. The fact that graphs also showed greater
performance differences than tables on this measure supports
the conclusion that graphs are a less flexible representational
format.

In Experiment 2, as in Experiment 1, faster RTs were accompa-
nied by lower accuracy across the three data interpretation tasks.
These results may be partially explained in terms of a speed-
accuracy tradeoff favoring speed over accuracy to an increas-
ing degree over the course of the experiment. For example,
participants may have experienced fatigue as the experiments
proceeded, leading to faster but less accurate responses on the
tasks presented later. However, the reversal of the format ∗ task
interaction for accuracy in Experiment 2 cannot be explained
by such a speed-accuracy tradeoff, because no similar rever-
sal of the format ∗ task interaction was observed for RT. In
fact, the pattern of RT data was quite similar between experi-
ments, with RTs consistently faster with graphs than with tables,
both for tasks on which accuracy was higher for graphs and
for tasks on which accuracy was lower for graphs. A possible
explanation is that, compared to tables, graphs induce a sense
of fluency (Oppenheimer, 2008) which does not depend entirely
on actual competence with the task and results in fast reaction
times, while compared to graphs, tables require effortful pro-
cessing even when the task is well-understood, leading to slower
reaction times.

GENERAL DISCUSSION
The present findings support the conclusions of previous research
that graphs are, overall, preferable to tables for the performance
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of tasks involving relationships among data points. In both
experiments, participants detected statistical effects as accurately,
and more quickly, with graphs than with tables, indicating
that graphs induce more efficient performance of this type of
task. This result is consistent with the view, presented in the
Introduction that graphs permit efficient processing of relation-
ships among data points because such relationships correspond to
visual patterns which may be encoded as single features (Pinker,
1990; Pomerantz and Portillo, 2012), while tables do not afford
such encoding shortcuts.

The principal new finding of the present study is that
graphs, while permitting more efficient task performance over-
all, may also afford less flexibility in data interpretation than
do tables. That is, compared to tables, there is a relatively
large difference in the accuracy with which interpretive tasks
of comparable difficulty are performed with graphs. These
findings dovetail with previous findings, obtained using free-
response graph interpretation paradigms, suggesting differences
in the types and frequencies of interpretations associated with
variables represented by different visual dimensions in graphs
of bivariate data (Shah and Carpenter, 1995; Carpenter and
Shah, 1998; Shah et al., 1999; Shah and Freedman, 2011).
The present results are novel in demonstrating that asym-
metries also appear in accuracy scores from a forced-choice
paradigm using predefined interpretive tasks, i.e., detection of
specific types of statistical effects. Another novel contribution
of the present study is the finding that such asymmetries are
reduced when the same tasks are performed using tables of the
same data.

In addition to demonstrating lower flexibility across tasks per-
formed with graphs, compared to tables, the present study offers
some evidence to clarify the cause for such reduced flexibility.
Two possible causes were considered: negative transfer of prac-
tice, in which experience with earlier tasks negatively impacted
performance on later tasks, and intrinsic bias, in which perfor-
mance differences result from differences in the intrinsic ease of
performing the tasks. The results of Experiment 2 were consis-
tent with the intrinsic bias account and not with the transfer of
practice account.

Importantly, the selection of the intrinsic bias account in pref-
erence to the transfer of practice account for the format-related
differences in flexibility found in Experiment 1 does not imply
that previous experience played no role in producing those dif-
ferences. Rather, it implies only that those differences were not
produced by differing effects of experience with the experimental
tasks. Indeed, the observed bias may well have been a result of
experience with graphs and/or tables prior to the experiment,
and different experiences could have reduced, increased, or even
reversed such bias. The extent to which such bias is consistent or,
alternatively, varies across individuals with different experiences
of graph and table reading could be an interesting topic for future
study.

The Introduction described one mechanism which might give
rise to intrinsic bias. In the proposed mechanism, differences
in the salience of stimulus properties relevant to different
tasks could lead to facilitation of some tasks, whose rele-
vant stimulus properties were highly salient, relative to other

tasks, whose relevant stimulus properties were less salient. This
possibility led to the prediction that the presence or absence
of properties relevant to the facilitated task(s) would influence
responses on the other tasks, despite being irrelevant to the
latter. This prediction was confirmed. In Experiment 1, influ-
ence from irrelevant effects was highest precisely when per-
formance was lowest, i.e., with graphs on the secondary task.
Also, in both experiments, higher influence from irrelevant
effects was strongly associated with lower accuracy, consistent
with the possibility that lower accuracy was caused in part
by interference from salient stimulus properties associated with
irrelevant effects.

Task responses for both graphs and tables showed a high
degree of influence from irrelevant effects, suggesting that such
influence was not caused entirely by stimulus properties unique
to graphs. However, the difference between tasks in the degree
of such influence observed for graphs, but not for tables, is pre-
sumably due to stimulus properties unique to graphs. Moreover,
the evidence that graphs induced a bias to attend specifically
to effects of the legend variable, as discussed below, suggests
that the more salient visual properties in question are among
those associated with such effects, e.g., differences in line height
as opposed to, for example, differences in line slope, as well
as specific visual configurations such as the sideways “v” shape
in Figure 1A. However, determining specifically which of these
properties are primarily responsible for the observed effects is
beyond the scope of the present study. While recognition and
interpretation of visual features play an important role in mod-
els of graph comprehension (Pinker, 1990; Carpenter and Shah,
1998; Freedman and Shah, 2002; Trickett and Trafton, 2006;
Ratwani et al., 2008), little is known about specifically what type
of visual features constitute the primary inputs to interpretive
processes. This question could provide a fruitful direction for
future research.

DIRECTION OF INTRINSIC BIAS
The specific pattern of results in Experiments 1 and 2 clarifies
the direction of the intrinsic bias induced by graphs of bivari-
ate data. Importantly, the direction of such biases may differ by
graph type (Shah et al., 1999; Shah and Freedman, 2011), so
the following discussion may apply only to the type of graph
employed in the present study, i.e., line graphs. For the tasks
requiring recognition of main effects, i.e., the treatment and sec-
ondary tasks, accuracy was higher when the relevant variable
was represented in the legend rather than in the x-axis. That
is, accuracy for the treatment task was higher in Experiment 1
than in Experiment 2, while accuracy for the secondary task was
higher in Experiment 2 than in Experiment 1. The reliability
of these differences was supported by a significant experiment
∗ task interaction in the accuracy data for graphical stimuli.
Thus, accurately detecting main effects of the legend variable
appears to be easier than detecting main effects of the x-axis
variable.

Consistent with these findings, Shah and Freedman (2011)
found that spontaneous interpretations of bivariate line graphs
related more often to main effects of the legend variable than
to main effects of the x-axis variable. However, other studies by
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Shah and her colleagues point in the opposite direction (Shah and
Carpenter, 1995; Carpenter and Shah, 1998; Shah et al., 1999).
Specifically, Shah and Carpenter (1995; see also Carpenter and
Shah, 1998) found that metric properties of variables were more
salient when variables were displayed on the x-axis rather than
in the legend, while Shah et al. (1999) found that quantitative
trends were likely to be noticed when associated with the x-axis
rather than with the legend variable of bivariate line graphs. In
light of these earlier results, Shah and Freedman (2011) proposed
that their finding that interpretations involving main effects were
more often related to the legend variable may have been due to
a kind of response competition, in which statements regarding
main effects of the x-axis variable were rare because effects of
that variable were more often stated as interactions rather than
as main effects. This proposal suggests that effects of the x-axis
variable are in fact more salient than those of the legend vari-
able, despite Shah and Freedman’s (2011) apparent result to the
contrary.

An analogous account for the present study’s finding of higher
accuracy when detecting main effects of the legend variable
rather than the x-axis variable would hold that involuntary atten-
tion to interaction effects interfered with the tasks involving
main effects of the x-axis variable, causing lower accuracy on
those tasks, in the same way that competition from responses
involving interaction effects may have reduced responses involv-
ing x-axis main effects in Shah and Freedman’s (2011) study.
However, for this account to explain the present findings requires
that such interference was absent, or reduced, for the tasks
involving main effects of the legend variable, because otherwise
it could not have caused the observed difference in accuracy
between the two types of task. Contrary to such an account,
influence Ix,t from interaction effects on the two main effect
tasks did not differ between the two main effect tasks in
either experiment 4, suggesting that differences in performance
between the two main effect tasks are unlikely to have resulted
from differential interference from involuntary attention to
interaction effects.

An alternative account involves differences in the types of vari-
ables and tasks best afforded by the legends and x-axes of line
graphs. Graph readers are likely to perceive separate graph lines as
units, consistent with the Gestalt principle of connectivity (Shah
et al., 1999; see also Kessell and Tversky, 2011; Tversky et al.,
2013). Perceiving graph lines as units could facilitate comparison
between them, and this facilitatory effect would improve detec-
tion of main effects of the legend variable, consistent with the
findings of the present study. However, graph readers’ experi-
ence with function graphs may also create an expectation that
the x-axis represents a continuous variable and each graph line
depicts a function of that variable. When the x-axis does represent
a continuous variable, as in the stimuli of Shah and her colleagues
(Shah and Carpenter, 1995; Carpenter and Shah, 1998; Shah et al.,

4For graphical stimuli, influence Ix, t for x = “interaction” in Experiment
1 was 25.7% for t = “treatment” and 26.7% for t = “secondary,” and in
Experiment 2 was 25.3% for t = “treatment” and 27.3% for t = “secondary.”
Influence of interaction effects on responses to the treatment and secondary
tasks did not differ in either experiment, p s > 0.75.

1999), these expectations would presumably draw attention to
that variable’s metric properties, as found by Shah and Carpenter
(1995; Carpenter and Shah, 1998), and also increase the salience
of functional relationships between the x-axis and y-axis vari-
ables, as found by Shah et al. (1999). These effects may not occur
when the predictor variable is categorical rather than continuous,
as in the stimuli of the present study. In summary, the effects of
continuous predictor variables may be most salient when those
predictors are represented on the x-axis, but the effects of cate-
gorical predictors may be more salient when those variables are
represented in the graph legend.

IMPLICATIONS FOR DATA REPRESENTATION
The present findings have practical implications for the use of
graphs and tables for exploring and communicating data. By
itself, the finding of greater efficiency in task performance with
graphs compared to tables suggests that graphs should be pre-
ferred for tasks like those employed in the present study. However,
such an implication is qualified by the finding that graphs are
less flexible than tables, supporting relatively good performance
on some tasks at the expense of others. This result suggests
that whether graphs or tables are to be preferred for practical
applications may depend not only on what tasks are involved,
but also on whether flexibility across a range of different tasks
is required. If data is to be represented with a specific per-
spective in mind, as is often the case when the primary goal
is communication in support of a particular analysis, external
representations may be pre-designed to facilitate interpretation
from the desired perspective. In such situations, graphs may
be preferable to tables. On the other hand, sometimes it is
desirable to avoid favoring any particular perspective on the
data over others, as is often the case when the primary goal
is exploratory analysis or discussion. In such cases, graphical
format might introduce an undesirable bias in interpretation
of the data, and tabular format might, therefore, be preferable.
Another viable approach to presenting data for exploratory pur-
poses would be to create multiple graphs employing different
assignments of visual dimensions to variables. While each indi-
vidual graph might induce a biased perspective toward the data,
any given perspective could be highlighted by at least one of
the graphs.

The findings regarding flexibility also have implications
regarding the respective design demands of graphs and tables.
In the design of representations for bivariate data, even after
a representational format is chosen, additional design choices
are necessary, such as the decision of which variable to rep-
resent in the graph legend or table rows, and which to rep-
resent in the x-axis or table columns. The present findings
suggest that such design decisions may be more consequen-
tial for graphs than for tables, in the sense that each possible
decision will facilitate some tasks at the expense of others to
a greater degree for graphs than for tables. A practical impli-
cation is that designing graphs may demand greater care than
designing tables. However, the finding that graphs do support
more efficient processing than tables overall suggests that the
additional effort necessary for their design may be effort well-
spent.
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SUMMARY
Line graphs appear to be more efficient, but also less flexible, than
tables for tasks involving detection of statistical effects in bivari-
ate data. In particular, graphs facilitate detection of effects of the
legend variable relative to those of the x-axis variable, while both
effects are equally easy to detect with tables. The results suggest
that graphs may be a preferable format for presenting data in
order to emphasize a certain perspective, but greater care must
be taken in the use of graphs when an unbiased presentation is
desired.
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