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Number line estimation (i.e., indicating the position of a given number on a physical
line) is a standard assessment of children’s spatial representation of number magnitude.
Importantly, there is an ongoing debate on the question in how far the bounded
task version with start and endpoint given (e.g., 0 and 100) might induce specific
estimation strategies and thus may not allow for unbiased inferences on the underlying
representation. Recently, a new unbounded version of the task was suggested with
only the start point and a unit fixed (e.g., the distance from 0 to 1). In adults this task
provided a less biased index of the spatial representation of number magnitude. Yet, so
far there are no children data available for the unbounded number line estimation task.
Therefore, we conducted a cross-sectional study on primary school children performing
both, the bounded and the unbounded version of the task. We observed clear evidence for
systematic strategic influences (i.e., the consideration of reference points) in the bounded
number line estimation task for children older than grade two whereas there were no such
indications for the unbounded version for any one of the age groups. In summary, the
current data corroborate the unbounded number line estimation task to be a valuable tool
for assessing children’s spatial representation of number magnitude in a systematic and
unbiased manner. Yet, similar results for the bounded and the unbounded version of the
task for first- and second-graders may indicate that both versions of the task might assess
the same underlying representation for relatively younger children—at least in number
ranges familiar to the children assessed. This is of particular importance for inferences
about the nature and development of children’s magnitude representation.
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INTRODUCTION
The metaphor of a mental number line (Moyer and Landauer,
1967; Restle, 1970) describing the (spatial) representation of
number magnitude is widely recognized (for overviews see
Hubbard et al., 2005; De Hevia et al., 2006) and also con-
sidered in the currently most influential model in numerical
cognition research [i.e., the Triple Code Model (Dehaene, 1992;
Dehaene and Cohen, 1997; Dehaene et al., 2003)]. Behavioral
(e.g., Dehaene et al., 1993; Fischer, 2001, 2003) as well as neu-
ropsychological (e.g., Zorzi et al., 2002) data provide evidence
for an automatic activation of number magnitude on an analo-
gous left-to-right oriented number line in Western cultures (see
Shaki et al., 2009, for other cultures). Against this background,
it is interesting to take a closer look at the development of the
mental number line representation in children.

A standard task to make inferences about the development of
the mental number line is the number line estimation task (e.g.,
Siegler and Opfer, 2003; Geary et al., 2008; Whyte and Bull, 2008;
see also Petitto, 1990) also known as number-to-position task
(e.g., Berteletti et al., 2010). In this task participants are required
to estimate the spatial position of a given number on an empty
number line with labeled endpoints defining the numerical range
covered (e.g., 0–100; e.g., Siegler and Opfer, 2003). Usually, the

deviance of the estimated position of a number from its cor-
rect position is interpreted to provide information about how
the mapping of numbers to space and thus the mental number
line representation develops. Generally, estimation performance
is more error-prone in younger children as they tend to overes-
timate the position of relatively small numbers to the right (i.e.,
placing 9 at about the position of 40; Moeller et al., 2009). As a
consequence, the positions of relatively large numbers are com-
pressed toward the end of the scale which results in relatively high
estimation errors (Siegler and Opfer, 2003; Booth and Siegler,
2006; Laski and Siegler, 2007). To account for this estimation
pattern, Siegler and colleagues proposed children’s estimations to
represent a quite isomorphic reflection of a logarithmic underly-
ing representation of number magnitude as the authors found a
logarithmic function to fit the observed estimation pattern best.
With increasing age and experience, however, the authors suppose
children to develop a linear representation of number magnitude
reflected by an estimation pattern fitted best by a linear func-
tion. This representational change, also referred to as log-to-linear
shift, is interpreted to reflect the development toward a linear rep-
resentation of number magnitude in older children and adults
(Siegler and Opfer, 2003; Siegler and Booth, 2004; Booth and
Siegler, 2006, 2008).
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However, the conclusion of such a representational shift as
drawn by Siegler and colleagues is currently discussed contro-
versially with respect to both theoretical but also methodological
issues (e.g., Barth and Paladino, 2011; Barth et al., 2011; Moeller
and Nuerk, 2011; Slusser et al., 2013; see also Ebersbach et al.,
2013 for an overview). From a theoretical point of view, there
are alternative accounts to explain the developmental changes
in number line performance. A seemingly logarithmic response
pattern may be accounted for by a two- or multi-linear fitting
procedure, while a seemingly linear pattern may be accounted for
by proportion judgment. As regards logarithmic fitting, Moeller
et al. (2009; see also Helmreich et al., 2011) observed that a two-
linear model suggesting separate but linear representations for
one- and two-digit numbers predicts the estimation performance
of first-graders in a 0–100 number line task even better than a log-
arithmic model. Theoretically speaking, the results of Moeller and
colleagues do not indicate children’s estimation pattern to directly
reflect their spatial representation of number magnitude. Rather,
they emphasize the importance of understanding the place-value
structure of the Arabic number system: With increasing age and
experience children master the integration of tens and units into
the base-10 place-value structure of the Arabic number system
and the separate representations are then integrated to result
in a linear estimation pattern (Moeller et al., 2009; Helmreich
et al., 2011; see also Ebersbach et al., 2008, for a similar two-
linear approach). Another argument challenging the hypothesis
of a representational log-to-linear shift was suggested by Barth
and Paladino (2011) addressing seemingly linear fittings (see also
Slusser et al., 2013). These authors suggested the standard num-
ber line estimation task to be more of a proportion judgment than
a number magnitude estimation task. Barth and her colleagues
argue that the to-be-estimated numbers are not considered in iso-
lation but always in relation to reference points such as the start
and endpoint of the given number line or its half. Their claim is
methodologically corroborated by fitting results for power mod-
els usually used in proportion-judgment context (e.g., Spence,
1990) which provided the best fit for children’s estimation per-
formance: In contrast to a linear model which cannot account for
systematic biases at reference points the authors found that either
one- (considering start and endpoint as references; cf. Spence,
1990) or two-cycle power models (i.e., considering start and end-
point as well as their mean as reference points; cf. Hollands and
Dyre, 2000) fitted 7-year-old children’s estimation patterns on
a 0–100 scale best (Barth and Paladino, 2011). From a theoret-
ical point of view, Barth and colleagues suppose the standard
(bounded) number line estimation task to reflect the application
of proportion-judgment strategies rather than providing a direct
measure of the spatial representation of number magnitude. This
is corroborated by the finding that with increasing age more ref-
erence points are considered for estimation performance (Slusser
et al., 2013).

The argument that the traditional number line estimation task
induces strategies of proportion judgment was further corrobo-
rated by Cohen and Blanc-Goldhammer (2011). They observed
smaller standard deviations of adults’ estimations close to refer-
ence points but larger standard deviations between these points
resulting in a characteristic M-shaped distribution. The validity of

such a pattern to indicate the use of reference points was also cor-
roborated when evaluating eye fixation data (see Schneider et al.,
2008, for children’s eye fixation data; see also Sullivan et al., 2011,
for adult data).

Considering a recently introduced new version of the num-
ber line estimation task (see below for more details) one aim of
the current study was to evaluate whether proportion-judgment
strategies found in bounded number line estimation are a gen-
eralizable characteristic of number line estimation and how the
application of this strategy is related to age.

Despite the debate on the nature of the numerical represen-
tations and processes underlying number line estimation perfor-
mance there is accumulating evidence suggesting that number
line estimation performance is not only systematically related
to actual numerical performance but also predictive of future
numerical development. For instance, the acuity of children’s
mental number line representation as assessed by the linearity
of children’s number line estimations was found to be positively
correlated with other numerical competencies such as numeros-
ity estimation or numerical magnitude comparison (Booth and
Siegler, 2006; Laski and Siegler, 2007) but also more complex
arithmetic indices such as actual addition performance (Booth
and Siegler, 2008). In the same study, children’s number line esti-
mation performance was also a reliable predictor of the ability to
learn new addition problems (Booth and Siegler, 2008; see also
Gunderson et al., 2012; Muldoon et al., 2013, for longitudinal
evaluations of the relationship between number line estimation
and children’s mathematical development). Finally, there is now
even first evidence from intervention studies suggesting a causal
relationship between the acuity of the mental number line repre-
sentation and more complex numerical/arithmetic abilities. For
instance, Siegler and Ramani (2009; see also Ramani and Siegler,
2011) observed that playing simple linear number board games
not only improved children’s number line estimation perfor-
mance significantly but also that this training effect generalized
to their arithmetic competency (see also Fischer et al., 2011, for
the validity of embodied experiences of spatial number magni-
tude; Kucian et al., 2011, for similar evidence in children with
dyscalculia).

Taken together, it can be noted that number line estimation
performance is a reliable predictor of actual and future numeri-
cal competencies even though it is still under debate what exactly
is assessed by the number line estimation task in its standard
bounded version with given start- and endpoint.

Cohen and Blanc-Goldhammer (2011; see also Booth and
Siegler, 2006 for a somewhat similar task) proposed a new
unbounded version of the number line estimation task without
a predefined fixed endpoint. Instead, a unit (i.e., the distance
between 0 and 1) is given together with a start point allowing
for the estimation of the spatial position of a presented target
number on a number line. Importantly, evaluation of partici-
pants’ estimation pattern corroborated their hypothesis that this
task version provided a less biased measure of the mental num-
ber line representation: There were no indications of systematic
biases reflecting the use of reference points. Moreover, variabil-
ity of participants’ estimation errors increased continuously with
number magnitude. This is in line with the assumption of a linear
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mental number line representation with scalar variance (Gibbon,
1977; Gibbon and Church, 1981; Whalen et al., 1999). This scalar
variance hypothesis suggests that the spacing between adjacent
numbers on the mental number line is equidistant while rep-
resentational uncertainty increases with the magnitude of the
numbers. Against this background, the authors concluded that
the unbounded number line estimation task seems to provide a
more pure measure of the underlying mental number line rep-
resentation as compared to the traditional bounded version of
the task.

The only published data on the unbounded number line esti-
mation task are from adult participants, however, number line
estimation tasks are used much more prominently in the assess-
ment of children’s mental number line representation. Therefore,
the objectives of the current study were straightforward.

We wished to evaluate how far the results of Cohen and Blanc-
Goldhammer (2011) generalize to children’s estimation perfor-
mance. Therefore, we recruited a broad sample of primary school
children from grade one through four as well as a sample of adult
controls to perform both tasks, the new unbounded and the stan-
dard bounded version of the number line estimation task. Because
there are no data available on children performing the unbounded
number line estimation task, hypotheses were derived from recent
data for the bounded number line estimation task. Slusser et al.
(2013) observed children at the age of 7–8 to make use of 2 or
3 reference points (start-, end- and midpoint) to increase their
estimation accuracy. In contrast, for younger children’s estima-
tion patterns indications for such a proportion-judgment strategy
were less obvious. For five-year-olds the authors even suggested
that children might have ignored the endpoint of the scale treating
the task as an ‘open-ended magnitude judgment’ (Slusser et al.,
2013, p. 203) comparable to an unbounded version of the num-
ber line estimation task. Furthermore, in an eye-tracking study
Schneider et al. (2008) corroborated the assumption of qualita-
tive differences between estimation strategies between relatively
younger and older children. In particular, they observed that
third-graders targeted their eye fixations more directly toward to-
be-expected reference points (i.e., start, middle, and endpoint of
the number line) than did younger children. Against this back-
ground, we expected a change in estimation strategies in the
bounded number line task to occur from grade three at the lat-
est with more pronounced indications for the use of reference
points for older children. In contrast, based on the results for the
unbounded number line estimation task in adults (Cohen and
Blanc-Goldhammer, 2011) indicating a less biased measure of
number line estimation no such qualitative change of estimation
strategy was expected for the unbounded number line estimation
task.

To pursue these hypotheses we evaluated two different
aspects of our participants’ estimation performance in accor-
dance with the proceeding of Cohen and Blanc-Goldhammer
(2011). First, we appraised participants’ estimation patterns
by fitting different kinds of models. Additionally, we consid-
ered the distribution of participants’ estimation errors. Taken
together, these two aspects should answer the questions whether
there are qualitative differences in solution strategies (num-
ber line estimation vs. proportion judgment) between (i) the

bounded and the unbounded version of the number line
estimation task in children and (ii) at what age such differences
emerge.

METHODS
PARTICIPANTS
A cross-sectional sample of 233 primary school children [65 first-
graders (31 girls; mean age: 6;7 years, SD = 3.90 months), 61
second-graders (32 girls; mean age: 7;7 years, SD = 5.58 months),
59 third-graders (23 girls; mean age: 8;8 years, SD = 6.35
months) and 48 fourth-graders (27 girls; 9;8 years, SD = 5.91
months)] was assessed on a battery of basic numerical tasks
including number line estimation to investigate the develop-
ment of numerical competencies. Children were tested three
months after class started. All children participated voluntar-
ily and were included in the sample only after their parents
provided a signed informed consent form. In addition, a con-
trol sample of 68 university students (56 females; mean age:
23;5 years, SD = 4;8 years) volunteered to perform the number
line tasks.

STIMULI
For the different age groups we used different number scales cov-
ering the ranges that are taught in the respective grades and can
thus be considered more or less familiar to the children tested, this
means that children should possibly be able to infer the midpoint
of the respective range (first-graders: 0–10; second-graders: 0–20;
third-graders: 0–100; fourth-graders: 0–1000; adults: 0–10,000).
At all age groups 20 stimuli for the bounded number line
task were chosen to allow for reliable identification of possible
proportion-judgment strategies, resulting in more items at the
suggested reference points (cf. Barth et al., 2011). A total of four
items was displayed on one DIN A4 sheet with the start-point of
the number lines being varied horizontally to prevent participants
from relying on estimates of previous trials as possible anchor
points. All number lines were 20 cm long with labeled endpoints
below and the to-be-estimated number placed above the middle
of the number line (see Figure 1 for a schematic illustration). In
all number ranges two practice items (exception: number range
0–10 with only one practice item) ensured participants under-
standing of the task and were shown on the first page prior to the
critical trials. Different from the bounded number line estima-
tion task we did not change the range covered by the unbounded
number line task for the different age groups. The same physical
length of 20 cm was used for the unbounded and the bounded
task to enhance comparability between task versions. The unit
indicating the distance between 0 and 1 was depicted below the
start-point. The to-be-estimated numbers were presented above
the start point (see Figure 1 for a schematic illustration). The
numerical length of the unbounded number line was 29. Only
items in the range from 0 to 20 were used to assess unbounded
number line performance, leaving enough space between the
largest numbers and the physical endpoint. A total of 15 items
were presented as numbers 0, 1, 5, 11, and 20 were excluded and
10 served as practice item. Again, four items were presented on
one DIN A4 sheet arranged in the same way as the bounded task
items.
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FIGURE 1 | Schematic illustration of the bounded number line task

and the new unbounded version of the task.

PROCEDURE
All tasks were administered in group settings. For the bounded
number line task, children received the oral instruction that they
are presented with a special number line which only has a start-
and endpoint but no further numbers in between. Then the
task was explained (in German) as follows: “Look at the num-
ber printed above the number line—where do you think this
number goes between 0 and X. Please mark your estimate on
the line.” Importantly, no numbers apart from the start and the
endpoint were indicated. In the unbounded task, the instruction
was similar: Children were told that there is no end to the num-
ber line but that they can see how long the distance from 0 to
1 is. Further instructions were adapted to the task: “Look at the
number printed above the number line—where do you think this
number goes?” Again, no other numbers were indicated to par-
ticipants. Adults were provided with written instructions. Neither
age group received feedback as to the correctness of any of the
items. Task order was the same for all age groups: participants
started with the bounded followed by the unbounded number
line estimation task.

ANALYSES
As variables of interest we evaluated children’s mean estimates
(indicating their estimation performance) as well as the standard
deviation of children’s percent absolute error (PAE = |Estimate −
Target number|/ Scale ∗100; cf. Siegler and Booth, 2004, reflecting
the variability of their estimates). In line with the procedure of
Ashcraft and Moore (2012) we ran a contour analysis contrasting
the variability of children’s estimation errors at and in between
possible reference points (using t-tests) for both the bounded
and unbounded estimation task separated for each age group.
Therefore, standard deviations of the PAEs of the two target num-
bers closest to the origin, the first quartile, the midpoint, the third
quartile and the endpoint, were pooled. In case target number and
reference point were identical (e.g., item 15 in the unbounded
task conforms to the third quartile) the item itself plus the two

closest target numbers were considered. For first-graders’ on the
0–10 bounded number line task only one item was considered for
the origin and endpoint, respectively, as there were only 8 target
numbers.

In addition, we evaluated the goodness of fit of several mod-
els used in previous studies to mathematically reflect children’s
estimation performance (e.g., linear, power models, etc.). To fit
models Matlab 7.14 was used applying the trust region algo-
rithm for the fitting of non-linear models. For both number
line tasks we estimated the fit of the same models thereby dif-
ferentiating grossly between three families of functions corre-
sponding to different estimation strategies: (i) direct estimation
strategies should be indicated by the superior fit of the lin-
ear and (unbounded) power function (cf., Slusser et al., 2013),
(ii) proportion-judgment based estimation strategies should be
indexed by one- and two-cycle power models (cf. Barth et al.,
2011), and (iii) dead-reckoning strategies should be reflected by
dual and multi scallop models (for scallop models see Cohen and
Blanc-Goldhammer, 2011).

Linear models were fitted with two free parameters (i.e., the
intercept and the slope). The unbounded power model had one
free parameter (i.e., the exponent) while dual scallop and multi
scallop models were fitted with two free parameters (i.e., the
exponent and the size of the working window). The linear and
the unbounded model allow for identifying direct estimation
strategies, with no application of an additional strategy like dead-
reckoning or proportion judgment. In contrast, cyclic power
models suggest that participants use at least two references point
(start and end point for the one-cycle model whereas the two-
cycle model indicates the use of an additional central reference
point). Cyclic models were fitted with one free parameter (i.e.,
the exponent determining the shape of the power function). Dual
and multi scallop models are well suited to find out whether
participants applied a dead-reckoning strategy. Thereby, partic-
ipants first estimate a particular working window of numbers
(e.g., 5) and then use multiplies of this working window to esti-
mate the position of higher numbers. The dual scallop model
allows for identifying participants, who applied the working win-
dow twice and the multi scallop model participants, who repeated
their working window multiple times. As identification of such
dead-reckoning strategies was not at the heart of this study, we
summarized results of the respective models in the category of
“others.”

However, different from testing the scallop models in
the bounded condition applying cyclic power models in the
unbounded task is not as straightforward as it seems to be at
first glance. Importantly, cyclic power models require definition
of an upper bound, which can be easily specified in a bounded
number line task. However, for the unbounded number line task
such an upper bound does not exist per se. Theoretically, partic-
ipants might have used the end of the physical line as an upper
bound or the largest number which they had to estimate. Since
these strategies might vary between participants, a fixed upper
bound for testing cyclic models in the unbounded task cannot be
used. Therefore, this upper bound has to be estimated by the fit-
ting procedure (cf. Barth et al., 2011). The range of the parameter
accounting for the upper bound was allowed to vary between 19
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and 29, corresponding to the largest target number (19) and the
numerical end of the line (29).

Models were compared by calculating AICc (Akaike informa-
tion criterion with a correction for finite sample sizes) values for
each participant (e.g., Burnham et al., 2011; see also Cohen and
Blanc-Goldhammer, 2011, for a similar procedure). Lower AICc
values were then interpreted as superior fit of either model1.

RESULTS
In total, 61 participants (18 first-graders, 18 second-graders, five
third-graders, five fourth-graders and 15 adults) were excluded
from final analyses as they had missing data on at least three items
within one of the tasks and/or showed an estimation pattern indi-
cating insufficient understanding of the task (e.g., marking the
middle of the number line for all trials). Furthermore, individual
estimates that differed more than ± 3 SD from the age groups’
mean estimate were also excluded. It is important to note that
this trimming procedure did not change results substantially.

ESTIMATION PATTERNS AND MODEL FITTINGS
Mean estimates were calculated separately for all age groups and
plotted as a function of target number to look for obvious indica-
tions of the use of reference points (see Figure 2). We found that
for all age groups mean estimates increased steadily with increas-
ing size of the target number independently of task version. Only
first graders’ bounded number line estimates obviously differed in
distribution from older children’s and adults’ bounded estimates
(see Figure 2A, left column). In general, first graders seemed to
underestimate larger numbers as they did not produce estimates
larger than about 6 on the 0–10 bounded number scale.

For the unbounded number line task the distributions of
estimates look very similar for the different age groups (see
Figures 2A–E, right column). It is notable, that first-graders and
adults overestimated numbers toward the end of the scale (i.e.,
numbers close to 20; see Figure 2A, right column), seemingly
they often tended to locate larger numbers toward the end of the
physical line (which was at 29).

1Please note that we previously advocated bi-linear or multi-linear fittings
of children’s number line estimations whereas we fitted one-cycle and two-
cycle models (cf. Barth and Paladino, 2011; Slusser et al., 2013) in the current
study. Importantly, we wish to emphasize that this is not a contradiction.
In recent studies we fitted seemingly logarithmic estimation patterns using
a bi-linear model and argued that what seems logarithmic actually reflects
separate representations for single- and two-digit numbers possibly indicat-
ing insufficient place-value understanding (Moeller et al., 2009; Helmreich
et al., 2011; Moeller and Nuerk, 2011). However, proper understanding of
the base-10 place-value structure is actually a mandatory prerequisite for any
proportional strategy because the proportions applied must be represented
correctly (or at least roughly) to produce correct estimates. The idea that
successful base-10 place-value understanding is inevitably necessary for the
task and that proportional strategies are employed in later developmental
stages are not incompatible with each other: The multi-linear account repre-
sents an alternative for seemingly logarithmic estimation patterns whereas the
proportion-judgment account reflects an alternative account for seemingly
linear (as compared to logarithmic) estimation patterns. Because children
of all age groups consistently showed seemingly linear rather than logarith-
mic estimation patterns in the current study bilinear accounts, which suppose
insufficient base-10 place-value understanding, are not applicable here.

FIGURE 2 | Estimation patterns for both versions of the number line

estimation task. The left column depicts bounded and the right column
depicts unbounded number line estimates for all age groups (grade one
through adults: A–E).

Because plotting estimates as a function of target number only
allows for visual inspection to conclude whether children did
or did not use proportion-based estimation strategies, we fitted
estimates with different types of models. Table 1 depicts frequen-
cies of best fitting models for the different age groups separated
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Table 1 | Absolute and relative frequency (percentages) of best fitting models indicating direct estimation, proportion judgments or other

estimation strategies (left column) and detailed distribution of best fitting model of participants’ estimates (right column) separated for

bounded and unbounded number line tasks and age groups.

Estimation strategies Model fittings

Direct Proportional other Linear Unbounded power Dual scallop Multi scallop One- cycle Two- cycle

BOUNDED TASK

1st grade 40 (85) 7 (15) 0 30 (64) 10 (21) 0 0 4 (9) 3 (6)

2nd grade 32 (74) 9 (21) 2 (5) 22 (51) 10 (23) 1 (2) 1 (2) 5 (12) 4 (9)

3rd grade 17 (31) 37 (69) 0 4 (7) 13 (24) 0 0 25 (46) 12 (22)

4th grade 15 (35) 28 (65) 0 5 (12) 10 (23) 0 0 8 (19) 20 (47)

Adults 37 (70) 16 (30) 0 12 (23) 25 (47) 0 0 7 (13) 9 (17)

UNBOUNDED TASK

1st grade 40 (85) 4 (9) 3 (6) 15 (32) 25 (53) 2 (4) 1 (2) 4 (9) 0

2nd grade 39 (91) 4 (9) 0 17 (40) 22 (51) 0 0 3 (7) 1 (2)

3rd grade 50 (93) 0 4 (7) 12 (22) 38 (70) 2 (4) 2 (4) 0 0

4th grade 39 (91) 2 (5) 2 (5) 10 (23) 29 (67) 1 (2) 1 (2) 2 (5) 0

Adults 45 (85) 2 (4) 6 (11) 16 (30) 29 (55) 2 (4) 4 (8) 2 (4) 0

The best fitting models are indicated in bold script.

for both, task and strategy applied (parentheses show relative
frequencies).

First- and second graders seemed to use a direct estimation
strategy solving the bounded number line estimation task as the
linear model provided the best fit (for 64% of the first- and
51% of the second-graders). Interestingly, this pattern changed
for third- and fourth-graders: Only 31% of the third-graders’
and 35% of the fourth-graders’ estimates were accounted for
best by models indicating direct estimation strategies (i.e., lin-
ear and unbounded power models). Instead, one- or two-cycle
models provided a better fit, clearly indicating the use of refer-
ence points and thus proportion-judgment strategies (Barth and
Paladino, 2011). In detail, 68% of third-graders’ estimates were
fitted best by cyclic power models: 46% by one-cycle and 22% by
two-cycle models. Thus, most third-graders seemed to consider
two reference points (i.e., start- and endpoint). Moreover, 66% of
fourth-graders’ estimates were also accounted for best by cyclic
power models. The high percentage for two-cycle models (47%)
indicated the prominent use of three reference points.

Unexpectedly, a direct estimation strategy was also observed
for the majority of adult’s estimates (70%) as the single scallop
model provided the best fit for 47% of participants’ estimates. At
first glance, this result pattern seems to contradict our hypoth-
esis and also previous results of Cohen and Blanc-Goldhammer
(2011). However, a closer look at the estimation pattern clari-
fied this: as adults show estimation patterns with very small PAEs
all model fittings were more or less identical as indicated by
the respective adjusted R2 (linear model: mean adj.R2 = 0.985,
unbounded power model: mean adj.R2 = 0.984, dual scallop
model: mean adj.R2 = 0.983, multi scallop model: mean adj.R2 =
0.983, one-cycle model: mean adj.R2 = 0.981, two-cycle model:
mean adj.R2 = 0.981). Thus, as power models with an exponent
of 1 are basically similar to a linear function without an intercept,
selection of best fitting model does not provide sufficient evi-
dence to reliably differentiate between estimation strategies. Yet, a

closer inspection of (adults’) estimation errors is informative (see
below).

Regarding model fittings for estimates in the unbounded
version, results are more consistent: Independent of age group,
the majority of participants was always classified to use direct
estimation strategies as an unbounded power model provided
the best fit for their estimates. According to Cohen and Blanc-
Goldhammer (2011), this model indicates that participants
directly estimated targets’ locations (see also Slusser et al., 2013).
Dual and multi scallop models fitted best for only a few partic-
ipants’ estimates, most frequently adults, as did cyclic models.
Taken together, these data do not corroborate the notion of a
prominent use of specific strategies such as proportion-judgment
or dead-reckoning in unbounded number line estimation.

PAE DISTRIBUTION
On the panels of Figures 3 and 4, we plotted the mean stan-
dard deviations of PAE as a function of target number (see left
column) and the standard deviations of PAEs at targets close to
specific reference points (i.e., origin, midpoint, and endpoint)
and in between reference points (first quartile, third quartile) to
be compared in a contour analysis (right column; cf. Ashcraft and
Moore, 2012).

Even from visual inspection of bounded number line esti-
mation performance, it is obvious that between grades two and
three (Figures 3B,C) a change in children’s estimation strate-
gies seems to occur. First- and second-graders’ PAE variability
increased significantly with increasing target numbers as indi-
cated by both, the more detailed distribution of PAE variabil-
ity (Figures 3A,B, left column) as well as the contour analyses
(Figures 3A,B, right column). Correlating SD of PAE and size
of target number revealed significant correlations of r = 0.99
(p < 0.01) for both age groups. In contrast, children from grade
three on showed M-shaped patterns of PAE distribution and
no significant correlation between SD of PAE and size of target
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FIGURE 3 | Standard deviations of percent absolute errors (PAE) for

bounded number line estimation performance. The left column depicts
the relationship between standard deviations of PAEs and target numbers
whereas the right column depicts results of counter analyses summarizing
standard deviations of PAEs at specific reference points (cf. Ashcraft and
Moore, 2012; grade 1 through adults: A–E).

number (all r < 0.32, all p > 0.18). This means that children’s
estimations varied less at and around the to-be-expected refer-
ence points (i.e., start and endpoint as well as the midpoint of
the scale) whereas PAE variability was reliably larger in between
these reference points. Additionally, the same patterns were also
present for fourth-graders and adults, especially when taking
a closer look at the distribution of PAE variability plotted as

FIGURE 4 | Standard deviations of percent absolute errors (PAE) for

unbounded number line estimation performance. The left column
depicts the relationship between standard deviations of PAEs and target
numbers whereas the right column depicts results of counter analyses
summarizing standard deviations of PAEs at specific reference points (cf.
Ashcraft and Moore, 2012; grade 1 through adults: A–E).

target function (see Figures 3C–E, left column). Importantly,
these (indicated) M-shaped patterns of error distribution are
characteristic for proportion-judgment strategies (cf. Cohen and
Blanc-Goldhammer, 2011). Generally, statistical evaluation by the
contour analyses (see Figure 3, right column) substantiated these
M-shaped patterns. The t-tests to evaluate whether PAE variabil-
ity is indeed reduced at/around suspected reference points (start-,
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mid and endpoint) compared to in between them (first and
third quartile) revealed no significant differences for first- and
second-graders’ PAE variability (both t < 0.88, both p > 0.40,
one-sided) but indicated (marginally) significant smaller PAE
variability at/around reference points for third-graders, adults
(both t > 4.10, both p < 0.01, one-sided), and fourth-graders
[t(8) = 2.19, p = 0.06, one-sided].

In contrast to this, for the unbounded number line task
similar PAE distributions were observed across all age groups:
PAE variability increased monotonously with target number (see
Figures 4A–E) resulting in significant correlations between SD of
PAE and size of target number for all age groups (from r = 0.62
to r = 0.99, all p < 0.05). This pattern of linearly increasing error
variability was most prevalent for second-, third-, and fourth
graders. However, for first-graders we observed PAE variability to
decrease toward the end of the scale (see Figure 4A) while PAE
variability remained constant for adults’ estimates of larger tar-
get numbers (see Figure 4E). This pattern was due to the fact that
first-graders and adults placed larger numbers toward the end of
the physical line, thereby increasing PAEs but reducing their vari-
ability or holding it constant, respectively. Importantly, the t-tests
statistically evaluating the contour analysis did not reveal any sig-
nificant differences in PAE variability at/around reference points
compared to PAE variability in between these reference points (all
t < 0.50, all p > 0.63).

DISCUSSION
The current study set off to investigate the development of chil-
dren’s spatial representation of number magnitude by comparing
their estimation performance in both a standard bounded as well
as a new unbounded version of the number line estimation task.
Such a direct contrast of the two versions of the task for children
is of particular interest as a recent study with adult participants
(Cohen and Blanc-Goldhammer, 2011) indicated that the stan-
dard, bounded number line estimation task seems to induce
proportion-judgment strategies whereas the new, unbounded
version of the task was supposed to provide a more pure measure
of the underlying spatial magnitude representation. This was con-
cluded by Cohen and Blanc-Goldhammer (2011) from the fact
that no reduction of error variability at specific reference points
was observed in unbounded number line estimation indicating
that this task is better suited to make inferences on the represen-
tation of integer numbers along the mental number line. To inves-
tigate the development of possible differences between these two
versions of the task we assessed children from first to fourth grade
on the bounded as well as the unbounded number line estimation
task in a cross-sectional design. In line with recent data (Schneider
et al., 2008; Slusser et al., 2013) we expected to observe evi-
dence for proportion-judgment strategies in children from grade
three at the latest for the bounded but not the unbounded num-
ber line estimation task. The present data partially corroborated
this hypothesis as we observed a qualitative change in estima-
tion performance for bounded but not unbounded number line
estimation with increasing age, in particular between second and
third grade. Note, however, that Slusser et al. (2013) observed
evidence for the predominant use of proportion-judgment strate-
gies already in seven-year olds whereas in the current study this

was only the case for third-graders and older children. Cultural
or school characteristics or task attributes may explain this slight
difference.

In the following, we will first discuss the differential develop-
ment in the bounded and unbounded version of the number line
estimation task before elaborating on the broader implication for
research on children’s numerical development.

DIFFERENTIAL DEVELOPMENT OF NUMBER LINE ESTIMATIONS IN
BOUNDED vs. UNBOUNDED NUMBER LINE TASKS
First- and second-graders’ bounded and unbounded number line
estimations indicated no substantial differences between the esti-
mation patterns and error distributions for the two versions of
the number line estimation task in our study. This corroborates
our hypothesis that indices for the use of proportion-judgment
strategies (considering at least two reference points) may only
occur after a certain level of proficiency has been reached (see
also Slusser et al., 2013 for a similar argument, however, for an
earlier start of proportion judgments). Importantly, this inter-
pretation is corroborated by the results of the model fittings: For
the bounded estimation task, we found the estimation pattern of
most children to be fitted best by linear functions instead of cyclic
models not indicating the use of proportion-judgment strategies.
In line with this, unbounded power models were observed to fit
best the estimates of most children in the unbounded number
line estimation task—again not indicating the use of proportion-
judgment strategies. Instead the prominently observed models
indicate that children directly estimated target numbers without
using reference points other than the start point (cf. Cohen and
Blanc-Goldhammer, 2011).

Apart from this general pattern there was an interesting finding
for the first-graders in our sample. We observed that first-graders
overestimated positions of large numbers in the unbounded
number line task. This means that they placed numbers close to
20 (which was the maximum of the number range assessed) even
beyond than necessary (i.e., further to the right, see Figure 2,
Panel A). Because we also observed a decrease of the variation
of the estimation errors toward the end of the scale, this prob-
ably indicates that first-graders used the length of the physical
line as any kind of orientation. However, because there was no
numerical endpoint indicated and there is evidence that relatively
younger children tend to even ignore the upper bound when given
(at least they do not seem to use it systematically as a reference
point, Slusser et al., 2013) we are confident that this does not sug-
gest the use of proportion-judgment strategies. This is also backed
by the modeling results with no indications for cyclic models to
fit the data best. Rather, children seemed to consistently overes-
timate the target numbers with the largest numbers seeming so
large to them, that they locate them toward the end of almost
any unbounded number line. Synced with the fact that even first
graders are usually able to adhere to the ordinal sequence of the
numbers in number line estimations (e.g., Moeller et al., 2009)
it is just a consequence of such behavior that error variation
decreases toward the end of the physical line.

In contrast to first- and second-graders and in line with previ-
ous studies investigating bounded number line estimation (e.g.,
Slusser et al., 2013) estimation performance of relatively older
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children revealed explicit differences between the bounded and
unbounded version of the number line task. For the unbounded
number line estimation task estimation patterns as well as the
monotonously increasing variation of estimation errors did not
indicate the use of reference points. Again this was corroborated
by the modeling results as we found the estimation patterns of the
vast majority of children (third- and fourth-graders) to be fitted
best by models indicating direct estimation strategies. However,
inspection of both, estimation patterns as well as error variabil-
ity indicated that this did not hold for estimation performance
in the bounded number line estimation task. Although estima-
tion patterns looked rather linear one- and two-cycle power
models provided the best fit for the majority of children’s’ esti-
mates - clearly indicating the use of either two (i.e., start and
endpoint) or three reference points (i.e., start, middle and end-
point; cf. Cohen and Blanc-Goldhammer, 2011; Slusser et al.,
2013). Furthermore, the variation of estimation errors showed the
characteristic M-shaped distribution indicating that error vari-
ability decreased at these respective reference points (cf. Cohen
and Blanc-Goldhammer, 2011). Thus, our results are in line with
recent evidence suggesting that relatively older children probably
from grade three on (Schneider et al., 2008, but see Slusser et al.,
2013 for proportional judgment from grade two on), system-
atically rely on proportion-judgment strategies in number line
estimation - but only so when performing the bounded number
line task.

A similar pattern was observed when looking at adults’ esti-
mation performance. Although model fittings indicated adults
to use direct estimation strategies a closer inspection of PAE
variability was also informative. The M-shaped distribution of
PAE variability clearly indicated the use of proportion-judgment
strategies. Synced with the fact that model fittings can hardly
differentiate between very accurate and basically linear estima-
tion patterns the fitting results for adult participants should be
considered only cautiously. In contrast, adults’ estimates on the
unbounded number line revealed no indication for the system-
atic use of proportion-judgment strategies. However, different
from second- to fourth-graders and comparable to first-graders,
adults seemed to use the end of the number line as some kind of
endpoint. Not only did adults overestimate numbers close to the
largest target number assessed but their PAE variability remained
constant for these target numbers as well. This result pattern,
however, is in line with previous findings of Cohen and Blanc-
Goldhammer (2011) who removed participants’ responses for the
largest items from further analyses because “the computer screen
boundary acted as an artificial endpoint and skewed these data
low” (Cohen and Blanc-Goldhammer, 2011, p. 335). Importantly,
even though adults may have tried to figure out the endpoint of
the number line by locating the largest targets toward the end of
the physical line, model fittings as well as visual inspection of PAE
variability did not provide any evidence for the use of specific esti-
mation strategies (i.e., prominent use of proportion-judgment or
dead-reckoning strategy) in unbounded number line estimation.

Taken together and in line with previous studies (cf. Cohen
and Blanc-Goldhammer, 2011; Slusser et al., 2013), our results
suggest that the standard bounded number line estimation task
seems to induce specific proportion-judgment strategies for

relatively older children and adults. Therefore, these data add to
recent evidence challenging the view that the bounded version of
the number line estimation task allows for direct inferences about
the nature of the spatial representation of number magnitude (see
also Barth and Paladino, 2011; Karolis et al., 2011). Cohen and
Blanc-Goldhammer (2011) proposed that not the estimation pat-
tern but the error variability found in number line estimation
tasks allows inferences about the representation of the magnitude
of numbers. In line with their data for adults we found the error
variability to increase linearly in the unbounded number line esti-
mation task indicating a linear number representation with scalar
variance (e.g., Gibbon and Church, 1981; Brannon et al., 2001).
However, most importantly following the rationale of Cohen and
Blanc-Goldhammer (2011) our data suggest that the unbounded
version seems to provide a purer measure of number line esti-
mation performance in children as well—at least for relatively
older children while we were not able to find systematic differ-
ences between performance in bounded and unbounded number
line estimation for the relatively younger participants in our study
(first-and second-graders). Thus, for relatively younger children
both versions of the task may tap on number line estimation
whereas for older children performance in the bounded version
may be complemented by strategies other than number line esti-
mation. This is of particular interest from a developmental point
of view because performance in the bounded version of the num-
ber line estimation task has repeatedly been associated with actual
as well as future numerical achievement (e.g., Booth and Siegler,
2008).

IMPLICATIONS FOR RESEARCH ON NUMERICAL DEVELOPMENT
Estimation performance in the bounded number line task is
closely related to other numerical concepts, to some extent even
causally (e.g., Booth and Siegler, 2008; Siegler and Ramani, 2009).
Children with a more accurate linear representation are not only
more proficient in other numerical tasks such as addition but
are also better in learning new arithmetical problems. Yet, given
the interpretation of Slusser et al. (2013), who suggested chil-
dren to improve in number line estimation when able to consider
more reference points to successfully apply proportion-judgment
strategies, the question arises what it is that links performance
in the bounded number line estimation task to other numeri-
cal concepts—acknowledging that it may not be (as originally
proposed) the index of the underlying spatial magnitude rep-
resentation? A possible account might consider the conceptual
similarity of applying proportion-judgment strategies to some
extent involve an understanding of part-whole relations and thus
fractions and the concept of division (e.g., the midpoint requires
an understanding of halving). Importantly, there is now accu-
mulating evidence indicating that fraction understanding has a
central role in numerical development as well as educational
achievement, in particular beyond the first few years of schooling
(see Siegler et al., 2013, for a review). Not only that high school
students’ fraction knowledge correlates very high with their actual
mathematics achievement (r > 0.80). Fraction knowledge of rel-
atively older children (i.e., fifth-graders) also predicts future
algebra and overall mathematics achievement in high school even
after taking into account covariates such as IQ, reading ability,
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working memory, etc. (Siegler et al., 2012, see also Bailey et al.,
2012; Booth and Newton, 2012 for the influence of fraction
understanding on mathematics achievement). Importantly, this is
in accordance with educational and instructional practice. Lack of
fraction knowledge was ranked to be amongst the most important
problems hindering students’ algebra learning by a representa-
tive sample of 1000 US algebra teachers (National Mathematics
Advisory Panel, 2008a). And as a consequence, the National
Mathematics Advisory Panel (2008b) asserts that “the teaching
of fractions must be acknowledged as critically important and
improved before an increase in student achievement in algebra
can be expected” (p. 18). In this vein, we propose that for older
children the concept of proportionality also or predominantly
drives the observed predictive power of estimation performance
in the bounded number line estimation task for actual and future
numerical and arithmetical achievement. In sum, it may not be
the spatial representation of number magnitude also assessed in
the unbounded number line task, but rather proportional strate-
gies specific to the bounded number line task which are related to
other arithmetic competencies.

LIMITATIONS AND PERSPECTIVES
Although it was not at the heart of the current study to compare
the two versions of number line estimation tasks with respect to
task difficulty, we wish to elaborate on potential concerns about
the different number ranges assessed being responsible for the
application of different strategies. The choice of different number
ranges for the bounded task was based on the results of previ-
ous studies (cf. Slusser et al., 2013) which showed that already
8- to 10-year-olds are not only able to perform number line tasks
in ranges up to 100,000 but also applied proportion-judgment
strategies in these ranges. Therefore, the eventual concern that
the bounded number line estimation task might have been more
difficult for older children and adults simply because of the
higher number ranges covered seems premature. This argument
is further corroborated by a closer inspection of means and
standard deviations of PAEs. As can be read from Table 2 esti-
mation errors were higher for bounded number line performance
than for unbounded number line performance only for first-
and second-graders (both t > 3.1, both p < 0.01) although the
assessed number ranges in the bounded task were either the same
or even smaller compared to the range assessed in the unbounded
number line estimation task. Interestingly, the reversed pattern

Table 2 | Mean PAE’s (percent absolute error) and SD of PAEs for the

range of the respective number line task separated for the different

age groups.

Age group Bounded task Unbounded task

M SD Range M SD Range

First grade 22.8 11.6 0–10 15.0 7.6 0–20

Second grade 14.7 9.2 0–20 10.7 4.4 0–20

Third grade 6.4 2.8 0–100 13.8 6.6 0–20

Fourth grade 6.0 2.1 0–1000 11.9 6.1 0–20

Adults 3.3 1.1 0–10,000 10.0 5.7 0–20

was found for children older than grade two and adults: even
though larger and supposedly more difficult number ranges were
administered in the bounded task versions mean PAEs are higher
for the unbounded task (all t > 5.8, all p < 0.01). This pat-
tern nicely corroborates our hypothesis that older children and
adults apply proportion-judgment strategies for solving bounded
number line estimation (making these easier) whereas younger
children are (not yet) able to apply such a strategy.

An additional argument corroborating this interpretation
comes from the development of PAEs. Comparing mean PAEs
within bounded number line estimation, an ANOVA revealed
a main effect of age group [F(4, 239) = 68.75, p < 0.01]. Post-
hoc pairwise comparisons showed significant differences between
mean PAEs of first-graders and second-graders with all other
age groups (all p < 0.01). Third- and fourth-grader’s as well as
adult’s mean PAEs for the bounded task did not differ signif-
icantly. For mean PAEs for unbounded estimation an ANOVA
revealed a main effect of age group [F(4, 239) = 5.54, p < 0.01].
Post-hoc tests indicated significantly higher PAEs for first-graders
compared to second-graders and adults (p < 0.05, p < 0.01,
respectively). Additionally, third-graders were indexed to differ
significantly from adults regarding their mean PAE (p < 0.05).
So, constant PAEs for third-, fourth-graders and adults in the
bounded number line task indicate that the difficulty of the
respective range assessed was approximately the same for the
different age groups. Since differences in estimation errors of
unbounded number line performance reveal no systematic pat-
tern (see Table 2, notification) there are no obvious indications
for strategy application.

However, besides these issues regarding the ranges used in
bounded number line estimation other theoretical as well as
methodological aspects which we did not control for explicitly
might also play a role in number line estimation performance.
For example, differences in the visual appearance of the tasks,
or the missing second landmark in the unbounded task, in par-
ticular, might involve different processes of spatial recall. For
instance it is interesting to note that Huttenlocher et al. (1994;
see also Hund and Spencer, 2003; Schutte et al., 2011), observed
that children’s performance pattern in spatial recall tasks were
very similar to estimation patterns found for bounded number
line estimation. When supposed to remember the spatial loca-
tion of a hidden toy, children also relied on the boundaries of
sandboxes as location cues. While younger children (4- to 7-year
olds) showed a memory bias toward the middle of the sandbox
older children (10- to 11-year olds) showed a bias toward the
first and third quartile of the box (speaking in terms of number
line segmentation; Huttenlocher et al., 1994). Thus, the applica-
tion of proportion-judgment strategies in bounded number line
estimation might also be influenced by more general aspects of
spatial cognition. This assumption is further corroborated when
considering the influence of spatial attention for number line
performance. LeFevre et al. (2010; see also LeFevre et al., 2013)
observed that besides linguistic and quantitative processes, spa-
tial attention is a unique precursor for early numeracy skills, also
predicting number line estimation performance.

In sum, this correspondence asks for further studies to disen-
tangle how number line estimation is influenced by both general
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influences of spatial cognition and the particular spatial attributes
of task presentation such as item placement or task instruc-
tion (cf. Barth and Paladino, 2011). It is well conceivable that
such factors also influence estimation performance. For exam-
ple, in our study, items of the bounded task were always depicted
above the midpoint of the number line whereas items of the
unbounded task were depicted above the start point. However,
as our results obtained for adult participants are more or less
identical to those of Cohen and Blanc-Goldhammer (2011) who
controlled for item placement we would not assume children’s
estimation patterns to be distinct when item placement was
controlled. In addition, there are other interesting and impor-
tant research questions for future studies regarding the way
performance in the unbounded number line estimation task
relates to other actual but also future numerical and arithmeti-
cal competencies. Assuming unbounded number line estimation
to provide a purer measure of the underlying spatial represen-
tation of number magnitude, evaluating its relationship with
other numerical competencies might be of particular interest
given the strong relationship observed for bounded number line
estimation.

CONCLUSIONS
In the current study we directly compared children’s estimations
in the standard bounded as well as a new unbounded version
of the number line estimation task. In line with recent research
we found reliable evidence for the use of proportion-judgment
strategies in bounded number line estimation for relatively older
children (third- and fourth-graders) and adults adding to evi-
dence suggesting that estimations in the bounded number line
task are not reflecting an isomorphic measure of the mental
number line of relatively older children and adults.

In contrast, there were no indications for the use of any strate-
gies other than direct number line estimation for the unbounded
number line estimation task which, thus, may be a valuable tool
for assessing the spatial magnitude representation in a more unbi-
ased way, at least for older children and adults. The fact that we
did observe similar results for the bounded and the unbounded
version of the task for first- and second-graders may indicate
that both versions of the task might assess the same underlying
representation for relatively younger children at least in number
ranges familiar to the children assessed.

Taken together, the bounded and the unbounded number line
estimation task seem to assess different representations and pro-
cesses, although aiming to assess the same underlying spatial
representation of number magnitude. Importantly, this has impli-
cations on a broader level. As estimation performance in the
bounded number line task is not only correlated with but even
causally related to other numerical and arithmetic competencies,
future research is necessary to investigate whether it is indeed
the spatial representation of number magnitude (assessed by the
bounded number line task) or rather the concomitantly assessed
proportion understanding which predicts future numerical com-
petencies and achievement.
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